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Abstract  

We estimate the effects of knowledge spillovers on firms’ performance and workers’ wages. We 

use an innovation support program as an exogenous shock to the knowledge of non-participant 

firms and an employer-employee dataset to track the mobility of workers—and knowledge 

diffusion—between firms. We find that non-participants that acquired new knowledge by hiring 

skilled workers exposed to the program increased employment, the average wage they pay, 

exports, and productivity. Finally, we find that—depending on the level of competition—a wage 

premium was paid either by participant or non-participant firms to retain or acquire workers. 
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1. Introduction 

Knowledge and knowledge spillovers are at the core of growth and development economics, as 

they have been shown to play a key role in the growth of countries (Romer, 1990; Grossman and 

Helpman, 1991a,b; Aghion and Howitt, 1992; Parente and Prescott, 1994).
1
 The lack of 

appropriation caused by the spillovers, on the other hand, is one of the main reasons why firms’ 

investments in innovation activities tend to be lower than the socially optimum value. Because 

innovators cannot fully appropriate the benefits of their investment in innovation activities, the 

private return of the investment in innovation is often lower than its social return,
2
 a gap that 

provides a key justification in favor of policies to foster investment in innovation (Crespi et al., 

2014). Although a broad consensus has been reached on the relevance of knowledge spillovers, 

how to properly identify and measure them remains an open question. 

As pointed out by Syverson (2011), any attempt to identify spillovers has to deal with two 

fundamental challenges. The first one is the so-called “reflection problem” (Manski, 1993):
3 

                                                 

1 For a survey of the literature on growth and spillovers see Jones (2005). 

2 Since the seminal works by Nelson (1959) and Arrow (1962), knowledge has been regarded as a nonrival and nonexcludable 

good. If knowledge does indeed have these properties, then a firm’s rivals may be able to free-ride on its investments. These 

spillovers may create a wedge between private and social returns and disincentive against private investment in knowledge 

production. 

3 In Manski’s (1993, pp. 532) words: “the ’reflection’ problem that arises when a researcher observing the distribution of 

behavior in a population tries to infer whether the average behavior in some group influences the behavior of the individuals that 

comprise the group. The term reflection is appropriate because the problem is similar to that of interpreting the almost 

simultaneous movements of a person and his reflection in a mirror. Does the mirror image cause the person's movements or 

reflect them? An observer who does not understand something of optics and human behavior would not be able to tell”. 
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correlated behaviors among specific groups of firms can be a sign of knowledge spillovers, but 

they can also simply reflect the effects of unobserved third factors. For this reason, the estimation 

of knowledge spillovers would require the identification of an exogenous source of variation in 

the knowledge stock for a subset of firms and a clear understanding of how the firm’s behavior 

may respond to such variation. 

The second challenge is related to the precise tracking of this behavioral response. Relationships 

between firms are not always easy to identify, more so those implying some level of knowledge 

sharing. Various proxies have been used to identify potential knowledge-sharing relationships 

among firms. These include geographical proximity (Audretsch and Feldman, 1996; Anselin et 

al., 1997; Fosfuri and Rønde, 2004), distance in the technological space (Jaffe, 1986), and 

interindustry linkages (Bernstein and Nadiri, 1989). In other cases, more specific measures of 

relationships were adopted. These include measures of provision of goods and services (Bonte, 

2008), equity investments (Aitken and Harrison, 1999; Javorcik, 2004), common participation in 

associations and consortia (Gilbert et al., 2008), patent citations (Henderson et al., 1993; 

Thompson and Fox-Kean, 2005; Murata et al., 2014), and labor mobility (Rao and Drazin, 2002; 

Fosfuri et al., 2001; Kim and Marschke, 2005; Görg and Strobl, 2005; Møen, 2005 and 2007; 

Boschma et al., 2009; Maliranta et al., 2009; Balsvik, 2011; Stoyanov and Zubanov, 2012; Poole, 

2013).
4
   

We propose an empirical strategy to measure knowledge spillovers that deals with both 

challenges. First, we use the participation of a sub-set of firms in an innovation support program 

– the Argentinian Technological Development Fund (FONTAR) program – as a variation in the 

                                                 

4 These studies are some examples, though by no means it is meant to be a comprehensive accounting. 
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knowledge stock that is exogenous to firms that did not participate in the program. An increasing 

amount of evidence has shown that these programs induce “additional” knowledge generating 

efforts in their beneficiaries.
5
 For instance, various studies have found that firms that receive the 

support of technology development funds such as the FONTAR implement R&D projects that 

they would not have undertaken in the absence of the public intervention. More specifically, 

Chudnovsky et al. (2006) and Binelli and Maffioli (2007) found that the actual FONTAR 

program increased the investment in R&D of participant firms. Based on this evidence, one can 

assume that the FONTAR program is a credible source of exogenous variation in the knowledge 

stock for firms that did not directly receive its support. 

Second, we use labor mobility to track potential knowledge sharing between the subset of firms 

participating in the program and other, non-participating firms. The ability to track the 

movements of all workers exposed to the program allows us to precisely define the specific 

mechanism through which knowledge diffusion occurs. This channel seems to fit particularly 

well the case of a program such as FONTAR, which focuses on fostering the generation of 

knowledge by the participant firms. A good part of this knowledge is in fact captured by the 

human resources operating within the beneficiary firms during the execution of the FONTAR 

supported project. Therefore, spillovers occur when these workers move to non-beneficiary firms 

(hereinafter receiving firms) carrying with them part of the knowledge generated by the 

beneficiary firms. 

Our findings provide evidence of knowledge spillovers and confirm the hypothesis that the 

benefits of knowledge creation are not fully appropriable by innovative firms. We find that 

                                                 

5 See, for instance, Hall and Maffioli (2008), and Hall and Lerner (2010). 
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receiving firms grew faster and increased their productivity by hiring qualified workers exposed 

to the innovation project supported by the FONTAR program. More specifically, our estimates 

show that receiving firms grew more in terms of number of employees when compared to a 

control group. Receiving firms also clearly improved their productivity as they increased their 

survival probability, improved their exporting profile—both in terms of probability of exporting 

and in terms of value of exports—and the average wage they pay to their employees. 

Looking for further evidence of the relevance of the knowledge acquired by workers exposed to 

the FONTAR program, we estimated the effect at the worker level. Our estimates confirm that 

these workers actually received a wage premium, whether they stayed at the beneficiary firm or 

they moved to another firm. This finding confirms that by being exposed to the program, 

workers acquired valuable productive knowledge for firms willing to pay for it and that this 

willingness to pay varies accordingly to the level of competition in the market of reference. More 

specifically, in relatively less concentrated markets non-beneficiary firms are willing to pay a 

wage premium to acquire such workers higher than the wage premium beneficiary firms would 

pay to retain them. However, when the market is concentrated, beneficiary firms are willing to 

pay a higher premium than non-beneficiaries to prevent these workers from being hired by a 

competitor who could threaten their market position. 

To estimate these effects, we use a lagged dependent variable model that allows us to compare 

firms with a similar evolution before they hire skilled workers from the participant firms (or 

receive the FONTAR support). Our analysis is based on a unique database. Specifically, we use a 

linked employer-employee dataset for the population of formal Argentinian firms and their 

employees. The dataset contains firm-level information on firms’ age, location, industry, type of 

society, whether the firm is multinational, employment, wages, and export behavior between 
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1998 and 2013. At the worker level, it contains information about wage, tenure at the current 

firm, age, and gender.  

This paper contributes to the existing literature in several ways. First, it proposes a clear and 

precise identification of the specific mechanisms behind the occurrence of knowledge spillovers. 

To best of our knowledge, this is the first paper that solves the two main issues in the 

identification of knowledge spillovers by exploiting both an exogenous shock of variation in the 

knowledge stock due to firms’ participation in an innovation program and the labor mobility for a 

precise tracking of knowledge sharing between firms. Second, it credibly estimates the 

magnitude of these knowledge spillovers on firms’ long-term performance and on workers’ 

wages. Third, it confirms the basic justification of innovation policy, i.e. the positive externalities 

due to knowledge diffusion.  

The rest of the paper is organized as follows. Section two presents the analytical framework. 

Section three describes the datasets. Section four discusses the empirical strategy. Section five 

shows the estimation results. Section six provides robustness checks. Finally, section seven 

concludes. 

2. Analytical Framework 

A. A simple framework  

As Syverson (2011) pointed out, the estimation of knowledge spillovers requires some sort of 

shock in the knowledge endowment that is exogenous to the firms benefiting from these spillover 

effects. The existence of a public program that supports the implementation of innovation 

projects by a limited number of firms provides a quite favorable conceptual framework for this 

estimation.    
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Suppose that in period t there is a knowledge shock because some firms participate in a public 

program that allows them to carry out R&D activities and innovation projects that would not 

have been feasible in the absence of the program. Let’s call these firms participating in the public 

program as F firms. Due to the participation in the public program employees of F firms, 

especially skilled workers, acquire knowledge related to the design and implementation of the 

innovation. Assuming that the public program selects projects that are at least “new to the 

market”, this new knowledge is valuable both to their current employer and to the market of 

reference.
6
 Let’s assume skilled workers of firm F acquire the level 𝜏 of knowledge during the 

innovation process. These workers will be called C. This knowledge increase is exogenous for 

those firms that do not participate in the program. 

