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Abstract

The comovement between stock and short-term bond markets in US data shows to

be weak measured by the correlation between stock price-dividend ratio and risk-free rate,

as well as the statistics coming from variance decomposition approach. Understanding the

weak comovement is important for both investors and policy makers. We show that several

rational expectation asset pricing models that match stock market volatility are inconsistent

with the weak comovement because stock prices there are fundamental driven. To explain

the weak comovement, we present a small open economy model with "Internally Rational"

agents, who optimally update their subjective beliefs on stock prices given their own model.

Compared with risk-free rate�s variation, agents�subjective beliefs are central in generating

stock price volatility. When testing our model using the method of simulated moments, we

�nd that it can simultaneously match the basic stock and short-term bond market facts, and

the weak comovement between two markets quantitatively.

Key Words: stock price, risk-free rate, learning, correlation, variance decomposition

JEL Class. No.: G12, E44, D84
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"There was no historical evidence for a link between interest rates and share prices.

You would think that when interest rates are higher people would sell stocks, but the �nancial

world just isn�t that simple.�

�Robert Shiller, Financial Times, 13, September, 2015

1. Introduction

This paper has the purpose to study the comovement between stock and short-term bond

markets. A variety of basic stock market facts have been extensively studied during last thirty

years, such as the equity premium, the volatility of stock prices and the predictability of long-

horizon excess return. There are, however, few studies on the comovement between stock and

short-term bond markets. Understanding the comovement actually has a primary importance

for both institutional and individual investors�asset allocation decision. In addition, this

comovement should also be well studied before exploring how to design monetary policy for

stabilizing stock price �uctuation, as the risk-free rate (short-term bond rate) is the channel

for conducting monetary policy.

We �rst show that in US data the comovement between stock and short-term bond

markets is weak. As the �rst measure of the comovement, the correlation between stock

price-dividend ratio and risk-free rate is close to zero. Furthermore, as the second measure of

the comovement, the statistics of variance decomposition approach introduced by Campbell

(1991) and Campbell and Ammer (1993) show that the variance of news about future risk-

free rate contributes little to the variance of the unexpected excess stock return. To explain

latter, the �rst important variable is the news about future excess return, and the second

important one is the news about future dividend growth.

We then investigate whether the weak comovement between stock and short-term bond

markets is consistent with two rational expectation (RE) asset pricing models: the external

habit model (Campbell and Cochrane, 1999) and the long-run risk model (Bansal, Kiku
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and Yaron, 2012). We choose these two models since both of them are consistent with

observed stock market volatility and equity premium. We demonstrate that even though both

models �t the basic stock market facts, the implied correlations between price-dividend ratio

and risk-free rate are strong since these two variables are driven by the same fundamental

variables. Furthermore, both models�variance decomposition results cannot match the data.

The failure of these RE models in matching the comovement facts motivates us to depart

from the standard assumption that agents have perfect knowledge about how to map from

economic fundamentals to equilibrium asset price. We extend Adam, Marcet and Nicolini

(2015) into a small open economy model (exogenous risk-free rate process). We show that

the rational expectation equilibrium of the model is also not consistent with the weak co-

movement between stock and short-term bond markets. Therefore, we introduce "Internally

Rational" agents who don�t know the pricing mapping and optimize their behaviors based on

their subjective beliefs about all variables that are beyond their control. Given the subjec-

tive beliefs we specify, agents optimally update their expectations about stock price behavior

using Kalman �lter. Agents�subjective expectations in�uence equilibrium stock price, and

the realized stock price feeds back into agents�expectations. This self-referential aspect of

the model implies that agents�endogenous expectations are dominant in generating stock

price �uctuation as there is no feedback channel between stock price and exogenous risk-free

rate. Our learning model therefore provides a possible resolution to reproduce the weak

comovement between stock and short-term bond markets.

To quantitatively evaluate all the models we use the method of simulated moments

(MSM) to test them. The simulation results con�rm that our learning model outperforms

two RE models in simultaneously matching basic stock market moments and the moments

measuring the weak comovement between stock and short-term bond markets. Using t-

statistics derived from asymptotic theory we cannot reject the null hypothesis that any of

the individual data moments are the same as the moments in the estimated learning model.

But, the large t-statistics of comovement moments in two RE models imply that they are
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inconsistent with the weak data comovement.

As an additional measure of the comovement between stock and short-term bond mar-

kets for robustness check, we estimate the impulse response of stock price to risk-free rate

shock using vector-autoregression analysis following Gali and Gambetti (2015). The large

con�dence band of data impulse response covering from positive territory to negative one

implies the weak comovement between stock and short-term bond markets. And our learning

model�s impulse response is quiet close to the data one.

The paper is organized in the following manner. Section 2 discusses related literature.

In section 3, we present our empirical �ndings about the comovement between stock and

short-term bond markets. The theoretical model is outlined in the section 4. Section 5

derives explicit expression for rational expectation equilibrium. The dynamic analysis of the

model with "Internally Rational" agents is conducted in section 6. In section 7, we present

the quantitative performance of our model. Section 8 tests the implication of the external

habit model and the long-run risk model. Section 9 focuses on the impulse response analysis.

Finally, section 10 concludes.

2. Literature Review

Some papers have studied the joint behavior of stock and short-term bond markets.

Grossman and Shiller (1981) �rst maintain that representing risk-free rate, the stochastic

discount factor in the certain economy is not the important force in driving stock market

volatility since 1950�s. Based on the variance decomposition approach, Campbell and Ammer

(1993) and Holli�eld, Koop and Li (2003) arrive at the same �nding that the news on future

risk-free rate displays no power in explaining stock market volatility. And recently, Gali

and Gambetti (2015) use the impulse response functions from time-varying VAR model to

explore the response of stock price to exogenous monetary policy shock. The most recent

theoretical paper in the �eld is Gali (2014), which challenges the traditional "lean against
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wind" monetary policy on asset price when allowing the existence of rational bubble. The

bubble component in the equilibrium has to grow at the level of risk-free rate.

There are several general equilibrium models which aim at matching stock market facts.

Jermann (1998) shows that a model with habit formation and capital adjustment costs can

match the historical equity premium and stock market volatility with low dividend growth

volatility. Boldrin, Christiano and Fisher (2001) have a model with habit formation and

a two-sector technology that can explain the equity premium puzzle and volatility puzzle.

It can also generate the low contemporaneous correlation between stock price and output,

and the low contemporaneous correlation between risk-free rate and output. Danthine and

Donaldson (2002) show that with operating leverage, the incomplete market model also

achieves a satisfactory replication of the major stock market stylized facts. However, as

mentioned by Guvenen (2009), one drawback of above three models is that all of them

generate too high volatility of risk-free rate. Hence, most of stock market volatility is due to

extremely volatile risk-free rate in Jermann (1998) and Boldrin, Christiano and Fisher (2001)

(Favilukis and Lin, 2015). Guvenen (2009) present a model with two features: limited stock

market participation and heterogeneity in the elasticity of intertemporal substitution. His

model can have both stock market facts and low volatility of risk-free rate. Even though these

dynamic general equilibrium models can match stock market facts and have time-varying

risk-free rate, none of them talks about the comovement between stock and short-term bond

markets.

Our paper is also related to the papers studying the correlation between stock price and

other variables. Shiller and Beltratti (1992) maintain that the high correlation between real

stock return and nominal long-term bond return is a puzzle. Ermolov (2015) reproduces

this stock-bond return correlation through a consumption-based asset pricing model with

habit utility. Albuquerque, Eichenbaum and Rebelo (2014) present a valuation risk model

to replicate the correlation puzzle that is the weak correlation between stock returns and

measurable fundamentals.
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We contribute relative to the literature by formally studying the weak comovement

between stock and short-term bond markets. We �rst show that two asset pricing models

with rational expectations don�t �t the comovement. Then, we present a learning model

that can match basic stock and short-term bond markets facts and the comovement facts

together.

3. Stylized Facts

In this section we report the stylized facts regarding the stock and short-term bond

markets, and the comovement between them. The measures considering the comovement

here are the correlation between stock price-dividend ratio and risk-free rate, and variance

decomposition statistics based on Campbell (1991) and Campbell and Ammer (1993). The

data sample period is from 1927:2 to 2012:2 in quarterly frequency. All of the variables here

are in real term, de�ated using US CPI.

Table 1 contains some of the well-known stock and short-term bond markets facts in-

cluding the mean and standard deviation of stock return, price-dividend ratio, dividend

growth rate, and risk-free rate, the persistence of price-dividend ratio, and the predictability

of price-dividend ratio on future �ve-year�s stock excess return. The second column shows

the point estimates of these statistics, and the third column has the standard errors of point

estimates. We denote these stylized facts as our Fact 0. It is well-known that a simple RE

asset pricing model has a hard time in matching Fact 0. And, both Campbell and Cochrane

(1999) and Adam, Marcet and Nicolini (2015) can match most of the statistics here. But

since the risk-free rates in both models are the constants, they fail in matching the standard

deviation of risk-free rate.

