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Abstract

Overbidding in auctions has been attributed to risk aversion, loser regret, level-k, and
cursedness, though relying on different identifying assumptions. I argue that “type
projection” organizes these findings and better captures observed behavior. Type
projection formally models that people tend to believe others have object values
similar to their own—a robust psychological phenomenon that naturally applies to
auctions. First, I show that type projection implies the main behavioral phenomena
in auctions, including increased sense of competition (like loser regret) and broken
Bayesian updating (like cursedness). Second, re-analyzing data from seven exper-
iments, I show that type projection explains the stylized facts of behavior across
private and common value auctions. Third, in a structural analysis nesting exist-
ing approaches and emphasizing robustness, type projection consistently captures
behavior best, in-sample and out-of-sample. The results reconcile bidding patterns
across conditions and have implications for behavioral and empirical analyses as
well as policy.
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1 Introduction
The false consensus bias is the tendency to assume that one’s own opinions, preferences
and values are typical and shared by others. Following Ross et al. (1977), such “projec-
tion” has been confirmed in many experiments (Mullen et al., 1985). Projection may per-
sist even if subjects are provided with factually contradicting information (Krueger and
Clement, 1994). Thus, projection is of intuitive relevance in all choices under incomplete
information—not just in the non-strategic environments on which the psychological lit-
erature traditionally focuses, but also in strategic interactions. Current concepts studying
projection in “games” focus on one-sided incomplete information. In their seminal pa-
per, Loewenstein et al. (2003) study projection of utility onto future selves, finding that
it explains anomalies in purchases of durable goods. In a different context, Madarász
(2012) studies projection of information from an informed player to an uninformed one,
which explains the hindsight bias in agency problems.

In the present paper, I argue that projection of “types” appears to affect behavior in
auctions. Auctions are widely discussed games with two-sided incomplete information,
and types capture signals about object values. I introduce a simple model of type pro-
jection where players may overestimate the probability that their opponents share their
type—ranging from zero projection (the original Bayesian case) to full projection (dis-
regarding all prior information).1 The degree of projection is denoted by ρ ∈ [0,1]. An
equilibrium exists for each ρ, and in equilibrium, players anticipate their opponent types’
actual strategies but compute their expected payoffs projecting their own type.

The observations supporting type projection, and some implications, are summa-
rized as follows. Type projection formalizes a phenomenon observed by a large litera-
ture of psychological work, applies naturally in auctions, and generates the behavioral
phenomena observed across conditions: loser regret in first-price auctions and broken
Bayesian updating in common value auctions. It captures stylized facts more compre-
hensively than existing concepts and fits behavior very robustly, across information con-
ditions, across experiments, and across identifying assumptions (on strategic beliefs).
The degree of projection ρ is largely invariant, around 0.5, explaining the robustness and
corroborating that projection is of first-order relevance. The results have policy implica-
tions, as the projection bias is reduced when subjects are educated explicitly (Engelmann
and Strobel, 2012), which enables efficiency gains, and implications for behavioral and
empirical work. For, type projection intuitively factors in all symmetric Bayesian games
(e.g. on social preferences under anonymity, see also Blanco et al., 2014), and in empir-
ical work, as projection fits robustly across private and common values, thus relating to
empirical auctions which tend to be hybrid (Haile, 2001; Goeree and Offerman, 2002).

The underlying intuition also is simple. Type-projecting bidders project their signals
or values. Values are known to be projected in general, e.g. in bargaining (Bottom and
Paese, 1999; Galinsky and Mussweiler, 2001) and in consumption decisions (Frederick,
2012; Kurt and Inman, 2013). As for auctions, consider bidding to buy a house. Pro-
jecting bidders neglect competitors whose values are vastly inferior, against whom they
surely win, and competitors whose values are vastly superior, against whom they surely

1Full projection is regularly considered in analyses of social preferences. The present paper consid-
ers the more intricate case of imperfect projection. Allowing for imperfect projection is critical, as full
projection is neither observed in psychology nor fits bidding in auctions.
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lose. They focus on competitors with similar values, trying to ensure winning against
them. This focus increases the sense of competition and obscures the perceived value
distribution, which impacts bidding as follows.

