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Measuring utility without mixing apples and

oranges and eliciting beliefs about stock prices

Patrick O’Callaghan†

University of Queensland

February 15, 2016

Abstract

In day-to-day life we encounter decisions amongst prospects that do
not have a convex structure. To address this concern, Herstein and Milnor
introduce mixture sets and provide necessary and sufficient conditions for
a cardinal and linear utility representation. We derive the same utility
representation for partial mixture sets: where the mixture operation is
only partially defined. The resulting model has an interesting application
to finance. In particular, we use paths instead of events to elicit utility
and beliefs about stock prices. This feature is promising for settings where
the dimension of the state space is large.

1 Introduction

Many would agree that good apples are crispy and that good oranges are tangy.
Experts’ tastes are highly refined along such scales, with procurement and pric-
ing hinging entirely on such comparisons. The ability to measure utility on a
single scale that transcends specific characteristics is essential to many fields in
economics.

Using their famous example of a glass of tea and a cup of coffee, von Neumann
and Morgenstern famously described how this might be achieved using lotteries
as a measurement device. Up to some reasonable approximation, experimenters
today are able to measure utility up to multiplication by a positive scalar and
addition by an arbitrary constant (a cardinal scale). Yet lotteries may lead to
distortions that are intrinsic to the uncertainty they introduce. Herstein and
Milnor showed that line segments (convex combinations of lotteries) may be
replaced with mixture paths, and utility may still be measured.

†I thank Simon French, Simon Grant, Peter Hammond, Andrea Isoni, Saul Jacka, Jeff
Kline, John Quiggin, Aron Toth and Horst Zank for their helpful suggestions and detailed
feedback. I am especially grateful to Simon Grant, Jeff Kline and John Quiggin for their
encouragement.
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Overview

In the present paper, we allow for the possibility that some of the mixture paths
are missing: for instance when there is no obvious mixture path between a crispy
apple and a tangy orange. The main theorem identifies necessary and sufficient
conditions for a cardinal and linear utility representation when mixtures are
partially defined in this way. Our proof is constructive and introduces concepts
that are, to our knowledge, new. En route to this result, we provide detailed
insight into the nature of mixture paths themselves.

Finally, we show how the model may be applied to elicit beliefs about stock
prices in an experimental setting, where prices evolve in continuous time. In
the specific setting we describe, the instruments we use to elicit beliefs are
(nonconvex) mixture paths known as Brownian bridges. The partial mixture
set structure allows us to elicit beliefs using pure subjective moments: there is
no need to consider mixtures between moments of different order.

Theoretical framework The idea of measuring utility using lotteries can
be traced back to the St. Petersburg paradox and the “moral expectation” of
Bernoulli [4]. By considering preferences over lotteries, von Neumann and Mor-
genstern show that utility can, in principle, be measured in much the same way
as temperature (on a cardinal scale). In view of the fact that most prospects in
life are not lotteries, HM show that the convex structure of lotteries is unneces-
sary for the purposes of measuring utility.

The first goal of the present paper is to gain a deeper understanding of the
abstraction of convexity that HM introduced and its relationship with their
axioms on preferences. HM define preferences over elements in a mixture set.
In a mixture set, every pair of prospects is connected by a special kind of path:
the subpath between every pair of points along this path is “synchronised” with
the path (see fig. 1). HM then require preferences to respect axioms that are
necessary and sufficient for a cardinal and linear utility representation.

Our main innovation is to drop the requirement that every pair of prospects
is connected by a path of mixtures. In other words, we weaken the “for all” re-
quirement of HM and formally introduce partial mixture sets. This modification
has a number of far-reaching implications. For instance preferences satisfying
the HM axioms (constrained to hold on the mixture paths that exist) may have
no utility representation. Via examples we show that for a cardinal and linear
utility representation, stronger axioms are needed to accommodate the more
general structure of partial mixture sets. To our knowledge, we are the first to
provide conditions for such a utility representation that are both necessary and
sufficient.

Partial mixture sets are motivated by our toy example regarding the absence
of a path connecting the small world of crispy apples and the small world tangy
oranges. But one may argue that the solution is to find a common attribute,
perhaps juiciness, that transcends the two goods. But how should we do this
when our tool for measuring utility is preferences? The alternatives available
to the economist who wishes to measure utility are constrained by physical,
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biological or psychological boundaries. Many objects, like houses have inherent
discrete properties; not all genetic permutations of fruit are possible; and why
assume that the decision maker imagines the same convex set of lotteries we
have in mind?

Application A compelling reason for adopting partial mixture sets is that
they are allow the modeller to tailor the domain of preferences to suit the
problem at hand. This is particularly relevant in “large world” decision settings,
such as finance, where models are often complicated enough without introducing
the additional layer of uncertainty that lotteries would entail.

Consider a trader that has well-formed, but perhaps inaccurate beliefs about
the daily evolution of the stock prices of Apple Inc. In seeking to elicit her beliefs
from preferences, it would be natural to adopt the benchmark model of [2]. We
argue that the difficulty is twofold. First, we must construct a mixture set. This
entails setting up a host of derivative securities that yield payoffs that depend
on the path that price takes. (These derivatives correspond to “acts” in the
model of Anscombe and Aumann.) Derivatives are typically hard to evaluate.
The second difficulty persists even if we restrict attention to acts of the simplest
form: binary options that pay a dollar if event E occurs and zero otherwise. The
issue is that events are highly non-trivial in this setting. The simplest events
are commonly known as cylinder sets (see figure 2). Are decision makers able
to gauge the likelihood of such objects?

Instead, we propose constructing a partial mixture set using stochastic paths
and eliciting Val’s subjective moments (as subjective expectations of powers of
random variables) and appealing to our extension of the HM model. Athough
one would have to elicit a countable infinity of moments to really pin down (the
set of) beliefs, the cost of using [2] or [25] still seems higher. This is because
there are well-established methods that prescribe what to do in practice when
only elicit a finite number of moments are feasible. In particular, by minimising
the entropy relative to uniform we obtain a worst case (least informed) estimate
of the trader’s beliefs. Or, if the true distribution is available, the best case
estimate of beliefs is found by minimising the relative to the truth. Of course,
only an experiment would settle the question of whether our proposal improves
on the standard approach and that is beyond the scope of the present paper.

Related literature

There are a number of strands that take preferences are primitive and that
are in the same spirit as ours. The first strand (see [8] and references therein)
remains close to HM by assuming a product of mixture sets and corresponding
axioms. Since a product of sets can be rewritten as a discrete or disjoint union,
the conditions for a partial mixture set are satisfied, and so our representation
theorem generalises these results. In the second strand ([18], [11] and [17]),
lottery spaces that form a partial mixture space are adopted. In contrast with
the present paper and the first strand, these models provide axioms that are
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only sufficient for a representation. We provide a more detailed comparison in
the discussion of the representation theorem.

The approach of Krantz et al. [19] also allows for nonconvex spaces. Instead
they consider spaces that have objects that are “equally spaced” according to
some external measure. (Consider, for instance, the natural numbers.) This
property is not a requirement for partial mixture sets.

In a recent paper Richter and Rubinstein [23] discuss abstract convexity in
an equilibrium context. The kind of abstraction considered there would allow
for discrete sets with no possibility of a cardinal utility representation. On the
other hand, if cardinal utility were to feature in their model, then the partial
mixture set structure we propose would be a natural place to start.

2 Model

Prospects and preferences Let X denote a nonempty set of prospects.
Provided x and y belong to X, the statement “y is weakly preferred to x” is
summarised by the expression x À y. The collection À of such statements is
the primitive object that we henceforth refer to as preferences. Formally, À is
a binary relation on X, so that À is a subset of X ˆX. As a consequence, the
statement x À y already implies x, y P X. The following partial converse is the
completeness axiom: if x, y P X, then x À y or y À x. It ensures that every pair
of prospects is comparable. Transitivity requires that x À y and y À z together
imply x À z. These two axioms of HM are standard and thoroughly discussed
elsewhere.

Axiom O. À is transitive and complete on X.

As usual, ă denotes the asymmetric, strict subrelation of À and the sym-
metric, indifference subrelation is denoted by „. In this way, preferences are
partitioned, so that x À y if and only if either x ă y or x „ y. An important
point to note for what follows is that, when a decision maker’s preferences sat-
isfy O, the basic open sets tx1 : x ă x1u and tx1 : x1 ă yu such that x, y P X
generate a topology τă on X. (Every open set is a union of finite intersections
of these basic sets.) We do not assume the decision maker is conscious of this
topology. Rather, we view this a part of the modeller’s toolkit and refer to it
as the topology generated by preferences or the preference order topology. As
with HM, no external topological conditions are required of X.

Paths and mixtures Throughout, I will denote the closed unit interval r0, 1s

in R. WhenX is a convex set, the convex combination of any given pair x, y P X,
is a map λ ÞÑ p1 ´ λqx` λy P X for each λ P I. This map constitutes a certain
kind of path from x to y. Seeking minimal conditions for measuring utility,
HM introduced a special form of path that substantially generalises the notion
of convexity. The definition that now follows coincides with that of HM when
every pair of prospects x, y P X defines a path of mixtures ϕxy. Formally, we
weaken the definition of HM by allowing a partial function to characterise the
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paths on X. Recall that a partial function is one that is not defined throughout
its domain.

Definition 1. pX,Φq is a partial mixture set whenever Φ : X ˆX ˆ I Ñ X is a
partial function such that if ϕxy :“ Φpx, y, ¨q is defined, then for every λ, µ P I,

P1 ϕxyp0q “ x ,

P2 ϕyx is defined and ϕyxpλq “ ϕxyp1 ´ λq , and

P3 z “ ϕxypµq implies ϕxz is defined and ϕxzpλq “ ϕxypλµq.

The fact that Φ is a partial function ensures that if ϕxy is defined, then it
is uniquely identified by the points x and y. Together, P1 and P2 confirm that
x and y are the endpoints of ϕxy. P3 really is the cornerstone of the definition,
for as we highlight in the discussion of example 4 below, it also rules out certain
ordered sets that are too large to be represented by a real-valued utility function.
(Recall this is a function U : X Ñ R such that x À y if and only if Upxq ď Upyq.)

When there is no ambiguity about the identity of Φ, is common practice to
simply refer to X as the partial mixture set with the understanding that this is
shorthand for pX,Φq. With a minor abuse of notation, we let Φ also denote the
collection of mixture paths ϕxy in X. The condition for X to be a mixture set
is then

tpx, yq : ϕxy P Φu “ X ˆX.

In the sequel, we will often refer to a path in Φ without reference to its endpoints.
For instance, we may consider a given path ϕ or a sequence ϕ1, ϕ2, . . . of paths
in Φ.

Paths as building blocks for the model When X is a mixture set, the
fact that it has a full set of paths makes it a self-contained building block for
the model. When X is only a partial mixture set, we must turn to paths in Φ
for building blocks. For this reason, the following proposition is a useful place
to start. With the aid of fig. 1, it summarises the implications of conditions P1,
P2 and P3 .

