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Assessing the Effects of Housing Market Shocks on Output: The Case of South Africa 

 

 

 

Abstract 

This paper assessed the effects of housing market shocks on real output in South Africa over the 

period 1969Q4 – 2014Q4, by emphasizing the real private consumption channel. The agnostic 

identification procedure employed in this paper has delivered impulse responses that are overall 

consistent with the existing literature. The paper appropriately identified housing market shocks 

as non-monetary housing demand shocks. 20% of the variation in house prices are explained by 

the housing market shocks. The effects of housing demand shocks on real private consumption 

are short-lived, explaining why real output responded transitorily to these shocks. Housing 

demand shocks have managed to explain nearly 13% and 14% variations in real private 

consumption and real output, respectively, over 20-quarters ahead forecast revision. 

Keywords: Agnostic Identification, Housing Market Shocks, Real Output, SVAR, South Africa 

JEL Codes: C11; C32; E21; E31; R31 

 

1. Introduction 

The ever-increasing significance of the housing market in the real economic activity can be 

summarized by its undoubted role in the recent sub-prime crisis in the US, which spread 

throughout the world’s economies.
2,3

 Aside inflation and unemployment, house prices serve as 

an important leading indicator of business cycles (see Stock and Watson, 2003; Leamer, 2007). 

The recent empirical literature has established a strong connection between the real economy and 

the housing market in both advanced and emerging market economies. The general observation 

is that busts in housing price bubbles culminate in real economic downturns (see, for example, 

                                                           
2
 The topic for the Jackson Hole symposium in 2007 held by the Federal Reserve Bank of Kansas City was the role 

of the housing market in modern economies (see Mishkin, 2007; Taylor, 2007; Musso et al. 2011). 
3
 The precise transmission channel through which the housing market shocks generated the recent economic 

meltdown remains a debatable issue in the literature.  
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Vargas-Silva, 2008; Pavlidis et al., 2009; Iacoviello and Neri, 2010; Bassanetti and Zollino, 

2010; Bulligan, 2010; Ghent and Owyang, 2010; Musso et al. 2011). 

   

Although the role of the housing market in the real economy appears empirically straightforward 

at first glance, the theoretical transmission mechanism is rather ambiguous. In principle, positive 

shocks to house prices are expected to trigger increases in the wealth of homeowners, which will 

spur their consumption expenditures. Thereby stimulating production in the economy. This is the 

so-called collateral effect. The collateral effect of house price results because increases in house 

prices lead to increases in the value of home assets. This enhances the collateral position of 

homeowners, when they are seeking for new loans. Yet, house price increases are not necessarily 

transmitted into higher private consumption, and the subsequent increase in production in the 

economy. The existence of transaction costs, financial constraints, and changes in preferences 

may ensure that homeowners do not increase their consumption expenditures after house price 

increments (Engelhardt, 1996; Phang, 2004). The transaction costs result due to the banking and 

regulatory requirements (such as filing loan forms, queuing in banks, undergoing screening, 

among others) homeowners must satisfy in order to secure new loans for consumables, despite 

the rise in the value of their collaterals. The financial constraints stem from the fact that most 

homeowners are essentially debtors of mortgages. They are constrained by these debts, and will 

therefore not necessarily increase their consumption expenditures because of their enhanced 

collateral position. Moreover, relatively older homeowners may have preferences toward other 

activities (such as medical insurance, saving for retirement and building bequests) to 

consumption when house prices increase. 

  

This standout theoretical ambiguity of the impact of housing price shocks on the real economy 

through the private consumption channel has led to burgeoning empirical investigations. There 

are empirical studies that explore the role of monetary policy, and credit policy shocks on the 

housing market and the real economy through private consumption and real residential 

investment channels (see Goodhart and Hofmann, 2008; Jarocinski and Smets, 2008; Iacoviello 

and Neri, 2010). There are also studies that explore the role of housing price shocks on monetary 

and credit policies (see Case et al., 2005; Darracq Paries and Notarpietro, 2008; Bjørnland and 

Jacobsen, 2010; Gupta et al., 2010; Musso et al. 2011). These studies have mostly interpreted the 

role of these shocks on the real economy by first principle. That is, they evaluate the direction of 

the impact of the housing market shocks (negative or positive) on specific real economic 

fundamentals and interpret their end products on the real output by appealing to the theory or the 

conventional wisdom. Whereas these approaches are theoretically consistent, it will be 

empirically worthwhile to examine the role of these shocks on the real output directly. This is 

precisely what we do in this paper. We do not pretend that our approach delivers superior results 

when compared to these other studies. Instead, our paper can be seen as a complement to them. 