In private value auctions, projecting bidders overbid, as they overestimate the share
of opponents with similar values and outbid them to increase the probability of winning.
In contrast, risk aversion emphasizes a trade-off between increasing winning probability
and increasing conditional profit. Following Engelbrecht-Wiggans (1989), the former
relates to loser regret (regret of losers if they could have won profitably) and the latter
relates to winner regret (regret of winners if they could have won with lower bids). Filiz-
Ozbay and Ozbay (2007) find that subjects do not trade off these regrets but focus on
loser regret. This focus contradicts risk aversion and is implied by type projection. In
addition, I find that subjects randomize consistently and use left-skewed mixed strategies.
Again, this contradicts risk aversion and supports type projection, which predicts mixed
equilibria with, indeed, left-skewed strategies.

In common value auctions, type projection obscures the perceived type distribution
and thus weakens Bayesian updating, similarly to cursed equilibrium (Eyster and Rabin,
2005). Cursed bidders believe their opponents get random signals with probability χ (and
the true signals with 1−χ), and type projecting bidders believe their opponents have sig-
nals similar to their own with probability ρ (and the true signals with probability 1−ρ).
In both cases, bidders underestimate the informativeness of their opponents’ bids and
experience the Winner’s Curse. The reason for broken Bayesian updating is very simi-
lar, and both concepts are compatible with the intuition usually expressed by economists
(e.g. Milgrom, 1989), but between the two approaches, the belief perturbation underly-
ing type projection is supported by independent psychological evidence. This evidence
(on false consensus) addresses interactions with symmetric type sets, and in turn, cursed
equilibrium appears more appropriate to model games with asymmetric type sets (e.g.
buyer-seller interactions). In addition, subjects randomize consistently even in common
value auctions, which supports the mixed equilibrium predicted by type projection. Sub-
jects overbid with both private and common values, but more so under common values,
which also confirms the prediction of type projection.

Relatedly, let me discuss the notion that jointly, risk aversion and cursedness explain
bidding across conditions. I argue that, even jointly, these explanations are inconsis-
tent with the received intuition: Bidders experience loser regret in first-price auctions
(Filiz-Ozbay and Ozbay, 2007) and broken Bayesian updating of common object val-
ues (Milgrom, 1989). Focusing on first-price auctions, an explanation consistent with
the received intuition induces an incentive similar to loser regret across conditions, and
mistaken Bayesian updating on top of it in common value auctions. This is particularly
intuitive if one compares auctions with affiliated private values and auctions with com-
mon value, as their differences are very small.2 The model combining risk aversion and
cursed equilibrium is not consistent in this sense, as an incentive similar to loser regret is
implied only in private value auctions—risk aversion is outcome irrelevant in (standard)
common value auctions.

2Detailed definitions follow, but briefly, let X0 denote a random variable revealed only to Nature, and let
(Xi) denote the individual signals revealed privately to the bidders (i). All Xi are distributed (i.i.d.) on an
interval around X0. The sole difference between common values and affiliated private values is that player
i’s object value is v = X0 (common value) or v = Xi (private value).
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Type projection is consistent also in this sense. It induces an incentive to “avoid
loser regret” in any first-price auction and breaks Bayesian updating in common value
auctions. Thus, to summarize, type projection formalizes a robust psychological finding,
is intuitively consistent across conditions and fits a wide range of stylized facts. These
results are complemented by a structural analysis of bidding on a large data set compris-
ing seven experiments. The data set forms the union of the data sets analyzed in seminal
analyses of bidding behavior, which limits selection effects in favor of type projection.
In addition, merging multiple data sets allows me to assess whether models are precise
(in-sample) and reliable (out-of-sample). Both features are desirable in behavioral and
empirical analysis, but reliability will be of particular relevance here.