Proposition 1. † For each ϕxy P Φ, the image ϕxypIq is a mixture set. More-
over, for every x1, y1 P ϕxypIq, there exists µ, ν P I such that

ϕx1y1 pλq “ ϕxypp1 ´ λqµ` λνq for every λ P I. (1)

By proposition 1, we may apply the results of HM to any given path in Φ.
Figure 1 and (1) present a very precise relationship between a path in Φ and its
subpaths. When two paths are related via (1), we say they are synchronised. In
what follows we will extend this definition to allow for indifferences to replace
equality. When X is a partial mixture set, a primary motivation for the axioms
on preferences, is to ensure the building blocks that are the paths in Φ can be

†See page 24 for proof.
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y ‚

p0, xq
‚

ν

y1 ‚

µ

x1 ‚

X

Figure 1: The graph of ϕxy is the set of pairs pλ, zq such that λ P I and
z “ ϕxypλq. Note that this inverse-S shaped curve in I ˆ X differs from the
well-known counterpart in Prospect Theory [16] which belongs to I ˆ I. We
discuss this point further in connection with Rank-dependent utility theory of
Quiggin [22] in section 4 below. When P2 holds, the graph of ϕyx coincides
with the set of pairs mapped out by ϕxyp1´λq. Note that, in this example, the
graph of ϕyx is also upward sloping and inverse S-shaped, provided we place y
at the origin. This is not true of ϕxx1 . When P3 holds, the graph of ϕxx1 is
the set pλ, zq such that λ P I and z “ ϕxypλµq: the initial, concave segment
of ϕxy. Combining all three conditions, proposition 1 shows that the graph of
ϕx1y1 is characterised by points in the middle segment, that is pλ, zq such that
z “ ϕxypp1 ´ λqµ` λνq.
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put together in a synchronised manner. Heuristically speaking, a path is syn-
chronised with another if it coincides with another path once it is truncated and
the “rate of travel” along it is adjusted accordingly. Of course, with preferences
providing the only topological structure on X, notions such as “rate of travel”
and “distance” are not well-defined. By defining mixture sets in this abstract
way, the point that HM seek to make is that, provided the paths in Φ preserve
the structure of the interval I, definition 1 is all we need to measure utility.
Indeed, the second motivation for the axioms on preferences that follow is to
ensure that the image of a path in Φ has similar properties to those of I.

Two ways of generating partial mixture sets As we will see in example 1,
without any further restrictions on preferences, even an arbitrary discrete set can
be a mixture set. In the present subsection, we present examples and concepts
that complement the axioms that follow.

One way to obtain a partial mixture set is to simply remove points from a
mixture set. The paths that remain in tact after this deletion generate a partial
mixture set. An intuitive way to summarise the idea is to think of the earth’s
surface as a mixture set and the surface of the continents as a partial mixture
set. The following proposition and argument formalises this intuition.

Proposition 2. † Let X be the surface of a sphere and let Φ be the set of all
geodesic paths on X. Then pX,Φq is a mixture set.

Subject to some additional, but reasonable assumptions, we may take X in
proposition 2 to be the earth’s surface. Now let X 1 be the set of points on land,
so that X 1 describes the surface of the continents. Moreover, let Φ1 “ tϕ P Φ :
ϕpIq Ď X 1u. Since every path in Φ1 automatically satisfies P1, P2 and P3, the
continents can indeed be written as a partial mixture set.

Another way to generate partial mixture sets is to combine a collection
tXa : a P Au of mixture sets. This is possible provided we note that pairs of
endpoints uniquely identify paths in a partial mixture set. Thus, one condition
for combining mixture sets is that no pairXa andXb such that a ‰ b shares more
than a single point. Alternatively, we ensure that the paths in the intersection
Xa XXb coincide.

In fact, as we discuss further in section 4, the case where the collection is
pairwise disjoint already accounts for many models in the literature. When the
collection is pairwise disjoint,

Ů

tXa : a P Au denotes the disjoint union. For
the reasons we have just outlined, it is clear that the following statement holds.

Proposition 3. Every disjoint union of mixture sets is a partial mixture set.

The converse of proposition 3 is not possible in general. Indeed it is only
possible if the set Φ of paths induces a partition of X. (Recall that a partition
is characterised by an equivalence relation, that is a reflexive, symmetric and
transitive binary relation.) We now describe how to test whether Φ induces a
partition on X.

†See proof on page 25
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Consider the set of pairs px, yq such that ϕxy P Φ. The only property that
follows directly from the definition of a partial mixture set is symmetry: if
ϕxy P Φ, then ϕyx P Φ. But, if every point in X belongs to some path in Φ, then
P1 implies ϕxx P Φ. When this is true, the relation induced by Φ is reflexive.
As we have seen in proposition 1, the definition of a partial mixture set is such
that when ϕxy P Φ, then for every z P ϕxypIq, both ϕxz and ϕzy belong to
Φ. The final requirement for a partial mixture set to be written as a disjoint
union of mixture sets, transitivity, is the converse property: if ϕxz, ϕzy P Φ,
then for some unique 0 ă µ ă 1, ϕxy belongs to Φ and it can be written as the
concatenation

ϕxypλq “

"

ϕxzpλ{µq 0 ď λ ď µ
ϕzy ppλ´ µq{p1 ´ µqq µ ď λ ď 1

(2)

The justification for (2) lies in a simple inversion of the transformation λ ÞÑ

p1 ´ λqµ` λν and an appeal to equation (1) of proposition 1.†

Clearly, the latter assumption makes sense in some applications. It would,
for example, make sense in when X is transport network, where the intuition
is that upon arriving at z from x, we could continue on to y. But in many
settings, the path from x to y may not be via z. This is precisely the case in the
application of section 3. Indeed, the earth-continents example above does not
satisfy this property either: simply because the only paths in Φ1 are geodesic.
This demonstrates that partial mixture sets are more versatile than a disjoint
union of mixture sets. Broadly speaking, whenever concerns relating to the
design of an experiment lead us to omit certain paths, partial mixture sets may
have an important role to play.

Cardinal and linear utility If paths in Φ are to be the building blocks,
they had better have a meaningful structure. Since meaning is defined relative
to our goal (a cardinal and linear utility representation), let us first define these
concepts. A function U : X Ñ R is linear if, for every ϕxy P Φ, the composite
function U ˝ ϕxy : I Ñ R satisfies

pU ˝ ϕxyqpλq “ p1 ´ λqUpxq ` λUpyq for every λ P I.

A utility representation U with a certain property (such as linearity) is cardinal
if every other utility V with the same property is related via a single positive
affine transformation. In particular, V “ θU ` κ, where θ ą 0 and κ P R.

The following example highlights that, in absence of any form of continuity,
even the requirement that X is a mixture set is very weak indeed.

Example 1 (A discrete mixture set). Let X “ tx, yu and suppose x ă y. Let
ϕxypλq “ x if λ ă 1 and ϕxyp1q “ y. Then, for every λ P I, let ϕyxpλq “

†In fact, for the first line, we may appeal to P3 directly: for each λ P I, ϕxzpλq “ ϕxypλµq

if and only if ϕxzpλ{µq “ ϕxypλq when µ ą 0. For the second, simply take ν “ 1 and, since
µ ă 1, the resulting inversion yields λ ÞÑ pλ ´ µq{p1 ´ µq for µ ď λ ď 1.
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ϕxyp1 ´ λq, ϕxxpλq “ x and ϕyypλq “ y. It is not hard to check that these four
paths are uniquely defined in such a way that X is a mixture set.

Clearly no utility representation of these preferences can be linear. The
trouble is the fact that ϕxypλq “ x for every λ ă 1 combined with the fact that
x ă y. The first equality implies pU ˝ ϕxyqpλq “ Upxq for every λ ă 1. Then the
fact that U is a utility representation ensures that pU ˝ ϕxyqpλq does not tend
to Upyq as λ tends to 1 even though ϕxyp1q “ y. This is in stark contrast with
p1 ´ λqUpxq ` λUpyq which varies continuously between Upxq and Upyq.

The essence of example 1 is that U ˝ ϕxy is discontinuous at 1 and since X
is discrete, the source of discontinuity is clearly ϕxy. We now clarify what is
meant by continuity of ϕxy.

Continuous paths When X is a topological space, a path f is normally
required to be continuous. That is, if F is closed inX, then the preimage f´1pF q

is closed in I. Given O, basic closed sets in the preference order topology are
of the form tx : x À zu and tx : z À xu. So in order to check f is continuous it
suffices to check that tλ : fpλq À zu and tλ : z À fpλqu are closed subsets of I.
For the case where X is a mixture set, this is precisely the form of continuity
axiom that HM introduced. Our axiom is generalised only so as to accommodate
the partial nature of Φ.

Axiom C. For every ϕ P Φ and every z P X, the sets tλ : ϕpλq À zu and
tλ : z À ϕpλqu are closed in I.

Consequences of O and C The first and most basic consequence of O and C

is that the image of each path ϕ in Φ is connected and compact in the preference
order topology on X. Given that I is connected and compact and ϕ : I Ñ X is
continuous, it is not surprising that ϕpIq shares these properties. Since ϕpIq is
connected, it cannot be written as a pair of nonempty, disjoint closed sets of the
form tx1 : x1 À xu and tx1 : y À x1u such that x ă y. This means that, for each
x, y P ϕpIq, if x ă y, then ϕpIq contains z such that x ă z ă y. This ensures
that example 1 is ruled out by C.

Building on this connectedness property, the following lemma shows that we
are not confined to ϕpIq such that ϕ P Φ. The indifference relation allows us to
make our first step towards putting the building blocks that are the paths in Φ
together. This lemma corresponds to theorem 1 of HM.

Lemma 1. † Let preferences on X satisfy O and C. If ϕxy P Φ, z P X and
x ă z ă y, then there exists 0 ă µ ă 1 such that z „ ϕxypµq.

Lemma 1 provides a basic existence requirement that is necessary for any
linear representation U . Indeed, if x ă z ă y, then p1´µqUpxq `µUpyq “ Upzq

for some unique 0 ă µ ă 1. When, for any such z, there is a unique µ satisfying
lemma 1, the set ϕxypIq is linearly ordered : there is just one z P ϕxypIq such

†See page 25 for proof.
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that ϕxypµq „ z. Continuity of ϕxy together with the fact that x ă y then
imply that ϕxypλq ă ϕxypλ1q if and only if λ ă λ1. In this case, ϕxypIq is a linear
continuum: a linearly ordered, connected subset of X such that the infimum
(and supremum) according to À of any subset is uniquely defined. In particular,
inf ϕxy “ x and supϕxy “ y.

If ϕxypIq is a linear continuum, then so is the image of U ˝ ϕxy. But since
there is nothing in the axioms introduced so far to ensure that µ of lemma 1 is
unique, further axioms are needed. In the setting where X is a partial mixture
set, this turns out to be the most important consequence of the usual indepen-
dence axiom.

Independence The following condition coincides with axiom 3 of HM when
X is a mixture set: a concise form of the well-known independence axiom.

Axiom I. If ϕ, γ P Φ, ϕp0q “ γp0q and ϕp1q „ γp1q, then ϕp1{2q „ γp1{2q.

Together O, C and I are enough to ensure that a path ϕxy such that x „ y
satisfies ϕxypλq „ x for every λ P I. This follows directly from theorem 2d of
HM. Clearly, if ϕ P Φ is any other path such that ϕp0q „ ϕp1q „ x, then the
same argument implies ϕpλq „ ϕxypλq for every λ P I. Since this is a necessary
condition for a linear utility representation of preferences, we see that I has the
intended effect: but only if we restrict attention to paths with endpoints that
belong to a single indifference set. As we shall see, this is far from the case when
x ă y.

Before exploring this key issue, we use I to improve on lemma 1 and show
that ϕxypIq is indeed a linear continuum when x ă y. This lemma combines
theorems 4 and 6 of HM.