One would expect that the higher risk-free rate lower the discounted sum of future

dividends under RE models. Hence, stock price should negatively co-move with risk-free

rate. The correlation observed in the data, however, is weak rather than strong as displayed
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Statistics Estimate SE
Quarterly mean stock return Ers 2.25 0.39
Mean PD ratio EPD 123.91 21.25
Std.dev. stock return �rs 11.44 2.69
Std.dev. PD ratio �PD 62.42 17.54
Autocorrel. PD ratio �PD;�1 0.97 0.02
Excess return reg. coe¢ cient c25 -0.0038 0.0013
R2 of excess return regression R25 0.1772 0.0828
Mean risk-free rate ER 0.15 0.19
Std.dev. risk-free rate �R 1.27 0.27
Mean dividend growth E�D=D 0.41 0.18
Std. dev. dividend growth ��D=D 2.88 0.80

Table 1: The Statistics Regarding the Stock and Short-term Bond Markets

Statistics Estimate SE
corr(PD;R) 0.069 0.12

Table 2: The Correlation between Price-dividend Ratio and Risk-free Rate

in the Table 2. The point estimate of quarterly correlation between price-dividend ratio and

risk-free rate is close to zero, and the large standard deviation of the correlation means that

we cannot reject that the correlation is zero. The weak correlation between price-dividend

ratio and risk-free rate is our Fact 1.

In addition to the correlation, the statistics of variance decomposition can measure

the e¤ect of risk-free rate on the excess stock return controlling the dividend and equity

premium components. The variables eed in the Table 3 represents the news about future
dividend growth, eer represents the news about future risk-free rate, and eee represents the
news about future excess return. The three statistics in the �rst column Table 3 are the

ratios of the variances of above three variables to the variance of ee, where ee is the unexpected
excess stock return. Appendix A.2 contains the details of variance decomposition approach.

As Campbell (1991) and Campbell and Ammer (1993) we can interpret the values in the

second column Table 3 as: 21% of the variance of unexpected excess stock return ee can be
accounted by the variance of news about future dividend growth eed. The value for the news
about future risk-free rate eer is just 4%, but more than half of the variance of unexpected
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Statistics Estimate SE
V ar(eed) 21.1% 0.242
V ar(eer) 4.4% 0.026
V ar(eee) 50.8% 0.257

Table 3: Variance Decomposition of Excess Stock Return

excess return can be explained by the news of future excess return eee as value in the fourth
row, second column. These point estimates are similar to the ones in the Campbell (1991),

but the standard deviations are larger because instead of monthly frequency the quarterly

frequency here leads us to have a smaller sample size1. The variance decomposition results

are our Fact 2. Again, it is also di¢ cult for a simple RE model to match Fact 2 since most

of the variance of ee should be explained by eed and eer instead of eee.
To summarize, we can conclude that the comovement between stock and short-term

bond markets is weak according to our Fact 1 and 2. 2

4. The Model

To understand our Fact 0, Fact 1 and Fact 2, we extend Adam, Marcet and Nicolini

(2015) asset pricing model with "Internally Rational" agents who hold subjective beliefs

about stock price behavior and will be completely rational given their beliefs (Adam and

Marcet, 2011). As shown in Adam, Marcet and Nicolini (2015), the presence of such beliefs

can generate stock price to �uctuate around its fundamental value. In addition to subjective

beliefs, there are two di¤erences in our model compared to their model. Our model �rst is a

small open economy with exogenous risk-free rate, and it has one collateral constraint. The

exogenous risk-free rate allows us to have time-varying risk-free rate instead of constant one

in Adam, Marcet and Nicolini (2015). And the collateral constraint is important for us to

obtain analytical solution for equilibrium stock price.

1Bernanke and Kuttner (2005) and Balke, Ma and Wohar (2015) also �nd very large standard errors for
the stock price decomposition estimation.

2The Appendix A.3 shows the robustness of our Fact 1 and Fact 2.
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4.1 Model Environment

A unit of stock with dividend claim Dt can be traded in the competitive stock mar-

ket. In addition to Dt, each agent receives an endowment Yt of perishable consumption

goods. Following traditional setting in asset pricing literature, we specify the dividend and

endowment growth rates as i.i.d. lognormal processes

Dt

Dt�1
= a�dt ; log �

d
t � iiN(�s

2
d

2
; s2d)

Yt
Yt�1

= a�ct ; log �
y
t � iiN(�

s2y
2
; s2y)

where endowment and dividend growth rates share the same mean a, and (log �dt ; log �
y
t ) is

joint normal distributed with correlation between them equaling to �y;d = 0:2 (Campbell

and Cochrane,1999). Since consumption process is considerably less volatile than dividend

process, the parameters�values of standard deviations are chosen as sy = 1
7
sd.

The economy is populated by a unit mass of in�nite-horizon agents. We model each

agent i 2 [0; 1] to have the same standard time-separable CRRA utility function and the

same subjective beliefs. This fact, however, is not the common knowledge among agents.

The speci�cation of agent i�s expected life-time utility function is

EP0

1X
t=0

�t
(Cit)

1�

1� 
(1)

where Cit is the consumption demand of agent i, � denotes the time discount factor, and

 is the parameter governing risk-aversion. Instead of the objective probability measure,

expectation is formed using the subjective probability measure P that describes probability

distributions for all external variables. Section 4.2 contains more details.

Agent�s choices are subjected to standard budget constraint as following

Cit +Rt�1b
i
t�1 + PtS

i
t = (Pt +Dt)S

i
t�1 + bit + Yt (2)
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where bit is the amount of borrowing at time t, S
i
t the new units of stock agent i buys in

period t, and Rt�1 as exogenous real risk-free rate on maturing loans bit�1.

We introduce one collateral constraint. The amount of borrowing is subjected to the

collateral constraint as Kiyotaki and Moore (1997) in the form 3

bit 5 �
EPt (Pt+1 +Dt+1)

Rt
Sit (3)

Besides transferring income across time, the stock Sit plays the role of collateral. The

collateral constraint implies that new loans bit should be smaller than a �xed share of expected

discounted value of tomorrow�s stock. The parameter � measures the share of stock value

that can serve as collateral.

To close the small open economy model, being similar to Bianchi (2013) we specify

risk-free rate process to capture its mean, variance and persistence.

Rt =

8><>: (1� �R)R + �RRt�1 + �Rt if Rt < 1
'

1
'

otherwise
(4)

where ' � �EPt (
Cit+1
Cit
)�, �Rt � N(0; �2R) and is orthogonal to dividend and consumption

shocks. The upper limit for the risk-free rate can guarantee the binding of collateral con-

straint to avoid the di¢ culty of occasionally binding constraint, and it matters little for

altering the moments of risk-free rate because quantitative analysis con�rms that risk-free

rate seldom hits the limit in our model.

4.2 Probability Space

This subsection explicitly describes the general joint probability space of the external

variables. In the competitive economy, each agent considers the joint process of endowment,

dividend, risk-free rate, and stock price fYt; Dt; Rt; Ptg as exogenous to his decision prob-
3Following Adam, Pei and Marcet (2011), this speci�cation implicitly assumes that risk-neutral foreigners

have the same beliefs as domestic agents
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lem. Rational expectations imply that agents exactly know the mapping from a history of

endowment Yt, dividend Dt, and risk-free rate Rt to equilibrium stock price Pt. Stock price

hence just carries redundant information. But if we relax rational expectation assumption,

as shown in Adam and Marcet (2011) agents don�t know such mapping because of the non-

existence of common knowledge on agents� identical preferences and beliefs. As a result,

equilibrium stock price Pt should be included in the underlying state space. We then de�ne

the probability space as (P ;B;
) with B denoting the corresponding ��Algebra of Borel

subsets of 
 and P denoting the agent�s subjective probability measure over (B;
). The

state space 
 of realized exogenous variables is


 = 
Y � 
D � 
R � 
P

where 
X is the space of all possible in�nite sequences for the variable X 2 [Y;D;R; P ].

Thereby, a speci�c element in the set 
 is an in�nite sequence ! = fYt; Dt; Rt; Ptg1t=0. The

expected utility with probability measure P is de�ned as

EP0

1X
t=0

�t
(Cit)

1�

1� 
�
Z



1X
t=0

�t
Cit(!)

1�

1� 
dP(!) (5)

Agent i makes contingent plans for endogenous variables Cit ; S
i
t ; b

i
t according to the

policy function mapping in the following

(Cit ; S
i
t ; b

i
t) : 


t ! R3

where 
t represents the set of histories from period zero up to period t.

4.3 Optimality Conditions

We here derive optimal conditions characterizing agent i�s decisions from his maxi-

mization problem. First order conditions are su¢ cient and necessary for agent�s optimality
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because of the concavity of objective function and convexity of feasible set.