To clarify why, let me briefly review existing results. Goeree et al. (2002b) and
Bajari and Hortacsu (2005) show that risk aversion captures bidding in private value
auctions, Filiz-Ozbay and Ozbay (2007) and Engelbrecht-Wiggans and Katok (2007)
observe loser regret, Eyster and Rabin (2005) observe cursedness in common value auc-
tions, and Crawford and Iriberri (2007) observe limited depth of reasoning in either con-
dition. That is, the results vary enormously between studies. The main reason appears
to relate to the identifying assumptions imposed on strategic beliefs, which range from
naive beliefs (level-1) over Nash beliefs (equilibrium without anticipating errors) to ratio-
nal expectations. To reconcile these results, specific and extreme assumptions on belief
formation are to be avoided. I introduce a concept based on quantal response equilibrium
(McKelvey and Palfrey, 1995) that nests the three belief models above and endogenizes
the assumption on belief formation. While this solves one problem, Haile et al. (2008)
suspect that generalized forms of QRE may overfit and lack robustness themselves. The
data used here allow me to directly address this issue by evaluating robustness, i.e. the
accuracy of predictions across experiments.3 In addition, this analysis verifies whether
the models are applicable across data sets, e.g. in (future) analyses of different data.

The results of this analysis confirm the qualitative evidence outlined above. Type
projection indeed captures behavior best, both descriptively (in-sample) and predictively
(out-of-sample). Further, inexperienced subjects tend to underestimate the rationality of
others, though not in the way predicted by level-k. As subjects gain experience, their be-
liefs approach rational expectations, the precision in maximizing utility increases, subject
heterogeneity becomes significant, but the degree of projection remains largely constant
(around 0.5). Type projection is comprehensive in the sense that neither risk aversion
nor cursedness capture facets of behavior incompatible with projection, and the results
are robust to “non-standard” information conditions. Thus, I conclude that the book on
behavior in auctions, which appeared closed for a while, may have to be reopened.

Section 2 introduces the model of type projection, Section 3 introduces the data sets.
Sections 4 and 5 analyze the relations to stylized facts. Sections 6 and 7 contain the
structural analysis of bidding. Results and implications are discussed in Section 8.

3Another issue with using the generalization of QRE is that the underlying QRE needs to be com-
puted explicitly—the fixed point computation cannot be avoided using the insight of Bajari and Hortacsu
(2005), by exploiting rational expectations, as relaxing rational expectations is exactly the point. The ex-
plicit computation of QREs is computationally demanding in standard auctions, due to the complexity of
randomized bidding functions, but a novel observation allows me to reduce the strategy complexity by an
order of magnitude and thus enables computation of QREs using massive parallelization (on GPUs).
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2 Behavioral models of bidding
In this section, I define type projection and discuss its relation to existing concepts. The
necessary notation is standard. N = {1, . . . ,n} denotes the set of players, Ai and Ti, i ∈ N,
denote the sets of actions and types, respectively. The set of Nature’s types is T0, and the
set of type profiles is T = T0×T1×·· ·×Tn. Type and action sets are finite, as e.g. in all
laboratory auctions. The prior probability that the type profile is t ∈ T is Pr(t) and the
prior that i’s type is ti is Pri(ti). A game is called type-symmetric if Ti = Tj and Pri = Pr j
for all i, j ∈ N. Action profiles are denoted by a ∈ A = A1×·· ·×An. Given action profile
a ∈ A and type profile t ∈ T , i’s payoff is pi(a, t). As usual, A−i =× j∈N\{i}A j and
T−i =× j∈N∪{0}\{i}Tj, and the posterior of t−i ∈ T−i given ti is Pr(t−i|ti).

The strategy σi(·|ti) ∈ ∆Ai of i maps i’s actions to probabilities contingent on type ti.
The expected payoff of type ti ∈ Ti from action ai in response to σ−i is

πi
(
ai|ti,σ−i

)
= ∑

t−i∈T−i

∑
a−i∈A−i

Pr(t−i|ti) pi
[
(ai,a−i),(ti, t−i)

]
∏
j 6=i

σ j(a j|t j). (1)

Given payoffs πi, the set of best responses of type ti to σ−i is

BRti(σ−i|πi) = arg max
σ′i∈∆Ai

∑
ai∈Ai

σ
′
i(ai) πi

(
ai|ti,σ−i

)
. (2)

A strategy profile σ = (σ1, . . . ,σn) is a Bayesian Nash equilibrium (BNE) if all types
ti ∈ Ti of all players i ∈ N choose best responses, σi(·|ti) ∈ BRti(σ−i|πi).