Lemma 2. † Let preferences on X satisfy O, C and I. If ϕxy P Φ and x ă y,
then x ă z ă y if and only if there is a unique 0 ă µ ă 1 such that z „ ϕxypµq.

When X is a mixture set lemma 2 is enough to yield a cardinal, linear utility
represention. But, as the following example highlights, it is easy to see that I
is too weak when X is a partial mixture set.

Example 2 (Preferences satisfying I with no linear utility representation). ‡

Let ϕ, γ P Φ, where ϕ is a path from x to x1 and γ a path from y to y1. Moreover,
suppose that x „ y ă x1 „ y1. Clearly every utility representation U satisfies
Upxq “ Upyq “ r and Upx1q “ Upy1q “ r1 for some r ă r1 P R. For U to be
linear, we need ϕ and γ to be synchronised in such a way that ϕp1{2q „ γp1{2q.
Only then do we have

pU ˝ ϕqp1{2q “ pU ˝ γqp1{2q “ pr ` r1q{2.

The trouble is that, I only applies when at least one of the endpoints of ϕ and
γ coincide. In this case, x “ y or x1 “ y1. If Φ were to contain the path ϕx1y,

†See page 25 for proof.
‡A similar example can be found at Karni and Safra [18, p.324].
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then two applications of I would ensure that each of ϕ and γ is synchronised
with ϕx1y. When X is a partial mixture set, there is no guarantee that such a
path exists. As such, I is compatible with preferences satisfying ϕp1{2q ă γp1{2q.

Example 2 highlights that the restriction of preferences satisfying I to any
subset of X that is a mixture set has a linear representation. It also shows that,
in general, I is insufficient for a linear representation on the whole of X. This
is relevant to the empirical setting where data on two or more distinct mixture
sets is collected separately. Even though I holds on each of these, there is no
guarantee that there is a linear utility representation on the union. In fact,
this example provides a glimpse of a much deeper problem. One that goes to
the heart of the relationship between the independence axiom and the mixture
set structure. In the next example we define a partial mixture set upon which
preferences may satisfy O, C and I and have no utility representation.

Example 3 (A union of short lines). Let A` denote a well-ordered set of the
form t0, 1, 2, . . . u. Each element a P A` indexes a potential level of awareness
of a trader, Val. We assume that A` is the set of all countable ordinal numbers.
Thus, for each a P A`, the set tb P A` : b ă au is countable, even though A`

itself is uncountable. (The situation is similar to the way that Z` is countably
infinite even though every one of its elements is finite.)

Each level of awareness is associated with its own mixture set Xa and X “
Ů

tXa : a P A`u. Since X is a disjoint union of mixture sets, proposition 3
ensures that it is a partial mixture set. The awareness structure we have in
mind resembles that of Heifetz, Meier, and Schipper [12]. Let preferences on X
satisfy O, C and I.

Take each Xa to be the set of all functions from a state space Sa into a set
of consequences Ca that satisfies the following properties for each a P A`.

(i) Ca is order isomorphic to R`, where the linear ordering À of Ca is induced†

from preferences over constant functions in Xa;

(ii) inf Ca „ inf Ca`1;

(iii) there exists ca`1 P Ca`1 such that c ă ca`1 for every c P Ca.

Property (i) ensures that Xa is a mixture set, where mixtures between functions
are taken pointwise in Ca. From property (ii), we see that all the mixture sets
contain a common lower bound.

It is property (iii) that makes this problem interesting. Yet it is also well-
motivated since it seems reasonable to expect that awareness levels are payoff
relevant, especially given the competitive nature of Val’s work. Since A` is
uncountable there is no possibility of a utility representation U of preferences.
This is because the image of U is a subset of R: thus every collection of nonempty
pairwise disjoint open subsets is countable.

For a and b that are separated by a limit ordinal in A`, property (iii) and
the assumption that X is a mixture set together imply that paths in Xa and Xb

†See Schmeidler [26] for an exposition of this step.
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necessarily travel at different rates. The fact thatXa andXb are disjoint renders
I impotent. We return to this example and explore this point in proposition 5.

The preferences identified in example 3 have no (real-valued) utility rep-
resentation because they do not satisfy the countable chain condition: every
pairwise disjoint collection of nonempty open preference intervals is countable.
The surprising fact is that this is true even though preferences satisfy O, C and
I on each mixture set Xa, so that, by HM, on any such subset a cardinal, linear
utility representation exists.

A stronger independence axiom The above difficulties may be overcome
by strengthening I. The condition we need must be capable of synchronising
paths with endpoints that belong to the same indifference set.

Axiom S. If ϕ, γ P Φ, ϕp0q „ γp0q and ϕp1q „ γp1q, then ϕp1{2q „ γp1{2q.

S implies I provided indifference is reflexive (for then x “ y implies x „ y).
As the proof of the following proposition shows, the converse is also true when
indifference is transitive and X is a mixture set. This provides some justification
for the claim that S is a natural extension of the standard independence axiom
to settings where Φ is only partially defined.

Proposition 4. † Let X be a mixture set and let preferences satisfy O. Then
I holds if and only if S does.

The next lemma shows that the preferences of example 2 are excluded by
axiom S. It may also be viewed as an improvement on lemma 2. In particular
it goes some way towards showing that overlapping paths are synchronised.

Lemma 3. ‡ Let preferences on X preferences satisfy O, C and S. If ϕxy P Φ
and x ă z ă y, then there is a unique 0 ă λ ă 1 such that γpλq „ z for every
γ P Φ such that γp0q „ x and γp1q „ y.

The implications of S for synchronising paths go much further than lemma 3,
indeed we will show that it rules out example 3. But both for this purpose and
our derivation of a cardinal and linear utility, we need to know how to generate
new paths from those in Φ.

Continuous concatenations of paths in Φ Condition P3 and proposition 1
tell us how a smaller path can be written in terms of a larger path. We now
provide a way to construct a larger path, that is a concatenation of paths in Φ.

The basic concept of concatenation was introduced in (2). This allows us
to write a path in Φ in terms of two subpaths. We now extend this idea to
generate new paths in X from those in Φ. This extension is only possible if
we let adjoining endpoints of paths in a concatenation be different. Whereas
in (2) ϕxz and ϕzy were subpaths of ϕxy, we wish to concatenate ϕxz and ϕz1y

†See page 25 for proof.
‡See page 26 for proof.
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provided the weaker condition z „ z1 holds. This generalisation clearly parallels
the one that led us to give up I in favour of S.

A minor obstacle arises when z ‰ z1. If f is the resulting concatenation, then
since it is a function, it cannot satisfy fpµq “ z and fpµq “ z1. To simplify the
exposition, we adopt the convention that f coincides with ϕxz on the interval
r0, µq and with ϕz1y on rµ, 1s.

Definition 2. f : I Ñ X is a concatenation in Φ if there exists ϕ0, . . . , ϕm P Φ
such that ϕnp1q „ ϕn`1p0q, fp1q “ ϕmp1q and

fpνq “ ϕnppν ´ µnq{pµn`1 ´ µnqq (3)

for 0 “ µ0 ă ¨ ¨ ¨ ă µm`1 “ 1 and ν P rµn, µn`1q.

When f is a concatenation such that fp0q „ x and fp1q „ y, we simply say
that f is a concatenation from x to y. If f is a concatenation of just one path,
then m “ 1 and f P Φ. But, regardless of whether f P Φ, the fact that f maps
I into X implies that f is a path in X. Moreover, in the presence of O and
C, the concatenations of definition 2 are continuous. In addition to the axioms,
this conclusion follows from the restriction to concatenations wth consecutive
components that satisfy ϕnp1q „ ϕn`1p0q. (As well as the fact that the union
of finitely many closed sets is closed.)

We now refine our concept of (path) concatenation with a view to identifying
those f that are synchronised with every path in Φ.

Synchronising concatenations A concatenation f from x to y is synchro-
nising whenever every ϕ P Φ such that x À inf ϕ and supϕ À y satisfies

ϕpλq „ fpp1 ´ λqµ` λνq for every λ P I

for some µ, ν P I that are unique whenever x ă y. Note that every ϕ P Φ
is itself a concatenation. As such, the following lemma is a generalisation of
proposition 1 with indifference replacing equality.

Lemma 4. † Let preferences on X satisfy O, C and S. If Φ generates a
concatenation from x to y, then it generates a synchronising concatenation from
x to y.

Lemma 4 extends lemmas 1 to 3 from points z such that x ă z ă y to paths
ϕ such that x À ϕpλq À y for every λ P I. Moreover, lemma 4 only requires a
sequence of paths in Φ that connect x and y, so that ϕxy need not belong to
Φ. It turns out that lemma 4 is the most important step in the proof of the
main theorem. To this end, it remains for us to identify minimal conditions on
preferences and Φ that guarantee synchronising concatenations between every
x, y P X exist and are, up to indifference, unique. Before identifying these
conditions, we end this section by using this new instrument to show that S

rules out example 3.

†See page 13 for proof.
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Proposition 5. The partial mixture set and preferences of example 3 fail to
satisfy S.

Proof of proposition 5. Recall that in example 3 the order isomorphisms
fw were arbitrary. When S holds, this is not the case. This axiom forces
them to be synchronised. Our proof consists of assuming that S holds and
deriving contradiction. In particular, we show that contrary to the construction
in example 3, either O fails to hold, or, for some w P W, Lw is not a mixture
set.†

An Archimedean, richness condition A very similar argument to the proof
of proposition 5 can be used to show that there is no collection Φ of paths that
makes the “long line” a mixture set. This ordered set is closely related to
the construction of example 3 and the proof of proposition 5 and is formally
introduced in the next example.

The long line is a well known example of a set that is path-connected. That
is, for every pair x, y of its elements, there is a continuous path from x to y. In
this way, the long line serves to distinguish mixture sets from path-connected
sets. For if the long line were a mixture set, then the representation of HM would
only be a local one: only once for small enough subsets of X do we have a
(partially defined) linear utility representation.

The key to showing the long line is not a mixture set is to use condition P3 to
obtain synchronising concatenations (with equality replacing indifference) that
span the order. The proof has nothing to do with the axioms since x „ y if and
only if x “ y when X is a line, and both C and S then hold trivially. When X
is a partial mixture set, condition P3 is too weak to rule out the long line.

Example 4 (The long line as a partial mixture set). Consider the set A` of
example 3. Let L` “ A` ˆlex r0, 1q be the lexicographically ordered product
where the first dimension is dominant. It is straightforward to find a paths such
that L` is a partial mixture set: let ϕxy be the convex combination on L` that
is defined if and only if, for some a P A` and r, s P r0, 1q, both x “ a ˆ r and
y “ a ˆ s, and in this case ϕxypλq “ a ˆ t, where t “ p1 ´ λqr ` λs. It is clear
that each order interval raˆ 0, aˆ 1q is a mixture set, and that L` is a disjoint
union of mixture sets indexed by the uncountable set A`. It is straightforward
to check that, when preferences coincide with ďlex, O, C and S hold.

Example 4 confirms that we still do not have sufficient conditions for a utility
representation, let alone one that is cardinal and linear. The key reason that
the proof of proposition 5 does not apply is that for any x and y such that
x “ w ˆ 0 and y “ v ˆ 0 and w ă v, there is no concatenation from x to y.
Even if v “ w ` 1, there is way to concatenate a finite collection ϕ0, . . . , ϕm in
Φ in such a way that ϕ0p0q „ x and ϕmp1q „ y.

We now provide an axiom that rules out example 4. It is stated in the
weakest possible form, one that is easier to verify when, as in our application of
section 3, we are trying to elicit utility or beliefs.