In the next period, C workers can either stay with firm F or move to a new firm. Those firms that 

may hire skilled workers from firm F are called R. Given that firms’ knowledge is partially 

embedded in its human resources – especially in the skilled workers – part of F’s knowledge 

stock is carried to the new workplace when skilled workers move to other firms.
7
 Under the 

assumption that skilled workers are at least partially aware of the value of what they have learned 

during the innovation process, they might seek compensation for the new acquired knowledge 

either from their current employer or from the market.
8
  

                                                 

6 As we will discuss in sub-section 2.B, this is the case for the FONTAR program.  

7 Several studies have shown how job mobility of skilled workers facilitates the dissemination of embodied tacit knowledge 

(Almeida and Kogut, 1999; Maskell and Malmberg, 1999; Cooper, 2001; Power and Lundmark, 2004). In the case of a program 

such as the FONTAR, the selection criteria also include the presence of skilled employees. 

8 Obviously firms may try to prevent this by offering initial salaries that already include the market value of the knowledge that 

workers are expected to acquire during the process, though such value is not easily predictable by the firm.  
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For simplicity, we assume the workers’ utility function depends only on their wages and not on 

mobility costs. Therefore, the workers will work for the firm that offers them the highest wage.   

If the workers engage in a negotiation with a new potential employer (R firms), the new 

employer needs to pay more than the wage the workers are receiving at firm F, 𝑤𝐹(𝜏). Let’s 

assume that the value in terms of production that firm R gets by hiring the worker from firm F is 

𝑓𝑅(𝜏). A necessary condition for firm R being willing to hire the workers is 𝑓𝑅(𝜏) − 𝑤𝐹(𝜏) > 0 

, i.e. firm R must gain some surplus at the minimum wage the worker is willing to accept in order 

to move. Assuming that the worker and the R firm divide the surplus according to a Nash 

bargaining mechanism, the wage of the worker if hired by the R firm will be given by  

𝑤𝑅 = 𝑤𝐹(𝜏) +  𝛽𝑅(𝑓𝑅(𝜏) − 𝑤𝐹(𝜏)) ,    (1) 

where 𝛽𝑅 is the negotiation power of the worker with the firm R.   

Similarly, if the workers engage in a negotiation with their current employer and the value in 

terms of production that firm F gets by retaining the worker is 𝑓𝐹(𝜏), the wage firm F has to pay 

is given by 

𝑤𝐹(𝜏) = 𝑤𝑅(𝜏) +  𝛽𝐹(𝑓𝐹(𝜏) − 𝑤𝑅(𝜏)) ,    (2) 

where 𝛽𝐹 is the negotiation power of the worker with firm F. In this case, the necessary 

condition is given by 𝑓𝐹(𝜏) − 𝑤𝑅(𝜏) > 0.   

The worker moves from firm F to firm if 𝑤𝑅(𝜏) > 𝑤𝐹(𝜏), i.e. 

𝑤𝐹(𝜏) +  𝛽𝑅(𝑓𝑅(𝜏) − 𝑤𝐹(𝜏)) > 𝑤𝑅(𝜏) +  𝛽𝐹(𝑓𝐹(𝜏) − 𝑤𝑅(𝜏)) .   (3) 

If we assume the worker stays in firm F if s/he gets the same wage that firm R would offer, firm 
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F would not pay a wage higher than 𝑤𝑅(𝜏), therefore the wage firm F would offer is 𝑤𝑅(𝜏). 

Consequently, we can substitute 𝑤𝐹(𝜏) in equation (3) by the maximum wage firm F would be 

willing to pay and see under which conditions firm R is willing to pay more, i.e.  

𝑓𝑅(𝜏) − 𝑤𝑅(𝜏) >  
𝛽𝐹

𝛽𝑅  (𝑓𝐹(𝜏) − 𝑤𝑅(𝜏)) .    (4) 

Hence, the worker will move to firm R if the surplus at wage 𝑤𝑅(𝜏) at that firm is larger than 

𝛽𝐹

𝛽𝑅  (𝑓𝐹(𝜏) − 𝑤𝑅(𝜏)). The larger the contribution of the worker to the production of firm R and 

the higher the negotiating power of the worker with that firm, the higher the probability that the 

worker moves to firm R. On the other hand, the higher the contribution of the worker to firm F 

and the higher its negotiating power with that firm, the more likely the worker will stay with firm 

F. 

Note that firm F will not compete for the worker by paying 𝑤𝑅(𝜏) only if 𝑓𝐹(𝜏) − 𝑤𝑅(𝜏) < 0. If 

that is the case, the wage firm R would offer is 𝑓𝐹 + 휀, with 휀 > 0. The workers will move to 

firm R if their contribution to that firm is larger than their contribution to firm F. Then it is 

necessary that 𝑓𝑅 > 𝑓𝐹. 

Therefore, skilled workers’ mobility is most probable to occur when knowledge acquired by the 

worker has a greater value for firm R than firm F. This is likely to happen when skilled workers 

participate in innovation projects that are “new to the market” of reference. In these cases, while 

before the project implementation (period t) the value of the knowledge potentially acquired by 

C workers is the same for both R and F firms, after the project is implemented (t+1) the value of 

this knowledge could be much higher for the R firm. Under the simplifying assumption that firm 

F is capable to codify the knowledge produced during the innovation process and fully embed it 
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in its production function, the costs of losing C workers would be related only to the potential 

increased skills acquired by these workers during the process. On the other hand, the benefit of 

hiring C workers would be related not only to their increased skills, but also to the value (at least 

part of it) of the knowledge produced during the innovation process.  

Assuming that the innovation projects supported by the program are new and relevant to the 

market, and at least partially codifiable by the innovative firms, C workers would have a strong 

incentive to move and R firms would have stronger incentives to hire than F firms to retain them. 

If this were the case, we would see a quite high mobility of C workers from F firms to R firms. 

However, some constraints could reduce such mobility. First, if a relevant portion of the 

knowledge produced by the innovation is non-codifiable (tacit) and remains embedded in C 

workers, firm F’s incentive to retain them would be higher (the value of 𝑓𝐹 would be large). 

Second, the more specific the knowledge is to F firms, the less value it may have for R firms (the 

value of 𝑓𝑅 would be large). Third, if there are mobility costs, the difference in the value of the 

knowledge acquired by C workers for R and F firms should be higher than these costs. Third, our 

simplified framework assumes no asymmetric information about the value of the knowledge 

between F firms, R firms and C workers. In reality, C workers have all the incentives to disclose 

the value of the knowledge to R firms as much as possible, but also to overstate such value if 

they can. If the knowledge is generated by highly innovative projects, asymmetries of 

information about the value of such knowledge are indeed likely to occur. Finally, the model also 

assumes that there are no negative feedbacks on the F firms related to the movement of its 

skilled workers to the R firms. This assumption is much less likely to hold when the F and R 

firms compete in a highly concentrated market. In an extreme scenario, one firm F and one firm 

R may be the only providers of a certain product in a specific market. Unless they are already 
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engaged in some collusive behaviors, any increase in efficiency for R would have negative 

feedbacks for F. In this case, one could expect a much stronger incentive for F firms to retain 

their skilled workers and a lower mobility of workers. 

Based on this framework, we can test four hypotheses based on the estimation of four key set of 

parameters. The set of parameters are given by: 

A. The effect of the innovation program on the performance of supported firms. This parameter 

is crucial because it provides evidence on whether relevant productive knowledge has been 

generated because of the program and, therefore, whether an exogenous knowledge shock – 

for the firms that did not participate in the program – actually occurred.
9
 Obviously, without 

this effect it is not sensible to look for knowledge diffusion.   

B. The effect on the wages of the skilled workers who stay in the F firms after the project has 

been implemented. This parameter provides evidence on the value for the F firm of the 

skilled worker after the innovation was implemented. 

C. The effect on the wages of skilled workers who moved from firms supported by FONTAR 

after the project has been implemented. This parameter shows evidence on whether the 

knowledge acquired through the participation in a FONTAR supported project has some 

                                                 

9 Previous studies provide evidence on the validity of this hypothesis. In fact, Hall and Maffioli (2008) summarized the evidence 

on the effectiveness of several innovation programs similar to FONTAR. The evidence shows that firms participating in programs 

such as the FONTAR are able to make investments in knowledge that would not be undertaken in the absence of the program. In 

addition, they show that these types of programs have shown significant effects on firms’ investment in R&D, adoption of new 

products and processes, and eventually firms’ performance. All this indicates that beneficiary firms are actually able to create new 

“productive” knowledge. In the particular case of FONTAR, Binelli and Maffioli (2007) found that the program was effective in 

increasing the knowledge of beneficiary firms. 
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recognizable market value. 

D. The effect on the performance of firms that hire skilled workers from firms supported by 

FONTAR (R firms) after the implementation of the innovation project. This parameter 

confirms whether the productive value of the knowledge acquired through the participation in 

the FONTAR program is actually applicable and beneficial to other firms.
10

  

The hypotheses about the knowledge generation and diffusion from the innovation program are 

as follows: (Table 1) 

Hypothesis 1: New relevant and at least partially codifiable productive knowledge is diffused 

through labor mobility. This hypothesis would be confirmed by positive and significant values 

for the parameters A, C and D. The magnitude of the parameters in D may signal either decay in 

knowledge transmission (small effects) or some sort of learning by replication (large effects). 

Hypothesis 2: New relevant knowledge is produced but not diffused, because hardly replicable. 

This hypothesis would be confirmed if the parameters in A and C are positive and significant but 

the parameters in D are not different from zero. In this case, the knowledge is generated and 

other firms are willing to pay for it. However, the knowledge does not produce the expected 

results in other firms. 

