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Abstract  

This study estimates the volatility of Pakistani and leading foreign stock markets. Daily data are 

used from nine international equity markets (KSE 100, NIKKEI 225, HIS, S&P 500, NASDAQ 

100, DOW JONES, GADXI, FTSE 350 and DFMGI) for the period of Jan, 2005 to Nov, 2014. 

The whole data set is used for modeling of time varying volatility of stock markets. Univariate 

GARCH type models i.e. GARCH and GJR are employed for volatility modeling of Pakistani and 

leading foreign stock markets. The residual analysis also employed to check the validity of 

models. Our study brings important conclusions for financial institutions, portfolio managers, 

market players and academician to diagnose the nature and level of linkages between the 

financial markets.  
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1. Introduction 

Volatility modeling is one of the leading issue now a days addressed by financial econometrics. 

Predictability of time varying volatility is the elementary purpose of financial econometric 

modeling. In financial markets risk is a synonym of volatility. The understanding and 

predictability of time varying volatility modeling is significantly important for asset allocation, 

strategies of global hedging and pricing of internal securities. In econometrics the main purpose 

of modeling of time series is to estimate the conditional mean, some theoretical models are used 

to estimate conditional variance, it is also known as volatility. These models are employed to 

analyze the historical behavior of volatility, future prediction of volatility, examining series of 

asset return by considering volatility clustering, leverage effect and persistence. The volatility 

clustering are piles of low and high values of financial asset return. The volatility clustering is 

commonly seen in financial time series. The persistence of shock is a measure to demonstrate 

how much time a price shock takes for decay in financial time series.  Leverage effect illustrates 

the negative correlation between current asset return and future volatility of asset return. All this 

information can be obliging in portfolio allocation and hedging.  

2. Literature review 

This section briefly discusses previous studies. There’s a long debate on volatility modeling 

between the intra and cross financial markets in financial Econometrics literature. Many 

researchers have presented an enormous empirical and theoretical work to validate their 

particular selected models. This review emphasizes on estimating time varying volatility, 

particularly, in case of Pakistani and foreign stock markets. The volatility modeling has been 

studied in the financial econometric literature in case of Pakistan. Most of the studies also the 

found volatility spillover effect transmitted from global financial markets to Pakistani financial 

markets, [see, e.g., Ali and Afzal (2012), Zia-Ur-Rehman et al. (2011), Attari and Safdar (2013), 

and Tahir et al. (2013)]. Sajid et al. (2012), employed ARMA-GARCH for measurement of 

inflation and inflation uncertainty. Jabeen and Khan (2014) employed GARCH model to find out 

“Exchange rate volatility by macroeconomic fundamentals in Pakistan”. [see, e.g., Qayyum and 

Khan (2014), Qayyum and Kemal (2006), Khalil et al. (2013), Zia and Zahid (2011), Gomez and 

Ahmad (2014), and Bashir et al. (2014)]. investigated the volatility spillover effect and estimate 



volatility of  foreign exchange market and Pakistan stock markets by using different econometric 

tools. Padhi and Lagesh (2012) estimated volatility by using DCC-GARCH  and also found 

Information transmission mechanisms persists through return and volatility, it plays a significant 

role in determining the distribution and financial integration across the global financial markets. 

Yang and Doong (2004) estimated volatility and explore relationship between the stock market 

prices and the foreign exchange market prices in case of G-7countries. Choi et al. (2009) 

examined the volatility and integration between the exchange market and stock market in case of 

New Zealand. Sinha and Sinha (2010) investigated the volatility modeling and dynamic 

relationships between India, UK, Japan and USA, incorporating the structural change by using 

GARCH type modeling, concluded that the Japan and USA stock market’s volatility impacted 

Indian stock markets. Sok-Gee and Karim (2010) examined volatility and volatility spillover 

between five countries of ASEAN, Japan and USA. Abou-Zaid (2011) estimated Volatility and 

Spillover Effects In Emerging MENA Stock Markets. 

3. Econometric Methodology and Model Specification 

To describe the variation of conditional variance with respect to time, Engle (1982) proposed 

Autoregressive conditional hetroscedastic (ARCH) model. Although ARCH model is a 

substantial contribution in econometric tools, it has some problems like long lag length and non-

negativity restriction on parameters. Bollerslev (1986) introduced generalized autoregressive 

conditional heteroskedastic (GARCH) model, which improves the unique specification with the 

addition of lag value of conditional variance, which acts like smoothing term. GARCH model 

cannot analyze leverage effect. For this Glosten, Jagannathan & Runkle (1993) proposed GJR 

model. GJR model is a significant extension of standard GARCH model; it contains asymmetric 

term in conditional variance equation.  

There are dozens of univariate and multivariate (ARCH) type model. To avoid any non-

convergence problem in this study we employ appropriate univariate GARCH type model such 

as GARCH (p, q) and GJR (p, q) to estimate volatility of Pakistani and leading foreign stock 

markets. The GARCH (p, q) and GJR (p, q) Univariate models are capable of exploring better 

volatility dynamics. 