†The remainder of this proof appears on page 28
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Axiom A. If x ă y, then there exists ϕ0, . . . , ϕm P Φ such that inf ϕ0 À x,
y À supϕm and, for each n ă m, inf ϕn`1 À supϕn.

A implies that every pair of prospects such that x ă y are connected by
a finite chain of paths in Φ. In view of this, A is an Archimedean condition.
On the other hand, A is clearly a completeness condition on the set of possible
concatenations. That is to say, A is also a richness condition on the set of
paths in Φ. It goes without saying that, although this does place considerable
structure on Φ relative to preferences, we are still far from requiring that X is
a mixture set: there A is satisfied with m “ 1.

Lemma 5. † Let X be a partial mixture set and let preferences satisfy O, C,
S and A. If x ă y, then Φ generates a synchronising concatenation from x to
y.

For the case where x ă y, lemma 5 passes the main premise of lemma 4 to
the axioms. The following simple example confirms that our axioms are still too
weak to deliver a cardinal representation.

Example 5 (A is too weak). Let X be the disjoint union of ϕpIq and ϕ1pIq,
where ϕ, ϕ1 P Φă and suppose that, ϕp1q „ ϕ1p0q “: x1, so that A also holds.
Moreover, suppose that U : X Ñ R is a linear utility representation of pref-
erences. Then, every element of ϕ1pIq other than x1 strictly dominates every
element of ϕpIq.

The trouble is that for any 0 ă µ ă 1, we may freely define a distinct
mixture preserving concatenation f of ϕ and ϕ1 such that fpµq “ x1. This
will not do for a cardinal representation, for each distinct pair f and g of such
concatenations yields a pair of linear utility representations that are not related
via a single positive affine transformation. Indeed, let fp1{2q “ x1 “ gp1{4q, so
that x1 ă gp1{2q. Now let V :“ U ˝ g ˝ f´1. Then V is a well-defined linear utility
by virtue of the fact that f is a bijection. Moreover, by construction, the image
of V is the same as that of U . But, since f´1px1q “ 1{2, we have pg ˝ f´1qpx1q “

gp1{2q, so that V px1q “ pU ˝ gqp1{2q. Since U is a utility representation, this
number exceeds Upx1q “ pU ˝ gqp1{4q.

Measuring utility at each x P X In the presence of the other axioms, A
ensures that the decision space is not too large relative to Φ. In particular, the
preference ordering is spanned by a countable chain of paths in Φ: for every
x P X, x „ ϕpλq for some ϕ P Φ and λ P I. But example 5 demonstrates that
this is not enough. We will now show that for cardinality, what is needed is that
every x P X belongs to the relative interior of ϕ for some ϕ P Φ. The timeless
example of von Neumann and Morgenstern [29], upon which the following is
based, helps to clarify this point.

Example 6. Suppose Val strictly prefers a glass of tea to a cup of coffee z in
the afternoon. She also strictly prefers a cup of coffee to a plain glass of water x.

†See page 29 for proof.
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Let ϕ denote the infusion over a five minute period of tea in a glass. Then von
Neumann and Morgenstern’s point is that, upto a reasonable approximation, we
ought to be able to find a unique time 0 ă µ ă 1 such that z „ ϕpµq. The same
principle carries over to the setting where mixtures are only partially defined.
If Val has a strong aversion to carbonated drinks, then it seems reasonable to
suppose that any carbonation of the water (points on a path ϕ1 from sparkling
water to x) is strictly worse than x. But, if these are the only paths at our
disposal, then example 5 tells us that we cannot measure utility on a single,
cardinal scale. Equivalently, we cannot identify the strength of Val’s preference
for x relative to the worst prospect (sparkling water) and the best prospect
(tea). The trouble is that preferences are such that x is not an interior point
relative to any path of mixtures. In other words, we need to enrich the set of
paths.

Examples 5 and 6 simply remind us that cardinality is purely an issue of
measurement. For every prospect, there must be a suitable instrument with
which to measure utility. Since our ultimate goal is to obtain a representation
that is cardinal, the following axiom is unavoidable.

Axiom M. If x ă z ă y, then inf ϕ ă z ă supϕ for some ϕ P Φ.

M ensures that every interior point of the preference order is also in the
relative interior of some path. M is trivially satisfied when X is a mixture set,
for fact that Φ is everywhere defined ensures that we can take ϕ “ ϕxy. In view
of this, the main innovation of M is to formalise the fact that in practice we
often have considerable flexibility in choosing the path with which to measure.

The following lemma improves on lemmas 1 to 5. It confirms that, together
with the other axioms, M allows us to measure the strength of preference of
any given prospect z relative to any pair x and y such that x ă z ă y. The
measuring instrument is a synchronising concatenation of paths in Φ.

Lemma 6. † Let X be a partial mixture set and let preferences satisfy O, C,
S, A and M. If x ă z ă y, then there is a unique 0 ă µ ă 1 such that fpµq „ z
for every synchronising concatenation f from x to y that Φ generates.

The key contribution lemma 6 is the uniqueness of λ regardless of the choice
of concatenation. This means that it does not matter how we “frame” the
paths that form the synchronising concatenations, the strength of preference for
z relative to x and y is the same. By virtue of its strength, Lemma 6 should
provide a useful target for experimental testing in many settings. Any failure of
preferences to satisfy its conclusion, can be investigated by testing the axioms
individually to ascertain the source. This exercise is especially fruitful in light
of the fact that the axioms are also necessary for the conclusion of the lemma.
In fact, as our main theorem now shows if any of the axioms fails to hold, then
there is no utility representation that is cardinal and linear.

†See page 29 for proof.
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Theorem 1. † Let X be a partial mixture set. O, C, S, A and M hold if and
only if preferences have a cardinal and linear utility representation.

Unlike the case where X is a mixture set, the fact that A and M are neces-
sary for such a representation is not immediately obvious. Examples 4 and 5 go
some way towards demonstrating that they are. One final example completes
the picture and also leads to a proof of the following novel characterisation of
cardinality.

Corollary 1. ‡ Let X be a partial mixture set and let preferences have a linear
utility representation U . Then U is cardinal if and only if both A and M hold.

3 Application: eliciting beliefs about stock prices

3.1 Basic facts on Wiener processes

Let W‚ “ tWt : t P Iu be a standard Wiener process on an abstract probability
space pΩ,F,Pq. This means that W0 “ a for some a P R and W‚ is a family of
random variables with continuous paths and stationary, independent increments
Wt ´Ws that have distribution Np0, t´ sq for each s ď t in I.

By Bichteler [5, p.14], a standard Wiener process is associated with a certain
random path on Ω. This is the unique path-valued random variable Wa : Ω Ñ

CapI;Rq with Wiener measure as its probability distribution on CapI;Rq. The
latter is the space of continuous functions w : I Ñ R such that, for t “ 0,
wt “ a. We refer to a given realisation w “ Wapωq as a trajectory. For each
t P I, Wa is related to Wt via the evaluation map w ÞÑ wt “ ĎWtpwq. Explicitly,
for each t P I and ω P Ω,

Wtpωq “ pĎWt ˝ Waqpωq.

The events on which Wiener measure is defined are of the form E Ď CapI;Rq

such that W´1
a pEq P F. Basic events are those that are restricted only at finitely

many times t1, . . . , tm P I. They are known as cylinder sets:

E “ tw P CapI;Rq : wtn P An for some A1, . . . , Am Ď Ru .

The very simplest functions (also known as acts) that might be used to
elicit beliefs in the Savage [25] and Anscombe and Aumann [2] framework are
functions that take the value one E and zero on its complement. Even if the
experimenter restricts attention only to events that are cylinder sets, we believe
that even sophisticated subjects will struggle to compare two events E and E1

by weighing up the factors that affect their probability: the number m versus
the number m1 of times each event is restricted; the distance from zero of times
tn and t1n1 ; the relative measure in R of each An and A1

n1 ; the relative centrality
of the latter; and finally how to combine this information to make a judgement.

†See proof on page 30.
‡See proof on page 32.
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Figure 2: A particularly simple cylinder set E contains all continuous paths in
R that begin at a “ 0 and pass through intervals A1 “ rb, cs, A2 “ rb, as and
A3 “ rb, bs at times t1, t2 and t3 respectively. Of the four plotted trajectories,
only the lower two belong to E. The other two do not pass through A2 and A3.

The Brownian bridge The random paths that we will work with are a sim-
ple transformation of a Wiener process. Since a standard Wiener process is
nonrandom at t “ 0, is said to be pinned at a. A Brownian bridge B‚ is a
stochastic process that is pinned at both ends of the interval I. That is B0 “ a
and B1 “ b. B‚ is related to W‚ as follows:

Bt “ p1 ´ tq

ˆ

a`

ż t

0

1

1 ´ r
dWr

˙

` tb (4)

for each t P I. Following common practice, reference to ω P Ω in (4) has been
suppressed. It is the stochastic Itô integral in this expression that makes Bt a
random variable on R. In the case where t “ 1, clearly Bt “ b. For each t ă 1,
distributing the constant 1 ´ t through the parentheses and the integral, yields
a bounded integrand since 1 ´ t ď 1 ´ r for each 0 ď r ď t ă 1. The continuity
properties of the Itô integral then ensure that this Brownian bridge is associated
with a path-valued random variable Wab : Ω Ñ CabpI;Rq.

A minor extension of this definition yields the paths that will form our partial
mixture set. Let x “ ps, aq, y “ pt, bq for some 0 ď s ă t ď 1 and a, b P R. Let
Wxy denote be the random variable that takes values in Cabprs, ts;Rq. Then the
resulting Brownian bridge between x and y is described by the composition of
the evaluation map ĎWλ with Wxy for each λ P I

ĎWλ ˝ Wxy “ p1 ´ λq

˜

a`

ż s`λpt´sq

s

t´ s

t´ r
dWr

¸

` λb.
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Note that since the Itô integral is a square-integrable, real-valued random
variable on pΩ,F,Pq, so is ĎWλ ˝ Wxy for each λ P I. And since the expectation
with respect to P of an Itô integral is zero,

E
`

ĎWλ ˝ Wxy

˘

“ p1 ´ λqa` λb. (5)

We now use these random paths to construct a partial mixture set.

A partial mixture set of random variables Let Y denote a nonempty
set of pairs px, yq that give rise to a Brownian bridge of the form we have just
described. Let

X1
def
“
ď

␣

ĎWλ ˝ Wxy : λ P I and px, yq P Y
(

.†

We constuct the set Φ1 of paths that make X1 a partial mixture as follows.
For each px, yq P Y , let ϕxy : I Ñ X1 satisfy ϕxypλq

def
“ ĎWλ ˝ Wxy. Let ΦY

denote this collection of paths. Every path in ΦY has deterministic endpoints
in X.

We now define a path in Φ1 to be a subpath (in the sense of proposition 1)
of some path in ΦY . In particular, a path ϕ : I Ñ ĎWt belongs to Φ1 if and only
if, for every λ P I, ϕpλq “ ϕxypp1 ´ λqµ ` λνq for some px, yq P Y and some
µ, ν P I. By construction, each ϕ satisfies proposition 1, and this ensures that
X is a partial mixture set. Clearly, X is not a mixture set since there is no path
between ϕpλq and γpµq for any ϕ ‰ γ in ΦY such that 0 ă λ, µ ă 1. Moreover,
note in the experimental setting we have in mind, Y would be some finite set
of pairs.