Hypothesis 3: New relevant knowledge is produced but not diffused, because either non-

codifiable or extremely specific. This hypothesis would be confirmed by a strong positive and 

                                                 

10 Maliranta et al. (2009) find that hiring workers previously in R&D to one’s non-R&D activities improves productivity and 

profitability. They interpret this as a transmission of knowledge that can be readily copied and implemented without much 

additional R&D effort. Similarly, Stoyanov and Zubanov (2012) find that firms that hired skilled workers increased their 

productivity. 
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significant value for parameter A. To distinguish if the lack of knowledge diffusion is due to non-

codifiability or the specificity of the knowledge one can look at the magnitude of the parameter 

in B. In fact, a strong positive increase in the wage of the skilled workers who did not move after 

the project implementation may signal an extra effort to retain these workers and, therefore, an 

important tacit component of the knowledge produced by the innovation. On the other hand, if 

there is no increase in their wages, this reflects the low value for the market of the knowledge 

generated in F firms. 

Hypothesis 4: New relevant knowledge is produced and diffused only if the innovator does not 

prevent the diffusion to retain market power. This hypothesis would be confirmed by a strong 

positive and significant effect for parameter A and zero values of the parameters C and D in 

sectors with high concentration of firms. In these sectors, high values for B that reflect the 

willingness of the innovator to retain the workers are expected. In sectors with low concentration 

of firms, we expect high A and positive C and non-negative D (zero D would imply total decay 

of knowledge transfer as in hypothesis 2).  

[Table 1 here] 

B. The source for knowledge creation: The FONTAR program 

The Argentinian Technological Fund (Fondo Tecnologico Argentino, FONTAR) was created in 

1995 and it has been one of the pillars of Argentina’s innovation policy. Although the program 

has evolved and expanded its set of instruments, it has maintained its main focus on providing 

financial support to innovation projects through two main instruments: (i) reimbursable funding, 
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though targeted credit for innovation, and (ii) non-reimbursable funding, through matching 

grants and tax credit.
11

  

The provision of public funding – either in the form of grants or in the form of targeted credit – 

aimed at easing market failures that severely constrain innovation and technology adoption 

projects (Hall and Lerner, 2010). First, the estimation of the risk-adjusted return of innovation 

and technology adoption investments requires specific technical expertise and a complete 

understanding of the market of reference - often not yet existing. This clearly implies 

asymmetries of information between potential investors and innovators that can only be partially 

remedied with high assessment costs by the investor. Programs such as FONTAR are designed to 

bear these assessment costs through the establishment and funding of review processes of the 

technical and commercial viability of the proposed investments. In this sense, the program not 

only operates as a sort of public venture capitalist, whose returns are the economic return of the 

investment, but also provides valuable signals to the financial markets on the technical and 

commercial sustainability of the investment.  

Second, the main and most valuable outcomes of innovation projects are intangible and difficult 

to fully appropriate. These features make the market relationship between investors and 

innovators even more complicated. In fact, because most of the value of the investment is 

embedded in knowledge that may spill over to competitors, innovators may be reluctant to share 

critical information about the design and development of their projects with investors, worsening 

the asymmetric information problems. In addition, the intangible nature of the innovation 

outcomes makes it extremely difficult to use these outcomes as collateral, often leading to very 

                                                 

11 FONTAR tax credits are non-automatic and project based. 
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high risk premium for investors. 

Third, innovation projects are riskier than physical investment projects. For this reason, external 

investors systematically require higher risk premium for the financing of innovation activities 

than ordinary investment. Although this is not a market failure per se, public funding targeted to 

these kinds of projects also aims at increasing their risk-adjusted return for both innovators and 

potential external investors.  

Although these justifications generally apply to the entire program, the justification of each line 

of funding can be slightly differentiated. In fact, while the whole set of justifications clearly 

apply to the non-reimbursable instruments, which specifically target R&D projects with higher 

risks and intangible outcomes, the second and third justifications seem weaker in the case of the 

reimbursable instruments, which target projects aimed at the adoption of existing knowledge 

embedded in tangible assets and whose potential returns have already been demonstrated by 

earlier adopters. In this latter case, the policy intervention substantially solves a problem of 

asymmetry of information due to the degree of specificity that most likely goes beyond the 

assessment capacity of the private financial sector.  

Programs such as FONTAR clearly aim at increasing firms’ investment in innovation and R&D 

activities (innovation-input outcomes). Although the link between the provision of public 

funding and investment in innovation seems quite direct, effectiveness at this level still depends 

on the program’s capacity to avoid crowding out effects – where public funding displace or 

substitute private spending – and to generate multiplier effects – where public funding leverages 

additional private resources. Participant firms are then expected to translate this increased effort 
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into outputs that reveal the successful realization of the innovation activities,
12

 and finally, into 

better economic performance within the firm and for the economy that provided the fiscal 

resources.  

There is strong evidence showing that FONTAR has been effective in increasing knowledge and 

innovation within the firms participating in the program. Binelli and Maffioli (2007) found a 

significant multiplier effect of the program on private investment in R&D. Chudnovsky et al. 

(2008) complemented and reinforced these findings by providing evidence that FONTAR 

matching-grant lines do not crowd out private investment in R&D (or, in another way, add on the 

existing private investment in R&D).  

Two criteria used in the selection of projects were important for our study. First, in order to gain 

the FONTAR support, clear preference was given to those projects that aim at introducing 

innovations that are at least new to the firm’s market of reference. Second, the program also 

assessed the capability of the firm to perform the innovation with special attention to the 

presence of skilled employees. While the first criterion ensured that projects had value not only 

for the firms applying for the support but also for other firms in the same market of reference, the 

second criterion ensured that participant firms had advanced human capital able to carry out the 

innovation project in a timely manner to meet the program requirements. 

The other key characteristic of the FONTAR program for the identification of the spillover 

                                                 

12 For this purpose, various innovation-output indicators have been developed, including the number of patents and trademarks 

registered, the value of sales of new products, and dichotomous indicators on adoption of new processes and products. In terms of 

economic performance, measures of firm productivity and growth have been increasingly adopted to assess the long-term 

effectiveness of innovation programs. 
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effects is that the knowledge created from the program is exogenous for those firms that did not 

participate in the program. Therefore, it provides us with an exogenous source of variation that 

helps to avoid the reflection problem posed by Manski (1993). 

B. Labor mobility as a source of knowledge diffusion 

Given that an important part of the knowledge that is created by the innovation program is 

captured by employees, the most important source of knowledge diffusion in our case is labor 

mobility. To identify knowledge spillovers through this mobility, we need information both at the 

firm and employee level. Here is where the employer-employee structure of our data becomes 

extremely valuable. In fact, it allows us to define precise employment transition matrices and, 

consequently, to identify those firms that may have benefited from the program indirectly by 

hiring specialized workers exposed to the knowledge created thanks to the program (receiving 

firms). 

In practice, the identification of receiving firms involves the following steps: (i) the identification 

of participants of the innovation program (FONTAR firms hereafter); (ii) the definition of what is 

a firm-firm relationship that may involve spillover effects; and, (iii) the identification of the 

receiving firms on the basis of this rule. Therefore, we first identify in our dataset the firms that 

benefited directly from the FONTAR program using the unique tax identification code (CUIT) of 

each firm. This is a straightforward process which implies merging FONTAR administrative 

records with the OEDE dataset.  

The definition of firm-firm relationships that involve spillover effects is more challenging. 

Having already restricted the nature of the relationship to mobility of workers, we then need to 

define if we want to consider all possible transitions of workers or if some restrictions are 
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needed. In particular, because the FONTAR supports the generation of rather specific and 

complex knowledge, we cannot simply assume all human resources in the FONTAR firms were 

exposed or able to absorb this knowledge.  

Between 1997 and 2013 labor mobility was considerably high, involving around ten percent of 

total employment in Argentina every month. This implies that approximately five percent of 

employees left their current positions and five percent filled them (Figure 1). One of the main 

factors behind this high labor mobility is the short period of time new workers stay in the firm. In 

fact, close to 40 percent of new workers left the firm during the first quarter and close to 60 

percent during the first year.  

[Figure 1 here] 

Because of the high labor mobility, we apply two restrictions for the identification of the workers 

who may cause knowledge diffusion and therefore spillovers. First, they need to have been 

exposed to the new knowledge generated in the FONTAR firm long enough to have learned 

something valuable. For this purpose, we restrict our analysis to the mobility of workers who 

were employed in a FONTAR firm for at least two years after the firm received the program 

support. Second, these knowledge carriers need to be able to absorb relatively complex 

knowledge. Thus, we restrict our analysis to the transfers of the most skilled labor force. Indeed, 

the mobility of skilled labor has often been identified as one of the most important vehicles 

through which both formalized and tacit knowledge flow throughout a productive system.
13

 

Because the only measure of skill in our database is the salary, we focus on the mobility of 

                                                 

13 Following Arrow’s (1962, p. 615) lead, it is frequently suggested that labor mobility is among the key transmission 

mechanisms of knowledge spillovers (Geroski, 1995; Stephan, 1996; Maliranta et al., 2009). 
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workers on the top quartile of the salary distribution of the firm of origin.  

Summing up, we define receiving firms as those firms that: (i) never participated in FONTAR; 

and (ii) hired skilled employees (top quartile in the firm wage distribution) that worked in a 

FONTAR firm for at least two years after the firm of origin received the program support. These 

criteria allow us to significantly reduce the number of transitions we consider as relevant for 

potential knowledge spillovers. 

Table 2 summarizes the outflows of workers from the firms that received FONTAR support 

between 1998 and 2006. Around 330,000 workers had been somehow exposed to the FONTAR 

intervention during this period of time. As we have mentioned above, the overall mobility of this 

labor force is very high: around 40 percent of these workers eventually moved to a different firm. 

However, when we restrict the analysis to skilled workers considering a minimum duration of 

employment in a FONTAR beneficiary firm as defined above, the mobility drops considerably. 

Only 2.5 percent of total FONTAR workers generated spillovers through knowledge diffusion, 

generating 4,065 receiving firms.  

