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Modeling Economic Choice under Radical Uncertainty: Machine 

Learning Approaches 
Anton Gerunov1 

 

Abstract 

This paper utilizes a novel data on consumer choice under uncertainty, obtained in a 

laboratory experiment in order to gain substantive knowledge of individual decision-making 

and to test the best modeling strategy. We compare the performance of logistic regression, 

discriminant analysis, naïve Bayes classifier, neural network, decision tree, and Random Forest 

(RF) to discover that the RF model robustly registers the highest classification accuracy. This 

model also reveals that apart from demographic and situational factors, consumer choice is 

highly dependent on social network effects. 
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Introduction 

Understanding economic choice is of huge theoretical and practical importance. On the 

theoretical front, more intimate understanding of the agents’ motivations and actions leads 

to improved knowledge of economic and social systems and the resulting ability to improve 

welfare. On the practical side this means better modeling for the benefit of forecasting, 

marketing efforts, and a variety of other business and public policy needs. How real people 

make decisions is therefore a natural focal point of interdisciplinary research in business, 

economics, sociology, psychology and numerous adjacent fields.  

 

For the purposes of modeling, a few simple yet robust statistical techniques are commonly in 

use that provide insight into choice. Those largely linear methods are suited to small samples 

of well-defined consumption choices and have seen only very limited improvement in 

classification and forecasting accuracy in complex environments. With the advent of increased 

data availability and the explosion of sample sizes, older approaches are beginning to see 

limits to their usefulness. Novel methods hailing from the growing field of machine learning 

seem to be better equipped to handle consumption modeling in large, diverse, complex 

datasets which exhibit marked non-linearity. 

 

We aim to present some of the most popular machine learning algorithms and test them on 

novel experimental data on consumption choice under uncertainty. Results are then 

juxtaposed against linear methods such as logistic regression and discriminant analysis to 

outline the main differences. One is compelled to notice that even with a relatively small 

sample size, some ensemble models of non-linear classifiers tend to outperform more 

traditional models. The article is structured as follows. The second section presents classical 

approaches to modeling choice and popular methods and algorithms from the field of 
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machine learning. The third section presents the experimental data and results, and the fourth 

discusses major findings. The last section concludes. 

 

Models of Economic Choice 

 

Understanding decision-making in economic context has historically been tightly connected 

to a view of agent rationality, whereby individuals try to maximize their benefit (or utility), 

given some objective constraints like budget, production, or endowment. The pinnacle in this 

view is reached in von Neumann and Morgenstern’s theories in the mid-twentieth century 

(von Neumann & Morgenstern, 1944). They developed an axiomatic theory of choice, 

whereby consumer had strictly defined preferences in mathematical form (utility function), 

which they seek to maximize. In such context modeling decisions consists largely of relatively 

straightforward solutions of optimization problems. A major issue with this approach is that 

consumers do not act in such a trivial and well-defined way in reality, and thus a number of 

paradoxes and inconsistencies with theory soon surfaced (Allais, 1953; Ellsberg, 1961). 

 

This school of thought would lead to modeling individual choices by defining the respective 

agent’s preferences in a narrow mathematical sense and then solving a constrained 

optimization problem given their constraints. Thus total utility u(xi) is a function of a number 

of i features xi,. Optimal choice is then derived as the maximum utility, given a set of 

constraints, S: 

max
𝑆

𝑢 = 𝑢(𝑥𝑖) , 𝑖 = 1…𝑛. (1) 

 

Research in behavioral economics quickly revealed that this model of economic choice makes 

up in elegance what it lacks in efficiency. Kahneman and Tversky’s (1972, 1979) research 

outlined a few clear heuristics and biases that people fall prey to when making decisions. 

Later, Thaler (1980) famously argued for the need for a positive theory that is able to describe 

behavior in an empirically realistic manner. While experimentation continues to this day with 

ample evidence for the rich and sophisticated set of factors influencing decisions (Camerer, 

2003; Duffy, 2008), a comprehensive mathematical representation remains as of yet elusive. 