2.1 Type projection
Type projection equilibrium (TPE) extends Bayesian Nash equilibrium by incorporat-
ing the projection bias. This can be modeled in a variety of ways, but to prevent over-
representation of the adequacy of type projection, I set up a simple model not exploiting
degrees of freedom. Generalizations and alterations are discussed in Breitmoser (2015).

Type-projecting players assign weight 1− ρ, ρ ∈ [0,1), to the objective prior Pr
and weight ρ to their projection that all opponents’ types are equal to their type. The
parameter ρ is called degree of projection, the original Bayesian belief obtains for ρ = 0.
A projecting ti thus expects that action ai yields the projected payoff

π
Proj
i

(
ai|ti,σ−i

)
= (1−ρ) ∑

t−i∈T−i

∑
a−i∈A−i

Pr(t−i|ti) pi
[
(ai,a−i),(ti, t−i)

]
∏
j 6=i

σ j(a j|t j)

+ρ ∑
t−i∈T−i

∑
a−i∈A−i

Pr(t−i|ti) pi
[
(ai,a−i),(ti, t−i)

]
∏
j 6=i

σ j(a j|ti). (3)

For any ρ ∈ [0,1), a strategy profile σ = (σ1, . . . ,σn) is a ρ-type projection equilibrium
(ρ-TPE) if all types ti ∈ Ti of all players i ∈ N choose best responses under projection,
σi(·|ti) ∈ BRti(σ−i|πProj

i ). In type-symmetric games, existence obtains as any ρ-TPE of
a Bayesian game Γ is a BNE of an augmented game Γ̃ where the projected events are
possible draws by Nature (Breitmoser, 2015). This relates to the argument establishing
existence of cursed equilibrium in Eyster and Rabin (2005).

The above formulation of projection is simple in that assumes that players project
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their types onto all their opponents simultaneously and in that players project their ex-
act type. The correlated projection facilitates tractability and reflects the observations
of Camerer et al. (2004) and Costa-Gomes et al. (2009) that subjects believe their op-
ponents make correlated choices. An alternative assumption would be that projection is
independent across opponents, but I am not aware of independent evidence supporting
it. An alternative to the latter assumption would be “fuzzy” projection, i.e. the belief that
opponents’ types are “similar” to the own type. This would consume additional degrees
of freedom (e.g. a distance measure for types and a function mapping type distance to
degree of projection) which I seek to prevent for transparency.

Type projection differs distinctly from other forms of projection discussed in the
literature, e.g. utility projection and information projection. Loewenstein et al. (2003)
introduce utility projection: Given consumption c and current state s, the decision maker
predicts the utility will be (1−α)u(c,s′)+αu(c,s), α ∈ [0,1], in future state s′. Ap-
plying the idea to multi-player games, utility projection implies that players believe their
opponents’ types have “average” utilities and play pure strategies each. In contrast, a
type-projecting player associates each list of opponents’ types t−i with mixed strategies.
With probability 1−ρ the true types t−i play and with probability ρ the projected types
play.4 In turn, Madarász (2012) introduces information projection, i.e. a player believing
his opponents know all he knows, in addition to their existing knowledge. In auctions,
information projection implies that the opponents know his value, in addition to knowing
their own values. Type projection implies that the opponents share i’s value. Information
projection is appealing in cases of one-sided “missing” information, and it provides an
intriguing explanation of the hindsight bias, but it appears less appealing in auctions—
where there is no objectively “missing” information, but heterogeneity of types.5