The financial series at level are trendy in nature. It is impossible to estimate a robust model if the 

series is trendy. To deal with trend we used the log difference return.  



𝑅𝑡 = 𝑙𝑜𝑔𝑒(𝑙𝑡/𝑙𝑡−1) 

𝑙𝑡= Financial time series at level i.e. stock indices and exchange rates at the end of time t.    

𝑙𝑡−1= First lag of financial time series.  

Granger and Andersen in (1978) anticipated that the conditional variance depends upon the 

predicted past value of return series. 

𝛾𝑡 = 𝜀𝑡𝑟𝑡−1                                                 …………………………………………. (3.1)  

The conditional variance is 

 𝑉 (
𝛾𝑡

𝑟𝑡−1
) = 𝜎2𝑟𝑡−1

2                                        ………………………………………… (3.2)                

There is no restriction for unconditional variance, either it is unspecified or zero. Then another 

famous approach came at front to find the ARCH effect in return series. 

3.1 ARCH (q) Model  

Robert F. Engle in (1982) introduced the Autoregressive conditional hetroscedastic (ARCH) 

model. This model overcomes all short comings which exist in previous models. In this model 

Engle, introduced conditional mean and conditional variance equations. Empirically the 

conditional mean equation follows ARMA (p, q) process and the conditional variance depends 

upon the square of past values of error process 𝜀𝑡.  

The general description of ARCH model is   

Conditional mean equation 

𝑅𝑡 = 𝛼0 + 𝛽𝑋𝑡 + 𝜀𝑡                             …………………………………………. (3.3) 

Where  𝜀𝑡~𝑁(0, 𝜎𝑡
2) 

Conditional variance equation 

𝜎𝑡
2 = 𝜃0 + ∑ 𝜃𝑖

𝑞
𝑖=1 𝜀𝑡−1

2               …………………………………………. (3.4) 

Where 𝜃0 > 0, 𝜃𝑖 ≥ 0       𝑖= 1,2,…….., q 



In conditional mean equation Rt represents the return which is linear function of Xt.  𝑤ℎ𝑒𝑟𝑒 𝛽 

shows the vector of parameters. Empirically 𝛽𝑋𝑡 illustrates ARMA (m, n) process with different 

specifications. In some cases it may be ARMA (0, 0). According to the “Efficient Market 

Hypothesis (EMH)” Rt represents mean reversion behavior and it is unpredictable. In conditional 

variance equation the restriction on coefficients is that they must be non-negative. 𝜎𝑡
2 Represents 

conditional variance, which depend upon lags of squared past value of 𝜀𝑡 process.  

3.2 GARCH (p, q) Model  

Linear ARCH (q) model has some problems first, sometime takes long lag length ‘q’ due to this 

number of parameters are going to increase as result loss of degree of freedom. Second, 

imposition of non-negativity condition on parameters of conditional variance equation. 

Bollerslev (1986) proposed generalized extension of ARCH (q) model Generalized 

autoregressive conditional hetroscedastic (GARCH) model.  

The general description of GARCH model is   

Conditional mean equation 

𝑅𝑡 = 𝛼0 + 𝛽𝑋𝑡 + 𝜀𝑡                                           …………………………………………. (3.5) 

Where 𝜀𝑡~𝑁(0, 𝜎𝑡
2) 

Conditional variance equation 

𝜎𝑡
2 = 𝜃0 + ∑ 𝜃𝑖

𝑞
𝑖=1 𝜀𝑡−1

2 + ∑ 𝜑𝑗
𝑝
𝑖=1 𝜎𝑡−1

2      ………………………………………. (3.6)                              

Where 𝜃0 > 0, 𝜃𝑖 ≥ 0, 𝜑𝑗 ≥ 0 

In GARCH (p, q) model the conditional variance depends upon square of past values of 

process𝜀𝑡 and lag of conditional variance𝜎𝑡−1
2 . The condition of non-negativity of parameter 

also applied in this model.    

3.3 Asymmetric GARCH models 

Simple GARCH type models deal with the symmetric effect of bad and good news on volatility. 

These models do not take into account the asymmetries which are associated with the 

distribution. In financial econometrics literature Asymmetric GARCH type models consider the 



asymmetries of response to bad or good news. Asymmetric GARCH models account for leverage 

effect. The leverage effect indicates the negative correlation between the assets returns and the 

volatility of the assets return (Black 1976), means the magnitude of bad and good news are 

different. 

Engle and Victor (1993) conducted a brief discussion on how univariate GARCH type model 

capture the impact of bad news. They have used Japan stock market data. They argued that the 

GJR model is the best model to capture the asymmetries. According to them EGARCH model 

capture the Asymmetries but when we employ the EGARCH model the standard deviation is  

going too high, as compare to GJR model. They also concluded that GJR model is best for 

capturing the asymmetries. Bollerslev and Mikkelsen (1996) The GARCH type models are easily 

deduced as ARMA type models for second order conditional moment and data generating 

process of conditional variance. GARCH type models commonly employed to quantify the 

persistence of the expected process of conditional variance.  