 



4 
 

Our paper utilizes a quarterly dataset covering the period 1969Q4 – 2014Q4 to assess the impact 

of housing price shocks on the real output in South Africa. Our empirical strategy involves a 

structural vector autoregression (SVAR), which draws on the agnostic identification scheme 

proposed in Uhlig (2005), and generalized in Rubio-Ramirez et al. (2010) to identify housing 

market shocks as non-monetary housing demand shocks. With appropriately imposed sign 

restrictions, the agnostic identification scheme delivers results that are theoretically consistent 

and obviate the price puzzle which short- and long-run identification schemes struggle to handle 

(see Uhlig, 2005).
4
 The identification scheme is agnostic in that the question the policymaker 

proposes to answer is left agnostically open by virtue of its construction; so that the data will 

“speak for itself”. This distinctive characteristic of the agnostic scheme stands fairly appealing 

among its worthy competitors, despite the recent criticisms leveled against it. In particular, the 

identification scheme permits the policymaker to concentrate on identifying the shock of interest, 

in our case, the housing market shocks. It, therefore, spares the policymaker the burden of 

identifying other fundamental shocks, which may not necessarily contribute to answering the 

question at hand.
5
 

 

We recognize the possible influence of regime shifts in parameters due to policy or structural 

changes.
6
 To the extent that this may distort the empirical modeling strategy slightly, the story 

remains essentially the same. Although we strictly attempt to assess the effects of housing 

market shocks on the real output, we also take a brief tour around other variables in our empirical 

model. As pointed out by Uhlig (2005), one must note that these other results are blurred by a 

priori sign restrictions. Having made our position clear, our findings can be summarized as 

follows. The agnostic identification delivered impulse responses that are overall consistent with 

the existing literature. The housing market shocks are appropriately identified as non-monetary 

housing demand. 20% of the variation in house prices are explained by the housing market 

shocks. The effect of housing demand shocks on real private consumption is short-lived, 

explaining why real output responded transitorily to these shocks. Housing demand shocks have 

managed to explain nearly 13% and 14% variations in real private consumption and real output, 

respectively, over 20-quarters ahead forecast revision. 

 

In the next section, we present the empirical SVAR model and the agnostic scheme proposed in 

Uhlig (2005), and generalized in Rubio-Ramirez et al. (2010). Section 3 presents the data and the 

results. Section 4 concludes. 

                                                           
4
 However, the scheme, like the other identification schemes, has its drawbacks. The interested reader may refer to 

Fry and Pagan (2011), and Moon et al. (2013) for detailed criticisms of this identification scheme. 
5
 This challenge (of short- and long-run identification schemes) was recognized by studies such as Bernanke and 

Mihov (1998a, b), Faust (1998), Christiano et al. (1999), and Canova and De Nicoló (2002). These authors utilized a 

block-recursive ordering to concentrate the identification exercise on only a limited set of variables, which interact 

with the policy shock in order to circumvent this problem (see also Uhlig, 2005; Rubio-Ramirez et al. 2010). 
6
 See Uhlig (1997), Canova and Gambetti (2004), Cogley and Sargent (2005), Primiceri (2005), Rubio-Ramirez et 

al. (2005), Sims and Zha (2006), Gambetti and Canova (2008), for such treatments. 
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2. Methodology 

In this section, we discuss the econometric technique that is utilized in the paper, namely the sign 

restricted SVAR. We begin by specifying this SVAR model, and then we discuss briefly how 

shocks are identified in this model. Further, we explain the agnostic identification procedure that 

has been proposed in Uhlig (2005)’s influential paper. Finally, we discuss the efficient algorithm 

proposed in Rubio-Ramirez et al. (2010) for solving sign restricted SVARs. 

 

2.1 Model Specification 

We follow the lead of Uhlig (2005) and specify a VAR of the following form: 

𝑌𝑡 = 𝛽(1)𝑌𝑡−1 + 𝛽(2)𝑌𝑡−2 + ⋯ + 𝛽(𝑙)𝑌𝑡−𝑙 + 𝑢𝑡 ,   𝑡 = 1, … , 𝑇,     (1) 

where 𝑌𝑡 is an 𝑚 × 1 vector of macroeconomic variables at 𝑡 = 1 − 𝑙, … , 𝑇. In this paper, 𝑌𝑡 

consists of real output (logGDP), consumer prices (logCPI), real private consumption (logCON), 

house prices (logHPI), repo rate (REPO), and mortgage rate (MORT).  𝛽(𝑖) are coefficient 

matrices of size 𝑚 × 𝑚, and 𝑢𝑡 is the one-step ahead prediction error whose variance-covariance 

matrix is Σ.  

 

Of strong interest to the policymaker is the behavior of 𝑢𝑡, the one-step ahead prediction error. 