2.2 Alternative concepts
Cursed equilibrium The relation to cursed equilibrium (Eyster and Rabin, 2005) has
been discussed in the Introduction: Both concepts assume that players have a mistaken
understanding of the type distribution. Given the degree of cursedness χ ∈ [0,1], cursed
players assign weight 1−χ to the Bayesian case and χ to the event that their opponents’
types are random and uninformative given the own private information. In the latter case,
the opponents play the average strategy σ j(a−i|ti) = ∑ t−i∈T−i Pr(t−i|ti)∏ j 6=i σ j(a j|t j), and
overall, cursed players expect payoffs

π
Curse
i

(
ai|ti,σ−i

)
= (1−χ) ∑

t−i∈T−i

∑
a−i∈A−i

Pr(t−i|ti) pi
[
(ai,a−i),(ti, t−i)

]
∏
j 6=i

σ j(a j|t j)

+χ ∑
t−i∈T−i

∑
a−i∈A−i

Pr(t−i|ti) pi
[
(ai,a−i),(ti, t−i)

]
σ j(a−i|ti). (4)

4Also note the difference to “strategy” projection: A type projecting player believes opponents share his
type but keep their individual incentives. Both utility projecting and strategy projecting players implicitly
assume the opponents neglect their original incentives and adopt his utilities or strategies.

5Madarász (2015) generalizes the concept by including “ignorance projection” and applies it to games
with two-sided incomplete information. The differences still appear major, as information projection ap-
pears to predict pure equilibria in auctions (since payoffs are continuous), but precise comparisons are
impossible, as the shape of equilibrium strategies under information projection in auctions (which are not
the main application) is not characterized (see Example 2.1.2 in Madarász, 2015).
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A strategy profile σ = (σ1, . . . ,σn) is a χ-cursed equilibrium if σi(·|ti) ∈ BRti(σ−i|πCurse
i )

for all i and ti. I am not aware of independent evidence supporting “random projection” as
in cursed equilibrium (as opposed to projection of the own type), but cursed equilibrium
appears well-suited to capture beliefs if type sets are asymmetric. Market interactions
with one-sided incomplete information as analyzed in Eyster and Rabin (2005) are a
prototypical example. In such asymmetric games, type projection appears less intuitive.

Risk aversion Cox et al. (1985, 1988) argue that a potential factor in bidding is constant
relative risk aversion (CRRA), u(p) = pα/α with α 6= 0, with expected utilities

π
CRRA
i

(
ai|ti,σ−i

)
= ∑

t−i∈T−i

∑
a−i∈A−i

Pr(t−i|ti) u
(

pi
[
(ai,a−i),(ti, t−i)

])
∏
j 6=i

σ j(a j|t j). (5)

CRRA utilities u(·) can equally be used to complement projection and cursedness. As it
stands, risk aversion is the leading explanation of overbidding in private value auctions,
but the more recent observations on loser regret, e.g. Filiz-Ozbay and Ozbay (2007) and
Engelbrecht-Wiggans and Katok (2007), challenge this perspective (as discussed above).

Limited depth of reasoning The concepts discussed so far have in common that they
are defined in terms of the payoff structure π̃i ∈ {πi,π

CRRA
i ,π

Proj
i ,πCurse

i }. The players’
beliefs about their opponents’ strategies are taken as given. The complementary ap-
proach is to vary the belief system, allowing that players deviate from BNE by violating
rational expectations.6 The seminal model in this strand literature, level-k, follows Stahl
and Wilson (1995) and Nagel (1995); other belief systems are discussed below. Assum-
ing level-0 randomizes uniformly, σ0(·|ti) = 1/|Ai| for i, ti, and given a payoff structure
π̃i ∈ {πi,π

CRRA
i ,π

Proj
i ,πCurse

i }, player i has level-k depth of reasoning, k ≥ 1, if he plays
σk(·|ti)∈ BRti(σ

k−1
−i |π̃i) for all ti. In a similar manner, level-k has been applied to auctions

by Crawford and Iriberri (2007).