This has spurred practitioners to look for alternative empirical models to understand choice. 

The key modeling questions is thus the probability of certain (discrete) choice P(y), given other 

factors xi. This conditional probability is here denoted as P(y|xi). 

 

Models were historically selected for their ease of computation and flexibility for representing 

choice. In the case of discrete choice or classification problems, the logistic regression is a 

popular choice and was pioneered early in modeling problems (Cox, 1958; McFadden, 1981). 

In this case the probability of choosing a certain outcome is approximated by the logistic 

function, or: 

𝑃(𝑦|𝑥𝑖) =
exp(𝛽0 +Σ𝛽𝑖𝑥𝑖)

1 + exp(𝛽0 +Σ𝛽𝑖𝑥𝑖)
. 

(2) 

 

The estimated beta coefficients show the strength of association between a given 

independent variable like a demographic or a situational factor, and the dependent one – the 



choice. Those coefficients have the interpretation of increasing the odds of selection. The 

simple regression can be expanded to a multinomial logistics regression and has been widely 

used in modeling applications (Hyman and Young, 2001; Akinci et al., 2007). 

 

An alternative but still very popular approach is the linear discriminant analysis. It aims to 

classify a binary dependent variable (choice) by constructing the best linear combination of 

the observed variables (Ripley, 1996). Let us assume the two conditional distributions of the 

outcome y and predictor x to be: 𝑝(𝑦|𝑥) and 𝑝(𝑥|𝑦), and further that these two follow a 

normal distribution with means μy and μx, and with covariations of σyx and σxy, respectively. If 

the condition σyx = σxy holds, then classification can be obtained via the following condition: 

(𝑥 − 𝜇𝑦)
𝑇
𝜎𝑦𝑥

−1(𝑥 − 𝜇𝑦) − (𝑥 − 𝜇𝑥)
𝑇𝜎𝑥𝑦

−1(𝑥 − 𝜇𝑥) < 𝑇. (3) 

 

for some threshold value T. Due to its simplicity and relative ease of interpretation, (linear) 

discriminant analysis continues to be of use to researchers of consumer choice (Tregear & 

Ness, 2005; Hansen, 2005).  

 

While traditional modeling has provided many valuable insights into individual decision-

making, there are certain limitations to those methods. First of all, they fail to capture some 

non-linear associations in the data, which can sometimes be of great importance. These can 

include threshold levels, salient anchors, and tipping points that influence the agent’s thinking. 

Second, they impose a number of stringent assumptions on data at hand such as normality of 

distribution and deterministic one-way relationships which are not necessarily met in practice. 

Oftentimes the decision situation and context are subtly nuanced and simple methods fail to 

capture this complexity.  

 

Third, simple linear methods fail to scale well to large datasets. Traditional indicators of the 

goodness of a given model such as the p-value tend to be inflated as the number of 

observations grows, and thus they give a misleading perspective of model fit. All these factors 

point to the possibility of improving choice classification by introducing novel modeling tools. 

Those are presented in more detail in the following section and then tested rigorously against 

experimental data. 

 

Classification problems are a common occurrence from the field of machine learning whereby 

an algorithm is needed to distinguish between different groups of classes of observations 

(Hastie et al., 2011; Zhu et al., 2014), e.g. return visitors vs. non-return visitors to a web-site. 

The parallel to decision making is straight-forward as the different decisions or courses of 

actions can be easily interpreted as different classes and thus modeled in a simple and intuitive 

way. The most popular classification algorithms include neural networks, decision trees, 

ensembles of trees (random forests), Support Vector Machines, and Bayesian approaches 

such as Naïve Bayes classifiers. While some of them have been making their way into the field 

of applied modeling and marketing, this process has been somewhat slow. In addition to that, 

no consensus exists as to what the best method to approach economic choice is. 