This is the case because forces that result in the variation in 𝑢𝑡 are transmitted into the economy. 

For this reason, a large portion of the VAR literature has been dedicated to decomposing 𝑢𝑡 into 

forms that are economically interpretable. The decomposition of 𝑢𝑡 has also been the source of 

debate in the literature. This stems from the fact that the policymaker’s efficacy in assessing the 

transmission mechanisms of shocks to 𝑢𝑡 to the rest of the economy depends on the appropriate 

decomposition of 𝑢𝑡. 

 

If 𝑢𝑡 can be normalized into 𝑣𝑡 such that 𝐸[𝑣𝑡𝑣𝑡
′] = 𝐼𝑚 (i.e. 𝑢𝑡 is normalized to have variance 𝐼𝑚, 

identity element).
7
 Then, there exist a matrix 𝐴 such that 𝑢𝑡 = 𝐴𝑣𝑡, whose 𝑗𝑡ℎ column represents 

the immediate impact on all variables of the 𝑗𝑡ℎ fundamental innovation, one standard error in 

size (see Uhlig, 2005). This also implies that we have a restriction on 𝐴, which stems from the 

form of the variance-covariance matrix: 

Σ = 𝐸[𝑢𝑡𝑢𝑡
′ ] = 𝐴𝐸[𝑣𝑡𝑣𝑡

′]𝐴′ = 𝐴𝐴′.                                    (2) 

Eq. (2) indicates that, in specifying 𝐴, we have 𝑚(𝑚 − 1)/2 degrees of freedom. The current 

restriction on 𝐴 is, therefore, not sufficient to identify shocks to 𝑢𝑡. As Uhlig (2005) argues, the 

literature has proceeded to impose the additional restrictions on 𝐴 by following one of three 

ways: (i) by restricting 𝐴 to be a Cholesky factor of Σ, thus suggesting a recursive ordering of 𝑌𝑡 

(see, for example, Sims, 1986); (ii) by drawing information from structural relationships between 

                                                           
7
 Note that 𝑢𝑡 is i.i.d. 
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𝑣𝑡𝑖 , 𝑖 = 1, … , 𝑚, the fundamental innovations and 𝑢𝑡𝑖 , 𝑖 = 1, … , 𝑚, the one-step ahead prediction 

errors (see, for example, Bernanke, 1986; Blanchard and Watson, 1986); (iii) by decomposing 

shocks into permanent and transitory components (see, for example, Blanchard and Quah, 1989). 

In this paper, we proceed to impose additional restrictions on 𝐴 in the fashion proposed in Uhlig 

(2005).  

 

2.2 The Agnostic Identification Scheme 

To identify the fundamental shocks of interest, Uhlig (2005) proposed we use sign restrictions on 

the matrix 𝐴. This spares the policymaker the burden of identifying other shocks that may not 

necessarily help her in answering her policy question. In addition, the above ways of restricting 

𝐴 may not generate impulse responses that have the desired signs (see Rubio-Ramirez et al., 

2010). These points were identified by Bernanke and Mihov (1998a, b) and Christiano et al. 

(1999), who utilize a block-recursive ordering to focus their identification exercise on a few sets 

of covariates which relate with the shock of interest. Other studies such as Faust (1998), and 

Canova and De Nicoló (2002) also raised these points. This goes without saying that the sign 

restriction approach has been criticized by Fry and Pagan 2011) for being unable to recover 

correct elasticities due to its inherent weak information. 

 

This paper uses the sign restriction approach to identify the shocks of interest, namely the 

housing market shocks. Therefore, we neglect the remaining 𝑚 − 1 fundamental innovations. 

This means that we will identify a single column 𝑎 ∈ ℝ𝑚 of the matrix 𝐴 in Eq. (2) (see Uhlig, 

2005). We impose the restrictions that positive shocks in the housing market lead to an increase 

in house prices, consumer prices, and mortgage rate. This ensures that such positive shocks are 

characterized as housing demand shocks. We assume that real private consumption and real 

output do not react to shocks in the housing market to rule out technology shocks (see Goodhart 

and Hofmann, 2008; Musso et al., 2011). We qualify positive shocks in the housing market as 

non-monetary housing demand shocks, if they lead to increase in real house prices, and do not 

decrease the monetary policy rate (see Jarocinski and Smets, 2008; Iacoviello and Neri, 2010). 

This is sufficient to rule out expansionary monetary policy shocks. In essence, our identification 

scheme is constructed such that sign restrictions are imposed on the other variables for a 

specified period of four quarters, whereas our variables of interest, namely real output, real 

private consumption, and repo rate are left agnostically open.  