The following proposition shows that the typical path in Φ1 is not convex.
This confirms the need for the more general, nonconvex framework that partial
mixture sets permit.

Proposition 6. ‡ For any ϕxy P Φ1 such that x ‰ y, if µ ă ν and 0 ă λ ă 1,
then

ϕxypp1 ´ λqµ` λνq ‰ p1 ´ λqϕxypµq ` λϕxypνq.

The partial mixture set X1 will allow us to elicit Val’s subjective first mo-
ments of her beliefs. For subjective moments of power k for k “ 2, 3, . . . , we
define Xk as follows. For each ϕ P Φ1, let ϕk denote the kth power of ϕ,
where the power is taken pointwise: for each λ P I, ϕkpλq

def
“ pϕpλqq

k
. Plainly,

any such ϕk is a continuous, random path that takes values in Rrs,ts for some
0 ď s ă t ď 1.

Now let Φk
def
“

␣

ϕk : ϕ P Φ
(

and let Xk be the union of the image sets ϕkpIq

such that ϕk P Φk. Clearly each pXk,Φkq is a partial mixture set. And whilst
the disjoint union over k of the Xk would also form a partial mixture set, that
would not be the appropriate structure for eliciting subjective moments. We
only want to synchronise paths that are of the same power.

†Strictly speaking, a typical element of X1 is a pair consisting of a time s`λpt´ sq and a
real-valued random variable on Ω. This is consistent with x “ ps, aq and y “ pt, bq being the
deterministic endpoints of Wxy . As with ω, when this index is superfluous, it is suppressed.

‡See page 32 for proof.
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Preferences The above construction of X1, . . . is explicitly known to our
experimenter, Zal. In contrast, the subject Val of the experiment, whose pref-
erences are of interest, only has a subjective view of the stochastic process W‚.
In the canonical case, Val has observed a “large” number of days of trading of
the underlying AAPL stock which is a standard wiener process. Large means
enough for her beliefs to have converged by the time the experiment begins.

Zal needs to check whether Val’s subjective moments are compatible with
Wiener measure. Val is presented with pairs in Xk for k “ 1, 2, . . . and required
to choose her preferred prospect (indifference is allowed). Val is assumed to
understand that ϕ P ΦY is generated by sampling a path from the stochastic
process that generates AAPL and revealing to her only the values of that path
that correspond to some pair of times s and t such that s ă t. She also knows
that, as the owner of one unit of AAPL stock, she will receive the value ϕkpλ, ωq

if she chooses ϕkpλq over γkpλq for some γ P ΦY . She also knows that by
choosing γkpλq over ϕkpλq, she will receive γkpλ, ωq.

We assume that O holds for X “
Ť

kXk. In particular, we assume that Val
owns a unit of the AAPL stock. For this reason, Val prefers higher prices. Thus,
for any a, b P R, (degenerate) random variables x, y P X such that x “ pa, sq
and y “ pb, tq, x ă y if and only if a ă b. In the present setting, this is not
farfetched since I corresponds to a day’s trading on the stock market. That
is to say, this also implies that Val does not discount time over the interval I.
Similarly, we assume that Val is risk neutral. These simplifying assumptions
allow us to focus entirely on the issue of eliciting beliefs.

Whereas Wiener process has continuous trajectories, C only requires that the
random paths in Φ are continuous relative to the order topology onX. Therefore
C allows for more general stochastic processes. If Val’s beliefs are characterised
by Wiener measure, then she ought to be certain the process has no jumps. That
is, if limn λn “ λ, then Val should view tω : limn ϕpλn, ωq ‰ ϕpλ, ωqu as a null
event. This requirement should be relatively easy to verify in an experimental
setting. We simply assume this in addition to C and leave to future work the
exploration of any relationship between these two types of continuity.

Note that A and M are satisfied provided the pairs in Y are suitably chosen.
In view of the assumptions we have already placed on preferences, this is a simple
matter.

As usual, S is the crucial axiom. If Val satisfies S on X1, then theorem 1
yields a cardinal and linear utility representation U on X1. In view of the fact
that Val is risk neutral, this tells us that Val’s first moments are correct. Since
this utility representation is cardinal, we can find a positive affine transformation
of U that is the standard mathematical expectation. We denote this again by
U . Then, for any pair x, y P X1 and λ P I, pU ˝ ϕxyqpλq satisfies (5) as required
for Val’s first moments to be correct.

For higher moments, the situation is not quite as straightforward. The issue
is that the variance of a Brownian Bridge is nonlinear in λ and dependent on
the size of the time increment. In particular, if x “ ps, aq and y “ pt, bq then
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the true variance of ϕxypλq is

Var
`

ĎWλ ˝ Wxy

˘

“ pλ´ λ2qpt´ sq.

To obtain the true expectation of ϕ2xypλq, we simply add the square of a`λpb´aq

to the variance. Assuming S applies to paths in Φ2 will not do. For taking
a “ b, implies a2 „ b2 and, since ϕ2xxpλq “ a2 for every λ P I. Then, O and
S imply ϕ2xyp1{2q „ a2, so variance plays no role whatsoever in determining
preferences. In contrast, if Val’s beliefs are correct, she would view the event
tω : ϕ2xyp1{2, ωq ą a2u as an event that occurs with probability one. The way to
address the dependency on the time increment, is to constrain S so that it ap-
plies only to paths ϕ2xy, ϕ

2
x1y1 P Φ2 such that the corresponding time increments

satisfy t´ s “ t1 ´ s1.
Thus, suppose the certainty equivalent of x, x1 P X2 is a and that of y, y1 P Y2

is b. Then since t´ s “ t1 ´ s1, Val’s raw subjective second moments are correct
provided

ϕ2xyp1{2q „ ϕ2x1y1 p1{2q „
pt´ sq ` pa` bq2

4

for every such x, x1, y and y1.
Whilst this relaxation of S allows for higher-order subjective moments of

ϕpλq that are nonlinear in λ, it also appears to constitute a departure from the
linear model that we have derived. We now demonstrate how to exploit the
partial mixture set structure in order to extend the linear model to this case.

Consider the case where a “ b “ 0. The more general case is a straightfor-
ward extension. Then let

ξ ÞÑ λ “
1

2
´

?
1 ´ ξ

2
,

The following extension of λ ÞÑ ϕpλq

Existence and uniqueness of beliefs Existence of a continuous cumulative
distribution function on R is characterised by the requirement that the kth
moment mk of any given real-valued random variable x P X1 satisfies

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 m1 . . . mk

m1 m2 . . . mk`1

...
...

. . .
...

mk mk`1 . . . m2k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą 0 for k “ 0, 1, 2, . . .

Provided this additional condition is satisfied, for each nondegenerate x P X1,
Val’s subjective moments are characterised by a nonempty set of measures.

The collection of Val’s subjective moments may not uniquely identify a single
probability measure, be it Wiener or any other.

A sufficient condition for uniqueness is the Carlemann condition
ř

km
´1{2k
2k “

8 (see Billingsley [6] for a related condition). In essence, this states that the
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measure is unique if the rate of growth of the even moments is slow enough.
A sufficient condition for nonuniqueness is the Krein condition. See the clas-
sic reference Akhieser [1] and the more recent Stoyanov [28] for more in depth
discussions of this topic, which is known as the Hamburger moment problem.

Entropy Of course in practice, there will be some finite k1 such that the
experimenter stops eliciting higher moments. Then clearly Val’s beliefs will be
underidentified. This is a practical concern, and it is worth noting that the
situation would be the same if the experimenter chose to elicit beliefs using
events instead. The hope is that more information may be elicited from the
lower moments than from the functions on cylinder sets described above.

Having elicited the first k1 moments for a representative sample of X1, the
experimenter finds himself in a position that is rather common in physics and
statistics. He has rich information about lower moments and no information
about higher moments. If he adopts a conservative stance about Val’s beliefs,
he should model them with the probability distribution that maximises the
entropy in the system.

We now explain how he might go about this. Let Fxpk1q denote the set of
possible denstities on R that are compatible with his observations of Val’s first
k1 moments for a given x P X1. For each f P Fxpk1q, let

Hpf, 1q
def
“

ż

R
f pln f ´ ln 1qdr.

The argument f P Fxpk1q that minimises Hp¨, 1q is the closest density to the
uniform. This identifies the minimum relative entropy distribution, which co-
incides with the one that maximises entropy. The usual way to identify f is to
set up a Lagrangian using the function H and the constraints that characterise
Fxpk1q. (The latter are the subjective moment conditions of Val’s preferences.)

For the case where k1 “ 2, the maximum entropy distribution is none other
than the normal distribution with mean and variance satisfying Val’s first two
subjective moments. Thus, when Y is chosen to be a representative sample, the
definition of Wiener measure is such that it is the unique maximiser.

More generally, when f exists, it is the worst case model of Val’s information
that the data allow. However, because the uniform density on R does not
correspond to a probability distribution (its integral is infinite), there may be
no solution f to the maximum entropy problem. For some interesting examples
and a more complete discussion of this issue see Rockinger and Jondeau [24].
Clearly, a sufficient condition is that Fxpk1q is compact, for H is continuous in
f .

Whilst maximising the entropy is one of the most popular approaches to
dealing with complex scenarios involving uncertainty and underidentification, it
is not the only one. At the other extreme, the experimenter may be in a setting
where it is better to give Val the benefit of the doubt. If, as in our example
above, the experimenter knows the true distribution of each x P X1, then he
may minimise relative to the true density f 1. That is via the same constrained
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minimisation procedure, with Hp¨, f 1q replacing Hp¨, 1q, we obtain a density f
that represents the best case for Val’s beliefs. f represents the least conservative
model. In contrast with f , f always exists and is equal to f 1. Clearly, if f 1 is
feasible, so that it belongs to Fxpk1q, this means that the first k1 subjective
moments that Val revealed were correct.

Finally, for any 0 ă α ă 1, the convex combination p1 ´ αqf ` αf is an
intermediate model of Val. This procedure for finding a distribution that rep-
resents Val’s beliefs given her subjective moments, extends to the full collection
of maximum and minimum entropy densities f

x
and fx such that x P X1.

4 Discussion

Related axioms in the literature We now describe the relationship be-
tween condition S and the corresponding condition of Karni and Safra [18],
Karni [17], and Grant et al. [11]. These papers take X to be of the form AˆL
for a compact set A and a mixture set L. (In Grant et al. [11], A is also a
mixture set.) The axiom corresponding to S is translates as follows

Suppose that ϕ, γ P Φ and ϕp0q „ γp0q. Then ϕp1q À γp1q if and
only if ϕpλq À γpλq for every λ P p0, 1s.

The fact that this axiom implies S follows immediately if we take λ “ 1{2.
(Consider the fact that „ is a subset of À and use the “only if” part of the
statement.) Step 3 of the proof of lemma 4 shows that, together with O and C,
S is sufficient for this axiom.

The translation of axiom E2 of Fishburn [8, p.88] to the present notation is
a slightly weaker version of the above: if ϕ, γ P Φ, ϕp0q „ γp0q and ϕp1q ă γp1q,
then ϕpλq ă γpλq for every 0 ă λ ă 1. If either of these “independence” axioms
is assumed in the place of S, then theorem 1 holds when the following continuity
axiom is assumed in the place of C

If ϕxy P Φ, z P X and x ă z ă y, then there are 0 ă µ, ν ă 1 such
that ϕxypµq ă z ă ϕxypνq.