[Table 2 here] 

3. Data and descriptive statistics 

A. Data 

We combine data from three sources. First, we use social security data with the population of 

formal firms and all their formally employed workers in Argentina. This data source is a three-

dimensional linked employer-employee panel dataset by firm, worker and year between 1997 

and 2013. Second, we match this database with a two-dimensional panel dataset on exports by 

firm and year between 1998 and 2013. Third, we combine the former two data sources with the 
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administrative records of the FONTAR program. 

The employer-employee-exports dataset was constructed by OEDE (Observatory of Employment 

and Entrepreneurial Dynamics) at the Ministry of Labor, Employment, and Social Security in 

Argentina.
14

 This database includes data from administrative records of two public entities: the 

National Administration of Social Security (ANSES), and the General Customs Bureau (DGA) 

of the Federal Administration of Taxes (AFIP). These sources were produced by different 

organizations, in different moments of time, and with different objectives. This heterogeneity 

demanded an important work of consolidation of the data. The dataset includes all the firms 

declaring employment in Argentina after 1997. It covers the manufacturing, services, and 

primary sectors, and has firm level information about age, location, industry, type of society, 

whether a firm is multinational, number of employees, average wages, and value of exports, and 

employer-employee level information about wage, age, gender, and starting and ending date of 

labor relations. The administrative records of the FONTAR program provide information about 

the firms that received support between 1998 and 2006 (see Appendix A for details).  

B. Measuring firms’ performance 

Our final 1998-2013 employer-employee-exports dataset allows us to construct several measures 

of the outcomes of interest. The data allow us to compute firms’ growth in terms of number of 

employees, probability of exporting (extensive margin), and export volume (intensive margin). 

                                                 

14 Given the confidentiality of the data, the estimations were conducted following the Ministry of Labor, Employment, and Social 

Security’s microdata policy, which implies working under the supervision of its staff and with blinded access to sensible 

information. 



21 
 

Because an increase in exports has often been related to productivity improvements,
15

 one could 

argue that simultaneous positive effects on employment and exports signal productivity gains.
16

 

We also compute impacts on wages as a proxy for improved labor productivity. As an additional 

proxy for productivity, we look at firm survival, as well. As pointed out by Syverson (2011), the 

positive correlation between productivity and firm survival is one of the most robust findings in 

the literature. Finally, we use the variation in wages at the worker level to explore whether the 

knowledge carriers (or skilled workers who stay) enjoyed a wage premium paid by the receiving 

firms (FONTAR firms).
17

 

In particular, the change in the average wage paid by each firm can be decomposed into the 

change in the average due to changes in the wage paid to the workers that continue in the firm 

from one period to the other, and the change in the average due to hiring/firing workers. These 

terms allow us to identify two important sources of wage variation at the firm level. While the 

first one is more related to changes in productivity, the second one is related to changes in the 

                                                 

15 See Clerides et al. (1998), Bernard and Jensen (1999), Aw et al. (2000), Bernard et al. (2003), and Bernard and Jensen (2004). 

Furthermore, Melitz’s (2003) model shows how the exposure to trade induces only the more productive firms to export while 

simultaneously forcing the least productive firms to exit, reallocating market shares (and profits) towards the more productive 

firms and contributing to an aggregate productivity increase. 

16 Furthermore, an increase in the probability of exporting would not only point to higher productivity, but also to the 

effectiveness of the FONTAR in covering part of the costs of the investment in entering into new markets. In fact, because this 

investment mainly results in knowledge, the knowledge spillovers that may occur through labor mobility may lead to 

underinvestment and limit export opportunities in the absence of public support for the exporting pioneers. The costs of entering 

into new markets often consist of knowledge related to the assessment of the market demand, product standards, distribution 

channels, regulatory environment, etc. (Melitz, 2003). 

17 Malchow-Moller et al. (2007) show that workers with foreign firm experience enjoyed a wage premium paid by their new 

domestic-owned employers. 
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skill composition of the firm. Both terms are relevant in our study. First, given that we are 

studying spillovers driven from an innovation program, we expect productivity gains caused by 

innovation. Second, given that the source of spillovers is knowledge diffusion through the 

mobility of skilled workers, it is possible to expect changes in the skill composition. 

Let the average wage firm i pays to workers in period t be 𝑊𝑖𝑡 = ∑
1

𝑁𝑖𝑡

𝑁𝑖𝑡
𝑗=1 𝑤𝑗𝑡 , where 𝑤𝑗𝑡 is the 

wage of worker j in period t, and Nit the number of workers in firm i in period t. The change in 

the average wage of each firm i can be decomposed using a similar decomposition of the one 

used to study the change in aggregate productivity (see, for example, Baily et al. (1992), Foster 

et al. (2001), and Foster et al. (2008)). The average wage of firms’ decomposition is given by: 

∆𝑊𝑖𝑡 =  ∑ 𝑠𝑗𝑡−1∆𝑤𝑗𝑡

𝑗∈𝐶

+ ∑ ∆𝑠𝑗𝑡 (𝑤𝑗𝑡−1 − 𝑊𝑖𝑡−1)

𝑗∈𝐶

+ ∑ ∆𝑠𝑗𝑡 ∆𝑤𝑗𝑡

𝑗∈𝐶

+ 

                                  + ∑ 𝑠𝑗𝑡 (𝑤𝑗𝑡 − 𝑊𝑖𝑡−1)

𝑗∈𝑁

− ∑ 𝑠𝑗𝑡−1 (𝑤𝑗𝑡−1 − 𝑊𝑖𝑡−1)

𝑗∈𝑋

 ,                                      (5) 

where 𝑠𝑗𝑡  is the weight of worker i in the average wage and is equal for all the workers in the 

firm, i.e. 𝑠𝑗𝑡 =  
1

𝑁𝑖𝑡
. The sets C, N, and X represent the set of continuing, entering, and exiting 

workers, respectively. This decomposition has five terms that embody the contributions of 

various components to the average wage of the firm. The first three terms measure the change in 

the average wage paid by firm i coming from the workers that continue in the firm. The last two 

terms measure the change in average wage due to new workers and workers that left the firm. If 

new workers have wages above average, then the average wage of firm i increases. This could be 

the case if the firm hires qualified workers. Similarly, if the worker that leaves the firm had a 

lower wage than the average, the average wage increases. This could be the case if the firm fires 
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less qualified workers. 

C. Sample and Descriptive Statistics  

Our dataset contains information for 1,571,969 firms between 1998 and 2013 (10,100,174 firm-

year observations). Given that the program targeted small and medium-sized firms, we drop 

firms with less than five employees and more than 500 employees. We also drop firms with less 

than seven consecutive years in the dataset. We do this because, as it will be explained later, we 

need several lags to control for firms’ past performance and avoid autocorrelation. After these 

restrictions, the sample shrinks considerably to 128,560 firms and 1,618,047 firm-year 

observations (see Table B1 in the appendix). This reduction in the sample helps to find firms 

with closer characteristics to the participating and receiving firms. 

Table 3 shows the basic descriptive statistics (number of observations, mean, and standard 

deviation) for FONTAR and receiving firms and the firms we use to compare them (rest of firms) 

for the whole period under study.  

[Table 3 here] 

The analysis reveals that both FONTAR firms and receiving firms are on average larger, older, 

paid higher wages, and have a higher probability of exporting than the rest of the firms in 

Argentina. In addition, receiving firms have on average higher outcomes than FONTAR firms, 

pointing out that knowledge carriers tend to go to larger firms that presumably also have a better 

performance.  

Given that the FONTAR support was not randomly assigned, the pool of non-participant firms is 

not necessarily comparable to the groups of FONTAR firms and hence potential issues of 

administrative selection and self-selection may arise. This problem is also relevant for the 
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spillover effects. In fact, not only the FONTAR firms may self-select into the program because of 

characteristics that are related to the outcome of interest, but also receiving firms may be hiring 

skilled workers because of some characteristics also related to the outcome of interest. In both 

cases, a simple comparison with the rest of the non-participant firms would lead to biased results. 

The next section explains the econometric methodology we use to estimate the impact of the 

FONTAR program on participants and the spillovers effects of knowledge diffusion on receiving 

firms.  

4. Empirical Strategy 

Our main objective is to estimate the spillover effect generated by the knowledge diffusion 

between firms. However, given that we use FONTAR as a source of exogenous—for non-

participant firms—knowledge creation, we first test whether participants in FONTAR improved 

their performance due to the program. Therefore, we need to identify both the effect of the 

program, and the effect of receiving a knowledge carrier. Although these effects are clearly 

related, for the purpose of our estimates we analyze them as two separate and different scenarios 

or treatments.
18

 

The main challenge for identifying these effects is selection bias. This bias can be reduced in a 

simple regression framework if it is related to observable factors by simply including those 

factors as control variables in the regression. In our case, however, some important differences 

                                                 

18 Alternatively, the identification could have been approached as a multi-treatment problem. In theory, a multi-treatment 

approach could have been a better fit if FONTAR firms had also hired human resources employed in other beneficiary firms, i.e. 

if some FONTAR firms had received spillover effects from other beneficiaries. However, the available data includes very few of 

such cases, and as a result we treat direct beneficiaries of FONTAR as a single group. 
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between the groups of firms may also be related to unobservable (or unobserved) factors. To deal 

with this issue, one may assume that unobserved heterogeneity is constant over time and 

eliminate these potential sources of bias using a fixed-effects approach. However, many of these 

unobserved cofounders may be time-varying, such as the entrepreneurial behavior. Indeed, the 

existence of multiple cohorts of treatments reinforces this idea and points out that firms may 

change their behavior before applying for program support or hiring a FONTAR skilled worker. 