3.3.1 GJR (p, q) Model 

Glosten, Jagannathan and Runkle introduced (GJR) model in 1993. GJR model is a significant 

extension in simple GARCH model. This model also captures the asymmetries in ARCH 

process. GJR model also account for the leverage effect in a financial series.  

The general representation of the GJR model is: 

Conditional mean equation 

𝑅𝑡 = 𝛼0 + 𝛽𝑋𝑡 + 𝜀𝑡                                                                  …………………………. (3.9) 

Where   𝜀𝑡~𝑁(0, 𝜎𝑡
2) 

Conditional variance equation 

𝜎𝑡
2 = 𝜃0 + ∑ 𝜃𝑖

𝑞
𝑖=1 𝜀𝑡−𝑖

2 + ∑ 𝛿𝑖
𝑞
𝑖=1 𝜀𝑡−𝑖

2 𝐺𝑡 + ∑ 𝜑𝑗
𝑝
𝑖=1 𝜎𝑡−𝑗

2       ………………. (3.10) 

Where 𝜃0 > 0, 𝜃𝑖 ≥ 0, 𝜑𝑖 ≥ 0 

 0 ≤ 𝛿𝑖 ≥ 1  Range of parameter of leverage effect. 

Gt = 1 when 𝜀𝑡−1 < 0 and Gt = 0 when 𝜀𝑡−1 ≥ 0 



Gt = 1 when 𝜀𝑡−1 < 0  illustrates bad news or the negative shock and Gt = 0 when 𝜀𝑡−1 ≥ 0 

indicates good news or positive shock. GJR model also shows that bad news has more impact 

(𝜃𝑖 + 𝛿𝑖). The good news has less impact (𝜃𝑖). If the 𝛿𝑖> 0 means that there is leverage effect 

and shows that response to shock is distinct. If the 𝛿𝑖= 0 means symmetric response to distinct 

shock (In other words both news have same impact). Condition (𝜃𝑖+𝜑𝑖+
𝛿𝑖

2
<1) shows the 

persistence of shock.  

3.4 Residual Analysis  

To identify the good fitness of employed model we use post estimation results (Residual 

analysis). The Jarque Bera test (Normality test) employs to check the null hypothesis that 

distribution of return series is normal. Q-stat (return series) employs to validate the null 

hypothesis, there is no serial autocorrelation in standardized residuals.  Q2-stat (return series) 

checks the null hypothesis, there is no serial autocorrelation in squared standardized residuals. 

LM-ARCH with the Null hypothesis, there is no ARCH effect in return series. Due to 

convergence problem we check Q-stat and Q2-stat up to 10th lag. LM-ARCH test up to 5th lag.   

 3.5 Description of Data and sources 

The daily data of stock market indices are used form 2005 to 2014. These stock markets are 

taken from ASIA, Europe, America and Gulf countries. From US S&P 500, DOW JONES (DJI), 

and NASDAQ 100 are used. From EU London (FTSE 350) and German (GDAXI) stock 

exchange data are taken. From Asia Pakistan (KSE 100), Japan (NIKKEI 225) and Hong Kong 

(HIS) stock market indices are used. Dubai financial market index (DFMGI) is taken from Gulf 

countries. 

4. Estimations and Analysis  

4.1 Graphical Analysis 

Figure 4.1.1.a Graphs of series at level of stock indices  

Figure 4.1.1.a and 4.1.1.b given above show in the beginning all series have upward trend than 

sharp decline and then again there is an upward trend continuously. This means that series are 

trendy at level. In figure 4.1.1.a the series are Karachi stock market (KSE 100), Nikkei 225, 



Hang Seng (HIS), Standard and Poor (S&P 500) and Dow Jones. In figure 4.1.1.b the series are 

Nasdaq 100, FTSE 350, GDAXI, Dubai financial market (DFMGI). Daily data is used from 3rd 

Jan, 2005 to 28th Nov, 2014.  

 

 

Figure 4.1.1.b Graphs of series at level   
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Figure 4.1.2 given below represents return series of Karachi stock market indices. It is 

impossible to find out robust model if the series is trendy, we use log difference return series to 

deal with trend.  In financial econometrics, spread characterized as volatility. In return series spread 

does not remain constant, it is known as Hetroscedasticity.  The circles in figure 4.1.2 are indicating 

the low and high volatility which denote the spread autocorrelation. According to “The Efficient 

Market Hypothesis (EMH) return are unpredictable and show mean reversion behavior”. That’s why all 

return series have mean reversion behavior. If we combine all effects it indicate ARCH (Auto-Regressive 

Conditional Hetroscedasticity) effect. We can easily distinguish between low volatility clustering 

and high volatility clustering period. The greater depreciation from constant level (mean of 

return series) indicates high volatility clustering and less depreciation illustrate low volatility 

clustering. In the same way we can plot and analyze return series of other stock markets. 