Finally, A and M do not appear to have featured as axioms in the literature.
The Archimedean axiom of Gilboa and Schmeidler [10, 9] is clearly similar to
A even if the structure of preferences is quite different. Karni [17] contains a
background assumption which is closely related and indeed sufficient for A and
M combined. Karni views this as a property of the set A of acts and refers to
this property as “linked”. Similarly an appeal to a condition involving a finite
sequence of overlapping mixture sets is made in proposition 6 of Grant et al.
[11].

To our knowledge, nowhere is it shown that these are part of a necessary
and sufficient group of axioms for a cardinal and linear utility representation.
Moreover, as the initial discussion HM highlights, our set up allows for an infi-
nite dimensional partial mixture set, where the linear operator that preferences
define is unbounded and hence discontinuous. (See Fishburn [7], Inoue [15],
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and Monteiro [20] for examples and further discussions of this point.) Only the
multilinear utility model of Fishburn [8] is comparable in this latter sense.

4.1 Related experiments in literature

Experiments that have conducted related exercises include Stecher, Shields, and
Dickhaut [27]. There, agents are shown realisations of processes that do not
have bounded moments. Effectively they consider processes that lie beyond the
method we propose. There is an active debate in the finance literature as to
whether actual stock prices have moments of high order, but there seems to be
little doubt about the lower order moments. In particular first two moments
: the expected return and volatility of return (see Barndorff-Nielsen and Shep-
hard [3] for a detailed discussion and further references to the literature). In
econometric models, even conservative models require the first four moments
(see for instance Hong, Linton, and Zhang [14]).

In any case, it seems plausible that an agent would trade any random variable
that an experimenter might offer for a finite amount of money. The fact that
we consider random bridges between deterministic points makes this case even
more convincing. Finally, whilst our example is financial, the main motivation
remains the same in other settings where the dimension of the state space is
large and events are difficult to describe in an intuitive way. In such settings, we
suggest that moments offer a plausible, alternative approach to eliciting beliefs.

A Proofs

Proof of proposition 1 (from page 5). It suffices to show that for every
x1, y1 P ϕpIq the path ϕx1y1 belongs to Φ. For every such x1 and y1, there exists
µ, ν P I such that ϕxypµq “ x1 and ϕxypνq “ y1. By P3, ϕxx1 , ϕxy1 P Φ and
ϕxx1 pλq “ ϕxypλµq and ϕxy1 pλq “ ϕxypλνq for every λ P I. W.l.o.g., suppose
that µ ď ν.

If µ “ ν, then x1 “ y1. Moreover, by P2, ϕx1xpλq “ ϕxx1 p1 ´ λq and by P1,
x1 “ ϕx1xp0q. Then one further application of P3 yields ϕx1y1 pλq “ ϕx1xpλ0q “ x1

for every λ P I. In this case, clearly, (1) holds with µ “ ν for every λ P I.
If µ ă ν, then, for some λ1 ă 1, µ “ λ1ν. Then ϕxy1 pλ1q “ x1 and since

ϕy1xp1 ´ λ1q “ ϕxy1 pλ1q, we see that x1 “ ϕy1xp1 ´ λ1q. A final application of P3

yields ϕy1x1 pλq “ ϕy1xpλp1 ´ λ1qq for each λ P I. Next note that λ1 “ µ{ν, so
that a substitution for λ1 and straightforward simplification yields ϕy1x1 pλq “

ϕy1xpλpν ´ µq{νq for each λ P I. Similarly, we have

ϕy1xpλpν ´ µq{νq “ ϕxy1 p1 ´ λpν ´ µq{νq by P2

“ ϕxypν ´ λpν ´ µqq by P3.

Let λ ÞÑ κ “ 1´λ. Substituting for λ we have ϕy1x1 p1´κq “ ϕxypµ`κpν´µqq.
One final application of P2 to the left-hand-side of the latter equality yields
both ϕx1y1 and (1)

24



Proof of proposition 2 (from page 7). By assumption, X Ă R3 is pa-
rameterised by equations for a standard sphere. That is x1 “ r ¨ cosp2πνq ¨

sinpπκq, x2 “ r ¨ sinp2πνq ¨ sinpπκq and x3 “ r ¨ cospπκq, where r is the radius of
the sphere, ν, κ P I, π “ 3.14 . . . , and ¨ denotes standard scalar multiplication.
This parametrisation centers the sphere at the origin p0, 0, 0q.

For every x, y P X, Let ϕxy be the geodesic (the shortest path from x to y
on X). Conditions P1 and P2 of the definition of a mixture set are immediately
satisfied. We now show that condition P3 holds for any path ϕxy that belongs
to a typical “great circle” on X. Such circles are parametrised by an injective
function f : r0, 1q Ñ X. As a canonical example, let κ “ 1{2, so that x3 “ 0.
Then the set of points px1, x2q “ fpνq :“ r ¨ pcosp2πνq, sinp2πνqq such that
ν P r0, 1q, define a standard circle in R2 as well as a “great circle” on the earth’s
surface.

Let x ‰ y on this great circle. Then for some νx, νy P r0, 1q, x “ fpνxq

and y “ fpνyq. Without loss of generality let νx ă νy. Note that ϕxypλq “

f pp1 ´ λqνx ` λνyq for each λ P I. That is, f provides a parametrisation of
ϕxy. Suppose that ϕxypµq “ z for some µ P I. Then fpνzq “ z where νz “

p1 ´ µqνx ` µνy. Recall that for condition P3 of mixture sets, we need to show
ϕxzpλq “ ϕxypλµq. This follows by substituting for νz in f pp1 ´ λqνx ` λνzq

and exploiting the convexity of r0, 1q.

Proof of lemma 1 (from page 9). Consider the the set L “ tλ : ϕxypλq À

zu. By condition C, L is a closed subset of I. It is nonempty since ϕxyp0q “

x ă z. Similarly, the set U “ tλ : z À ϕxypλqu is closed and nonempty since
z ă ϕxyp1q “ y. By O, I is the union of L and U . If L X U “ H, then I is
the union of two disjoint, nonempty and closed subsets. Since this would imply
that I is disconnected, this intersection is necessarily nonempty. That is, there
exists µ P I such that ϕxypµq „ z. We have already seen that µ ‰ 0, 1.

Proof of lemma 2 (from page 10). Suppose that x ă z ă y for some
z P X. Then by lemma 1, there exists at least one µ satisfying the required
condition. Suppose that there exists µ1 ă µ such that ϕxypµ1q „ z. Then by O,
we have ϕxypµ1q „ ϕxypµq. But since proposition 1 ensures ϕxypIq is a mixture
set and x ă y, theorem 4 of HM implies that ϕxypµ1q ă ϕxypµq if and only if
µ1 ă µ. Note that the latter theorem only applies because I now holds.

Now suppose that z À x ă y and z „ ϕxypµq for some unique 0 ă µ ă 1.
Let z1 “ ϕxypµq. Then P3 ensures that ϕxz1 pλq “ ϕxypλµq for every λ P I.
Indeed, proposition 1 ensures that ϕz1ypλq “ ϕxypp1 ´ λqµ ` λ1q. O implies
z1 À x ă y and the first part of this proof ensures that ϕz1ypνq „ x for some
unique 0 ď ν ă 1. Let x1 “ ϕz1ypνq. Then x1 “ ϕz1ypνq “ ϕxypp1 ´ νqµ ` νq.
Let ν˚ “ p1 ´ νqµ ` ν. Then ϕxypλq „ x for both λ “ 0 and λ “ ν˚. Clearly
0 ă µ implies 0 ă ν˚: another contradiction of theorem 4 of HM.

Proof of proposition 4. Let x „ x1 and y „ y1. Since X is a mixture set,
the paths between pairs of elements are defined. I implies both ϕxyp1{2q „

ϕxy1 p1{2q and ϕy1xp1{2q „ ϕy1x1 p1{2q. Since λ “ 1 ´ λ “ 1{2, property P2 mixture
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sets implies both ϕxy1 p1{2q “ ϕy1xp1{2q and ϕx1y1 p1{2q “ ϕy1x1 p1{2q. Finally, O (in
particular transitivity) ensures that ϕxyp1{2q „ ϕx1y1 p1{2q.

Proof of lemma 3 (from page 12). Let ϕ “ ϕxy. Lemma 2 guarantees the
existence of a candidate 0 ă λ ă 1 such that ϕpλq „ z. Take γ to be any other
path in Φ satisfying γp0q „ x and γp1q „ y. S ensures that ϕp1{2q „ γp1{2q.
Condition P3 then ensures the existence of a subpath ϕ0 1

2
from x to ϕp1{2q

such that ϕ0 1
2

pλq “ ϕpλ{2q for every λ P I. A similar path γ0 1
2
exists from x1

to γp1{2q. An application of S yields ϕ0 1
2

p1{2q „ γ0 1
2

p1{2q. This implies that

ϕp1{4q „ γp1{4q. An application of condition P2 of partial mixture sets and a
similar argument applied to the paths ϕ 1

2 1
and γ 1

2 1
yields ϕp3{4q „ γp3{4q. (Using

proposition 1 to translate indifferences on subpaths to indifferences between ϕ
and γ.) In this way, the above argument yields ϕpρq „ γpρq for every dyadic
rational ρ P I. Then, since the dyadic rationals are dense in I, there exists a
sequence limn ρn “ λ, where recall λ is our candidate for the proof. W.l.o.g.,
we may take the sequence to be increasing. Then by the proof of lemma 2,
ϕpρnq À ϕpλq for each n. C then ensures that λ belongs to tλ1 : γpλ1q À ϕpλqu.
Repeating the argument with the roles of ϕ and γ reversed yields the reverse
weak preference, so that ϕpλq „ γpλq, as required.

Proof of lemma 4 (from page 13). If x „ y, then the fact that Φ generates
a concatenation from x to y ensures that ϕp0q „ x for some ϕ P Φ. Proposi-
tion 1 ensures that ϕx1x1 P Φ for some x1 such that x1 „ x „ y. Then by the
discussion immediately following I, ϕx1x1 pλq „ x for every λ P I. Thus, ϕx1x1 is
a synchronising concatenation from x to y.

The remainder of the proof accounts for the case x ă y. To this end, let
Φă “ tϕ : ϕp0q ă ϕp1qu.

Step 1 (There exists a minimal, strictly increasing concatenation f from x to
y). Recall from proposition 1 that every ϕ P Φ has the property that its image
ϕpIq is a mixture set. Then theorem 4 and 5 of HM ensure that every ϕ P Φ
is of one of the following three types: (i) ϕpλq „ ϕpλ1q for every λ, λ1 P I; (ii)
ϕpλq ă ϕpλ1q if and only if λ ă λ1; or (iii) ϕpλ1q ă ϕpλq if and only if λ ă λ1.
Note that in the presence of the axioms assumed, ϕ is a type (ii) path if and
only if ϕ P Φă.

By assumption, there is a concatenation f 1 from x to y. Let f 1 be a concate-
nation of m1 paths. Since the nonnegative integers are well-ordered there exists
a concatenation f from x to y of the smallest possible number m ď m1 of paths
in Φ. Clearly f is concatenatation only of paths in Φă, for otherwise, we could
exclude a path and obtain a suitable concatenation with even fewer paths. This
completes the proof of step 1.

Let ϕ1, . . . , ϕm P Φă and 0 “ µ0 ă ¨ ¨ ¨ ă µm`1 “ 1 be the sequences that
characterise f .