 



Naïve Bayes classifiers are applications of the Bayes theorem, whereby the classification 

problem is solved by constructing the joint probability distributions of variables under interest 

and then using that for the purposes of class assignment. More specifically, we are interested 

in the conditional probability distribution of observations yi over classes Ck given a number of 

features xi that are pertinent to the classification problem. Assuming that any feature is 

independent of the others, this conditional distribution can be described as: 

𝑝(𝐶𝑖|𝑥𝑖) =
1

𝑍
𝑝(𝐶𝑘)∏ 𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1
. 

(4) 

 

Here we use Z to denote a scaling factor with Z = p(xi). Once the conditional probability 

distribution is algorithmically constructed, the classfier is complete once a decision rule is 

specified. A common choice is to accept the most likely class, thus assigning an observation yi 

to class Ck under the following condition: 

𝑦𝑖 = argmax
𝑘

𝑝(𝐶𝑘)∏ 𝑝(𝑥𝑖|𝐶𝑘)
𝑛

𝑖=1
. 

(5) 

 

The naïve Bayes classifiers are not as computationally intensive as other machine learning 

methods but still perform well in practice. While their major assumption of feature 

independence is rarely achieved in reality and the posterior class probabilities may thus be 

imprecise, overall classification results are sometimes at par with more sophisticated 

approaches. A further advantage of the naïve Bayes approach is it tends to scale well, thus 

making it a plausible modeling option for larger datasets. More details on this approach as 

well as an overview of its performance over the last decades can be found in Lewis (1998). 

 

Despite its many advantages the naïve Bayes classifier is predominantly used as a specialized 

classification tool, often alongside other approaches. This is likely due to the fact that 

alternative algorithms tend to offer better performance and accuracy, and the NB scalability 

is less of an issue with the decrease in the cost of computational power. Despite this the 

algorithm has remained in popularity over a long time span, especially in the machine learning 

context, and there are some applications that use it for modeling consumption choice and 

sentiment (Ye et al., 2009; Cheung et al., 2003; Huang et al., 2012). 

 

Neural networks are models that are heavily influenced by the way the human brain works. 

It is structured by neurons that send activation impulses to each other, and so is the overall 

architecture of the neural network model. The different input nodes (independent variables) 

send activation impulses in the form of mathematical weighting functions to hidden layers of 

other nodes, which then produce impulses towards the final output node (dependent 

variable). Thus each input neuron (independent variable) can affect the class under study 

through a series of weighted functions, a representation known as the nonlinear weighting 

sum. If the node is denoted as x, and its activation function is K, the neuron’s network function 

f can be expressed mathematically as: 

𝑓(𝑥) = 𝐾 (∑ 𝑤𝑖

𝑛

𝑖=1
𝑔𝑖(𝑥)). 

(6) 

 



In this case K is some pre-defined function, and gi(x) is a series of functions weighted by wi. 

Estimation methods (learning) calculate the optimum weights given a set of conditions such 

as the functions used and the number of layers. Many neural networks can be trained on the 

same set of data with varying degrees of complexity. The optimal choice is guided by 

computational tractability and parsimony. A more detailed description of the features and 

statistical properties of neural networks can be found in Ripley (1996). 

 

It seems that among the machine learning algorithms, neural networks have found most place 

in practical problems of modeling consumer behavior. They have been applied and often 

tested against more traditional models, whereby neural nets tend to produce superior 

classification results (Gan et al., 2005; Hu et el., 1999; Hu et al., 2008). Despite improved 

accuracy, there are also a number of disadvantages. Most notably neural networks act as a 

black box, making interpretation of results very difficult and thus lend themselves to only 

limited analysis. In addition the learning, calibration and network selection processes can 

sometimes be daunting to the practitioner.  