3 Data sources
I am analyzing data sets from multiple experiments to address the risk of misinterpreting
model adequacy. Broadening the data basis reduces the fallacy to overfitting, and the
joint analysis of multiple data sets allows me to assess predictive adequacy across exper-
iments: Fit parameters to some set of experiments and predict behavior in the remaining
experiments. Evaluating predictive adequacy across experiments addresses overfitting
most transparently by showing to which degree the results on payoff structure and belief
system obtained here will be helpful in (future) analyses of different data sets. Finally,
pooling auctions under varying information conditions, independent private values, affil-
iated private values, and common values, allows us to examine robustness to real-world
conditions, as they tend to be hybrid (Haile, 2001; Goeree and Offerman, 2002).

6Note that both cursedness and projection can equally be defined as concepts relaxing the belief struc-
ture. Above, they have been defined in terms of the payoff structure, as both Eyster and Rabin (2005) and
the above definitions emphasize that an equilibrium assumption is maintained even under cursedness and
projection (a BNE of an augmented game), while standard models of alternative belief systems (such as
level-k) emphasize the non-equilibrium character of the predicted strategy profiles.
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Table 1: Data sources

Inexperienced Experienced
Format Source Values Signals #Subj #Obs #Subj #Obs
Standard auctions
First price, Kagel and Levin (2002) v = X0 Xi|X0 ∼U [s± ε] 51 255
common value Kagel and Levin (1986) v = X0 Xi|X0 ∼U [s± ε] 49 237

Second price, Garvin and Kagel (1994) v = X0 Xi|X0 ∼U [s± ε] 28 140
common value

First price,
affiliated private

Kagel et al. (1987) v = Xi Xi|X0 ∼U [x0± ε] 42 210 42 210

First price, Dyer et al. (1989) v = Xi Xi ∼U [0,30] 18 180 18 180
Independ. private Kagel and Levin (1993) v = Xi Xi ∼U [0,28.3] 10 50 10 100
Non-standard auctions
First price,
Independ. private

Goeree et al. (2002b) v = Xi Xi discrete 80 400 80 400

Second price,
Common value

Avery and Kagel (1997) v = X1 +X2 Xi ∼U [1,4] 23 115 23 115

Note: The discrete signals in Goeree et al. (2002b) are uniform draws from either {0,2,4,6,8,11} or
{0,3,5,7,9,12}. The data for inexperienced subjects are mostly from Crawford and Iriberri (2007). In
most rounds of Dyer et al. (1989) and Kagel and Levin (1993), the subjects played two auction markets
simultaneously. Focusing on the first and last five rounds they played, we mostly have ten observations per
subject. Due to bankruptcies in CV auctions, there are not always five observations per subject.

The data sources are listed in Table 1. These seven data sets form the union of
the data sets analyzed in the most influential studies of bidding behavior, Goeree et al.
(2002b), Bajari and Hortacsu (2005), Eyster and Rabin (2005), and Crawford and Iriberri
(2007). The repetitive re-analysis of these data sets indicates consensus on their ade-
quacy to study bidding behavior, and re-analyzing these very data sets implies that if data
selection influences the results, it would be in favor of existing theories.

I distinguish “standard” auctions and “non-standard” auctions. An auction is labeled
“standard” if signals and bids are (approximately) continuous and signals are distributed
independently conditional on the own object value. Kagel and Levin (1986) and Kagel
and Levin (2002, Chapter 4) analyze first-price, common-value auctions. The common
value is v = X0 and individual signals are distributed as Xi|X0 ∼ U [x0±w]. The BNE
strategy is b(xi)≈ xi−w.7 Kagel and Levin (1986) and Garvin and Kagel (1994) analyze
second price, common value auctions. Signals and value are as in the first-price case, but
the BNE strategy is b(xi) = xi−w+ 2w

n , with n as the number of players. Kagel et al.
(1987) analyze first-price auctions with affiliated private values. The private value v = Xi
is distributed as Xi|X0 ∼ U [x0±w] with BNE strategy b(xi) ≈ xi− 2w

n . Finally, Dyer
et al. (1989) and Kagel and Levin (1993) analyze first-price auctions with independent
private values. The private value v=Xi is distributed as Xi∼U [0,30] and Xi∼U [0,28.3],
respectively. The BNE strategy is b(xi) = xi (n−1)/n. The “non-standard” auctions are
reviewed below, as they will be used primarily in out-of-sample tests of the models (they
appear particularly challenging for the intuition underlying type projection).