  

To rap up the agnostic identification procedure, a housing market shock will be an impulse 

response vector, which satisfies the sign restrictions. In this case, a housing market shock is a 

shock such that the responses of house prices, consumer prices, and mortgage rate are non-

negative at all horizons 𝑘 = 0, … , 𝐾. Uhlig (2005) proposes two approaches to solving the sign 

restricted SVAR – the pure-sign-restriction approach and the penalty-function approach.
8
 In this 

                                                           
8
 The interested reader may consult Uhlig (2005) for the technical details of these approaches. 
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paper, we proceed to use the generalized version of these approaches proposed in Rubio-Ramirez 

et al. (2010) to solve the sign restricted SVAR. This algorithm is discussed in the next section. 

 

2.3 Efficient Algorithm for Solving the Sign Restricted SVAR 

It is known that sign restricted SVARs are not locally identified (see Rubio-Ramirez et al., 2010; 

Fry and Pagan, 2011). That is, for a set of sign restrictions, if there exist a parameter point 

(𝐴0, 𝐴+) which satisfies these restrictions, there exist an orthogonal matrix 𝑃, arbitrarily close to 

an identity matrix, such that a parameter point (𝐴0𝑃, 𝐴+𝑃) also satisfies the sign restrictions (see 

Rubio-Ramirez et al., 2010).
9
 Therefore, sign restricted SVARs are not identified, tasking the 

policymaker to search for a set of impulse responses that satisfy the same sign restrictions (see 

Rubio-Ramirez et al., 2010; Fry and Pagan, 2011).
10

  

 

Canova and De Nicoló (2002) developed an algorithm based on grid search to find such a 𝑃. The 

limitation of their algorithm is that it cannot feasibly handle a moderately large (i.e. 𝑛 > 4) 

SVAR system. Uhlig (2005) developed two algorithms to find that 𝑃: the penalty-function 

approach and the pure-sign-restriction approach. These algorithms search for the orthogonal 

matrix 𝑃 recursively column by column. Uhlig’s (2005) algorithms are limited in that they may 

not find the orthogonal matrix 𝑃 for some draws of (𝐵, Σ) (see Rubio-Ramirez et al., 2010). 

 

Due to the limitations of these algorithms for solving sign restricted SVAR models, Rubio-

Ramirez et al. (2010) developed a new algorithm, based on the Householder-transformation 

methodology.
11

 This algorithm is referred popularly as the Rubio-Ramirez et al. (2010)’ rejection 

method. Their algorithm can be outlined as follows: 

 

Let (𝐴0, 𝐴+) be any given value of the unrestricted structural parameters. 

 Step 1: Draw an independent standard normal 𝑛 × 𝑛 matrix �̃� and let �̃� = �̃��̃� be the 𝑄𝑅 

decomposition of �̃� with the diagonal of �̃� normalized to be positive. 

 Step 2: Let 𝑃 = �̃� and generate impulse responses from 𝐴0𝑃 and 𝐵 = 𝐴+𝐴0
−1. 

                                                           
9
 Rubio-Ramirez et al. (2010) formulates a compact form of the SVAR as 𝑦𝑡

′𝐴0 = 𝑥𝑡
′𝐴+ + 𝜀𝑡

′ and a reduced-form as 

𝑦𝑡
′ = 𝑥𝑡

′𝐵 + 𝑢𝑡
′ , so that 𝐵 = 𝐴+𝐴0

−1, 𝑢𝑡
′ = 𝜀𝑡

′𝐴0
−1, and 𝐸[𝑢𝑡𝑢𝑡

′ ] = Σ = (𝐴0𝐴0
′ )−1. The reduced-form parameters are 

thus (𝐵, Σ). Two parameter points are observationally equivalent if and only if they have the same reduced-form 

representation (𝐵, Σ). Therefore, parameter points  (𝐴0, 𝐴+) and  (�̃�0, �̃�+) have the same reduced-form representation 

(𝐵, Σ), if and only there exists an orthogonal matrix 𝑃 such that 𝐴0 = �̃�0𝑃 and 𝐴+ = �̃�+𝑃 (see Rubio-Ramirez et al., 

2010). 
10

 Numerically, the policymaker must bear the computational burden of locating a set of 𝑃s such that the parameter 

point (𝐴0𝑃, 𝐴+𝑃) satisfies the sign restrictions. 
11

 See Rubio-Ramirez et al. (2010) for the distinction between their algorithm and the ones proposed in Uhlig 

(2005). In particular, this algorithm has a sizeable efficiency gain if more than one shock is to be identified.  
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 Step 3: If these impulse responses do not satisfy the sign restrictions, return to Step 1.
12

 

 

3. Data and Results 

This section describes the data and presents the key empirical results. We begin by describing the 

data. Then we discuss the impulse responses stemming from the popular identification scheme 

based on Cholesky decomposition. This identification scheme is frequently used in the literature 

as the baseline with which to compare competing SVAR approaches (see for example, Canova 

and De Nicoló, 2002; Uhlig, 2005;). We add to this by discussing the impulse responses based 

on the agnostic identification scheme. Then, we discuss the forecast error variance 

decomposition. We take the results further by reporting the results based on alternative measures 

of house prices. This constitutes our sensitivity analysis.  