Agent i should maximize his expected lifetime utility (1) subject to the budget constraint

(2) and collateral constraint (3). The Lagrangian of agent�s problem can be explicitly written

as

max
fCt;St;btg

EP0

1X
t=0

�t(
(Cit)

1�

1� 
� �t(C

i
t +Rt�1b

i
t�1 + PtS

i
t � (Pt +Dt)S

i
t�1 � bit � Yt)

+�t(�E
z
t (Pt+1 +Dt+1)S

i
t �Rtb

i
t))

where �t and �t are two Lagrangian multipliers, S�1, b�1 as given initial conditions, and

agent i is price-taker for Pt.

The agent i�s �rst order conditions can be expressed as

Cit : (C
i
t)
� � �t = 0 (6)

Sit : ��tPt + �EPt (�t+1(Pt+1 +Dt+1)) + �E
P
t �t(Pt+1 +Dt+1) = 0 (7)

bit : �t = �RtE
P
t �t+1 + �tRt & �t(�E

P
t (Pt+1 +Dt+1)S

i
t �Rtb

i
t) = 0 (8)

After substituting �t in equation (8) using the expression in equation (6), we can have

(Cit)
� = �RtE

P
t (C

i
t+1)

� + �tRt (9)

The binding collateral constraint can lead us to have the non-zero multiplier �t for all t

as

�t =
(Cit)

� � �RtE
P
t (C

i
t+1)

�

Rt
(10)
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Substitute �t in equation(10) back into equation (7), we have

�(Cit)�Pt + �EPt ((Cit+1)�(Pt+1 +Dt+1)) + �
(Cit)

� � �RtE
P
t (C

i
t+1)

�

Rt
EPt (Pt+1 +Dt+1) = 0

(11)

Finally, the feasibility condition of the economy is

Ct = Yt +Dt + bt �Rt�1bt�1 (12)

where Ct and bt are aggregate consumption and loan.

4.4 Approximation

In the intent of having analytical solution for equilibrium stock price Pt, we rely on sev-

eral approximations and one assumption. First, aggregate consumption Ct is not necessarily

equal to aggregate endowment Yt according to the feasibility condition (12). Second, with

agent�s subjective beliefs we may not have EPt (C
i
t+1) 6= EPt (Ct+1) even though in the equi-

librium Cit+1 = Ct+1 holds ex-post. To understand the reason, let us consider that EPt (Ct+1)

depends on expected stock price only through the channel of bt. At the same time, apart

from the channel of loan bit future stock price can also a¤ect E
P
t (C

i
t+1) through capital gains

from holding stock. One hence cannot routinely substitute individual consumption Cit by

aggregate one Ct. We, however, can rely on the approximations as

Ct ' Yt (13)

EPt [(
Cit+1
Cit

)�(Pt+1 +Dt+1)] ' EPt [(
Ct+1
Ct

)�(Pt+1 +Dt+1)] (14)

EPt [(
Cit+1
Cit

)�] ' EPt [(
Ct+1
Ct

)�] (15)

To make these approximations reasonable, we require the following assumption similar

to Assumption 1 in Adam, Marcet and Nicolini (2015):
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Assumption 1: We assume that Yt is su¢ ciently large and that EPt (Pt+1+Dt+1) < M

for some M < 1: Then, expected capital gains from holding stock should be su¢ ciently

small compared to Yt given �nite asset bounds S; S.

Under this assumption, the approximation (14) and (15) hold with su¢ cient accuracy.

In addition, because of the collateral constraint aggregate loan bt is smaller than the expected

value of tomorrow�s stock EPt (Pt+1+Dt+1)St. Thereby, with Assumption 1 we can conclude

that bt is also small enough compared to Yt. According to equation (12), when bt and Dt are

small the approximation (13) also holds with su¢ cient accuracy.

After rearranging terms in equation (11) and substituting related terms using three

approximations from equation (13) to (15), we have the key pricing equation as

Pt = EPt �t(Pt+1 +Dt+1) (16)

where �t � �(Yt+1
Yt
)� + �( 1

Rt
� ').

5. Rational Expectation Equilibrium

In this section we present the rational expectation equilibrium of our model and show

that its implications cannot match Fact 1 and 2. This is useful because it motivates us

to show that how a small departure from RE contributes to explain data in Section 6.

Rational expectation implies that agent�s subjective beliefs coincides with the objective ones.

Following the routine calculation and imposing the non-bubble condition, we can express the

equilibrium stock price in rational expectation from equation (16) as

PREt = [
�a1���

1� �a1���
+ Et

1X
j=1

�jaj
j�1Y
k=0

(
1

Rt+k
� ')]Dt (17)
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Statistics US Data RE
Estimate SE Statistics

corr(PD;R) 0.069 0.12 -1.000
V ar(eed) 21.2% 0.242 96.2%
V ar(eer) 4.4% 0.026 17.0%
V ar(eee) 50.8% 0.257 5.0%

Table 4: Simulated Statistics of Rational Expectation Equilibrium

where

�� = E[(�yt+1)
��dt+1]

= e(1+)
s2y
2 e��y;dsysd

The rational expectation equilibrium �rst is inconsistent with Fact 0 including equity

premium, stock market volatility even though not reported here. Then given the risk-free

rate process, we have Et[Rt+k] = (1 � �kr)R + �krRt for any k. The analytical solution of

price-dividend ratio as equation (17) directly displays that P
RE
t

Dt
is highly correlated with Rt

since PREt
Dt

is a function only of risk-free rate. The RE equilibrium is likely to miss Fact 1.

And the volatility of stock return here mainly comes from the variation of dividend growth

and risk-free rate such that the model is also likely to miss Fact 2.

In order to con�rm the failure of the rational expectation equilibrium, we implement

quantitative analysis through simulating the model and calculate model�s corresponding sta-

tistics for Fact 1 and Fact 2. The parameters values here are the same as the one from

estimating learning model, which are contained in Table 5 and 7. Table 4 presents the

simulation results. Column 4 of Table 4 shows that the rational expectation equilibrium

generates the strong comovement between stock and short-term bond markets. The corre-

lation between price-dividend ratio and risk-free rate is -1, and the news of future dividend

growth and risk-free rate instead of excess return contribute too much to the �uctuation of

unexpected excess return. The reason of the failure is that stock prices here are only driven

by exogenous state variables dividend Dt and risk-free rate Rt.
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6. Equilibrium Analysis with Learning

6.1 Agent�s Subjective Beliefs

Now we allow a small deviation from rational expectation assumption such that agents

with uncertainty formulate their own joint probability distribution P di¤erent from the

objective one. And Adam and Marcet (2011) shows that the joint distribution P of any agent

without common knowledge about other agents�beliefs and preferences could delink stock

price to the expectations of the discounted sum of dividends. The present-value expression

of stock price Pt as equation (17) accordingly doesn�t hold, and just �rst-order condition for

stock price as equation (16) can hold. Then, agents should have their own beliefs on the

behavior of stock price based on subjective distribution P. Speci�cally, we can de�ne the

subjective expectation of risk-adjusted stock price growth �t as

�t � EPt [(
Yt+1
Yt
)�

Pt+1
Pt
] (18)

and subjective expectation of non-adjusted stock price growth mt as

mt � EPt [
Pt+1
Pt
] (19)

Then, equation (16) together with these two de�nitions implies equation (20) which maps

from subjective price beliefs �t and mt to realized one Pt4

Pt =
�a1��� + �a( 1

Rt
� ')

1� ��t � �( 1
Rt
� ')mt

Dt (20)

Equation (20) analytically suggests that learning equilibrium provides a potential reso-

lution to match Fact 1 and Fact 2. Price-dividend ratio in learning equilibrium, in addition

to risk-free rate Rt, also depends on agents�s subjective beliefs �t and mt. If agents have

4Following Adam, Marcet and Nicolini (2015), we assume that agents know the true process for dividend
growth and endowment growth.
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a high subjective expectation on stock price growth, say high �t and mt, their increasing

holding of stock drives up stock price Pt today. Conversely, Pt will decrease if agents are

pessimistic and have low �t and mt.

6.2 Beliefs Updating Rule

We now fully specify the subjective probability distribution P and derive the optimal

belief updating rule for subjective beliefs �t and mt. Similar to the arguments in Adam,

Marcet and Nicolini (2015), the true process for risk-adjusted stock price growth can be

modeled as the sum of a persistent component and of a transitory component

(
Yt+1
Yt
)�

Pt+1
Pt

= e�t + ��t ; �
�
t � iiN(0; �2�;�)

e�t = e�t�1 + ��t ; �
�
t � iiN(0; �2�;�)

One way to justify this process is that it is compatible with RE. According to equation

(17), the rational expectation of risk-adjusted price growth is Et[(
Ct+1
Ct
)� Pt+1

Pt
] = a1��� when

risk-free rate Rt is not random and equals to its unconditional mean R: Hence, the previous

setup encompasses the rational expectation equilibrium as a special case when agents believe

�2�;� = 0 and assign probability one to e
�
0 = a1���.