Figure 4.1.2 Graph of given return series    
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In figure 4.1.3 given below shows squared returns series of KSE 100. The graph of square return 

series have “spiky” look signifying variation in square return. Circles indicate high volatility and 

low volatility. It also shows that extreme values (outliers) of return series contribute more to the 

high volatility. Square of the return series is also known as variance of the return series means 

these graphs illustrate the dispersion. In the same way we can analyze square return series of 

other stock markets’ indices. 

Figure 4.1.3 Graph of Squared return series 
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The figure 4.1.4 given below illustrates the distribution of the return series. The distribution of 

return series is non-normal. In this graph blue line shows the normal reference distribution of 

return series. The red line indicates the actual distribution of the return series. Histograms 

describe the outliers (extreme values) in return series. The distribution of return series have 

heavy tails and is leptokurtic. This all is due to different response of market players by having 

same information from the same market. 

Figure 4.1.4 Graphs distribution of the return series 
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In figure 4.1.5 given below presents ACF (Auto-correlation function) and PACF (Partial 

Auto-correlation function) of return series. The green straight lines in this graph show 95 percent 

confidence interval, if any bar of ACF and PACF outside these lines means at that lag the values 

are auto correlated in other words significantly vary from zero. The ARMA (p, q) process 

specify through the significant lags of ACF and PACF. The ACF specify the MA (q) process 

PACF specify the AR (p) process. In this graph 1st, 2nd, 3rd, 4th, 10th, 17th and 18th lags of ACF 

are significant and 1st, 3rd, 4th, 10th, 11th, 12th, 17th and 18th lags of PACF are significant, these 

lags format ARMA (p, q) process in conditional mean equation.  It means auto correlation and 

partial autocorrelation exist in the return series. We can also analyze cyclical behavior in return 

series through ACF and PACF graphs. 

Figure 4.1.5 Graphs of ACF and PACF of return series 
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Figure 4.1.6 given below show the graph of ACF and PACF of square return series. 1st to 

20th lags of ACF are significantly differ from zero and 1st……...8th, 10th, 13th, 14th, 19th and 20th 

lags of PACF are statistically significant. In the same manner square return series ACF and 

PACF may provide an indication about the critical lags in conditional variance equation structure 

of GARCH (p, q) model. Means there is autocorrelation and partial autocorrelation in the square 

return series. 

 

 

 

 

Figure 4.1.6 Graphs of ACF and PACF of square of return series 
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The initial statistics of return series of stock markets indices are given below unveil some 

indications about the behavior of stock markets. The distributions of return are non-normal, 

heavy tails and leptokurtic. The mean of all return series are about zero which implies that return 

series show mean reversion behavior. Standard deviation of return series describe the dispersion 

from mean value which return series have greater standard deviation it  means more deviation 

from mean value. The skewness deals with the asymmetry of the distribution. The distributions 

of KSE 100, S&P 500, NASDAQ 100, DJI, NIKKEI 225, FTSE 350 and DFMGI return series 

are negatively skewed which means that the return of these stock markets are less than average 

return. The distributions of HIS and GDAXI are positively skewed which imply the returns of 

these markets are more than average return.  The Jarque-Bera test with null hypothesis of normal 

distribution is employed. Jarque-Bera statistics of all return series are significant means the 

distribution of all return series are non-normal.  

Table 4.2 Summary statistics 
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Variables 

Summary statistics 

 

Mean 

 

Standard 

deviation 

 

Skewness 

 

Jarque 

Bera 

 

Excess 

Kurtosis 

 

Q-stat 

(5) 

 

Q2-stat  

(5) 

 

ARCH 

1-2 

 

KPSS 

 

KSE  

100 

 

0.0006 

 

0.0132 

 

-0.3854 

(0.000) 

 

1098.1 

(0.000) 

 

3.1075 

(0.000) 

 

76.120 

(0.000) 

 

1167.51 

(0.000) 

 

266.88 

(0.000) 

 

0.2073 

 

S&P  

500 

 

0.0002 

 

0.0127 

 

-0.3409 

(0.000) 

 

14088 

(0.000) 

 

11.448 

(0.000) 

 

45.484 

(0.000) 

 

1131.31 

(0.000) 

 

266.72 

(0.000) 

 

0.1965 

 

NASDAQ 

100 

 

0.0003 

 

0.0136 

 

-0.1587 

(0.000) 

 

7985.9 

(0.000) 

 

8.6282 

(0.000) 

 

24.928 

(0.000) 

 

765.777 

(0.000) 

 

156.96 

(0.000) 

 

0.2005 

 

DJI 

 

0.0001 

 

0.0116 

 

-0.0851 

(0.077) 

 

14168 

(0.000) 

 

11.499 

(0.000) 

 

45.037 

(0.000) 

 

1123.85 

(0.000) 

 

283.89 

(0.000) 

 

0.1548 

 

NIKKEI  

225 

 

0.0001 

 

0.0153 

 