 

Support Vector Machines are advanced classification methods, stemming from the field of 

machine learning (Cortes & Vapnik, 1995). Given two classes of observations they estimate 

the best classifier by finding the hyperplane in the middle of the largest distance (margin) 

between the closest points in the two classes. The boundary points are called the support 

vectors. Essentially, the classification tasks consists of solving quadratic programming 

problems. More sophisticated SVMs are able to perform accurate non-linear classification by 

mapping finite dimensional data into higher-dimensional space through a given kernel 

function and performing the classification task there. We present the simplest of SVMs – the 

linear one. More concretely, with a set of given points xi, each of them belonging to  class yi, 

we can define a hyperplane as follows: 

𝑤⃗⃗ ∙ 𝑥 − 𝑏 = 0 (7) 
 

Here 𝑤⃗⃗  is the normal vector to the hyperplane, and b is a parameter. The optimization problem 

aims to find the largest distances between the support vectors, thus minimizing ‖𝑤⃗⃗ ‖, or: 

min‖𝑤⃗⃗ ‖, (8) 
𝑠. 𝑡.:  𝑦𝑖(𝑤⃗⃗ ∙ 𝑥 − 𝑏) ≥ 1 

 

The solutions to his problem -, define the optimum classifier for the linear SVM. Extension to 

the method allow for multiple class classifications, thus making the SVM a versatile tool for 

modeling discrete choice among multiple alternatives. Research in decision making has 

already used it to make inference about taste and preference (Bahamonde et al., 2007) and 

to segment consumer groups and opinions (Li et al., 2006; Xu et al., 2012). While the SVM 

excels in classification problems, especially under non-linear setting, its popularity is marred 

by the interpretational difficulty of the model and the iterative process of learning it. This 

holds particularly true for the selection of appropriate SVM method and its corresponding 

kernel functions. 

 



Decision trees provide an alternative approach to modeling. Their machine learning 

operationalization is merely an extension of the classical decision tree model, used in decision 

science. Given a test data, an algorithm splits classification cases at different nodes by picking 

the best classifier among the features tested. Let us assume a classification problem with k 

classes and Nm observations in the region Rm. Thus the probability of observation yi belonging 

to class Ck at node m equals: 

𝑝𝑚𝑘 =
1

𝑁𝑚
∑ 𝐼(𝑦𝑖 = 𝐶𝑘).

𝑥𝑖∈𝑅𝑚

 
(9) 

 

In that case an algorithm splits the classification region to find the best classifier xi to put a 

class prediction Ck on observation yi. Then every observation is classified at node m as the 

majority class of this node: 

𝐶(𝑚) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘(𝑝𝑚𝑘). (10) 
 

More classification nodes are created until some pre-determined number of is reached. After 

they are so grown, trees can be used to perform classification tasks in validation or test sets. 

Further details beyond this short overview can be found in Breiman et al. (1984). Decision 

trees have the great advantage that they are easy to build, yet intuitive to interpret. In their 

visual form they can also be used for decision-making on the spot, especially in the case of 

compact tree. Their major drawback stem from the fact that trees tend to overfit data, 

produce large variation and can be misled by local optima.  

 

Despite this there has been some applications of trees in modeling decisions choices that have 

produced enlightening results (Lee et al., 2006; Kim et al, 2001). It is sometimes the case that 

classification and regression trees perform as well as more complex models (Rezi & Athappilly, 

2005) while retaining their simplicity and ease of use. In other applications, where overfitting 

and high variance do tend to be a problem, a common approach to trees is to bag them in an 

ensemble, the so-called random forest (Breiman, 2001). 

 

Random forests essentially combine a pre-determined number of trees into a large ensemble 

that can be used for classification or regression. This process initiates by first selecting a 

bootstrapped subsample of the data from b = 1 to B, and then selecting a random number of 

features to be used for classification. The algorithm then builds a tree in such a way that the 

best variable/split point is created at node m in the same way as with classification and 

regression trees. Once the maximum number of trees and their respective number of terminal 

nodes is reached, those are combined in the forest ensemble {Tb}1
B. Just like neural networks, 

random forests can model both continuous and discrete choice. The rule for continuous choice 

is: 

𝑓𝑘
𝐵 =

1

𝐵
∑ 𝑇𝑏(𝑦).