That is, the participation into the program or the hiring of the skilled worker depends on past 

outcomes. In this context, the assumption that the most important omitted variables are time-

invariant does seem plausible. 

Our strategy is to take advantage of the panel structure of our data to control for past values of 

the outcome variable by using a lagged dependent variable (LDV) model. In this case, the 

identifying assumption is independence of treatment status and potential outcomes conditional 

on lagged outcome variables and other observable confounders.
19

 

To estimate the effect of FONTAR, we estimate the following equation using pooled Ordinary 

Least Squares (OLS):
20

 

𝑌𝑖,𝑠,𝑝,𝑡 = 𝛼𝐹𝑡 + 𝛼𝐹𝑠,𝑡 + 𝛼𝐹𝑝,𝑡 + 𝛼𝐹𝑜,𝑡 + ∑ 𝛽𝐹𝑘𝑌𝑖,𝑡−𝑘
𝑛
𝑘=1  +  𝛾𝐹. 𝐹𝑖,𝑡−1 + 𝛿𝐹. 𝑋𝑖,𝑡 + 휀𝑖,𝑠,𝑝,𝑡 ,  (6) 

where 𝑌𝑖,𝑠,𝑝,𝑡 represents the set of outcomes to be considered for firm i, belonging to industry s, 

in province p, and year t. 𝛼𝐹𝑡 depicts yearly shocks that affect all firms. Regarding the interaction 

terms, 𝛼𝐹𝑠,𝑡 are industry-year effects – i.e. time-specific shocks that affect the outcomes of all 

                                                 

19 See chapter five in Angrist and Pischke (2009). 

20 We estimate a similar equation for the worker-level analysis. 
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firms in industry s –, 𝛼𝐹𝑝,𝑡 are province-year effects such as the construction of a freeway, an 

airport, or implementation of new local policies, and 𝛼𝐹𝑜,𝑡 is a vector of two interaction terms 

that includes type of society-year and multinational-year effects. 

𝐹𝑖,𝑡 is a binary variable that takes value one the year firm i participates in the program and so 

thereafter. Therefore, 𝛾𝐹 represents the parameter of interest and it captures the average causal 

effect of participating in FONTAR on the outcome under consideration. Finally, 𝑋𝑖𝑡 is a vector of 

time-varying control variables, and 휀𝑖,𝑠,𝑝,𝑡 is the usual error term assumed to be uncorrelated with 

𝐹𝑖,𝑡−1 or  𝑋𝑖𝑡. The sample for this estimation only includes FONTAR firms and firms that did not 

participate in the program and did not hire FONTAR skilled workers.  

Similarly, to estimate the average spillover effect we use the following equation:  

𝑌𝑖,𝑠,𝑝,𝑡 = 𝛼𝑅𝑡 + 𝛼𝑅𝑠,𝑡 + 𝛼𝑅𝑝,𝑡 + 𝛼𝑅𝑜,𝑡 + ∑ 𝛽𝑅𝑘𝑌𝑖,𝑡−𝑘
𝑛
𝑘=1  +  𝛾𝑅 . 𝑅𝑖,𝑡−1 + 𝛿𝑅 . 𝑋𝑖,𝑡 + 휀𝑖,𝑠,𝑝,𝑡  ,   (7) 

where 𝑅𝑖,𝑡 is a binary variable that takes value one after firm i hires a skilled FONTAR worker. 

Therefore, 𝛾𝑅 measures the average spillover effect. The remaining variables are the same as in 

equation (6). It is important to note that 𝑋𝑖,𝑡 includes a binary variable that takes value one after 

firm i hires a skilled worker. This allows us to separate the effect of hiring skilled workers from 

the effect of hiring skilled workers with specific knowledge acquired in a FONTAR firm. The set 

of firms considered in this case are the receiving firms and those firms who did not participate in 

FONTAR. 

The sets of year dummies (𝛼𝐹𝑡 and 𝛼𝑅𝑡) play an important role in our analysis. After a long 

recession that started in 1998, Argentina suffered a severe crisis in 2001. As a consequence of the 

crisis, there was a large devaluation of the Argentine Peso and the government declared the 

default of its sovereign debt. Although in 2002 the GDP contracted by 10.8 percent, in 2003 
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started a period of growth for Argentina that lasted until 2008. Prices also changed during the 

recovery and accelerated after 2007. In terms of our study, controlling for these factors is 

important because the recovery also implied an increase in employment and nominal wages. As 

long as these factors affected our groups of firms in the same way, the year dummy variables 

should properly control their influence on employment and wages.   

We also relax the assumption of equal effects of the aggregate shocks by controlling for industry-

year (𝛼𝐹𝑠,𝑡 and 𝛼𝑅𝑠,𝑡) and province-year (𝛼𝐹𝑝,𝑡 and 𝛼𝑅𝑝,𝑡) dummies. In this way we allow for 

time varying shocks that affect firms in different industries or regions in different way. This is 

important for example for the exchange rate changes that can benefit those firms in tradable 

sectors and affect those firms in non-tradable using imported inputs. The industry-specific shocks 

also allow us to deflate wages using an industry-specific price level index. In addition, the 

province-specific shocks allow us to deflate using province-specific price level indices. The use 

of province-specific shocks is also important, for example, if the difference in unemployment 

between provinces lead to a different evolution in wages.  

The choice of the lag length for the outcome variable is also important. If the error terms in 

equations (6) and (7) are auto-correlated, then the estimated coefficients would be inconsistent 

due to an endogeneity problem. Adding lags of the dependent variable helps reducing the auto-

correlation. We then add the minimum number of lags that remove the residual autocorrelation 

for all outcome variables in order to have a white noise error term.
21

 According to our analytical 

                                                 

21 As pointed out by Wooldridge (2002), serial correlation is a problem to be dealt with only if the null hypothesis is rejected at 

the 5% level. However, “In deciding whether serial correlation needs to be addressed, we should remember the difference 

between practical and statistical significance. With a large sample size, it is possible to find serial correlation even though �̂� is 
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framework, it is also important to estimate the effect at the worker level, both for those workers 

who stayed in FONTAR firms, and for those who moved to other firms. To estimate the effect of 

FONTAR at the worker level for those workers who stayed in a FONTAR firm, we estimate: 

𝑊𝑗,𝑠,𝑝,𝑡 = 𝛼𝑡 + 𝛼𝑠,𝑡 + 𝛼𝑝,𝑡 + 𝛼𝑜,𝑡 + ∑ 𝛽𝑘𝑊𝑗,𝑡−𝑘
𝑛
𝑘=1  +  𝛾𝑆. 𝑆𝑗,𝑡−1 + 𝛿. 𝑋𝑗,𝑡 + 휀𝑗,𝑠,𝑝,𝑡 ,   (8) 

where 𝑊𝑗,𝑠,𝑝,𝑡 is the monthly nominal wage of worker j in period t, 𝑋𝑗𝑡 is a vector of time-varying 

control variables at the firm and worker level, and 휀𝑗,𝑠,𝑝,𝑡 is the usual error term clustered at the 

firm level. 𝑆𝑗,𝑡−1 is a binary variable that takes value one if worker j stayed in the firm for more 

than two years after the firm participated in FONTAR. To be consistent with the fact that these 

workers are skilled workers with at least two years of tenure in the firm, our sample only 

includes workers with these characteristics; i.e. skilled workers with at least two years in the 

current firm.  

Similarly, to estimate the effect on the FONTAR workers who moved to other firms, we estimate 

𝑊𝑗,𝑠,𝑝,𝑡 = 𝛼𝑡 + 𝛼𝑠,𝑡 + 𝛼𝑝,𝑡 + 𝛼𝑜,𝑡 + ∑ 𝛽𝑘𝑊𝑗,𝑡−𝑘
𝑛
𝑘=1  +  𝛾𝑀. 𝑀𝑗,𝑡−1 + 𝛿. 𝑋𝑗,𝑡 + 휀𝑗,𝑠,𝑝,𝑡 . (9) 

In this case we use the sample of skilled workers (with at least two years in the current firm) who 

move to other firms. 𝑀𝑗,𝑡 is a binary variable that takes value one after the FONTAR worker j 

(knowledge carrier) moves to a non-participant firm. 

Like in the analysis at the firm level, we include year dummies, industry-year, province-year, 

type of society-year, and multinational-year dummies. Each equation also includes as many lags 

as necessary to control for the autocorrelation in the error terms. 

                                                                                                                                                             

practically small; when �̂� is close to zero, the usual OLS inference procedures will not be far off” (Wooldridge, 2002, pp. 397). 
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In addition to the average effect, we are also interested in estimating how the spillover effect at 

the worker and firm level evolves over time. For this purpose, we replace the binary treatment 

variables (𝑆𝑗,𝑡−1, 𝑀𝑗,𝑡−1, 𝑅𝑗,𝑡−1) with a set of binary variables that includes a dummy variable that 

takes value one the first two years, a dummy variable that takes value one between the third and 

fifth year, and a dummy variable that takes value one after 5 years, after the worker stays in a 

FONTAR firm after support, the worker moves to other firm or after the firm receives the 

knowledge carrier, respectively. Therefore, these new treatment dummies measure the dynamics 

of the impacts of interest. More specifically, given that our equations control for past values of 

the outcome variable, the coefficients of these variables capture the additional effect for each 

post-treatment period included in the analysis.  

Finally, given that our analytical framework provides different behavior for the FONTAR and 

receiving firms depending on the competition in the good market, we also estimate the average 

effects for different level of competition. For this purpose, we construct a Herfindahl-Hirschman 

index (HHi) for the relevant market; we assume that market is province-industry specific. 