-0.5737 

(0.000) 

 

8597.9 

(0.000) 

 

8.8850 

(0.000) 

 

10.564 

(0.000) 

 

1396.71 

(0.000) 

 

489.45 

(0.000) 

 

0.1994 

 

HIS 

 

0.0002 

 

0.0156 

 

0.0459 

(0.000) 

 

10971 

(0.000) 

 

10.120 

(0.000) 

 

8.3870 

(0.000) 

 

1361.38 

(0.000) 

 

361.66 

(0.000) 

 

0.0525 

 

FTSE  

350 

 

0.0001 

 

0.0118 

 

-0.1879 

(0.000) 

 

7288.8 

(0.000) 

 

8.2401 

(0.000) 

 

39.367 

(0.000) 

 

1130.0 

(0.000) 

 

147.29 

(0.000) 

 

0.0569 

 

GDAXI 

 

0.0003 

 

0.0137 

 

0.0297 

(0.537) 

 

5510.5 

(0.000) 

 

7.1719 

(0.000) 

 

16.783 

(0.000) 

 

686.71 

(0.000) 

 

111.39 

(0.000) 

 

0.07411 

 

DFMGI 

 

0.0001 

 

0.0183 

 

-0.8778 

(0.000) 

 

13612 

(0.000) 

 

11.135 

(0.000) 

 

32.381 

(0.000) 

 

166.23 

(0.000) 

 

44.647 

(0.000) 

 

0.4874 



Null Hypotheses (All Null Hypotheses are for nth order) 

KPSS H0: Return series is level stationary, Asymptotic significant values 1% (0.739), 5% (0.463), 10% 

(0.347). Q-stat (return series) there is no serial autocorrelation. Q2-stat (square return series) H0: there is 

no serial autocorrelation. Jarque-Bera H0: distribution of series is normal. LM-ARCH H0: there is no 

ARCH effect. Use these Asymptotic Significance values of t-stat 1% (0.01), 5% (0.05), 10% (0.1) and compare 

these critical values with P-values (Probability values). P-values are in the parenthesis.  

 

The Excess kurtosis of all returns series are significant which means that return series 

distributions are leptokurtic and also indicates that probability of large values is more than 

normal return series. Q-stat of return series are significant, rejecting the null hypothesis of no 

autocorrelation return series. This shows that there is serial autocorrelation in return series. Q-

stat of squared return series are significant, rejecting the null hypothesis of no autocorrelation in 

squared return series. This shows that there is serial autocorrelation in square return series. LM-

ARCH test validates that there is ARCH effect in return series. KPSS is a unit root test with null 

hypothesis of stationary series.  KPSS test results of all variable show that the estimated values 

lies in acceptance region [less than given three significance values 1% (0.739), 5% (0.463), 10% 

(0.347)] means the null hypothesis is accepted, return series are level stationary. 

4.3 Volatility Model specifications of Return Series 

In this section volatility models of stock markets (area under study) are presented to understand 

the Data Generating Process of all financial return series (area under study). It will be helpful to 

understand the mean and volatility structure of financial return series (area under study). 

Volatility modeling is a striking issue for market players, portfolio managers, academicians and 

policy makers. A lot of empirical work on volatility modeling exists in financial econometrics, 

the predictability and modeling of volatility is still a challenge for researchers. Many researcher 

in their studies employed GARCH type model for volatility modeling. In these studies 

researchers employed different ARCH-GARCH family models to describe volatility modeling 

and volatility forecasting [Vijayalakshmi and Gaur (2013); Pasha et al. (2007); Kamal et al. 

(2011); Khan and Parvez (2013); Chand et al. (2013); Jabeen and Saud (2014); Sajid et al. (2012) 

and Faisal et al. (2012)]. In this study we employ GARCH (p, q) and GJR (p, q) model for 

volatility modeling and exploring spillover effect. The GARCH and GJR models mostly 



employed by the researchers due to unique characteristics of these models. These univariate 

models are best to give a better explanation of asset volatility modeling. 

The GARCH model is employed for HIS volatility modeling. The estimated conditional mean 

equation (4.1) is from equation (3.5) and the estimated conditional dispersion equation (4.2) is 

from equation (3.6). The P-values are in parenthesis.  

𝑅𝑡 = 0.0005       …………………………………………………………… (4.1) 

        (0.0000) 

σt
2 = 0.0077 + 0.0523εt−2

2 + 2.0077σt−1
2 + 1.7204σt−2

2 + 0.6600σt−3
2 ... (4.2) 

          (0.0830)           (0.0000)                  (0.0000)                     (0.0000)                    (0.0000) 

The GJR model is employed for KSE 100 volatility modeling. The estimated conditional mean 

equation (4.3) is from equation (3.9) and the estimated conditional dispersion equation (4.4) is 

from equation (3.10). The P-values are in parenthesis. 