Then, we allow for a non-zero variance �2�;�: Agents can only observe the realizations of

risk-adjusted growth (the sum of persistent and transitory components), hence the require-

ment to forecast the persistent components e�t calls for a �ltering problem. The priors of

agents�beliefs can be centered at their rational expectation values and given by

e�0 � N(a1���; �
2
0;�)

and the variances of prior distributions should be set up to equal with steady state Kalman
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�lter uncertainty about e�t

�20;� =
��2�;� +

q
�4�;� + 4�

2
�;��

2
�;�

2

Then agents�posterior beliefs will be

e�t � N(�t; �
2
0;�)

And the optimal updating rule implies that the evolution of �t is taking the form of

�t = �t�1 +
1

�
((
Yt�1
Yt�2

)�
Pt�1
Pt�2

� �t�1) (21)

where � =
�2�;�+

p
�4�;�+4�

2
�;��

2
�;�

2�2�;�
given by optimal (Kalman) gain. And agents think that

non-adjusted stock price growth mt is uncorrelated with endowment growth. Hence, under

agents�knowledge of true endowment growth and subjective expectation of risk-adjusted

stock price growth �t their subjective expectation of non-adjusted stock price growth mt is

pinned down as

mt = �t=(a
��) (22)

where � = exp(s2y=2 + 
2s2y=2).

5

The adaptive learning scheme as equation (21) and (22) as well as pricing equation (20)

could generate a high stock markets volatility coming from the feedback channel between

stock price Pt and subjective beliefs �t, mt. According to equation (20), a high (low) �t and

mt will lead to a high (low) realized stock price. This will reinforce the subjective beliefs

to induce a even higher (lower) �t+1 and mt+1 through equation (21) and (22) leading to

much higher (lower) stock price so on. The self-referential aspect of the model is the key

for producing stock market volatility. But there is no feedback channel between stock price

5In the Appendix A.4 we consider the case that agents use Kalman �lter to update their subjective beliefs
of non-adjusted price growth mt and pin down �t.
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Pt and risk-free rate Rt. Therefore, the learning model here has the ability to produce the

weak comovement between stock and short-term bond markets as found in the data.

Finally, in order to avoid the explosion of stock price Pt we replace agents�subjective

belief �t by !(�t), the projection facilities.
6

7. Quantitative Analysis

This section evaluates the quantitative performance of our learning model. Fact 0, Fact

1 and Fact 2 give the target moments that should be matched. We formally estimate and

test the model using the method of simulated moments (MSM) that provides a natural test

on individually matching moments.

7.1 MSM Estimation and Statistical Test

In this subsection we outline the MSM approach. Appendix A.6 discusses about the

details of it. We �rst give value to the coe¢ cient of relative risk-aversion , and calibrate the

collateral ratio �, the mean and the persistence of risk-free rate R, �R
7. Table 5 contains the

values for these four parameters. Apart from these, there are �ve free parameters remaining,

comprising the discount factor �, the gain parameter �, the mean and standard deviation of

dividend growth a and ��D=D, and the standard deviation of risk-free rate �R. They can be

summarized into parameter vector as

� � (�; �; a; ��D=D; �R)

These �ve free parameters will be chosen to match all the sample moments describing

6We present the details of projection facilities in Appendix A.5.
7Following Adam, Kuang and Marcet (2011), we calibrate � as the averaged ratio of US current account

de�cit to the change of US stock market value. � equals 0.1 using this method. As a robust check, we also
calibrate � following Bianchi (2013). � is calibrated as the averaged ratio of household�s liabilities to their
assets. The data is from Table B.101, the �ow of funds database. The sample is from 1945 to 2006. In this
second method, � = 0:115. R, �R are calibrated as the sample mean and sample autocorrelation of risk-free
rate. The sample is the one in section 3.
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Fact 0, Fact 1, and Fact 2. The moments are

[Ers; EPD; �rs; �PD; �PD;�1; c
2
5; R

2
5; ER; �R; ED=D; �D=D, (23)

cov(R;PD); var(eed;t+1)=var(eet+1); var(eer;t+1)=var(eet+1); var(eee;t+1)=var(eet+1)]

The �rst eleven moments are Fact 0 moments widely studied in the literature, and the

last four moments are Fact 1 and Fact 2 moments. The MSM parameter estimate b�T is
de�ned as b�T � argmin



[bST � eS(�)]0 b��1S;T [bST � eS(�)] (24)

where bST denotes all of the sample moments in (24) that will be matched in the estimation,
with T the sample size. Furthermore, let eS(�) denote the moments implied by the model
for some parameter value �. The MSM estimate b�T chooses the model parameters such
that the model implied moments eS(�) �t the observed moments bST as close as possible in
terms of a quadratic form with weighting matrix b��1S;T . The optimal weight matrix b�S;T
could be estimated from the data in a standard way. According to the standard results of

MSM approach (Du¢ e and Singleton, 1993), the estimate b�T is consistent and e¢ cient.
The MSM estimation approach provides an overall test of the model. Under the null

hypothesis that the model is correct, we have

cWT � T [bST � eS(�)]0 b��1S;T [bST � eS(�)] � �2s�5 as T !1 (25)

where s is the number of moments in bST and the convergence is in distribution. We can also
obtain the asymptotic distribution for t-statistics that indicate which moment is matched.
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7.2 Estimation and Simulation Results

Table 6 and 7 present the estimation outcomes when the value of risk-aversion coe¢ cient

is given at  = 10. Table 6 contains the well-known Fact 0 moments for matching, and Table

7 displays the results of matching Fact 1 and Fact 2 comovement moments. In both tables,

column two and three report the values of the moments from US data and the estimated

standard error for each of these moments. Columns four and �ve then show the model

moments and the t-statistics when estimating the model using all the moments in (23).

The estimated model in the �rst can quantitatively replicate Fact 0 moments: the

volatility of stock return �rs, the volatility, persistence, and the predictability of price-

dividend ratio �PD; �PD;�1, c
2
5, and R

2
5, the high stock return Ers, and the low mean and

volatility of risk-free rate ER and �R as well as the mean and standard deviation of dividend

growth E�D=D and ��D=D. All of the t-statistics in Table 6 have an absolute value below or

close to two. Therefore, our model are consistent with Fact 0 moments and improve Adam,

Marcet and Nicolini (2015) on matching the equity premium.

In addition to match Fact 0 moments, our learning model has the ability to simulta-

neously generate the low comovement between stock and short-term bond markets. The

correlation between price-dividend ratio and risk-free rate corr(PD;R) is much closer to

the data relative to rational expectation models, and the t-statistics of it is around two.

Hence we can match Fact 1. Furthermore, the three t-statistics, all of which are around 1 in

absolute value, for variance decomposition moments con�rm the replication of Fact 2. The

t-statistics show a very good individual matching of all moments

We report the p-value for the statistics cWT as the measure for the overall goodness of

�t in the last row of Table 7. The statistics is computed using equation (25). The zero

p-value implies that the overall �t of the model is rejected, even if all individual moments

are matched. Therefore, the overall goodness of �t test is considerably more stringent, the

same as claimed in Adam, Marcet and Nicolini (2015).
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Parameters Value
 10
� 0.1
�R 0.5
R 1.0015

Table 5: Some Parameters Values for Learning Model

US data Model
Moment SE Moment t-stat

Ers 2.25 0.39 2.08 0.44
EPD 123.91 21.25 88.94 1.65
�rs 11.44 2.69 12.30 -0.32
�PD 62.42 17.54 62.64 -0.01
�PD;�1 0.97 0.02 0.93 1.72
c25 -0.0038 0.0013 -0.0060 1.72
R25 0.1772 0.0828 0.1108 0.80
ER 0.15 0.19 0.12 0.15
�R 1.27 0.27 0.71 2.04
E�D=D 0.41 0.18 0.03 2.10
��D=D 2.88 0.80 2.22 0.82

Table 6: Basic Stock and Short-term Bond Market Moments from MSM

US Data Model
Moment SE Moment t-stat

corr(PD;R) 0.069 0.12 -0.170 1.92
V ar(eed) 21.1% 0.242 39.7% -0.77
V ar(eer) 4.4% 0.026 1.7% 1.01
V ar(eee) 50.8% 0.257 56.1% -0.21
Discount factor b�T 0.9886
Gain coe¢ cient 1=b�T 0.0085
p-value of cWT 0.000%

Table 7: Comovement Moments from MSM
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8. Two Asset Pricing Models with Rational Expecta-

tions

In this section we replicate two asset pricing models with rational expectations: the

external habit model of Campbell and Cochrane (1999) and the long-run risk model of

Bansal, Kiku and Yaron (2012), and study their implications on the joint behavior between

stock and short bond markets. In section 5, we have shown that the rational expectation

equilibrium of our asset pricing model missing Fact 0 is inconsistent with Fact 1 and Fact 2.

But two RE models we consider here have ability to match Fact 0.