Therefore, we construct HHi using firms’ labor costs by province-sector and allow time variation 

to capture changes in the market concentration. Using HHi, we classify markets in two 

categories: (i) competitive market if HHi<0.01 and (ii) concentrated market if HHi≥0.01.
22

 The 

resulting dummy variables are interacted with the treatment variables to analyze the 

heterogeneity of the impacts of interest by level of competition. 

                                                 

22 Traditionally, the HHi is divided in four categories: An HHi<0.01 indicates a highly competitive index, between 0.01 and 0.15 

an unconcentrated index, between 0.15 to 0.25 moderate concentration, and above 0.25 high concentration. In order to avoid 

power problems due to the lower number of observations in higher concentrated markets, we divide the HHi in two main 

categories. For a full discussion on measures of concentration, see Hay and Morris (1987) and Tirole (1988). 
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5. Results 

A. The impact of FONTAR 

Previous studies found that the FONTAR increased R&D expenditures of its beneficiaries and 

improved their innovation profile; both in terms of process and product innovation (see Binelli 

and Maffioli, 2007, and Chudnovsky et al., 2008). These studies, however, were not able to 

estimate the program’s long-term effect on performance variables, such as productivity or firms’ 

growth. To reinforce the evidence on the FONTAR additionality, in this sub-section we provide 

some estimates of such long-run effects. 

Table 4 shows our estimation of equation (6) for different outcome variables. We find that the 

program fostered firms’ growth in terms of employment (4.8%), enhanced probability of 

exporting (3.7pp), and increased the value of exports (9.8%). Consistently, participant firms also 

increased their probability of surviving in the medium-long run (1.6%). The program had also a 

clear positive effect on the average monthly wage paid to employees (0.8%). As shown by the 

last two columns in table 4, this wage increase is clearly related to the workers that stay in the 

firms, confirming the increased productivity hypothesis. In fact, we also find that the wage 

variation due to the change in the skill composition is statistically non-significant.  

[Table 4 here] 

These findings confirm that the FONTAR program has effectively induced “additional” efforts to 

generate and adopt new knowledge which then is reflected in higher growth, exports, and 

productivity. This finding not only shows that the FONTAR beneficiaries were actually able to 

create new and relevant productive knowledge, but also confirms that an exogenous knowledge 

shock – for non-beneficiary firms – actually occurred because of the program.  
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B. The impact on skilled workers who stayed in the firm  

Having identified the firm-level effects, we then explore the program effect on the wages on 

those skilled workers who stayed in the FONTAR beneficiary firms after the project was 

implemented. In addition to provide further evidence about the productivity gains due to the 

program, this estimation will also provide a first measure of the change in the perceived value of 

the skilled workers exposed to the FONTAR projects and, therefore, a first element to 

approximate the relevance of the knowledge generated by the program.  

Table 5 reports regression results for equation (8) using worker-level data. This table compares 

skilled workers who stayed in the firm for at least two years after the firm participation in 

FONTAR with skilled workers with at least two years of tenure in non-beneficiary firms. We find 

(column 1) a 1.4 percent average effect on wages, which almost doubles the effect on wages 

obtained using firm-level data. This difference is consistent with the hypothesis that skilled 

workers are the ones acquiring most of the knowledge related to the design and implementation 

of the innovation projects supported by the program. 

In addition to the average effect, we also estimate how the effect evolves over time. We find that 

the overall effect on wages increases over time, but at a decreasing rate, as shown by the positive 

but decreasing coefficients of the dummy variables in column 2. Also, we find that this effect on 

skilled-worker wages reaches its maximum magnitude (3.3%) during the first two years after 

program support. This short-term effect likely reflects some level of compensation offered to 

skilled workers for the newly acquired knowledge to prevent them from being hired elsewhere. 

On the other end, the long-term effects are more likely related to productivity gains.  

[Table 5 here] 
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Finally, to further explore the motivations behind this wage increase, we also estimate how the 

average effect differs with the level of competition. Results show that the effect on wages 

actually comes from skilled workers operating in concentrated sectors. This finding confirms the 

hypothesis that beneficiary firms operating in concentrated sectors have much higher incentives 

to retain those skilled workers who gained knowledge through the exposure to the FONTAR 

supported projects. That is, in sectors with high concentration beneficiary firms are more willing 

to invest in retaining their skilled workers to prevent negative feedbacks that may occur if 

competitors hire these workers and eventually increase efficiency thanks to the knowledge 

generated by the FONTAR projects. 

C. A wage premium for knowledge carriers 

What happened with the skilled workers who eventually moved? Did they capture part of the 

knowledge created by the program? To answer these questions we estimate equation (9) 

comparing knowledge carriers with other skilled workers who moved from non-beneficiary firms 

where they worked for at least two years.   

Table 6 shows that knowledge carriers actually received higher wages than other skilled moving 

workers, confirming that the knowledge acquired through the participation in the FONTAR 

project has a recognizable market value. In particular, the estimate on wages is 3.5 (column 1), 

i.e. 2.5 times higher than that for skilled workers who did not move (1.4). Moreover, in this case 

the effects are sustained over time (column 2). 

[Table 6 here] 

When analyzing the heterogeneity of the effects by competition level, one may consider whether 

the knowledge carrier moves to a firm in the same or different sector. In general, we find that the 
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knowledge carriers that belong to a firm from a competitive sector receive higher wages than 

those belonging to firms from more concentrated markets (column 3). Movements within the 

same sector are the most relevant. In fact, in a less concentrated market it is more likely that 

FONTAR firms allow workers to move by not offering substantial wage increases and therefore 

workers will find higher wages in other firms. The result on wages reveals a positive and 

significant effect of 7.9%, while in higher concentrated markets the effect is much smaller and 

non-significant—this might reflect that FONTAR firms increase the wage to retain these workers 

and, in consequence, a lower mobility of workers between firms.  

D. Knowledge spillovers through labor mobility 

To identify knowledge spillovers, we estimate equation (7). In this case, we compare firms that 

hired skilled workers from FONTAR beneficiaries (i.e. the knowledge carriers) with firms that 

did not. In this estimation, the dummy variable that controls for whether a firm has been hiring 

skilled workers from any other firms becomes much more relevant.
23

 In fact, because the hiring 

of skilled workers might improve a firm’s performance per se, without controlling for this factor 

we might confound spillovers for improvements due to better matching between worker skills 

and the firm’s needs.   

The results in table 7 show that firms that hired the knowledge carriers actually improved their 

performance in several dimensions. In particular, receiving firms increased employment (3.7%), 

probability of exports (1.7pp), value of exports (9.9%), survival probability (0.7%), and the 

average wage they pay to their employees (0.9%), with magnitudes that are in general lower than 

                                                 

23 We do this by including a dummy variable that takes value one the year after the firm hired skilled workers and so thereafter. 

Although this control variable was also included in the previous estimations, in this case it is clearly more relevant. 
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those obtained by FONTAR firms, but still relevant and statistically significant. From the last 

two columns of Table 7 we observe that the increase in wages is mostly due to an increase in the 

wage of workers that were already in the receiving firms rather than the wage of the newly hired 

skilled workers. This finding reveals that the increase in wages is due to an improvement in 

productivity, rather than to a change in the skill composition. These results confirm the 

hypothesis that the knowledge acquired through the exposure to a FONTAR project has a 

productive value that goes beyond the firm directly supported by the program. 

[Table 7 here] 

An additional source of identification of the spillover effect is the fact that not every firm hired 

the same number of knowledge carriers. We then explore how the spillover effects vary 

according to the share of knowledge carriers to total workers in receiving firms.  

Table 8 shows similar results to those in Table 7. However, instead of a dummy variable 

identifying receiving firms, the main explanatory variable is a continuous variable that measures 

the ratio between the number of knowledge carriers received with respect to the number of 

workers at the moment of receiving the knowledge carriers. Therefore, this variable measures 

how the spillover effects react to changes in the intensity of the knowledge diffusion. As 

expected, the more knowledge carriers received with respect to the number of workers in the 

firms, the higher the spillover effect ceteris paribus. 

[Table 8 here] 

Moreover, given that we observe receiving firms each year after they hire the knowledge carrier, 

we can estimate the way in which the spillover effect takes place in time. Table 9 shows these 

estimates. They provide us with another robustness check to previous findings. In general, the 
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accumulative spillover is increasing in time for all outcome variables under analysis. Of 

particular interest is the dynamics of the effects on the productivity and skill composition terms 

(Figure 2 and 3). In the former case, the spillover effect increases over time at a growing rate, as 

shown by the increasing coefficients of the treatment dummy variables. 

[Table 9 here] 

Finally, we can test whether the effect of hiring a knowledge carrier depends on the level of 

competition of the sector the firm belongs to. Table 10 shows that the effects tend to be higher 

for receiving firms in competitive markets. Results also reveal that the knowledge generated 

through the FONTAR projects seems to be general instead of specific to a particular firm or 

industry. That is, knowledge coming with these new hires is general enough to be applied in 

different firms and to overcome technical barriers between different industries. 

[Table 10 here] 

Summarizing, in terms of our analytical framework our results clearly reject hypothesis two and 

three and provide evidence in favor of hypothesis one. In fact, we find that new relevant 

productive knowledge is generated and diffused through labor mobility. The positive effects of 

the FONTAR program on the long-term performance of supported firms (A>0) confirms that an 

exogenous knowledge shock for non-participants actually occurred. We then find that this new 

productive knowledge is applicable and beneficial to non-participant firms that access to it 

through labor mobility, as shown by their improved long-term performance (D>0). Finally, our 

results also support hypothesis four as the knowledge spillovers are higher in industries with a 

low concentration of firms. At the worker level, our findings show that a wage premium is paid 

to skilled workers exposed to the program either by participant (to retain, B>0) or non-

participant firms (to acquire, C>0) depending on the level of concentration of the industry of 
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reference. These findings further confirm the hypothesis that the productive knowledge 

generated through the innovation program has recognizable market value and is more extensively 

diffused in less concentrated industries. 