𝐵

𝑏=1

 
(11) 

 

Under discrete choice, the classification problem is solved by taking the majority vote of trees 

as to the class of given observation yi, thus obtaining:  



𝐶𝑘
𝐵(𝑦𝑖) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦. 𝑣𝑜𝑡𝑒{𝐶𝑏(𝑦𝑖)}1

𝐵. (12) 
 

While random forest model are notable for their ease of interpretation and relatively limited 

parameters, interested readers are directed for more details and nuances to the seminal work 

by Breiman (2001). Random forests are steadily gaining popularity in consumer modeling and 

marketing applications but are still not used at a large scale for consumer analytics. Current 

applications for deriving consumer preference (Bi, 2012) and modeling decisions (Kruppa et 

al., 2013) hold great promise for their usefulness in further cases and tend to consistently 

outperform alternative methods. 

 

The wide availability of alternative methods poses the question of the optimal modeling 

strategy. While this is dependent on the particular dataset and its peculiarities it does seem 

that some methods tend to perform better than others on a majority of classification 

problems. For the purposes of testing, we utilize a novel dataset on individual decision making 

under large uncertainty in a complex environment. This data poses two particular modeling 

challenges – the possible nonlinearity of relationships and the relatively small sample size. 

Both of them make this data a suitable and novel test of methods. 

 

Application and Results 

 

Data was collected from a laboratory experiment, performed on 258 young adults (aged 

mostly 18-28). Under this experimental settings each participant plays a game in which he or 

she selects a supplier of a fictional good, omnium bonum. There are four possible suppliers 

denoted with letters from A to D (coded as 1 to 4), and each of them makes a quantity offer. 

After the supplier is selected, the participant is informed of the actual delivery which does not 

need to coincide with the initial offer – it can be either higher or lower.  

 

Following this information, participants rate their satisfaction with the supplier on a scale from 

-4 to 4 and then proceed to the next round. Some participants receive real-time information 

of these ratings on their screens, thus simulating the social effects on consumer choice. Some 

of the participants receive information on the total production and its growth, while others 

do not. This is done to emulate the asymmetry of information, characteristic of many decisions 

in economic context. Participants play a total of 20 rounds in which they make choices in order 

to maximize the resulting total quantity of the good, which is then monetized at the end of 

the experiment.  

 

This setting yields a dataset of 5160 discrete economic decisions that can be fed into a 

classification algorithm. In additional to the age and gender of the consumers (demographics), 

we also have data on the difference in deliveries in previous rounds (delta1, delta2, delta3), 

satisfaction in previous rounds which gauges emotional state (satis1, satis2, satis3), previous 

choices as a proxy for consumption habit (lag1, lag, lag3), time for selection as a measure for 

expended cognitive effort (tim1), information for production (aggregates), and number of 

rounds played or experience (round). The endowment effect on consumption is captured by 



the variable cumulative results (cum.res) which measures what amount of omnium is already 

collected as a proxy for individual wealth.  

 

Further, participants are randomly assigned to three different experimental conditions – one 

of them simulates a growing economy with a constant increase in the amount of the good, 

and the other – a cyclical economy with rise and fall of production (cycle). The variable social 

denotes whether players have access to the social network of satisfaction scores. We also 

construct a measure of reputation of each supplier which is simply the average satisfaction of 

all the users up to this point (avgrepA, avgrepB, avgrepC, avgrepD).  

 

Summary statistics of the data are shown in Table 1. The key fact from the table is the very 

large difference between the minimum and the maximum, i.e. the range, of many features. 

This captures the rich and nuanced context in which agents make decisions – some take a lot 

of time, and some – very little, with the results producing wide fluctuations in consumer 

satisfaction. The reputation of suppliers is also very different, with supplier C clearly leading 

the pack. The experimental design is constructed in such a way that indeed this is the supplier 

which provides the greatest quantity of the good, given his promise. This design is also 

reflected in the relative frequency of choice – 33% of players choose supplier C, 28% - supplier 

B, 21% - supplier D, and 17% - supplier A. 

 

Table 1: Summary Statistics of Experimental Data on Economic Decisions  
 Mean Std. 