7The exact BNE strategy is b(xi) = xi−w+Y with Y = 2w
n+1 × exp

{
−n(xi− x−w)/2w

}
, but Y ≈ 0 if

the signal xi is not very close to the bounds of the signal space.
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Finally, I comparatively analyze experienced subjects and inexperienced subjects.
This comparison slightly extends the literature, which analyzes either inexperienced sub-
jects (Crawford and Iriberri, 2007) or experienced ones (most other studies). In particu-
lar, depth of reasoning and rationality of expectations are argued to vary with experience
(e.g. Crawford and Iriberri, 2007): initial behavior (inexperienced subjects) is intuitively
closer to level-k and converged behavior (experienced subjects) is intuitively closer to
rational expectations and equilibrium. Following Crawford and Iriberri (2007), a subject
is called “inexperienced” during the first five auctions, and by inversion, “experienced”
during the last five auctions (out of some 20 auctions in a session).8

4 Bidding in auctions: Stylized facts
This section examines the basic characteristics of bidding, including complexity and het-
erogeneity, which are critical for the subsequent econometric models, and the first three
moments of the bid distributions. This will allow us to compare the qualitative predic-
tions of the models. Throughout the paper, I report the results of statistical tests at two
levels of significance: 0.05 and 0.005. The former is standard, and the latter implements
the Bonferroni correction assuming 10 simultaneous tests across treatments and models,
which will generally be adequate per level of experience.

4.1 Complexity of bidding functions
How do bids relate to signals? In first-price auctions, equilibrium bids are smaller
than conditional object values, i.e. subjects shade bids to ensure positive profits. In
the standard auctions in Table 1, BNE predicts bid shading by either absolute or rela-
tive reductions—relative reductions for independent private values (IPV) and absolute
reductions for affiliated private values (APV) and common values (CV). I test these pre-
dictions, as the complexity of the bidding functions affects all future steps of the analysis.
The alternative hypothesis is that subjects do not strictly adhere to either, relative reduc-
tions in IPV auctions and absolute reductions in APV and CV auctions. Instead, subjects
may engage in mixtures of relative and absolute reductions, e.g. high relative reductions
if they have high signals and low relative reductions if they have low signals.

Strategy complexity can be tested by estimating both intercept and slope of the bid-
ding functions b(x). In IPV auctions, the intercept is predicted to be zero, in APV and
CV auctions the slope is predicted to be one.9 Specifically, in IPV auctions, I estimate
b = α+β · x, and the BNE prediction is α = 0 and β < 1. In APV and CV auctions, I
estimate b = α ·w+β · x, including the “signal bandwidth” w which is a constant within
treatments—thus, α represents the intercept, but controlling for w facilitates comparisons

8In common value auctions, in particular, behavior has not converged after five auctions, which pre-
cludes me from using all observations from the sixth auction on in the analysis of experienced subjects.
In turn, behavior is independent of time during the first five auctions and during the last five auctions,
respectively (as shown in the supplementary material), indicating that these partitions of the data set meet
the time invariance assumed in the analysis.

9As reviewed above, the equilibrium bids are b(xi) ≈ xi−w and b(xi) ≈ xi− 2w
N in the “standard” CV

and APV auctions, respectively, and they are b(x) = n/(n−1) · x in the IPV auctions.
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Table 2: Summary statistics of bidding in the first-price auctions

Inexperienced subjects Experienced subjects
Degree of Standard Deviation Degree of Standard Deviation

Condition Bidding function Overbidding within Ss between Ss Skewness Bidding function Overbidding within Ss between Ss Skewness
Independent private values, First price (DKL89, KL93)
N = 3 b =−0.031

(0.234)
+0.803??

(0.018)
· x 0.104??

(0.017)
0.161
(0.031)

0.025 −3.17?? b = 0.028
(0.149)

+0.822??
(0.01)

· x 0.143??
(0.014)

0.126
(0.018)

0.054 −3.26??