6. Conclusions 

The goal of this paper was to study the effects of knowledge spillovers on firms’ performance 

and workers’ wages. For this purpose, we used the participation in an innovation support 

program as an exogenous shock to the knowledge stock of non-participant firms. We pinpointed 

the knowledge diffusion process by tracking the mobility of skilled workers among firms based 

on a 16-years employer-employee panel dataset. We introduced a simple analytical framework 

that outlines a set of hypothesis to be tested in our empirical analysis and to guide the 

interpretation of our findings.  

To test these hypotheses, we organized our empirical analysis at two levels: firm and worker 

level effects. At the firm level, we estimated both the effects of receiving skilled workers that 

previously worked in a firm that participated in the innovation program —knowledge carriers — 

and the effects of receiving the FONTAR support on different measures of firm performance. At 

the worker level, we estimated the effect on wages of staying at the participating firm and the 

effect of moving to non-participant firms. 

We found strong and robust evidence in favor of positive knowledge spillovers through labor 

mobility. In fact, we found that firms that hired knowledge carriers improved their performance 

after hiring them. They increased their size in terms of number of employees, their probability of 

exporting, the value of their exports, their survival probability, and the average wages they pay. 

Consistent with the hypothesis that effects are caused by newly acquired productive knowledge, 
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we also found that these effects were driven by an improvement in firm-level productivity. 

At the worker level, our results are also consistent with the existence of knowledge spillovers. In 

particular, our findings show that skilled workers exposed to the FONTAR program received a 

wage premium, whether they stayed at the beneficiary firm or they moved to another firm. These 

results confirm that skilled workers acquired valuable productive knowledge and that firms were 

willing to pay to either retain or acquire such knowledge depending on the level of competition 

of their market of reference. More specifically, in relatively less concentrated markets non-

beneficiary firms were willing to pay a wage premium to acquire such workers higher than the 

wage premium beneficiary firms would pay to retain them. However, when the market was 

concentrated, beneficiary firms were willing to pay a higher premium than non-beneficiaries to 

prevent these workers from being hired by a competitor who could have threatened their market 

position.  

In synthesis, our findings clearly confirm the hypothesis that valuable productive knowledge was 

generated through the FONTAR program, that this knowledge spilled over through labor 

mobility, and that knowledge diffusion is more intense in less concentrated industries. 

The policy implications of our work are straightforward. First, our findings strongly support the 

most important justification of innovation policy, i.e. the incomplete appropriation of benefits by 

the investors in innovation. Therefore, the use of transfers – in the form or subsidies and 

matching grants – is certainly an advisable approach to promote knowledge creation and increase 

productivity. Second, because externalities in the form of spillover effects are often not precisely 

considered in ex-ante cost-benefit analyses of this kind of instrument, the decision on the 

magnitude of such interventions could be downward biased and lead to design programs that are 

not consistent with their potential social return, most likely undersized and underfunded. 
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Table 1. Hypotheses 

Hypothesis Value of the parameters 

Hypothesis 1 A>0, C>0, D > 0 

Small D implies decay in knowledge transmission. Large D implies 

learning by replication. 
 

Hypothesis 2 A>0, C>0, D=0 

D=0 is total decay in knowledge transmission. 
 

Hypothesis 3 A>0, C=0, D=0 

If B>0 the knowledge generated is non-codifiable. 

If B=0 the knowledge is too specific that has no market value. 
 

Hypothesis 4 A>0, and B>0, C=0, D=0 if high concentration. 

A>0, C>0, D>0 if low concentration (in this case D=0 is also possible if 

there is complete decay as in hypothesis 2) 

 

Table 2. The mobility of workers in FONTAR firms 

 
Years in a FONTAR firm 

   < 2 2 to 4 4 to 6 6 to 8 8 to 10 10 to 12 > 12 Total 

FONTAR firms (856 firms) 
Stay in the firm 54,111 25,473 23,327 18,512 10,798 9,234 56,163 197,618 

Move to other firms 79,691 19,399 10,885 6,704 4,282 3,118 8,105 132,184 

Total 133,802 44,872 34,212 25,216 15,080 12,352 64,268 329,802 

      

  

 Knowledge carriers - 2,099 1,302 1,080 800 657 1,371 7,309 

Receiving firms - 1,120 722 625 456 344 798 4,065 

 

Table 3. Descriptive statistics (1998-2013) 

 
Obs. Mean SD Obs. Mean SD Obs. Mean   SD 

 

FONTAR firms Receiving firms Rest of firms 

Number of employees 9,406 72 96 33,722 103 132 1,574,919 25 47 

= 1 if export 9,406 0.51 0.50 33,722 0.31 0.46 1,574,919 0.07 0.26 

Value of exports, if exports >0 

(thousands of U$S, FOB)  4,820 2,289 6,603 10,372 5,786 44,310 110,822 1,779 25,164 

Average monthly wage (LCU) 9,406 2,918 3,002 33,722 3,476 4,437 1,574,919 2,195 2,567 

“Productivity” term 9,198 519 786 32,537 604 1,353 1,504,528 403 769 

“Skill composition” term 9,198 35 371 32,537 46 690 1,504,528 44 444 

Age 9,406 23 16 33,722 20 18 1,574,919 17 15 

= 1 if multinational 9,406 0.03 0.17 33,722 0.09 0.29 1,574,919 0.01 0.09 

= 1 if hire skilled workers 9,406 0.53 0.50 33,722 0.65 0.48 1,574,919 0.33 0.47 
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Table 4. Long-term effect of FONTAR on participant firms 

Dependent variable: 

# of 

employees 

(in logs) 

1 if 

exporting 

Exports 

(in logs) 

1 if 

survives 

Average 

wage 

(in logs) 

Productivity 

hypothesis 

Skill 

composition 

hypothesis 

 (1) (2) (3) (4) (5) (6) (7) 

  

       Average effect on 

participants 

 

0.048*** 

[0.004] 

0.037*** 

[0.003] 

0.098*** 

[0.017] 

0.016*** 

[0.001] 

0.008*** 

[0.002] 

57.237*** 

[11.145] 

-0.928 

[5.062] 

  

       Number of observations 805,495 805,495 34,563 805,495 805,495 805,495 805,495 

Number of firms 126,080 126,080 6,150 126,080 126,080 126,080 126,080 

R-squared 0.891 0.729 0.839 0.018 0.949 0.337 0.053 

  

       Ho: no serial correlation 

        (rho) 0.006 -0.002 0.001 - 0.002 0.011 -0.012 

p-value 0.077 0.553 0.932 - 0.561 0.820 0.899 

        Notes: (a) OLS estimates of lagged dependent variable model. (b) All regressions include six lags of the outcome variable, year, industry-year, 

province-year, multinational-year, type of society-year dummies, age and age squared, and a dummy variable that takes value one the year after the 

firm hired skilled workers and so thereafter. (c) Robust standard errors in parentheses. (d) ***, **, * statistically significant at 1%, 5%, and 10%. 
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Table 5. Effect on skilled workers who stay in FONTAR firm 

Dependent variable: Wage (in logs) 

 (1) (2) (3) 

Average effect 0.014*** 

[0.003] 

  

Dynamics of effect    

      1st/2nd years    0.033*** 

[0.006] 

 

      3rd/4th/5th years   0.016*** 

[0.005] 

 

      6th/+ years    0.008** 

[0.004] 

 

Effect by competition level 

 

  

      HHi<0.01 

 

 0.015 

  

 [0.011] 

      HHi≥0.01 

 

 0.014*** 

  

 [0.003] 

  

  

Number of observations 9,570,703 9,570,703 9,570,703 

Number of workers 1,523,211 1,523,211 1,523,211 

Number of firms 123,438 123,438 123,438 

R-squared 0.934 0.934 0.934 

  

 

  

Ho: no serial correlation 

 

  

 (rho) -0.002 -0.002 -0.002 

p-value 0.454 0.451 0.454 

  

  
Notes: (a) OLS estimates of lagged dependent variable model. (b) All regressions include four lags of the 

outcome variable, year, industry, province, multinational, and type of society dummies, firm’s age and age 

squared, worker’s sex, age, age squared, and tenure. (c) HHi is the Herfindahl-Hirschman index. (d) 

Clustered standard errors at the firm level in parentheses. (e) ***, **, * statistically significant at 1%, 5%, 

and 10%. 
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Table 6. Effect on knowledge carriers 

 

Notes: (a) OLS estimates of lagged dependent variable model. (b) All regressions include three lags of the outcome variable, 

year, industry, province, multinational, and type of society dummies, firm’s age and age squared, worker’s sex, age, age squared, 

and tenure at the firm of origin. (c) HHi is the Herfindahl-Hirschman index. (d) Clustered standard errors at the firm level in 

parentheses. (e) ***, **, * statistically significant at 1%, 5%, and 10%. 