 

3.1 Data 

Our dataset is quarterly and covers the period 1969Q4 – 2014Q4. The real output (logGDP) 

consumer prices (logCPI), repo rate (REPO), and mortgage rate (MORT) are taken from the 

IMF’s International Financial Statistics (IFS). The real output is the logarithm of the GDP at 

constant 2005 prices denoted in national currency. The consumer prices are measured by the 

logarithm of the headline consumer price index. The repo rate is the Central Bank policy rate 

(EOP). The mortgage rate is the lending rate percent per annum. We used the lending rate to 

measure the mortgage rate because historical data on mortgage rate in South Africa is only 

available from the 1990s. The lending rate is the most closely related interest rate to the 

mortgage rate; therefore it is the most appropriate proxy of the mortgage rate. The real private 

consumption (logCON) is taken from the South African Reserve Bank’s Economic and Financial 

Data for South Africa. It is the logarithm of the seasonally adjusted final consumption 

expenditure by households in 2005 constant prices. The house prices (logHPI) are sourced from 

Quantec, a private macroeconomic data provider in South Africa. We used three measures of 

house prices: (i) the logarithm of affordable houses, all sizes, new and old purchase prices; (ii) 

the logarithm of middle class houses, all sizes, new and old purchase prices; and (iii) the 

logarithm of luxury houses, all sizes, new and old purchase prices (smooth rand). Throughout the 

empirical exercise, we used the variables in their levels. This is consistent with Uhlig (2005), 

who argues in favour of levels as against first differences in order that the restrictions are 

imposed directly on the impulse responses and not the cumulative impulse responses. It turns out 

that the results are invariant regardless of whether the variables are demeaned, differenced, or 

detrended.
13

 

 

                                                           
12

 Rubio-Ramirez et al. (2010) set a maximum of 100,000 iterations for Steps 2 – 3 to be repeated. If the maximum 

is reached, the algorithm moves to Step 1 to draw another orthogonal matrix �̃�. 
13

 These results are withheld for the sake of concision. They are freely available upon request. 
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3.2 Impulse Responses Generated from Cholesky Decomposition 

We begin our empirical analysis by reporting the results based on Cholesky decomposition. 

Figure 1 reports these results. Here, the prior restriction on (𝐵, Σ) is a flat Normal inverted-

Wishart prior.
14

 The conventional Cholesky decomposition requires that we impose lower 

triangularity on 𝐴 in Eq. (2). The ordering in the Cholesky decomposition corresponds to the 

ordering of the variables in 𝑌, and also the choice of the covariate whose innovations are 

denominated as the housing market shocks. In this paper, we ordered the variables as follows: 

𝑌 = [𝑙𝑜𝑔𝐶𝑃𝐼, 𝑙𝑜𝑔𝐺𝐷𝑃, 𝑙𝑜𝑔𝐶𝑂𝑁, 𝑙𝑜𝑔𝐻𝑃𝐼, 𝑅𝐸𝑃𝑂, 𝑀𝑂𝑅𝑇].                        (3) 

Our ordering is consistent with Musso et al. (2011) who placed 𝑙𝑜𝑔𝐶𝑃𝐼 first, and Uhlig (2005) 

who placed the variable of interest fourth. Ordered this way, we identify housing market shocks 

as innovations of 𝑙𝑜𝑔𝐻𝑃𝐼. The impulse responses are generated using 1000 Markov Chain 

Monte Carlo (MCMC) replications, 4 lags, and a horizon of 20-quarters ahead. The size of the 

shock is one standard deviation, thereby constraining the impulse responses to the median, 16% 

and the 84% quantiles.  

 

A shock in the housing market produces mostly consistent responses for all the variables, except 

for consumer prices. Real house prices rose and peaked around 6 quarters, then declined after 

that but remained positive over the forecast horizon. Real private consumption and real output 

rose initially, peaked after 4 quarters, and declined thereafter to hit negative around 7.5 to 8 

quarters. The repo and mortgage rates rose as well, and peaked around the 5
th

 quarter. These 

rates declined after the 5
th

 quarter and eventually turned negative after 9 quarters. Consumer 

prices responded rather unusually after the housing demand shock. Consumer prices began from 

zero and turned negative after just 2 quarters. As pointed out by Uhlig (2005), the standout 

limitation of identification based on Cholesky decomposition is its failure to replicate 

theoretically consistent impulse responses. Consequently, we will not focus on discussing these 

impulse responses. 