8.1 The external habit model

The representative agent maximizes his life-time utility as

U = E
1X
t=0

�t
(Ct �Xt)

1� � 1
1� 

where Ct is consumption at period t and Xt denotes external habit. Instead of modeling the

exogenous process for Xt, we can de�ne surplus consumption ratio as

St =
Ct �Xt

Ct

The log surplus consumption ratio st � log(St) evolves according to a heteroskedastic

AR(1) process

st+1 = (1� �)s+ �st + �(st)[�ct+1 � E(�ct+1)]

The sensitivity function �(st) is speci�ed as

�(st) =

8><>: (1=S)
p
1� 2(st � s)� 1, st � smax

0 , st � smax

9>=>;
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where S is set to be

S = �

r


1� ��B=

and

smax = s+
1

2
(1� S

2
)

The growth of consumption and dividend follow lognormal process

�ct+1 = g + �t+1

�dt+1 = g + !t+1

where �t+1 and !t+1 are two i.i.d. normally distributed variables with mean zero and vari-

ances �2 and �2!.

Then, the equilibrium price-dividend ratio as the function of state variable st satis�es

Pt
Dt

(st) = Et[Mt+1
Dt+1

Dt

[1 +
Pt
Dt

(st+1)]]

And the risk-free rate can be calculated as8

Rt = Rf �B(st � s)

where Mt+1 is stochastic discount factor, Rf and B are parameters.

8.2 The long-run risk model

The representative agent with recursive preference maximizes his life-time utility given

by

Vt = [(1� �)C
1�
�

t + �(Et[V
1�
t+1 ])

1
� ]

�
1�

8The risk-free rate is chosen as a constant in Campbell and Cochrane (1999). We introduce a time-varying
risk-free rate here according to the method in their working paper version.
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The variable � is de�ned as

� � 1� 

1� 1= 

where the parameters  and  represent relative risk aversion and the elasticity of intertem-

poral substitution. The consumption and dividend have the following joint dynamics

�ct+1 = �c + xt + �t�t+1

xt+1 = �xt + 'e�tet+1

�2t+1 = �2 + �(�2t � �2) + �wwt+1

�dt+1 = �d + �xt + ��2t�t+1 + '�tud;t+1

The solutions for price-dividend ratio and risk-free rate are

log(
Pt
Dt

) = A0;d + A1;dxt + A2;d�
2
t

Rft = A0;f + A1;fxt + A2;f�
2
t

where A0;d, A1;d, A0;f , A1;f , A2;d, A2;f are all the constants as the functions of only para-

meters.

8.3 Evaluating the models

To evaluate the quantitative performance of these two RE models and to be consistent

with the estimation method of our learning model, we also adopt the MSM approach to

estimate models�parameters. The moments chosen for matching are the same as the ones

in section 7.1. The estimated parameters vector for the external habit model is

�EH � (�;�; g; �)
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where � is the discount factor, � is the persistency of surplus consumption, g and � are the

mean and standard deviation of consumption growth. And we �x the risk aversion coe¢ cient

 at 2 as Campbell and Cochrane (1999) do. Analogously, the estimated parameters vector

for the long-run risk model is

�LRR � (�; ; �d; 'd)

where � is the discount factor,  is the intertemporal elasticity of substitution, �d is the mean

of dividend growth, and 'd governs the most of standard deviation of dividend growth. We

�x other parameters at values as Bansal, Kiku and Yaron (2012) do. Table 8 contains the

parameter values for the external habit model, and table 9 for the long-run risk model .

We simulate both models at monthly frequency and aggregate them to quarterly data.

Table 10 displays the estimation outcomes for the external habit model, and Table 11 for the

long-run risk model. The fourteenth row in both tables present our Fact 1. The correlations

between price-dividend ratio and the risk-free rate in two models are counterfactually high

because both of them are the functions of the same exogenous fundamental variables such

as st in the external habit model and xt as well as �t in the long-run risk model. In contrast,

price-dividend ratio in the learning model, in addition to the fundamental variables, is also

driven by agent�s endogenous subjective beliefs. So the correlation there is weak.

The last three rows in Table 10 and 11 demonstrate that the implications of both models�

variance decomposition are not consistent with the data. The variance of news about future�s

risk-free rate indeed contributes little to the variance of unexpected excess return in both

two models. The channel yet is not correct. In the external habit model the variance of news

about future�s excess return contributes considerably larger than the data says, as the risk-

aversion there is very volatile and persistent. And in the long-run risk model the variance of

news about future�s dividend growth can explain about 100% of the variance of unexpected

excess return because of the high sensitivity of agent to the long-run risk of fundamentals.

However, in the data dividend news can only account for 20 percentage. Conclusively, both

models miss our Fact 1 and Fact 2.
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Preference �  �
0.9914 2 0.9844

Consumption g � �w
0.0016 0.0023 0.0161

Table 8: Parameters Choices for the External Habit Model

Preference �   
0.9997 10 1.4980

Consumption � � �e
0.0015 0.975 0.038

Dividend �d � � 'd
0.0050 2.5 2.6 2.9553

Volatility � � �w
0.0072 0.999 0.0000028

Table 9: Parameters Choices for the Long-Run Risk Model

9. Vector-Autoregression Analysis

Gali and Gambetti (2015) provide evidence about the response of real stock price to

exogenous monetary policy shock using vector-autoregression (VAR) model. Here we denote

this impulse response from VAR analysis as an additional measure of the comovement be-

tween stock and short-term bond markets. Being di¤erent from Gali and Gambetti (2015)

we estimate the response of stock price to real risk-free shock instead of nominal risk-free

rate shock. If money is neutral, nominal risk-free rate can only in�uence real stock price

through real risk-free rate. As Gali and Gambetti (2015), the state space of our VAR model

includes (log) output yt, (log) dividend dt, (log) the risk-free rate rt, and (log) stock price

pt. We de�ne the state space

xV ARt � [�yt;�dt; rt;�pt]0

where � means �rst di¤erence. The VAR model is

xV ARt = A1x
V AR
t�1 + A2x

V AR
t�2 + A3x

V AR
t�3 + A4x

V AR
t�4 + ut
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US data External Habit
Moment SE Moment t-stat

Ers 2.25 0.39 3.05 -2.06
EPD 123.91 21.25 74.66 2.32
�rs 11.44 2.69 12.07 -0.23
�PD 62.42 17.54 26.17 2.07
�PD;�1 0.97 0.02 0.95 0.85
c25 -0.0038 0.0013 -0.0032 -0.46
R25 0.1772 0.0828 0.4639 -3.46*
ER 0.15 0.19 0.32 -0.84
�R 1.27 0.27 0.26 3.68*
E�D=D 0.41 0.18 0.47 -0.32
��D=D 2.88 0.80 2.79 0.11
corr(PD;R) 0.069 0.12 -0.956 8.27*
V ar(eed) 21.1% 0.242 18.8% 0.10
V ar(eer) 4.4% 0.026 1.1% 1.25
V ar(eee) 50.8% 0.257 154.5% -3.99*

Table 10: The External Habit Moments from MSM

US data LRR
Moment SE Moment t-stat

Ers 2.25 0.39 2.45 -0.52
EPD 123.91 21.25 158.09 -1.61
�rs 11.44 2.69 7.24 1.56
�PD 62.42 17.54 36.81 1.46
�PD;�1 0.97 0.02 0.96 0.35
c25 -0.0038 0.0013 -0.0059 1.64
R25 0.1772 0.0828 0.1705 0.08
ER 0.15 0.19 -0.11 1.36
�R 1.27 0.27 0.26 3.68*
E�D=D 0.41 0.18 1.57 -6.35*
��D=D 2.88 0.80 3.71 -1.03
corr(PD;R) 0.069 0.12 0.608 -4.35*
V ar(eed) 21.1% 0.242 96.6% -3.12*
V ar(eer) 4.4% 0.026 3.5% 0.33
V ar(eee) 50.8% 0.257 52.7% -0.08

Table 11: The Long-Run Risk Moments from MSM Estimation
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The identi�cation strategy is that risk-free shock doesn�t a¤ect output and dividend con-

temporaneously, and risk-free rate doesn�t respond contemporaneously to the innovations

in stock prices. To facilitate implementation we just use Cholesky decomposition. Figure

1 displays the impulse response of stock price to risk-free rate shock. The red line repre-

sents the point estimated response of stock price, and the two blue lines represents 95%

con�dence bands. The positive risk-free rate shock leads to a slightly increase of stock price

in the short-run, and ends up with permanent increase. But the con�dence bands are too

large to reject the absence of risk-free rate�s e¤ect on stock price. The impulse response of

stock price to real risk-free rate shock is quiet similar to the one to nominal risk-free rate

shock in Gali and Gambetti (2015), and con�rms the weak comovement between stock and

short-term bond markets.

Then, we replicate the same VAR analysis with simulated data from our learning model.

Figure 2 displays the impulse response of simulated stock price to risk-free rate shock. We

can �nd that the impulse response in Figure 2 matches the one in Figure 1 well even though

we don�t choose parameter values to match it.