Dev. 
Median Min. Max. Range Skew Kurtosis Std. 

error 
gender 0.60 0.49 1.00 0.00 1.00 1.00 -0.39 -1.84 0.01 
age 20.67 2.93 20.00 0.00 50.00 50.00 2.84 46.19 0.04 
round 10.50 5.77 10.50 1.00 20.00 19.00 0.00 -1.21 0.08 
supplier 2.59 1.00 3.00 1.00 4.00 3.00 -0.12 -1.06 0.01 
time1 11460.55 13579.18 7040.50 530.00 160343.00 159813.00 3.70 21.20 189.04 
satis1 0.94 2.70 2.00 -4.00 4.00 8.00 -0.44 -1.25 0.04 
satis2 0.95 2.72 2.00 -4.00 4.00 8.00 -0.44 -1.26 0.04 
satis3 0.95 2.70 2.00 -4.00 4.00 8.00 -0.44 -1.26 0.04 
delta1 1.55 35.50 0.00 -60.00 60.00 120.00 -0.08 -1.60 0.51 
delta2 1.97 35.46 0.00 -55.00 60.00 115.00 -0.07 -1.64 0.52 
delta3 1.48 34.53 0.00 -52.00 52.00 104.00 -0.07 -1.66 0.52 
cum.res 915.76 554.89 879.00 51.00 2485.00 2434.00 0.20 -1.05 7.72 
cycle 0.50 0.50 0.50 0.00 1.00 1.00 0.00 -2.00 0.01 
aggregates 0.52 0.50 1.00 0.00 1.00 1.00 -0.06 -2.00 0.01 
social 0.49 0.50 0.00 0.00 1.00 1.00 0.03 -2.00 0.01 
lag1 2.58 1.01 3.00 1.00 4.00 3.00 -0.11 -1.07 0.01 
lag2 2.59 1.00 3.00 1.00 4.00 3.00 -0.11 -1.06 0.01 
lag3 2.59 1.01 3.00 1.00 4.00 3.00 -0.11 -1.07 0.02 
avgrepA 0.42 1.19 0.29 -3.67 5.00 8.67 0.36 1.69 0.02 
avgrepB 1.98 5.57 0.57 -4.33 31.00 35.33 3.51 13.04 0.11 
avgrepC 1.46 2.51 0.89 -7.50 11.67 19.17 1.21 3.82 0.05 
avgrepD 0.47 1.38 0.33 -3.00 4.50 7.50 0.36 0.63 0.03 

 

The final outcome of the participants are also widely divergent – some have collected as much 

as 2485 units, while others – much less. All discreet variables can be interpreted as unordered 

factors, whereas continuous ones – as true numeric values. This dataset can be used both to 



test different modeling strategies and to extract substantive knowledge of the consumer 

choice process. 

 

Estimation of the models presented in the second section follows a straightforward logic. We 

first divide the dataset in two partitions: one of them, comprising 80% of the total, to be used 

for training, and the other 20% for testing. The logistic regression, linear discriminant analysis, 

and the naïve Bayes classifier models are deterministic and easy to calculate from data 

without additional parameters. Training neural networks showed that the optimal structure 

would be a net with one hidden layer for both conditions, with the final results obtained from 

25 bootstrapped samples.  

 

The classification tree was also built through 25 bootstrapped resamples. In order to avoid 

overfitting of the ensemble Random Forest, the models across conditions were limited to only 

40 trees with 100 terminal nodes each. Data was used to estimate a SVM with linear kernel in 

both cases with cost = 1, and gamma = 2. Models are learnt on the testing set, and then used 

to predict classes from the training one.  

 

Results from the two experimental conditions with the training and the test set are presented 

in Table 2 and Table 3, which outline the classification accuracy of the modeling approaches. 

When economic decisions are modelled in a situation with no access to social network, 

algorithms produce up to 62% accuracy in the training, and 40% accuracy in the test set. 

Classical methods such as discriminant analysis and logistic regression produce relatively good 

classification rates of 41% in the training set, and about 39% in the testing set. This should be 

set against the natural benchmark of random classification, and those methods improve 

significantly upon that.  