𝑅𝑡 = 0.0008 + 1.0000𝑅𝑡−1 − 0.9000𝜀𝑡−1    ……………………………… (4.3) 

        (0.0000)         (0.0000)                     (0.0000) 

 

σt
2 = 0.0000 + 0.1460εt−2

2 + 0.3234εt−1
2 𝐺𝑡 + 0.8031σt−1

2 ……...….…… (4.4) 

           (1.0000)           (0.0000)                  (0.0000)                         (0.0000)                     

The employed models in table 4.3.1 given below describe the data generating process of the 

return series. The estimated parameters of the employed models are statistically significant. In 

KSE 100 model AR (1) term is statistically significant which means that current return of KSE 

100 depends upon 1st lag. MA (1) term in this model is also differ from zero, shows relationship 

between past and current variations. The leverage effect term 𝛿1 in KSE 100 and NIKKEI 225 

models are significant, indicates that the current return negatively correlated with future 

volatility, no leverage effect is found in HIS stock return series. Most of the parameters are 

statistically significant at 5% level of significance. ARCH and GARCH terms are also significant 

in three models means the return series are subject to ARCH effect. The persistence of shock of 



the return series are KSE 100, NIKKEI 225 and HSI all are close to 1 which means that the 

persistence of ARCH and GARCH effect take long time to decay. 

Tables 4.3.1 also illustrate the post estimation results (Residual analysis). The Jarque Bera test 

(Normality test) results show non normal residuals. The Q-stat are insignificant up to 10th lags 

accept null hypothesis means no serial autocorrelation in the standardized residuals. The Q-stat 

on squared standardized residuals are insignificant up to 10th lags accept null hypothesis means 

no serial autocorrelation in squared standardized residuals. LM-ARCH test is also insignificant 

up to 5thlags accept null hypothesis means no ARCH effect remain in series residuals.  

Table 4.3.1 Volatility models of Asian Stock markets Return series 

                   Return series   

Parameters 

KSE-100 

ARMA(1,1) GJR (1,1) 

NIKKEI-225 

ARMA(0,0) GJR (1,1) 

HIS 

ARMA(0,0) GARCH (3,2) 

Conditional Mean Equation 

  Constant  

𝛼0 

0.0009 

(0.7538) 

0.0006 

(0.0093) 

0.0006 

(0.0013) 

AR(1) 

𝜗1 

1.0000 

(0.0000) 

 

----------- 

 

----------- 

MA(1) 

∅1  

-0.9000 

(0.0000)  

 

----------- 

 

----------- 

Conditional Variance Equation 

Constant 

θ0 

0.0000 

(1.0000) 

0.0475 

(0.0007) 

0.0070 

(0.0830) 

ARCH(1) 

𝜃1 

0.1460 

(0.0003) 

0.0273 

(0.0240) 

 

----------- 

ARCH(2) 

𝜃2 

 

----------- 

 

----------- 

0.0523 

(0.0000) 

GARCH(1) 

𝜑1 

0.8032 

(0.0000) 

0.8839 

(0.0000) 

2.0078 

(0.0000) 



GARCH(2) 

𝜑2 

 

----------- 

 

----------- 

1.7205 

(0.0000) 

GARCH(3) 

𝜑3 

 

----------- 

 

----------- 

0.6600 

(0.0000) 

 GJR(1) 

𝛿1 

0.3234 

(0.0000) 

0.1287 

(0.0000) 

 

----------- 

 

Persistence of shock  

 

 1.1109 

 

0.9755 

 

0.9996 

Null Hypotheses(All Null Hypotheses are for nth order)  

AR (p) H0: 𝜗𝑖= 0 No AR Process, MA (q) H0: ∅𝑖= 0 No MA Process, ARCH H0: 𝜃𝑖= 0 No ARCH effect, GARCH 

H0: 𝜑
𝑖
= 0 No GARCH effect, Leverage effect H0: 𝛿𝑖= 0 No leverage effect. P-values are in the parenthesis. 

Residual Analysis 

Parameter 

Series 

Jarque 

Bera 

Q-Stat 

(5) 

Q-Stat 

(10) 

Q2-Stat 

(5) 

Q2-Stat 

 (10) 

LM -ARCH 

(1-2) 

LM-ARCH 

(1-5) 

 

HIS 

128.04 

(0.0000) 

1.7793 

(0.8787) 

5.1972 

(0.8776) 

5.2051 

(0.3913) 

13.983 

(0.5267) 

0.3964 

(0.6727) 

0.5536 

(0.7356) 

 

NIKKEI 225 

509.46 

(0.0000) 

2.0605 

(0.8407) 

6.0220 

(0.8134) 

0.6678 

(0.8807) 

5.1253 

(0.7440) 

0.2047 

(0.8149) 

0.1380 

(0.9835) 

 

KSE 100 

7.0272 

(0.0000) 

0.0019 

(0.9999) 

0.0024 

(1.0000) 

0.0020 

(0.9999) 

0.0039 

(1.0000) 

0.0004 

(0.9999) 

0.0004 

(1.0000) 

Null Hypotheses(All Null Hypotheses are for nth order) 

Q-stat (return series) there is no serial autocorrelation. Q2-stat (square return series) H0: there is no serial 

autocorrelation. Jarque-Bera H0: distribution of series is normal. LM-ARCH H0: there is no ARCH effect. 