  

Dependent variable: Wage (in logs) 

 (1) (2) (3) 

Average effect 0.035*** 

[0.008] 

  

Dynamics of the effect    

      1st/2nd years  0.035** 

[0.015] 

 

      3rd/4th/5th years  0.028*** 

[0.007] 

 

      6th/+ years  0.044*** 

[0.009] 

 

  

  

Effect by competition level and 

type of movement   

 

= sector    

      HHi<0.01   0.079*** 

   [0.027] 

      HHi≥0.01   0.018 

   [0.011] 

≠ sector    

     HHi<0.01   0.050*** 

   [0.013] 

     HHi≥0.01   0.035*** 

   [0.011] 

  

  

Number of observations 2,628,556 2,628,556 2,628,556 

Number of workers 358,626 358,626 358,626 

Number of firms 174,413 174,413 174,413 

R-squared 0.902 0.902 0.902 

  

  

Ho: no serial correlation 

 

  

 (rho) 0.002 0.002 0.002 

p-value 0.431 0.431 0.431 
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Table 7. Spillover effects 

Dependent variable: 

# of 

employees 

(in logs) 

1 if 

exporting 

Exports 

(in logs) 

1 if 

survives 

Average 

wage 

(in logs) 

Productivity 

hypothesis 

Skill 

composition 

hypothesis 

 (1) (2) (3) (4) (5) (6) (7) 

        Average spillover effect 

 

0.037*** 

[0.004] 

0.017*** 

[0.002] 

0.099*** 

[0.019] 

0.007*** 

[0.001] 

0.009*** 

[0.002] 

111.496*** 

[14.844] 

18.933*** 

[6.208] 

  

       Number of observations 818,585 818,585 36,596 818,585 818,585 818,585 818,585 

Number of firms 127,921 127,921 6,481 127,921 127,921 127,921 127,921 

R-squared 0.895 0.732 0.843 0.018 0.949 0.334 0.053 

  

       Ho: no serial correlation 

        (rho) 0.006 -0.002 0.000 - 0.002 0.004 -0.011 

p-value 0.067 0.524 0.984 - 0.555 0.929 0.905 

        Notes: (a) OLS estimates of lagged dependent variable model. (b) All regressions include six lags of the outcome variable, year, industry-

year, province-year, multinational-year, type of society-year dummies, age and age squared, and a dummy variable that takes value one the 

year after the firm hired skilled workers and so thereafter. (c) Robust standard errors in parentheses. (d) ***, **, * statistically significant at 

1%, 5%, and 10%. 

 

 

Table 8. Spillover effects by intensity of the knowledge diffusion 

Dependent variable: 

# of 

employees 

(in logs) 

1 if 

exporting 

Exports 

(in logs) 

1 if 

survives 

Average 

wage 

(in logs) 

Productivity 

hypothesis 

Skill 

composition 

hypothesis 

 (1) (2) (3) (4) (5) (6) (7) 

        # of knowledge carriers 

/# of employees (in logs) 

0.006*** 0.003*** 0.018*** 0.001*** 0.001*** 19.698*** 3.765*** 

[0.001] [0.000] [0.004] [0.000] [0.000] [2.762] [1.197] 

        Number of observations 818,585 818,585 36,596 818,585 818,585 818,585 818,585 

Number of firms 127,921 127,921 6,481 127,921 127,921 127,921 127,921 

R-squared 0.895 0.732 0.843 0.018 0.949 0.334 0.053 

        Ho: no serial correlation 

        (rho) 0.006 -0.002 0.000 - 0.002 0.004 -0.011 

p-value 0.068 0.525 0.983 - 0.555 0.929 0.905 

        Notes: (a) OLS estimates of lagged dependent variable model. (b) All regressions include six lags of the outcome variable, year,  industry-year, 

province-year, multinational-year, type of society-year dummies, age and age squared, and a dummy variable that takes value one the year after the 

firm hired skilled workers and so thereafter. (c) Robust standard errors in parentheses. (d) ***, **, * statistically significant at 1%, 5%, and 10%. 
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Table 9. The dynamics of the spillover effect 

Dependent variable: 

# of 

employees 

(in logs) 

1 if 

exporting 

Exports 

(in logs) 

1 if 

survives 

Average 

wage 

(in logs) 

Productivity 

hypothesis 

Skill 

composition 

hypothesis 

 (1) (2) (3) (4) (5) (6) (7) 

 

1st/2nd years 0.051*** 0.021*** 0.075** 0.010*** 0.006** 67.134*** 23.150*** 

  [0.007] [0.003] [0.036] [0.002] [0.003] [21.662] [8.465] 

3rd/4th/5th years 0.032*** 0.017*** 0.110*** 0.007*** 0.008*** 80.745*** 7.510 

  [0.006] [0.003] [0.028] [0.002] [0.003] [21.213] [9.067] 

 6th/+ years 0.029*** 0.013*** 0.107*** 0.005** 0.012*** 191.803*** 28.811** 

 

[0.006] [0.004] [0.031] [0.002] [0.003] [28.336] [12.888] 

                

Observations 818,585 818,585 36,596 818,585 818,585 818,585 818,585 

Number of firms 127,921 127,921 6,481 127,921 127,921 127,921 127,921 

R-squared 0.895 0.732 0.843 0.018 0.949 0.334 0.053 

                

Ho: no serial correlation               

 (rho) 0.006 -0.002 0.000 - 0.002 0.004 -0.011 

p-value 0.068 0.522 0.978 - 0.555 0.929 0.905 

        Notes: (a) OLS estimates of lagged dependent variable model. (b) All regressions include six lags of the outcome variable, year,  industry-year, 

province-year, multinational-year, type of society-year dummies, age and age squared, and a dummy variable that takes value one the year after 

the firm hired skilled workers and so thereafter. (c) Robust standard errors in parentheses. (d) ***, **, * statistically significant at 1%, 5%, and 

10%. 
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Table 10. The spillover effect by competition level 

Dependent variable: 

# of 

employees 

(in logs) 

1 if 

exporting 

Exports 

(in logs) 

1 if 

survives 

Average 

wage 

(in logs) 

Productivity 

hypothesis 

Skill 

composition 

hypothesis 

 (1) (2) (3) (4) (5) (6) (7) 

      = sector        

            HHi<0.01 0.044*** 0.018*** 0.072 0.006* 0.014*** 74.546*** 45.505*** 

 [0.013] [0.006] [0.107] [0.003] [0.005] [23.756] [16.117] 

            HHi≥0.01 0.041*** 0.015*** 0.114*** 0.004 0.003 58.396*** 23.341** 

 [0.008] [0.004] [0.029] [0.003] [0.003] [20.835] [10.349] 

      ≠ sector        

            HHi<0.01 0.052*** 0.017*** 0.160*** 0.012*** 0.007 28.876 44.865** 

 [0.011] [0.006] [0.053] [0.003] [0.005] [26.520] [19.040] 

            HHi≥0.01 0.031*** 0.018*** 0.082*** 0.006*** 0.011*** 149.322*** 12.250 

  [0.005]  [0.003] [0.025]  [0.002] [0.002]  [21.911] [8.344]  

        

Observations 818,585 818,585 36,596 818,585 818,585 818,585 818,585 

Number of firms 127,921 127,921 6,481 127,921 127,921 127,921 127,921 

R-squared 0.895 0.732 0.843 0.019 0.949 0.335 0.054 

                

Ho: no serial correlation               

 (rho) 0.006 -0.002 0.000 - 0.002 0.004 -0.011 

p-value 0.066 0.524 0.990 - 0.540 0.929 0.905 

        Notes: (a) OLS estimates of lagged dependent variable model. (b) All regressions include six lags of the outcome variable, year, industry-year, 

province-year, multinational-year, type of society-year dummies, age and age squared, and a dummy variable that takes value one the year after the 

firm hired skilled workers and so thereafter. (c) HHi is the Herfindahl-Hirschman index. (d) Robust standard errors in parentheses. (e) ***, **, * 

statistically significant at 1%, 5%, and 10%. 

 
 

  



52 

 

Figure 1: Dynamics of private sector employment. Average of monthly rates, 1997-2013 

 
Source: OEDE. 
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Figure 2. Dynamics of the spillover effect on productivity term 

 
 

 

Figure 3. Dynamics of the spillover effect on skill composition term  
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Appendix A: Source of data  

Source I: Administrative records of the National Administration of Social Security (ANSES) 

from the Observatory of Employment and Entrepreneurial Dynamics (OEDE) at the Ministry of 

Labor, Employment, and Social Security in Argentina. Period: 1997-2013. 

Firm-level data: 

 Employment: number of formal employees in October.  

 Average wage: ratio of the sum of monthly wages of formal employees to the number of 

formal employees in October.  

 Age.  

 Location: province. 

 Industry: 2-digit SIC sector level. 

 Type of society: Individual society, SA, SRL, other commercial societies, other 

association forms. 

 Multinational: whether the firm is multinational or not. 

Employer-level data: 

 Wage: monthly wage in October. 

 Age. 

 Gender. 

 Tenure. 

Source II: Administrative records of the General Customs Bureau (DGA) from the Observatory 

of Employment and Entrepreneurial Dynamics (OEDE) at the Ministry of Labor, Employment, 

and Social Security in Argentina. Period: 1998-2013. 

 Exports: value of exports in US$ fob. 

Source III: Administrative records of the FONTAR program. 

 FONTAR: whether the firm receives support or not. 

 Year of support. 
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Appendix B 

 

Table B.1. Number of firms and observations before-after sample restriction 

Period 1998-2013 Population 

Sample after constraints 

FONTAR 

firms  

Receiving 

firms  

Rest of 

firms  

Total 

Number of firms 1,571,969 639 2,480 125,441 128,560 

Observations 10,100,174 9,406 33,722 1,574,919 1,618,047 
Notes: The criteria for dropping firms were: i) firms with less than five employees or more than 500 employees; and, ii) firms 

with less than seven consecutive years in the dataset.  

 
 
 

Table B.2. Number of FONTAR and receiving firms by cohort  

Year 

FONTAR 

firms 

Receiving 

firms 

1998 44 - 

1999 59 - 

2000 42 50 

2001 72 67 

2002 31 71 

2003 79 145 

2004 189 226 

2005 98 217 

2006 25 224 

2007 - 310 

2008 - 300 

2009 - 267 

2010 - 273 

2011 - 330 

Total 639 2,480 

 
 

 