 

Most of the tested machine learning approaches do not seem to yield noticeable advantage 

in terms of accuracy – the correct classifications in the test set for the Naïve Bayes classifier, 

the Neural Net, the SVM, and the Tree range between 34% and 36%. The relatively low training 

set accuracies indicate that despite the complexity of methods, there was hardly any model 

overfitting. The Random Forest classifier registers best results across all seven methods under 

review and is well ahead of the two main contenders – SVM and the Neural Network. 

 

Table 2: Classification accuracy across methods for conditions without a social network 

Method 
Training Set Test Set 

Point Est. 95% CI Point Est. 95% CI 
Linear Discriminant Analysis 41.2% (38.9-43.5) 39.1% (34.9-43.8) 
Logistic Regression 41.4% (39.1-43.6) 38.8% (34.4-43.5) 
Naïve Bayes Classifier 39.4% (37.1-41.7) 34.8% (30.3-39.4) 
Neural Network 34.2% (32.1-36.5) 34.3% (29.9-38.9) 
Support Vector Machine 40.4% (38.1-42.7) 36.3% (31.9-41.0) 
Decision Tree 37.3% (35.0-39.6) 34.5% (30.1-39.2) 
Random Forest 62.2% (59.9-64.5) 40.1% (35.6-44.9) 

 

Consumer choice modeling is more challenging under conditions, where a social network is 

present.  Its inclusion leads to a lowering of successful classification by three to six percentage 



points. In this case we observe a deterioration in performance of classical methods and 

relative improvement for machine learning algorithms. While LDA and logistic regression have 

almost the same classification ability in the training set of about 40%, they see significant 

deterioration in the test set. The Neural Network, the SVM and the Tree model perform only 

slightly better. The Random Forest models achieves the highest accuracy rate both in the 

training (59%), and in the testing set (37%). 

 

Table 3: Classification accuracy across methods for conditions with a social network 

Method 
Training Set Test Set 

Point Est. 95% CI Point Est. 95% CI 
Linear Discriminant Analysis 40.0% (37.7-42.4) 33.5% (29.0-38.2) 
Logistic Regression 39.9% (37.6-42.3) 33.7% (29.3-38.4) 
Naïve Bayes Classifier 37.1% (34.9-39.5) 31.6% (27.3-36.3) 
Neural Network 34.4% (32.2-36.7) 34.4% (29.9-39.1) 
Support Vector Machine 38.4% (36.1-40.7) 33.7% (29.3-38.4) 
Decision Tree 34.4% (32.7-36.7) 34.4% (29.9-39.1) 
Random Forest 59.1% (56.6-61.4) 37.2% (32.6-42.0) 

 

Testing data under both conditions leads to the conclusion that classical modeling methods 

such as the logistic regression can still be useful for complex modeling problems. Despite this 

more sophisticated methods that better capture data peculiarities can yield even better 

results. 

 

Discussion 

 

Results presented clearly show that modeling consumer choice under radical uncertainty is a 

particular challenge for both economic theory and statistical methods. In the experimental 

situation we present here consumers have limited idea as to the real dynamics and of the 

economic system or the probability distribution of expected deliveries. In this case they need 

to choose either following their intuition or a strategy in order to maximize the amount of 

omnium, and thus their monetary gain. Different factor tend to affect their choice in a non-

linear manner and psychology and emotion can dominate choice. In particular we see a clear 

S-curve between reported satisfaction from purchases and the difference between promised 

and delivered quantity across all suppliers and both genders (Figure 1).  

 

As the delta between promise and performance grows wide apart initially agents react by 

increasing or decreasing their satisfaction ratings. However, beyond a certain threshold level 

same differences produce a large swing in ratings. This is likely a threshold beyond which 

emotional factors take precedence in consumer choice. Our first major conclusion is therefore 

that psychological and emotional factors can dominate choice under radical uncertainty and 

data for them need to be included in the modeling exercise and accounted for by the method 

used. The importance of emotional influence in this situation is also confirmed in alternative 

analysis of this data (Mengov, 2014). 