10. Conclusion

This paper is an e¤ort to enhance our understanding on the comovement between stock

and short-term bond markets. Understanding this comovement is important for both in-

vestors and policy makers. We provide empirical evidences that the comovement between

these two markets is weak. The measures are the weak correlation between stock price-

dividend ratio and risk-free rate as well as the variance decomposition results for unexpected

excess stock return. Even though there are many papers attempting to understand basic

stock market puzzles such as stock market volatility and equity premium and the weak co-

movement has been informally known for a long time, there is a lack of attempt to �nd a

model explaining this weak comovement. We then show that two asset pricing models with
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Figure 1: The Impulse Response of Stock Prices to Risk-free Rate Shock Using Realized
Data.
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Figure 2: The Impulse Response of Stock Prices to Risk-free Rate Shock Using Simulated
Data.
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rational expectation cannot account for the weak comovement because stock prices in these

models are only driven by fundamental variables. To understand the weak comovement as

the di¢ culty of RE models, we relax the assumption of rational expectation by allowing

"Internally Rational" agents, who don�t know the mapping from the fundamentals to equi-

librium stock price. As a result, agents learn about the stock price from realized outcomes.

The self-referential property of learning model gives rise to the high volatility of stock price

unrelated to risk-free rate variation. The quantitative performance of the learning model

based on the method of simulated moments con�rms that it can simultaneously match the

basic stock market facts and the weak comovement between stock and short-term bond

markets.

The �nding that large stock price �uctuation can result from agents�subjective beliefs

in addition to risk-free rate is relevant for a policy perspective. It is natural to challenge

the e¤ect of monetary policy on governing asset price volatility given that the channel for

conducting monetary policy is through risk-free rate. It would be interesting to explore the

policy implications of our paper in the future.
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A. Appendix

A.1 Data Sources

The data sample period is from 1927:2 to 2012:2. Since we choose to match the pre-

dictability of price-dividend ratio on �ve-year excess return, the e¤ective sample size is up

to 2007:2. The data about stock market behavior is downloaded from Robert Shiller�s web-

page (http://www.econ.yale.edu/~shiller/data.htm). Stock price is represented by "S&P

500 Composite Price Index". We directly take use of real stock index and real dividend cal-

culated by Shiller and you can also �nd the details about calculation in the same webpage.

The monthly data of stock index are transformed into quarterly by taking the value of the

last month of the corresponding quarter. But quarterly dividend is computed as aggregating

the dividends of three months of the considered quarter since the dividend is �ow variable.

The risk-free rate is using 3-month Treasury Bill de�ated by U.S. Consumer Price Index.

The method of transforming monthly data into quarterly one is the same as stock index.

These data is downloaded from the dataset of Federal Reserve Bank St. Louis.

At the same time, in order to calibrate collateral ratio U.S. current account data is

also downloaded from FRB St. Louis. And for the total value of U.S. stock market we use

"market capitalization of listed companies", which can be found in database of World Bank
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(http://data.worldbank.org/). Here we use the annual data and the sample is from 1988 to

2012.

A.2 Variance Decomposition

We introduce the approach of variance decomposition adopted in Campbell (1991) and

Campbell and Ammer (1993). Theoretically the excess return et+1 of the stock holding from

the end of period t to period t+ 1 relative to the return on short bond can be expressed as

et+1 � Etet+1 = (Et+1 � Et)

( 1X
j=0

�j�dt+1+j �
1X
j=0

�jrt+1+j �
1X
j=1

�jet+1+j

)
(26)

where et is excess return, dt is dividend and rt is risk-free rate.

To simplify the notation, equation (26) can be written as

eet+1 = eed;t+1 � eer;t+1 � eee;t+1 (27)

where eet+1 is the unexpected excess return, eed;t+1 the news about future dividend growth
, eer;t+1 news about future risk-free rate and eee;t+1 to be the term representing news about

future excess return.

Therefore, the variance of unexpected excess return can be decomposed as

V ar(eet+1) = V ar(eed;t+1) + V ar(eer;t+1) + V ar(eee;t+1) (28)

�2Cov(eed;t+1; eer;t+1)� 2Cov(eed;t+1; eee;t+1) + 2Cov(eer;t+1; eee;t+1)

These variables are directly unobservable but can be discovered fromVector-Autoregression.

Write zt as the state vector containing excess return et, risk-free rate rt and price-dividend
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ratio Pt
Dt
9

zt = [et; rt;
Pt
Dt

]
0

The �rst-order VAR model is

zt+1 = Azt + wt+1 (29)

With the VAR system we can compute eet+1, eer;t+1 and eee;t+1
eet+1 � et+1 � Etet+1 = e10wt+1 (30)

eee;t+1 � (Et+1 � Et)
1X
j=1

�jet+1+j = e10
1X
j=1

�jAj�t+1 = e1
0
�A(I � �A)�1�t+1 (31)

eer;t+1 � (Et+1 � Et)
1X
j=0

�jrt+1+j = e20
1X
j=0

�jAj�t+1 = e2
0
(I � �A)�1�t+1 (32)

where e1 and e2 are the �rst and second column of 3� 3 identity matrix respectively.

Then, eed;t+1 can be treated as residual:
eed;t+1 = eet+1 + eer;t+1 + eee;t+1 (33)

After recovering these unobservable variables, equation (28) is used to compute results on

variance decomposition.

A.3 The Robustness of Fact 1 and Fact 2.
9Being di¤erent from six variables in state vector in Campbell (1991) and Campbell and Ammer (1993),

only three variables here could be another reason for the high standard deviation of statistics in Table 2.
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Statistics Data SE
corr(PD;R) 0.026 0.110
V ar(eed) 33.4% 0.266
V ar(eer) 1.5% 0.007
V ar(eee) 61.1% 0.291

Table 12: The Fact 1 and Fact 2 using Post-war Sample

Statistics Data SE
corr(PD;R) -0.104 0.19
V ar(eed) 14.8% 0.21
V ar(eer) 3.2% 0.01
V ar(eee) 41.2% 0.29

Table 13: The Fact 1 and Fact 2 using Ex-ante Risk-free Rate

Table 12 shows the statistical results of Fact 1 and Fact 2 using the post-war sample

(1953:1 to 2012:2). Table 13 shows the results of Fact 1 and Fact 2 using ex-ante risk-free

rate. The ex-ante risk-free is computed as subtracting the forecast of in�ation (data named

"INFPGDP1YR" from the Survey of Professional Forecasts) from nominal rate of 3-month

T-Bill. The sample size here is from 1970:2 to 2012:2 due to the availability of survey data.

We can �nd that the results in table 12 and 13 are similar to the ones in table 2 and 3 .

A.4 The Robustness of Agents�Information

The true process for non-adjusted stock price growth is also modeled as the sum of a

persistent component and of a transitory component

Pt+1
Pt

= emt+1 + �mt+1; �
m
t+1 � iiN(0; �2�;m)

emt+1 = emt + �mt+1; �
m
t+1 � iiN(0; �2�;m)

Agents can only observe the realizations of non-adjusted growth (the sum of persistent and

transitory components), hence the requirement to forecast the persistent components emt

calls for a �ltering problem. The priors of agents�beliefs can be centered at their rational
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expectation values and given by

em0 � N(a; �20;m)

and the variances of prior distributions should be set up to equal with steady state Kalman

�lter uncertainty about emt

�20;m =
��2�;m +

q
�4�;m + 4�

2
�;m�

2
�;m

2

Then agents�posterior beliefs will be

emt � N(mt; �
2
0;m)

And the optimal updating rule implies that the evolution of mt is taking the form of

mt = mt�1 +
1

�m
(
Pt�1
Pt�2

�mt�1) (34)

where �m =
�2�;m+

p
�4�;m+4�

2
�;m�

2
�;m

2�2�;m
given by optimal (Kalman) gain. And agents think that

non-adjusted price growth is uncorrelated with endowment growth. Hence, under agents�

knowledge of true endowment growth and subjective expectation of non-adjusted stock price

growth mt their subjective expectation of risk-adjusted stock price growth �t is pinned down

as

�t = a��mt

We present the simulation results using such information set in Table 14. To compare

the results with ones in Table 6 and 7, we con�rm that our model�s quantitative performance

is robust to the agents�information.

A.5 Projection Facilities

The projection facilities of agents�subjective beliefs � are
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US data Model
Moment SE Moment t-stat

Ers 2.25 0.39 1.70 1.42
EPD 123.91 21.25 117.89 0.28
�rs 11.44 2.69 10.69 0.29
�PD 62.42 17.54 84.65 -1.27
�PD;�1 0.97 0.02 0.97 -0.18
c25 -0.0038 0.0013 -0.0056 1.41
R25 0.1772 0.0828 0.1301 0.57
ER 0.15 0.19 0.11 0.19
�R 1.27 0.27 0.77 1.87
E�D=D 0.41 0.18 0.03 2.09
��D=D 2.88 0.80 2.90 -0.03
corr(PD;R) 0.069 0.12 -0.177 1.99
V ar(eed) 21.1% 0.242 38.9% -0.74
V ar(eer) 4.4% 0.026 2.2% 0.82
V ar(eee) 50.8% 0.257 63.8% -0.51b� 0.9883

1=b� 0.0071
 10

Table 14: Robustness: Di¤erent Learning Model Moments from MSM

!(�) =

8><>: � if x � �L

�L + ���L
�+�U�2�L (�

U � �L) if �L < x � �U

9>=>; (35)

And we calculate the thresholds �L and �U as Adam, Marcet and Nicolini (2005) do.