P-values are in the parenthesis. 

 

The employed models given below in table 4.3.2 describe the data generating process of 

the return series. The estimated parameters of the fitted models are statistically significant. In 

S&P 500 and DOW JONES models AR term is statistically significant which means that current 

return of these market are only depends upon lag values. In NASDAQ model AR term is 

insignificant which means current return of this market not depends upon lag values. MA (1) 



term in S&P 500 and DOW JONES model is differ from zero, shows relationship between past 

and current variations of return series. Most of the parameters are statistically significant at 5% 

level of significance. ARCH and GARCH terms are also significant in three models means these 

return series encompass ARCH and GARCH effect. The persistence of shock of the return series 

are S&P 500, NASDAQ 100 and DOW JONES all are close to 1 which means that the 

persistence of ARCH and GARCH effect take long time for decay.   

Table 4.3.2 also illustrate the post estimation results (Residual analysis). The Jarque Bera test 

(Normality test) results show non normal residuals. The Q-stat are insignificant up to 10th lags 

accept null hypothesis means no serial autocorrelation in the standardized residuals. The Q-stat 

on squared standardized residuals are insignificant up to 10th lags accept null hypothesis means 

no serial autocorrelation in squared standardized residuals.  

Table 4.3.2 Volatility models of American Stock markets Return series 

                     Return series 

  Parameters 

S&P 500 

ARMA(1,1) GARCH (1,2) 

NASDAQ 100 

ARMA(0,0) GARCH (1,1) 

DOW JONES 

ARMA(2,1) GARCH (1,1) 

Conditional Mean Equation 

  Constant  

𝛼0 

0.0008 

(0.0000) 

0.0011 

(0.0000) 

0.0008 

(0.0000) 

AR(1) 

𝜗1 

0.7395 

(0.0000) 

 

----------- 

-0.9511 

(0.0000) 

AR(2) 

𝜗2 

 

----------- 

 

----------- 

-0.0560 

(0.0039) 

MA(1) 

∅1  

-0.7992 

(0.0000) 

 

----------- 

0.8958 

(0.0000) 

Conditional Variance Equation 

Constant 

θ0 

0.0219 

(0.0000) 

0.0232 

(0.0000) 

0.0130 

(0.0005) 

ARCH(1) 

𝜃1 

 

----------- 

0.0890 

(0.0000) 

0.1112 

(0.0000) 



ARCH(2) 

𝜃2 

0.1433 

(0.0000) 

 

----------- 

 

----------- 

GARCH(1) 

𝜑1 

0.8481 

(0.0000) 

0.8991 

(0.0000) 

0.8841 

(0.0000) 

 

Persistence of shock 

 

0.9915 

 

0.9883 

 

0.9954 

Null Hypotheses(All Null Hypotheses are for nth order)  

AR (p) H0: 𝜗𝑖= 0 No AR Process, MA (q) H0: ∅𝑖= 0 No MA Process, ARCH H0: 𝜃𝑖= 0 No ARCH effect, GARCH 

H0: 𝜑
𝑖
= 0 No GARCH effect. P-values are in the parenthesis. 

 Residual Diagnostic Test 

          Parameter 

Series 

Jarque 

Bera 

Q-Stat 

(5) 

Q-Stat 

(10) 

Q2-Stat 

(5) 

Q2-Stat 

 (10) 

LM -ARCH 

(1-2) 

LM-ARCH 

(1-5) 

 

S&P 500 

 

524.96 

(0.0000) 

4.5842 

(0.2049) 

7.4715 

(0.4867) 

1.2465 

(0.5361) 

9.7895 

(0.2008) 

0.2319 

(0.7930) 

0.2597 

(0.9350) 

 

NASDAQ 100 

213.74 

(0.0000) 

2.8643 

(0.2387) 

5.1957 

(0.6360) 

5.8315 

(0.1201) 

14.408 

(0.0717) 

2.7272 

(0.0656) 

1.1573 

(0.3279) 

 

DJI 

438.61 

(0.0000) 

5.2781 

(0.0714) 

8.9697 

(0.2548) 

8.5410 

(0.0360)* 

17.475 

(0.0255)* 

3.8500 

(0.0214)* 

1.6483 

(0.1438) 

Null Hypotheses(All Null Hypotheses are for nth order) 

Q-stat (return series) there is no serial autocorrelation. Q2-stat (square return series) H0: there is no serial 

autocorrelation. Jarque-Bera H0: distribution of series is normal. LM-ARCH H0: there is no ARCH effect. 

P-values are in the parenthesis. 

 

LM-ARCH test is also insignificant up to 5thlags accept null hypothesis means no ARCH effect 

remain in series residuals. 