 

3.3 Impulse Responses Generated from the Agnostic Identification Scheme 

Figure 2 shows the impulse responses generated from the benchmark identification scheme, 

namely the agnostic identification scheme. Here, we maintain the recursive ordering in Section 

3.2, meaning that the housing market shock is the innovations in the fourth variable, house 

prices. We iterate the impulse responses using the Rubio-Ramirez et al. (2010) rejection 

algorithm, and report them based on the Fry and Pagan (2011) median target method.
15

 The size 

of the shock is one standard deviation, thereby constraining the impulse responses to the median, 

16% and the 84% quantiles. It turns out that a maximum of 1000 MCMC draws meet the 

                                                           
14

 Canova (2007) provides technical details on this prior restriction. 
15

 The discussion of this method is beyond the scope of this paper. The interested reader may consult Fry and Pagan 

(2011) for sufficient treatment of this method. 
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imposed sign restrictions. A total of 500 MCMC replications, and 500 sub-replications over the 

rejection routine were more than sufficient for convergence. 

 

The impulse responses delivered by the agnostic identification are generally consistent with the 

observed pattern brought forth in the literature. All the restricted variables, namely house prices, 

consumer prices, and the mortgage rate, responded according to the restrictions. Therefore, the 

housing market shock is appropriately identified as a non-monetary demand shock.
16

 

Concentrating on the main responses of interest, real house prices reacted to the housing demand 

shock and increased to peak at 1% after just 2 quarters, then started to return to its original level. 

The impact of the housing demand shock on real house prices only disappeared after 15
th

 

quarters. Real private consumption and real output rose by nearly the same magnitude and 

peaked at 0.2% around the 4
th

 quarter, following the housing demand shock. In principle, the 

temporary increase in real private consumption may be explained by the collateral effect pointed 

out earlier. The rise in house prices enhances the value of home assets, thereby improving the 

collateral position of homeowners (see Aoki, 2002; Muellbauer and Murphy, 2008; André et al., 

2012). These homeowners may now stand higher chances of securing loans for private 

consumption. South Africa has a relatively developed real estate market, which enable 

homeowners to react strongly towards consumption, after such housing demand shocks. Rising 

private consumption leads to shortages of goods and services; this pushes consumer prices up. 

The end result will be increases in the production of goods and services in the economy to meet 

the surge in demand. Another source of the rise in real private consumption stems from the 

contemporaneous rise in mortgage rate (6%) beyond consumer prices (0.4%). This shot up the 

real cost of financing mortgages, thereby discouraging renters to save in prospect to becoming 

homeowners. The decline in real private consumption and real output could also be due to the 

contemporaneous rise in the repo rate and consumer prices, which may have offset the collateral 

effect. That aside, homeowners who are retirees or nearing retirement may be austere by shifting 

their preferences towards precautionary savings and health related activities (see Banks et al., 

1998; Disney et al., 2002).
17

 This may have offset the initial rise in real private consumption. An 

equally plausible reason why the housing demand shock on real private consumption and real 

output is short-lived may be due to the very weak impact of the shock on house prices which 

appeared to wane off drastically over the forecast horizon. Generally, real private consumption 

and real output are sensitive to permanent shocks than transitory ones. This appears to be the 

case here. Our findings are qualitatively similar to those of Simo-Kengne et al. (2013), who 

found private consumption in South Africa to react to housing demand shocks in this fashion. 

 

Looking at the other results, consumer prices increased by nearly 0.4% and remained the same 

for more than 20 quarters after the housing demand shock. The housing demand shock had 

                                                           
16

 Recall that shocks in the housing market are non-monetary housing demand shocks, if they lead to increase in real 

house prices, and do not decrease the monetary policy rate (see Jarocinski and Smets, 2008; Iacoviello and Neri, 

2010).  
17

 This is the so-called retirement savings puzzle in the literature. 
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lasting impact on consumer prices, and this may be due to the strong causal effect of house prices 

on rents – an important component of the consumer price index in South Africa. Recent 

homeowners may be eager to cut their costs by renting out their apartments at higher prices. This 

shift in the incidence of house price hike to renters in the form of high rents translates into higher 

consumer prices. Besides, the South African housing market is not a perfect one. Therefore 

house prices are sticky downwards. This means that the temporary increase in nominal house 

prices takes longer time to adjust, thereby ensuring that the increase in rent persists. This keeps 

the consumer price index high over a considerable period of time, after the housing demand 

shock. In addition, if the collateral effect resulting from the housing demand shock is strong, the 

increase in house prices promotes real private consumption and real demand for goods and 

services. Temporary shortages of goods and services will trigger inflationary pressures. This will 

enhance the impact of high rents on the consumer price index indefinitely. 