Step 2 (f is synchronised with ϕ1, . . . ϕm). Take any n “ 0, . . . ,m. Recall the
transformation T that was introduced in the derivation of 3. Since µn ă µn`1,
the inverse T´1pνq “ pν ´ µnq{pµn`1 ´ µnq is defined for each ν P rµn, µn`1q.
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Then, for each λ ă 1, T pλq “ λpµn`1 ´ µnq ` µn so that ϕnpλq “ pf ˝ T qpλq as
required. Finally, for λ “ 1, ϕnpλq „ ϕn`1p0q “ fpµn`1q.

Step 3 (ϕn is synchronised with ϕ P Φă if inf ϕn À inf ϕ and supϕ À supϕn).
If ϕp0q „ fpµnq and ϕp1q „ fpµn`1q, then the fact that ϕ is synchronised
with ϕn follows directly by lemma 3. Now suppose that fpµnq À ϕp0q and
ϕp1q À fpµn`1q, with at least one relation holding strictly. Lemma 2 implies
ϕnpµq „ ϕp0q and ϕp1q „ ϕnpµ1q some unique µ, µ1 P I such that either 0 ă µ
or µ1 ă 1.

Since ϕ P Φă, µ ă µ1 follows by theorem 4 of HM and the fact that ϕn P Φă.
Write ϕn as a concatenation of (at most) three subpaths ϕ1, ϕ2, ϕ3 P Φă such
that in particular ϕnpνq “ ϕ2ppν ´ µq{pµ1 ´ µqq for each µ ď ν ď µ1. (If µ “ 0
or µ1 “ 1, there are just two paths.) Then ϕ2pλq “ ϕnpp1´λqµ`λµ1q for every
λ P I. Then ϕ2p0q „ ϕp0q and ϕ2p1q „ ϕp1q, and lemma 3 ensures ϕ2pλq „ ϕpλq

for every λ P I. In turn, we see that ϕ is synchronised with ϕn.

Step 4 (f is synchronised with ϕ of step 3). Recall that ϕnpξq „ fpp1´ξqµn `

ξµn`1q for every ξ P I. For each λ P I, let ξ “ p1 ´ λqµ ` λµ1, where µ and µ1

were defined in step 3. Then a substitution and straightforward rearrangement
yields ϕpλq „ fpp1 ´ λqµ˚ ` λµ˚q where µ˚ “ p1 ´ µqµn ` µµn`1 and µ˚ “

p1 ´ µ1qµn ` µ1µn`1. Since µn ă µn`1 and µ ă µ1, it is clear that µ˚ ă µ˚ as
required for f to be synchronising.

Step 5 (f is synchronised with ϕ if ϕp0q ă fpµnq ă ϕp1q for some n). By
step 1, m is minimal and this ensures that fpµn´1q À ϕp0q and ϕp1q À fpµn`1q

(with at least one relation holding strictly). The difficulty here is that the µn

may be incorrectly specified, so that f travels at a different rate on distinct
intervals rµn´1, µnq and rµn, µn`1q. Example 5 (from page 15) demonstrates
the degree of freedom we have in choosing µn. We now show that we can always
respecify the µn and obtain a new concatenation that is synchronised with ϕ.
Since the resulting concatenation g is composed of the same paths as f , it passes
step 2 and step 3 of this proof.

Let 1 ď n ď m be the smallest number such that ϕp0q ă fpµnq ă ϕp1q for
some ϕ. By lemma 2, there is a unique 0 ă λn ă 1 such that ϕpλnq „ fpµnq “

ϕn`1p0q. Let fn denote the subconcatenation of f such that fnpλq “ fpλµnq

for each λ ă 1 and fnp1q “ ϕnp1q. That is, fn is a concatenation of ϕ0, . . . , ϕn.
Then lemma 2 ensures that fnpκ˚q „ ϕp0q and ϕnpκ˚q „ ϕp1q for some unique
0 ď κ˚ ă 1 and 0 ă κ˚ ď 1. (Note that κ˚ “ 0 if and only if ϕp0q „ x and
κ˚ “ 1 if and only if ϕp1q „ fpµn`1q and, since m is minimal, both do not hold
simultaneously.)

For every λ P rµn`1, 1s, take g to satisfy gpλq “ fpλq. On the interval
r0, µn`1q, g will be the concatenation of fn, ϕn`1, but unless f is synchronised
with ϕ to begin with, g ‰ f .

Recall that ϕpλnq „ fpµnq. We seek g such that gpνnq „ ϕpλnq where

νn “ p1 ´ λnqµ˚ ` λnµ
˚ (6)

for some unique µ˚ ă µ˚ such that gpµ˚q „ ϕp0q and gpµ˚q „ ϕp1q. Since g is to
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be concatenation of fn on r0, µnq, we also require fnpλq “ gpλνnq for every λ ă 1.
The latter equality together with the indifferences gpµ˚q „ ϕp0q „ fnpκ˚q yields
the equation µ˚ “ κ˚νn. Similarly, from the concatenation relation between f
and ϕn`1 we obtain the equation µ˚ “ p1 ´ κ˚qνn ` κ˚µn`1. Substituting for
µ˚ and µ˚ in (6) and solving for νn we find

νn “
λnκ

˚µn`1

p1 ´ λnqp1 ´ κ˚q ` λnκ˚
.

Now since κ˚ ă 1, 0 ă λn ă 1 and 0 ă κ˚, µn`1, a suitable νn exists and
uniquely so. By construction, g is synchronised with ϕ.

Step 6 (g is synchronised with every remaining ϕ P Φ). By the preceding
steps in this proof, g is synchronised with every ϕ1 such that gp0q À ϕ1p0q and
ϕ1p1q À gpµn`1q. Note that the definition of g is such that its rate is, in general,
different from f on the entire interval r0, µn`1q. In particular, for each n1 ď n,
ϕn1 p0q „ gpνn1 q, where νn1 “ pνn{µnq ¨ µn1 .

A similar argument applies to µn`1 if ϕ1p0q ă gpµn`1q ă ϕ1p1q for some
ϕ1. Since m is finite, we exhaust the set of µn such that 1 ď n ď m in a
finite number of such steps. For n “ 0 and n “ m ` 1, where µn equals 0 and
1 respectively, a very similar argument can also be implemented to ensure the
resulting concatenation is synchronised with every ϕ P Φă such that x ă ϕpλq ă

y for some 0 ă λ ă 1. Let g denote this latter concatenation.
For every other ϕ P Φă, ϕp1q À x or y À ϕp0q. We adopt the convention

that g is trivially synchronised with ϕ P Φă if there is at most one indifference
set that is common to them both.

If ϕp0q „ ϕp1q, then, since ϕpIq is a mixture set, theorem 5 of HM ensures
that ϕ is of type (i). Then µ “ µ1 and the proof of this case is immediate.
Finally, condition P2 accounts for every ϕ such that ϕp1q ă ϕp0q, so that ϕ is of
type (iii). Since these three cases exhaust Φ, our proof is complete.

Proof of proposition 5 (from page 14) continued. Let Z “ tx0, x1, . . . u
be any infinite subset of U` such that x0 “ 0 ˆw 0 for some w P W and
xn ă xn`1 for each n in Z`. Suppose that, for some w P W`, xn`1 P Lw, then,
since xn ă xn`1, there exists x1

n P Lw such that x1
n „ xn, so that the path ϕn

from x1
n to xn`1 belongs to Φă. Then by lemma 4, there exists a synchronising

concatenation satisfying fpνq “ ϕnppν´µnq{pµn`1 ´µnqq for each n. Note that
f is a concatenation, but not a path since f : r0, 1q Ñ X whenever Z is infinite.
The properties of I and fact that µn ă µn`1 for each n implies that such a
concatenation is only possible when Z is countable. Let Z denote the collec-
tion of all such countable and increasing sequences in U` and let fZ denote the
synchronising concatenation corresponding to each Z P Z.

The proof of ?? shows that U` is order isomorphic to the long line. As such,
every countable set has an upper bound in U` (see for instance Munkres [21,
Theorem 10.3]). Thus for each Z P Z, there exists x P X such that z À x
for every z P Z. W.l.o.g., suppose that x P Lw. Then, since Lw is a linear
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continuum and the image of fZ is a nonempty subset, sup fZ is a well-defined
element of Lw. For any pair Z,Z 1 P Z, suppose sup fZ À sup fZ1 . The fact
that the concatenations are synchronising ensures that, for every xn P Z, there
exists µ, µ1 P I such that ϕnpλq „ fZ1 pp1 ´ λqµ ` λµ1q for every λ P I. When
this holds, we say that the set Z2 “ Z Y Z 1 is reducible to Z 1.

For any subcollection Z1 Ă Z, we say that Z1 is reducible Z 1 P Z if and only
if every Z P Z1 is reducible to Z 1. Let V be a well ordering of the elements of Z.
We proceed by induction. Since each pair Zv and Zv`1 is reducible to the set
with the greatest supremum, the initial step and the inductive step for successor
ordinals is complete. If v is a limit ordinal, then the induction hypothesis ensures
that, for each v1 ă v, the subcollection Zv1 “

Ť

tZv2 : v2 ď v1u is reducible to
one of its component sets, say Zu. Clearly Zu Y Zv is reducible to Zu or Zv

depending on which has the greatest supremum. This shows that Z is reducible
to some countable set Z. That is for every ϕ P Φ, there exists µ, µ1 P I such
that ϕpλq „ fZpp1 ´ λqµ` λµ1q for every λ P I.

Since Z is countable, supZ P U` and this ensures the existence of w P W`

and y P Lw such that sup fZ ă y. But then there is no path ϕxy P Φ such that
x “ 0ˆw 0, for otherwise fZpνq „ y for some ν P I. This implies a contradiction
of O or the fact that Lw is a mixture set.

Proof of lemma 5. Fix x ă y.

Case 1 (the implication of A holds with indifference). By lemma 2, either
inf ϕ0 “ ϕ0p0q of supϕ0 “ ϕ0p0q. If it is the latter, appeal to condition P2 to
obtain ϕ1

0 such that ϕ1
0p0q „ x. If it is the former, simply relabel ϕ0 as ϕ1

0 and
proceed to ϕ1. Similarly, if supϕ0 “ ϕ0p0q, then once again appeal to condition
P2 to obtain ϕ1

1 such that ϕ1
1p0q “ inf ϕ1

1. Since m is finite, we exhaust the
sequence by this recursive procedure.

Let f be a concatenation of ϕ1
0, . . . , ϕ

1
m. Then lemma 4 ensures the existence

of a synchronising concatenation g from x to y.

Case 2 (not case 1 ). By the argument of case 1, w.l.o.g. suppose that inf ϕn “

ϕnp0q for each n. Suppose that ϕ0p0q ă x. W.l.o.g., we may assume that m is
the minimal length of a sequence satisfying A. Then x „ ϕ0pµq for some µ ă 1,
for otherwise, we can exclude ϕ0 and obtain a shorter sequence. By O and
lemma 2, µ is unique. Using the partial mixture set conditions (see discussion
before definition 2), take ϕ1

0 P Φ such that ϕ1
0pλq “ ϕ0pp1 ´ λqµ ` λq for each

λ P I. If ϕ1p0q ă ϕ1p1q, then, by the same method that was used to obtain
ϕ1
0, we can find ϕ1

1 such that ϕ1
1p0q „ ϕ1

0p1q, and ϕ1
0p1q ă ϕ1

1pλq if 0 ă λ. Once
again, since m is finite, in this way we can define a suitable sequence ϕ1

0, . . . , ϕ
1
m

such that the conditions for case 1 of the present proof to apply.