However, being di¤erent from their paper the presence of time-varying risk-free rate Rt

produces the problem that projection facilities above cannot surely guarantee the price-

dividend ratio to locate in the interval between 0 and 400. Even though the event that

price-dividend ratio jumps out the interval is extremely rare in the sample (because of the

projection facilities), we also impose some constraints on simulated stock price here as

Pt =

8><>: Pt if Pt
Dt
< 400

400 �Dt if PtDt � 400

9>=>; (36)
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A.6 Simulation Method

We compute simulated model moments following Monte-Carlo procedure. The number

of samples is set to K = 1000 and each sample has N = 321 observations matching stock

market data sample from 1927:Q2 to 2007 Q2. In each sample, we �rst simulate the model

to generate arti�cial data and calculate considered moments. Then, �nal values of these

moments are taking the average of K samples�.

A.7 Details of MSM Estimation

A.7.1 Optimal Weight Matrix

Let T be the sample size, (y1; y2; :::; yT ) the observed data sample, with yt containing

several variables. De�ne the sample moments as cMT � 1
T
�Tt=1h(yt) for a given moment

function h. The sample statistics bST as in (23) can be written as the function of cMT

bST � S(cMT )

The optimal weighting matrix should be the variance-covariance matrix of bST . The
variance-covariance matrix of cMT can be estimated using standard Newey-West method.

That is bSw;T = b	0 + �msj=1w(j;ms)[b	j + b	0

j]; w(j;m) = 1� j=(ms+ 1) (37)

where the sample j-th autocovariance b	j � �Tt=j+1[h(yt) � cMT ][h(yt�j) � cMT ]
0
. And the

Delta-Method tells us that the sample variance-covariance matrix of bSN can be calculated
as following b�S;T � @S(M)

@M 0
bSw;T @S(M)0

@M
(38)
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A.7.2 The Statistics, Moment Functions and Their Derivatives

A.7.2.1 The �rst twelve statistics

Here we �rst talk about all the statistics except variance decomposition.

The explicit function h1 for calculating �rst twelve statistics in (23) is

h1(yt) �

266666666666666666666666666666666666664

rst

PDt

(rst)
2

(PDt)
2

PDtPDt�1

rs;20t�20

(rs;20t�20)
2

rs;20t�20PDt�20

Rt

(Rt)
2

Dt=Dt�1

(Dt=Dt�1)
2

RtPDt

377777777777777777777777777777777777775
The �rst twelves statistics can be expressed as follows
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S(M) �

266666666666666666666666666666666664

E(rst)

E(PDt)

�rs

�PD

�PD;�1

c25

R25

E(R)

�R

ED=D

�D=D

cov(R;PD)

377777777777777777777777777777777775

=

266666666666666666666666666666666664

M1

M2p
M3 � (M1)2p
M4 � (M2)2

M5�(M2)2

M4�(M2)2

c52(M)

R25(M)

M9p
M10 � (M9)2

M11p
M12 � (M11)2

M13�M2M9p
M4�(M2)2

p
M10�(M9)2

377777777777777777777777777777777775
where Mi denotes the i-th elements of M . The function c52(M) and R

2
5(M) have the

explicit expressions as

c5(M) �

264 1 M2

M2 M4

375
�1 264M6

M8

375

R25(M) � 1�
M7 � [M6, M8]c

5(M)

M7 � (M6)2

Then, the derivatives of statistics function S(M) with data moments M are

@S1
@M1

= 1

@S2
@M2

= 1

@S3
@M1

= �M1

S3(M)
@S3
@M3

= 1
2S3(M)

@S4
@M2

= �M2

S4(M)
@S4
@M4

= 1
2S4(M)

@S5
@M2

= 2M2(M5�M4)

(M4�M2
2 )
2

@S5
@M4

= � M5�M2
2

(M4�M2
2 )
2
@S5
@M5

= 1
M4�M2

2

@S6
@Mj

=
@c52(M)

@Mj
for j = 2; 4; 6; 8

@S7
@M2

=
[M6 M8]

@c52(M)

@M2

M7�M2
6

@S7
@M4

=
[M6 M8]

@c52(M)

@M4

M7�M2
6
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@S7
@M6

=
[c51(M)+[M6;M8]

@C5(M)
@M6

](M7�M2
6 )+2M6[M6;M8]c5(M)�2M6M7

(M7�M2
6 )
2

@S7
@M7

=
M2
6�[M6 M8]c5(M)

(M7�M2
6 )
2

@S7
@M8

=
c52(M)+[M6 M8]

@c52(M)

@M8

M7�M2
6

@S8
@M9

= 1

@S9
@M9

= �M9

S9(M)
@S9
@M10

= 1
2S9(M)

@S10
@M11

= 1

@S11
@M11

= �M11

S11(M)
@S11
@M12

= 1
2S11(M)

@S12
@M2

=
�M9S4S9+(M13�M2M9)S9

M2
S4

(S4S9)2
@S12
@M4

=
(M2M9�M13)S9

1
2S4

(S4S9)2

@S12
@M9

=
�M2S4S9+(M13�M2M9)S4

M9
S9

(S4S9)2
@S12
@M10

=
(M2M9�M13)S4

1
2S9

(S4S9)2

@S12
@M13

= 1p
M4�(M2)2

p
M10�(M9)2

A.7.2.2 The statistics for variance decomposition

The three interested statistics are var(eed;t+1)=var(eet+1), var(eer;t+1)=var(eet+1), var(eee;t+1)=var(eet+1).
The unobservable variables eet+1; eed;t+1,eer;t+1; eee;t+1 de�ned in Campbell and Ammer

(1993) are computed from VAR model.

The state vector in VAR is xt =[et; Rt; PDt]0. These variables are demeaned.

The VAR(1) process is expressed as

xt+1 = Axt + �t+1

The SUR representation of this VAR(1) can be stacked as

Y = X� + u
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where X =

266666666664

x
0
1

x
0
2

:

:

x
0
T�1

377777777775
, Y =

266666666664

x
0
2

x
0
3

:

:

x
0
T

377777777775
, u =

266666666664

�
0
2

�
0
3

:

:

�
0
T

377777777775
;� = A

0
. Hence, we can estimate � using OLS

method as

� = (
1

T � 1

T�1X
t=1

xtx
0

t)
�1(

1

T � 1

T�1X
t=1

xtx
0

t+1)

Here in the vector of h2(yt) we need the vector data xtx
0
t and xtx

0
t+1. Then,

A(N) = �
0
= [N�1

1 N2]
0

where N1; N2 are the sample mean of xtx
0
t and xtx

0
t+1.

Then, the error term �t+1 can be expressed as

�t+1 = xt+1 � A(N)xt

According to the expression of eet+1; eed;t+1; eer;t+1 and eee;t+1,
eet+1 = e10�t+1

= H1�t+1

eer;t+1 = e20(I � �A(N))�1�t+1

= H2�t+1

eee;t+1 = e10�A(N)(I � �A(N))�1�t+1

= H3�t+1
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eed;t+1 = (e10 + e20(I � �A(N))�1 + e10�A(N)(I � �A(N))�1)�t+1

= H4�t+1

then unconditional var(�t+1)

= E((xt+1 � A(N)xt)(xt+1 � A(N)xt)
0
)� [E(xt+1 � A(N)xt)][E(xt+1 � A(N)xt)]

0

= E(xt+1x
0
t+1 � xt+1x

0
tA(N)

0 � A(N)xtx
0
t+1 + A(N)xtx

0
tA(N)

0) � ((Ext+1)(Ext+1)
0 �

(Ext+1)(Ext)
0A(N)

0 � A(N)(Ext)(Ext+1)
0
+ A(N)(Ext)(Ext)

0
A(N)

0
)

Since xt is stationary demeaned variables, the above expression can be simplied into

var(�t+1) = E(xt+1x
0
t+1 � xt+1x

0
tA(N)

0 � A(N)xtx
0
t+1 + A(N)xtx

0
tA(N)

0)

Then, the sample variance should be

var(�t+1) = N1 �N
0

2A(N)
0 � A(N)N2 + A(N)N1A(N)

0

Therefore,

var(eet+1) = H1var(�t+1)H
0

1 (39)

var(eer;t+1) = H2var(�t+1)H
0

2 (40)

var(eer;t+1) = H3var(�t+1)H
0

3 (41)

var(eee;t+1) = H4var(�t+1)H
0

4 (42)

Write down each element in the vector.
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h2(yt) �

2666666666666666666666666666666666666666666664

e2t�1

R2t�1

PD2
t�1

Rt�1et�1

PDt�1et�1

PDt�1Rt�1

et�1et

Rt�1Rt

PDt�1PDt

Rt�1et

Rtet�1

PDt�1et

PDtet�1

PDt�1Rt

PDtRt�1

3777777777777777777777777777777777777777777775
And [M14 M15 M16; ::: M28] are the sample mean of the each element in h2(yt).