 



 
Figure 1: Non-linearity in decisions under radical uncertainty 

 

 

Additional insight into consumer decision-making can be gleaned by inspecting the variable 

importance of the best-performing Random Forest model. For this purpose we define the Gini 

impurity index. If the probability of a given observation yi to belong to a class Ck out of k classes 

is denoted as pk, then the Gini index G is defined as follows: 

𝐺 = ∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑘

𝑖=1
. 

(13) 

 

Its mean decrease with the addition of new classification variables can be tracked thus 

obtaining a measure of variable importance. Here, variable importance denotes what factors 

contribute most to classification accuracy in terms of the mean decrease in Gini (node 

impurity) when they are added. There are both similarities and systematic differences 

depending on whether participants have recourse to a social network or not (Figure 2). 

Deliberation times (time1), economic conditions (cycle), gender and cumulative result 

(cum.res) tend to be useful for decision modeling irrespective of whether participants have 

access to a social network. 

 

Under the conditions without social network agents are very dependent on their own 

experiences when choosing – their own consumption history (lag1, lag2, lag3) and the 

experience they had in those choices (satis1, satis2, satis3) in the previous three rounds have 

large and robust importance. In contrast, these factors lose prominence in the conditions with 

a social network. Social effects turn out to be crucial factors, with the average reputation 

variables exhibiting significant importance. In short, personal experience, and particularly 

consumption habit, is overshadowed by the wisdom of the crowds.  

 



Social influence also modifies the effect of age on decision-making. When no social network 

information is available, difference in age and thus experience are important for choice 

modeling. In the opposite condition, other’s experience supplants one’s own through network 

effects, and thus age diminishes in significance. Social effects then have a powerful influence 

on economic choice in such a way that makes individual prediction more difficult for the whole 

range of examined approaches. This is evidenced by the decreases in prediction accuracy and 

the increased range of the 95% confidence interval, pointing to a rise in uncertainty. 

 

 
Figure 2: Drivers of Individual Decision Making under Alternative Conditions 

 

A brief inspection of the accuracy tables points towards a methodological conclusion. Such 

situations of choice under extreme information asymmetry lend themselves best to modeling 

through advanced machine learning approaches. While traditional methods can still stand 

their ground, the Random Forest (RF) model fits data better. In addition to that, interpretation 

is easier under a machine learning algorithm. The logistic regression provides estimates for 

statistical significance of beta coefficients showing that each of them reached significance well 

below 1%, which gives only limited information for variable importance. At the same time 

machine learning algorithms provide a measure of classification improvement which clearly 

ranks variables. Those benefits only compound at scale – an important consideration in light 

of exponentially increasing sample sizes. 

 

Conclusion 

 

Gaining a better understanding of how customers chose is an important task with both 

business and public policy implications. Traditional rational choice economics leaves this topic 

wanting and empirical models have tended to dominate practical applications. In this paper 

we study the problem in a complex setting, where participants in a laboratory experiment 



need to pick their preferred supplier with limited information about the purchase outcome 

and under the influence of both cyclical economic factors and randomness in delivery.  

 

Participants are affected by traditional demographics such as age and gender, as well as 

situational factors like their emotional state and past consumption history. There is one 

pointed difference in decision-making in the presence of a social network – players tend to 

substitute their own experience for network information, whereby individual history 

decreases in importance and reputation, which is essentially an average of other people’s 

satisfaction, gains in prominence. The more complex choice context also makes decision 

modeling more challenging – something, which is hardly solved through more complicated 

models. In such situations practitioners should consider collecting more data at a greater level 

of detail to achieve better classification. 

 

In terms of methods used, such data was best fit by a Random Forest model which is able to 

account for non-linear relationships between variables and to leverage patterns that are not 

directly obvious. This modeling approach also provides both an intuitive interpretation and 

robustly ranks variable importance, which is also of practical significance. This points in the 

direction that modeling consumption choice will be much helped by both usage of machine 

learning algorithms and a marked rise in sample sizes. 
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