  

The mortgage and the repo rates reacted positively, following the housing demand shock. They 

increased by almost the same magnitude, and peaked at 6% after 5 quarters. These rates declined 

thereafter and turned negative after nearly 14 quarters, following the housing demand shock. The 

monetary authority in South Africa appeared to have reacted to the permanent rise in consumer 

prices by increasing its repo rate. In principle, the monetary authority’s reaction to inflation using 

the repo rate is transmitted via three channels, namely: the credit channel, the interest rate 

channel, and the exchange rate channel. Through the credit channel, the South African Reserve 

Bank (SARB) can moderate the rising consumer prices by raising the interest rates on reserve 

funds to commercial banks and other financial intermediaries. This will force commercial banks 

and other financial intermediaries to decrease their lending capacity. Households will therefore 

find it more difficult to borrow money for private consumption, which will ease the pressure on 

consumer prices. The SARB may moderate the rise in consumer prices using the interest rate 

channel by inducing homeowners to invest in interest-bearing assets. If the SARB increases its 

repo rate, the interest rates on other assets will increase as well, inducing homeowners to invest 

in high-return assets, leading to a reduction in private consumption. Besides, the increase in 

interest rates means that existing loans (including home loans) now cost more in terms of interest 

payments, forcing borrowers to cut down consumption. The increase in interest rates also implies 

that the price of both financial and real assets falls because the present value of future returns 

falls. Therefore the SARB can offset the collateral effect of house price increase by increasing its 

repo rate. The SARB may also moderate the rise in consumer prices by increasing the repo rate, 

to stimulate capital inflows. This leads to increases in the demand for the South African rand, 

and the appreciation of the exchange rate. Since most capital inputs are imported, appreciation in 

the rand reduces the costs of these capital inputs and production, which translates into lower 

consumer prices in the economy. In the current empirical exercise, the repo rate appeared to have 

been increased to mitigate the rise in consumer prices. It appears that the increment in the repo 

rate was not long-lasting because the monetary authority saw the rise in the consumer prices to 

be sustainable after the 5
th

 quarter (see Figure 2). 
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3.4 Forecast Error Variance Decomposition 

In this section, we assessed the amount of the variation in real private consumption and real 

output that is explained by the housing demand shocks. A technical way to put it is: what 

proportion of the variance of the k-step ahead forecast revision 𝐸𝑡[𝑌𝑡+𝑘] − 𝐸𝑡−1[𝑌𝑡+𝑘] in real 

private consumption, and real output is due to the housing demand shock? Figures 3 and 4 report 

the proportion of the variance of the 20-step ahead forecast revision of the variables in our 

empirical exercise. Let us concentrate on Figure 4 because it shows the forecast error variance 

decomposition of the sign restricted SVAR. It shows that, within the first five quarters, housing 

demand shocks accounted for 22% and 17% variations in real output and real private 

consumption, respectively. From the 5
th

 to the 20
th

 quarter, housing demand shocks are 

responsible for nearly 13% and 14% variations in real private consumption and real output, 

respectively. This confirms the results from the impulse response analysis presented above, 

which shows that housing demand shocks led to increases in real private consumption and real 

output within the first five quarters but this influence wane off thereafter. Starting from 5% in the 

first quarter ahead, housing demand shocks have consistently accounted for 10% variation in 

consumer prices, further buttressing the source of consumer price persistence found earlier. Quite 

surprisingly, it appears that housing demand shocks explained nearly 13% of the variations in the 

repo rate and the mortgage rate beyond the 5
th

 quarter, than they do prior to that. Perhaps, the 

monetary authority found itself in a quandary between bringing down consumer prices and 

reducing the cost of mortgage loans. To wit, the monetary authority raised the repo rate in 

response to the increasing consumer prices but soon realized that the level of consumer prices 

was sustainable and therefore decided to undercut the repo rate in order to reduce the mortgage 

rate. Overall, the housing demand shocks explained larger proportion of the variation in the real 

house prices (20%) than any of the other variables. This is as expected: after all, those were 

housing demand shocks. 