N1 �

266664
M14 M17 M18

M17 M15 M19

M18 M19 M16

377775 N2 �

266664
M20 M24 M26

M23 M21 M28

M25 M27 M22

377775
According to (39) to (42), though the exact analytical expression is available the par-

tial derivatives of three variance decomposition statistics with sample moments should be

extremely complicated. Hence, we use numerical method to approximate these derivatives.

The method is called centered di¤erencing and the principle is

f
0
(x) � f(x+ h)� f(x� h)

2h
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Take an example to describe this method.

@
var(eed;t+1)
var(eet+1)
@M14

�
var(eed;t+1)
var(eet+1) (M14 + h;M15; :::;M28)� var(eed;t+1)

var(eet+1) (M14 � h;M15; :::;M28)

2h

A.8 Robustness of Parameter Estimation

This section shows that the quantitative performance of our learning model and two

RE models is robust to the parameter estimation. Here instead of estimating dividend

parameters we calibrate them. In details, it means that we calibrate a, ��D=D in the learning

model, g, � in the external habit model and �d, 'd in the long-run risk model. Then, we

estimate the rest of parameters in the parameter vectors 
, 
EH and 
LRR. Table 14 contains

the quantitative outcomes for the learning model, Table 15 for the external habit model and

Table 16 for the long-run risk model. The results here that are close to the ones in section

7 and 8 con�rm that models�performance is robust to the parameter estimation.

A.9 The Convergence of Least Square Learning to RE

In section 6, agents update their beliefs of risk-adjusted stock price growth �t using

constant gain learning. Well known, constant gain learning doesn�t converge to RE since

E-stability condition isn�t satis�ed. We here consider that agents use least square learning

to update their beliefs and check the convergence of least square learning. Hence, instead of

(21) the belief updating process become

�t = �t�1 +
1

�t
((
Yt�1
Yt�2

)�
Pt�1
Pt�2

� �t�1) (43)

�t = �t�1 + 1 t � 2 (44)

�1 � 1 given
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US data Model (� � 1)
Moment SE Moment t-stat

Ers 2.25 0.39 2.41 -0.43
EPD 123.91 21.25 92.61 1.47
�rs 11.44 2.69 12.41 -0.36
�PD 62.42 17.54 67.64 -0.30
�PD;�1 0.97 0.02 0.94 1.20
c25 -0.0038 0.0013 -0.0065 -2.05
R25 0.1772 0.0828 0.0991 0.94
ER 0.15 0.19 0.15 0.04
�R 1.27 0.27 0.74 1.95
E�D=D 0.41 0.18 0.41 0
��D=D 2.88 0.80 2.88 0
corr(PD;R) 0.069 0.12 -0.172 1.95
V ar(eed) 21.1% 0.242 42.4% -0.88
V ar(eer) 4.4% 0.026 1.8% 0.98
V ar(eee) 50.8% 0.257 55.5% -0.18b� 1

1=b� 0.0086
 4.5

Table 15: Learning Model Moments from MSM

Since both �yt and �
d
t follow log-normal distributions, �

y
t , �

d
t � 0. Then, consumption

Yt � 0 and dividend Dt � 0 with probability one. We assume the existence of some positive

bounds for �yt , �
d
t such that

Pr((�yt )
1� < Uy) = 1

Pr(�dt < Ud) = 1

We �rst show that the projection facility in Appendix A.5 will almost surely cease to

be binding after some �nite time. The projection facility implies that

��t =

8><>: ��1t [(a(�
y
t )
1� Pt�1

Pt�2
� �t�1] if �t�1 + ��1t [(a(�

y
t )
1� Pt�1

Pt�2
� �t�1] < �U

0 otherwise
(45)
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US data External Habit
Moment SE Moment t-stat

Ers 2.25 0.39 2.88 -1.63
EPD 123.91 21.25 77.06 2.20
�rs 11.44 2.69 9.88 0.58
�PD 62.42 17.54 25.91 2.08
�PD;�1 0.97 0.02 0.96 0.38
c25 -0.0038 0.0013 -0.0025 -1.00
R25 0.1772 0.0828 0.4961 -3.85*
ER 0.15 0.19 0.34 -0.94
�R 1.27 0.27 0.28 3.62*
E�D=D 0.41 0.18 0.41 0
��D=D 2.88 0.80 2.88 0
corr(PD;R) 0.069 0.12 -0.96 8.30*
V ar(eed) 21.1% 0.242 21.2% -0.004
V ar(eer) 4.4% 0.026 2.2% 0.85
V ar(eee) 50.8% 0.257 153.9% -4.00*bg 0.0014b� 0.0024b� 0.9881b� 0.9929

Table 16: The External Habit Moments from MSM
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US data LRR
Moment SE Moment t-stat

Ers 2.25 0.39 1.69 1.44
EPD 123.91 21.25 93.91 1.41
�rs 11.44 2.69 5.68 2.14
�PD 62.42 17.54 15.80 2.66*
�PD;�1 0.97 0.02 0.95 0.68
c25 -0.0038 0.0013 -0.0084 3.56*
R25 0.1772 0.0828 0.1499 0.33
ER 0.15 0.19 -0.27 2.18
�R 1.27 0.27 0.24 3.77*
E�D=D 0.41 0.18 0.41 0
��D=D 2.88 0.80 2.89 -0.01
corr(PD;R) 0.069 0.12 0.767 -5.63*
V ar(eed) 21.1% 0.242 114.5% -3.86*
V ar(eer) 4.4% 0.026 4.98% -0.23
V ar(eee) 50.8% 0.257 47.9% 0.11b� 1b 1.7111b�d 0.0014b'd 2.2800

Table 17: The Long-Run Risk Moments from MSM Estimation
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We can have that

�t � �t�1 + ��1t [(a(�
y
t )
1�Pt�1

Pt�2
� �t�1] (46)

j�t � �t�1j � ��1t j(a(�
y
t )
1�Pt�1

Pt�2
� �t�1j (47)

hold for all t a.s. because if �t < �U this holds with equality and if �t�1+�
�1
t [(a(�

y
t )
1� Pt�1

Pt�2
�

�t�1] � �U then j�t � �t�1j = 0.

Substituting � recursively backwards in (46) delivers the following expression

�t � 1

t� 1 + �1
[(�1 � 1)�0 +

t�1X
j=0

(a�yt )
� Pj
Pj�1

] (48)

=
t

t� 1 + �1
[
(�1 � 1)�0

t
+
1

t

t�1X
j=0

a1�(�yj )
��dj ]| {z }

=T1

+

1

t� 1 + �1
[
t�1X
j=0

���j
1� ��j

a1�(�yj )
��dj ]| {z }

=T2

where � � �+�( 1
R
�')=(a��) and the second line follows from equation (20) and (22) when

Rt holds at unconditional mean R. Clearly, T1 ! 1 � (0 + E(a1�(�yj )
��dj ) = a1��� = �RE

as t! 0. Then, we will establish that jT2j ! 0 as t! 0.

jT2j � 1

t� 1 + �1

t�1X
j=0

�a1�(�yj )
��dj

1� ��j
j��jj (49)

� UyUd

t� 1 + �1
�a1�

1� ��U
t�1X
j=0

j��jj

where the �rst inequality comes from the triangle inequality and the second inequality follows
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from the bounds for �yj , �
d
j and �j. Next, observe that

(a�yt )
� Pt
Pt�1

=
1� ��t�1
1� ��t

a1�(�yj )
��dj (50)

<
1

1� ��t
a1�(�yj )

��dj

<
a1�UyUd

1� ��U

Combining equation (47) and (50), we have that

1

t� 1 + �1

t�1X
j=0

j��jj � 1

t� 1 + �1

t�1X
j=0

��1j
a1�UyUd

1� ��U

=
a1�UyUd

1� ��U
1

t� 1 + �1

t�1X
j=0

1

j � 1 + �1

The convergence of the over-harmonic series implies that

1

t� 1 + �1

t�1X
j=0

j��jj ! 0 for all t a.s.

Then, (49) implies that jT2j ! 0 as t! 0. Taking the lim sup on both side of (48), it follows

from T1 ! �RE and jT2j ! 0 that

lim sup
t!1

�t � �RE < �U

Therefore, the projection facility is binding �nitely many periods with probability one.

We now proceed to prove that �t converges to �
RE from that time onwards. Consider

for a given realization a �nite period t where the projection facility is not binding for all
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t > t. The simple algebra gives

�t =
1

t� t+ �t
[�t�t +

t�1X
j=t

(a�yj )
� Pj
Pj�1

] (51)

=
t� t

t� t+ �t
[
1

t� t

t�1X
j=t

a1�(�yj )
��dj +

1

t� t

t�1X
j=t

a1�(�yj )
��dj

���j
1� ��j

+
1

t� t
�t�t]

for all t > t: Similar operations as before then deliver

1

t� t

t�1X
j=t

a1�(�yj )
��dj

���j
1� ��j

! 0

a.s. for t!1. Finally, taking the limit on both sides of (51) establishes

�t ! E(a1�(�yt )
��dt ) = a1��� = �RE

a.s. as t!1. The least square learning thus globally converges to the RE.
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