In table 4.3.3 given above describes the data generating process of the return series. The 

estimated parameters of the fitted models are statistically significant. In GDAXI and DFMGI 

models AR terms are statistically significant which means that current return of markets are only 

depends upon 1st lag. In FTSE 350 model AR term is insignificant which means current return of 



this market not depends upon lag values. MA (1) term in GADXI and DFMGI models are differ 

from zero, shows relationship between past and current variations of return series. Most of the 

parameters are statistically significant at 5% level of significance. ARCH and GARCH terms are 

also significant in three models means these return series encompass ARCH and GARCH effect. 

The persistence of shock of the return series are FTSE 350 (0.99359), GDAXI (0.99321) and 

DFMGI (0.99417) all are close to 1 which means that the persistence of ARCH and GARCH 

effect take long time for decay.  

Table 4.3.3 also illustrate the post estimation results (Residual analysis). The Jarque Bera test 

(Normality test) results show non normal residuals. The Q-stat are insignificant up to 10th lags 

accept null hypothesis means no serial autocorrelation in the standardized residuals. The Q-stat 

on squared standardized residuals are insignificant up to 10th lags accept null hypothesis means 

no serial autocorrelation in squared standardized residuals. LM-ARCH test is also insignificant 

up to 5thlags accept null hypothesis means no ARCH effect remain in series residuals.  

Table 4.3.3 Volatility models of European and Gulf Stock markets Return series 

                     Return series 

  Parameters 

FTSE 350 

ARMA(0,0) GARCH (1,1) 

GDAXI 

ARMA(1,1) GARCH (1,1) 

DFMGI 

ARMA(1,1) GARCH (1,1) 

Conditional Mean Equation 

  Constant  

𝛼0 

0.0006 

(0.0000) 

0.0010 

(0.0000) 

0.0005 

(0.2032) 

AR(1) 

𝜗1 

 

----------- 

0.9396 

(0.0000) 

0.8848 

(0.0000) 

MA(1) 

∅1  

 

----------- 

-0.9551 

(0.0000) 

-0.8330 

(0.0000) 

Conditional Variance Equation 

Constant 

θ0 

0.0139 

(0.0025) 

0.0218 

(0.0025) 

0.0313 

(0.0633) 

ARCH(1) 

𝜃1 

0.1145 

(0.0000) 

0.0988 

(0.0000) 

0.0630 

(0.0000) 



GARCH(1) 

𝜑1 

0.8790 

(0.0000) 

0.8943 

(0.0000) 

0.9311 

(0.0000) 

 

Persistence of shock 

 

0.9935 

 

0.9932 

 

0.9941 

Null Hypotheses(All Null Hypotheses are for nth order)  

AR (p) H0: 𝜗𝑖= 0 No AR Process, MA (q) H0: ∅𝑖= 0 No MA Process, ARCH H0: 𝜃𝑖= 0 No ARCH effect, GARCH 

H0: 𝜑
𝑖
= 0 No GARCH effect, Mean spillover. P-values are in the parenthesis.  

Residual Analysis 

          Parameter 

Series 

Jarque 

Bera 

Q-Stat 

(5) 

Q-Stat 

(10) 

Q2-Stat 

(5) 

Q2-Stat 

 (10) 

LM -ARCH 

(1-2) 

LM-ARCH 

(1-5) 

 

FTSE 350 

134.01 

(0.0000) 

3.5698 

(0.6128) 

5.2425 

(0.8743) 

3.7790 

(0.2863) 

5.0251 

(0.7548) 

0.6032 

(0.5471) 

0.7742 

(0.5682) 

 

GDAXI 

309.27 

(0.0000) 

4.5445 

(0.2083) 

7.4357 

(0.4904) 

6.9227 

(0.0744) 

8.9998 

(0.3423) 

0.8606 

(0.4230) 

1.4246 

(0.2121) 

 

DFMGI 

12835 

(0.0000) 

6.7335 

(0.0808) 

12.502 

(0.1301) 

3.4343 

(0.3293) 

8.3277 

(0.4021) 

0.2255 

(0.7981) 

0.6888 

(0.6319) 

Null Hypotheses(All Null Hypotheses are for nth order) 

Q-stat (return series) there is no serial autocorrelation. Q2-stat (square return series) H0: there is no serial 

autocorrelation. Jarque-Bera H0: distribution of series is normal. LM-ARCH H0: there is no ARCH effect. 

P-values are in the parenthesis. 

 

Conclusion 

  

This study has offered a framework to model the time varying volatility of equity markets by 

employing the risk models.  On the basis of given data sets we employed symmetric GARCH 

and asymmetric GARCH models to estimate conditional mean equations follow ARMA process 

and conditional variance equations for risk (dispersion). For the validity of models the residual 

diagnostic test also employed. KSE 100 and NIKKEI 225 series have asymmetric effect while 

other series take symmetric effects. The persistence of shock is measure to specify the period of 



persistence of ARCH and GARCH effect in return series. The leverage effects are also quantified 

to check the effects of different news on volatility.    
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