 

3.5 Sensitivity of Impulse Responses to Alternative Measures of House Prices 

In this section, we attempt to answer the following question. Are the effects of the housing 

demand shocks on real private consumption and real output invariant when real house prices are 

measured differently? A successful response to this question constitutes our sensitivity any 

analysis.  
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Until this point, our measure of real house prices is the logarithm of middle class houses, all 

sizes, new and old purchase prices. So we will replace this measure with two alternative 

measures, namely: (i) the logarithm of affordable houses, all sizes, new and old purchase prices; 

and (ii) the logarithm of luxury houses, all sizes, new and old purchase prices (smooth rand), to 

see whether our results above remain unaffected. For the sake of convenience and space, we 

generate the impulse responses here based on only the agnostic identification procedure and the 

exact specifications used in the empirical exercise of Section 3.3. The results are reported as 

Figures 5 and 6. It appears that the measure of real house prices based on the logarithm of 

affordable houses, all sizes, new and old purchase prices generated impulse responses that are 

nearly the same as our baseline measure, within the 20-quarters ahead forecast horizon. 

However, the impulse responses generated using the logarithm of luxury houses, all sizes, new 

and old purchase prices behaved differently (see Figure 6). Unlike the former results, the effect 

of housing demand shocks on real private consumption and real output dies down after nearly 25 

quarters, in this case!
18

 Nevertheless, the story remains the same: housing demand shocks 

influence real private consumption and real output positively after a specified period of quarters 

and wane off thereafter, in the case of South Africa – the transmission mechanism being slightly 

complex. 

 

4. Conclusion 

This paper assessed the effects of housing market shocks on real output in South Africa over the 

period 1969Q4 – 2014Q4, by emphasizing the real private consumption channel. This is 

important because majority of the existing studies both on South Africa and other economies 

have concentrated on the impact of these shocks on specific real economic fundamentals and 

interpreted the impact of these shocks on the real output by appealing to the theory. These 

studies are theoretically justified. However, it will be empirically worthwhile to examine the role 

of these shocks on the real output directly. We did precisely that in this paper. Our attempt 

should not be viewed as a proposal to replace these other studies. Instead, it should be seen as a 

complement to the growing literature. The agnostic identification procedure employed in this 

paper delivered impulse responses that are overall consistent with the existing literature. It turned 

out that the housing market shocks were appropriately identified as non-monetary housing 

demand shocks. 20% of the variation in house prices were explained by the housing market 

shocks. The effects of housing demand shocks on real private consumption were short-lived, 

explaining why real output responded transitorily to these shocks. Housing demand shocks have 

managed to explain nearly 14% and 13% variations in real output and real private consumption, 

respectively, over 20-quarters ahead forecast revision. 

 

 

                                                           
18

 This part is not shown in the empirical exercise but it is very straightforward to show. 
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Figure 1: Impulse responses to a housing market shock one standard deviation in size, which is identified as the 

innovation in the house price index, ordered fourth in Cholesky decomposition before the repo rate and the mortgage 

rate. The three lines denote the 16% quantile, the median and the 84% quantile of the posterior distribution.  
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Figure 2: Impulse responses to a housing market shock one standard deviation in size, using the Rubio-Ramirez et 

al. (2010) rejection method with K=5. Impulse responses correspond to the Fry and Pagan (2011) median target 

method. The three lines denote the 16% quantile, the median and the 84% quantile of the posterior distribution. 

Responses of real house prices, consumer prices, and mortgage rate are restricted to be positive for quarters 𝑘, 

𝑘 =  0, … ,5, after the housing market shock.  
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Figure 3: FEVDs due to a housing market shock one standard deviation in size, which is identified as the innovation 

in the house price index, ordered fourth in Cholesky decomposition before the repo rate and the mortgage rate. The 

three lines denote the 16% quantile, the median and the 84% quantile of the posterior distribution. 
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Figure 4: FEVDs due to a housing market shock one standard deviation in size, using the Rubio-Ramirez et al. 

(2010) rejection method with K=5. The three lines denote the 16% quantile, the median and the 84% quantile of the 

posterior distribution. Responses of real house prices, consumer prices, and mortgage rate are restricted to be 

positive for quarters k, k= 0,…,5, after the housing market shock. 
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Figure 5: Impulse responses to a housing market shock one standard deviation in size, using the Rubio-Ramirez et 

al. (2010) rejection method with K=5. Impulse responses correspond to the Fry and Pagan (2011) median target 

method. The three lines denote the 16% quantile, the median and the 84% quantile of the posterior distribution. 

Responses of real house prices (affordable houses), consumer prices, and mortgage rate are restricted to be positive 

for quarters 𝑘, 𝑘 =  0, … ,5, after the housing market shock. 
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Figure 6: Impulse responses to a housing market shock one standard deviation in size, using the Rubio-Ramirez et 

al. (2010) rejection method with K=5. Impulse responses correspond to the Fry and Pagan (2011) median target 

method. The three lines denote the 16% quantile, the median and the 84% quantile of the posterior distribution. 

Responses of real house prices (luxury houses), consumer prices, and mortgage rate are restricted to be positive for 

quarters 𝑘, 𝑘 =  0, … ,5, after the housing market shock. 
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