Proof of lemma 6 (from page 16). Fix x ă z ă y. By lemma 5, Φ gener-
ates a synchronising concatenation from x to y. Let ϕ0, . . . , ϕm and 0 “ µ0 ă

¨ ¨ ¨ ă µm`1 “ 1 be the sequences that define f . Take g to be any other syn-
chronising concatenation from x to y that is characterised by γ0, . . . , γk and
0 “ ν0 ă ¨ ¨ ¨ ă νk`1 “ 1.
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Case 3 (for every 1 ď n ď m and every 1 ď j ď k, fpµnq ȷ gpνjq). Note that
in this case, we do not need to appeal to M: we can use the paths that make
f and g. W.l.o.g., suppose that fpµ1q ă gpν1q ă fpµ2q. Then, by lemma 2,
γ0p1q „ ϕ1pµ1q for some unique 0 ă µ1. (The fact that ϕ0p1q „ ϕ1p0q ă

γ0p1q implies that 0 ă µ1.) Then, for some ν1, fpν1q “ ϕ1pµ1q and, since f is
synchronising, γ0pξq „ fpξν1q for every ξ P I. That is, fpξν1q „ gpξν1q for every
ξ P I. If gpν1q „ y, then ν1 “ 1 and, since fpξq „ y if and only if ξ “ 1, we have
ν1 “ ν1 as required.

If gpν2q ă fpµ2q, then repeat the argument of the last paragraph: using γ1
instead of γ0 to show that fpξν2q „ gpξν2q for every ξ P I and some 0 ă ν2 ď 1.
If on the other hand, suppose that fpµ2q ă gpν2q ă fpµ3q, then the argument of
the previous paragraph applies, with the exception that now we use the fact ϕ1
is synchronised with g. In all cases, the fact that m and k are finite, µ0 “ ν0 “ 0
and µm`1 “ νk`1 “ 1 means that we eventually establish that fpξq „ gpξq for
every ξ P I as required.

Case 4 (for some 1 ď n ď m and 1 ď j ď k, fpµnq „ gpνjq). Suppose that
x ă fpµ1q „ gpν1q ă y. Together, M, lemma 2 and condition P2 ensure the
existence of ϕ such that ψp0q ă fpµ1q ă ψp1q and ψpλ1q „ fpµ1q for some
unique λ1 P I. W.l.o.g. (by passing to a subpath where necessary) suppose that
x À ψp0q and ψp1q ă gpν2q À fpµ2q.

Since gpν2q À fpµ2q, there exists ν2 such that fpν2q „ gpν2q. Let ϕ˚ P Φ
be the subpath of ϕ1 such that ϕ˚pξq “ fpp1 ´ ξqµ1 ` ξν2q for every ξ P I.
Then, lemma 3, ϕ˚pξq „ γ1pξq for every ξ P I. Similarly, since fpµ1q „ gpν1q,
ϕ0pξq „ γ0pξq for every ξ P I.

Then there exist unique κ˚ ă 1 and 0 ă κ˚ such that ϕ0pκ˚q „ ψp0q and
ϕ˚pκ˚q „ ψp1q. Then, by the argument of step 5 in the proof of lemma 4 and
the fact that f is synchronising to begin with,

µ1 “
λ1κ˚ν2

p1 ´ λ1qp1 ´ κ˚q ` λ1κ˚
(7)

But, since we also have γ0pκ˚q „ ψp0q and γ1pκ˚q „ ψp1q, we may derive a
similar equation to (7), with ν1 and ν2 substituting for µ1 and ν2 respectively.
If ν2 “ 1, then, as in case 3, ν1 “ 1 and the proof is complete. Otherwise,
we may minor variations of the present argument or that of case 3, to extend
and show that ν2 depends in a similar way on µ2 and ν2 on some µ2 such that
gpµ2q „ fpµ2q. Since m and k are finite, we repeat until we reach µm`1 “

νk`1 “ 1, at which point fpξq „ gpξq for every ξ P I and the proof is complete.

Proof of theorem 1 (from page 17). If ă“ H, then by O, x „ y for every
x, y P X. In this case, every utility representation is both linear and cardinal.
Conversely, both A and M hold vacuously when ă“ H. This ensures that the
axioms are necessary and sufficient in this case.

Henceforth, suppose that ă‰ H.
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Step 7 (Necessity of the axioms). The proof that O, C and S are necessary
for a cardinal, linear representation is clear and therefore omitted.

We now use counterexamples to prove that A and M are necessary for such
a representation. First note that example 5 is a representative counterexample
for the case where A holds and M does not. For the case where there exists a
linear utility representation and M holds but A does not, see example 7 in the
proof of corollary 1 below. A similar accounts for the case where both M and
A fail to hold.

In each of these cases, any linear utility representation fails to be cardi-
nal. The only remaining case is where A and M both hold. In this case, a
representation of the required form exists by the following argument.

Step 8 ( Sufficiency of the axioms). Consider the quotient set X{„. Each
element of X{„ consists of an indifference class generated by preferences on X.
X{„ is well-defined because O ensures that the indifference classes partition X.
Let p : X Ñ X{„ be the natural projection x ÞÑ ty : y „ xu. Let F{„ be the set
of paths f 1 in X{„ such that f 1 “ p ˝ f for some synchronising concatenation
f that is generated by Φ in X. The arguments of the next two paragraphs
demonstrate that pX{„, F{„q is a mixture set whenever ă‰ H. To be clear, all
remaining arguments in this proof (and indeed the paper) proceed in X, not
X{„.

If x ă y, then lemmas 5 and 6 guarantee the existence and (upto indiffer-
ence) uniqueness of a synchronising concatenation f from x to y. A repeated
application of condition P2 yields the concatenation g from y back to x exists
and satisfies gpλq „ fp1 ´ λq for every λ P I. For condition P3, suppose that
z „ fpµq for some z P X and µ P I. Since f is generated by Φ, take gpνq “ fpνµq

for each ν P I. Then gpνq “ ϕnppνµ ´ µnq{pµn`1 ´ µnqq for each n such that
µn ă µ and each ν P I. If µ ą 0, then simple division of the numerator and
denominator in each ϕn shows that g is a well-defined concatenation. If µ “ 0,
then gpνq “ ϕ0p0q for every ν P I and by condition P3, there exists ϕ P Φ such
that g “ ϕ.

If x „ y, then first suppose x À x1 for every x1 P X. Since ă‰ H, there
exists y1 such that x ă y1. In this case, lemma 5 ensures the existence of a
synchronising concatenation f from x to y1. Then fpµq „ x for µ “ 0 and
the preceding paragraph completes the proof. The case where x1 À x for every
x1 P X is similar, so we proceed to the case where x1 ă x ă y1 for some x1, y1 P X.
In this case, M and lemma 2 ensure that x „ z1 “ ϕpµq for some ϕ P Φ and
0 ă µ ă 1. By proposition 1, ϕpIq is a mixture set and ϕz1z1 P Φ. Finally,
since ϕz1z1 pλq „ x for every λ P I, ϕz1z1 is synchronising concatenation from x
to y. Finally, since condition P1 holds in every case, we have shown that, upto
indifference, X a mixture set.

For the axioms, recall from our discussion following definition 2, that, by
virtue of C, concatenations inherit continuity from the continuity of members
of Φ. Moreover, lemma 6 is clearly sufficient for the property fp1{2q „ gp1{2q for
any pair of synchronising concatenations such that fp0q „ gp0q ă fp1q „ gp1q.
That is to say, synchronising concatenations satisfy an independence axiom akin
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to S. We may therefore apply the main theorem of HM to obtain a cardinal and
linear utility representation of preferences. In summary, we have completed the
proof that the axioms are sufficient for the required utility representation.

Proof of corollary 1 (from page 17). The fact that the axioms are suf-
ficient for cardinality when preferences have a linear representation follows from
theorem 1: O, C and S hold whenever preferences have a linear representation.

For the necessity of the axioms, note that, since example 4 fails to give rise to
a utility representation, it is of no use for the present proof. Example 5 accounts
for the case where A holds, M does not. The following example accounts for
the case where M holds, but A does not.

Example 7. Let X be the disjoint union of tϕnpIq, γnpIq P Φă : n P Z`u. Sup-
pose that for every n P Z`: ϕnp0q „ ϕn`1p0q and ϕnp1q ă ϕn`1p1q. Thus every
ϕn has the same infimum and the supremum is strictly increasing in n. More-
over, suppose that, for every m,n P Z`, ϕmp1q ă γnp0q, so that any element of
any γnpIq is strictly better than any element of any ϕmpIq. Finally, in contrast,
let every γn have the same supremum and let the infimum be decreasing in n.
That is, γnp1q „ γn`1p1q and γnp0q ă γn`1p0q for every n P Z`.

In this case, the fact that Z` is unbounded ensures that M holds. Take
any x P ϕmpIq and y P γnpIq. If z P ϕm`1pIq, then ϕm`2 is a path such that
ϕm`2p0q ă z ă ϕm`2p1q. However, this example clearly violates A, for Φ does
not generate a concatenation from x to y.

Suppose preference have a linear representation U . We now show that U
is not cardinal. Let rr, sq and pt, us be the respective image sets of tU ˝ ϕmu

and tU ˝ γnu. Since U is a utility function, s ď t. Define V : X Ñ R such
that V pzq “ Upzq for every z P

Ť

m ϕmpIq. For every z P
Ť

n γnpIq, let V pzq “

κ ` θUpzq, where θ ą 1 and κ ` θt “ t. Such a choice is always possible since
t´ θt ă 0 and we have complete freedom choose κ ă 0.

It is straightforward to confirm that V is a linear utility representation. But
since it not a positive affine transformation of U , the latter is not cardinal.

This accounts for all but the case where both A and M fail to hold. The
latter is accounted for by a simplification of example 7 to the case where X is
the union of just two paths ϕ and γ. Since ϕpλq ă γpµq for every λ, µ P I, A
fails to hold, just as in example 7. The fact that M fails to hold follows by
considering that ϕp0q ă ϕp1q ă γp1q: there is no path in Φ that satisfies M for
the point ϕp1q.

Since the linear representations in all these examples fails to be cardinal, we
have the implication: not [A and M] implies not cardinal as required.

Proof of proposition 6 (from page 19). Let ξ “ p1 ´ λqµ` λν. We only
prove the case for ϕ “ ϕxy P ΦY . The difference between this and the more
general case is only a matter of notation. Moreover, since p1´λq ra` µpb´ aqs`

λ rpa` νpb´ aqs is equal to a ` ξpb ´ aq, which is convex combination, the
remainder of the argument shows that the nonconvexity arises from the product
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of p1 ´ tq and the integral term in (4). Since 1 ´ ξ “ p1 ´ λqp1 ´ µq ` λp1 ´ νq,
we have

p1 ´ λqp1 ´ µq

ż µ

0

1

1 ´ r
dWr ` λp1 ´ νq

ż ν

0

1

1 ´ r
dWr

“ p1 ´ ξq

ż ξ

0

1

1 ´ r
dWr ` error,

where

error “ ´ p1 ´ λqp1 ´ µq

ż ξ

µ

1

1 ´ r
dWr ` λp1 ´ νq

ż ν

ξ

1

1 ´ r
dWr.

The fact that the latter two integrals are defined on nondegenerate and nonover-
lapping intervals ensures that the two stochastic integrals are independent ran-
dom variables that are nonzero with probability one. With the same probability,
the error is therefore nonzero and ϕ is nonconvex.
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