N = 6 b =−0.039
(0.196)

+0.849??
(0.013)

· x −0.021
(0.02)

0.162
(0.034)

0.053 −3.35?? b = 0.037
(0.182)

+0.875??
(0.009)

· x 0.034??
(0.012)

0.108
(0.018)

0.044 −4.49??

N = 5 b = 0.195
(0.241)

+0.886??
(0.01)

· x 0.08??
(0.021)

0.145
(0.053)

0.028 −4.34?? b =−0.873
(0.496)

+0.896??
(0.017)

· x −0.021
(0.042)

0.264
(0.036)

0.129 −1.65?

Affiliated private values, First price (KHL87)
N = 6,w = 6 b = 0.986?

(0.006)
· x−0.284??

(0.079)
·w −0.127??

(0.038)
0.366
(0.085)

0.148 −3.83??

N = 6,w = 12 b = 0.992
(0.006)

· x−0.172??
(0.048)

·w 0.104??
(0.026)

0.052
(0.006)

0.15 0.1 b = 1
(0.005)

· x−0.247??
(0.037)

·w 0.088??
(0.021)

0.168
(0.044)

0.129 −1.52?

N = 6,w = 24 b = 1
(0.006)

· x−0.168??
(0.02)

·w 0.164??
(0.022)

0.09
(0.015)

0.135 −0.24

Common value auctions, First price (KL86)
N ≤ 4,w = 6 b = 0.996

(0.003)
· x−0.22

(0.139)
·w 0.657??

(0.066)
0.341
(0.033)

0.28 0.57??

N ≤ 4,w≤ 18 b = 1.014
(0.013)

· x−0.676??
(0.172)

·w 0.551??
(0.099)

0.43
(0.163)

0.095 0.54? b = 1.002
(0.016)

· x−0.905??
(0.576)

·w 0.106?
(0.038)

0.276
(0.087)

0.011 −1.77

N ≤ 4,w≥ 24 b = 1
(0.021)

· x−0.63??
(0.091)

·w 0.373??
(0.05)

0.31
(0.058)

0.178 0.7?

N = 7,w = 6 b = 0.999
(0.002)

· x−0.322??
(0.088)

·w 0.629??
(0.067)

0.333
(0.036)

0.313 0.54?

N ≥ 5,w = 12 b = 0.99
(0.007)

· x−0.575??
(0.084)

·w 0.338??
(0.051)

0.151
(0.025)

0.225 1.02?

N ≥ 5,w = 18 b = 1
(0.008)

· x−0.654??
(0.082)

·w 0.348??
(0.045)

0.296
(0.025)

0.206 1.09??

N ≥ 5,w≥ 24 b = 0.999
(0.012)

· x−0.714??
(0.085)

·w 0.279??
(0.046)

0.231
(0.025)

0.201 1.33?

Notation: b is the bid, x is the signal, w is the interval width in APV and CV auctions
Normalized bids: The normalized bids are r = (b− x)/w in APV and CV auction and r = b/x in IPV auctions
Degree of overbidding is the difference between the mean normalized bid and the normalized equilibrium bid (BNE without risk aversion), it is estimated controlling for subject-level random
effects (“between-subject standard deviation”). The within- and between-subject standard deviations refer to the distribution of normalized bids
Skewness: Skewness of the normalized bids after controlling for subject-level random effects (i.e. skewness of the errors in the regressions of normalized bids on intercept).
Experience: Subjects are “inexperienced” in their first five auctions and “experienced” in their last five auctions.
Asterisks indicate the bootstrapped p-values (see Footnote 10) of the null hypotheses that the respective parameters are either 1 (in case of the coefficients of x in APV and CV auctions, which
are predicted to be 1) or 0 (in all other cases). “??” indicates p-values less than .005, and “?” indicates p-values between .005 and .05. The lower threshold .005 implements the Bonferroni
correction for multiple testing across treatments (for around 10 treatments per level of experience).



across treatments. The BNE prediction is α< 0 and β= 1. I include subject-level random
effects and bootstrap p-values to account for the panel structure of the data.10

Table 2, column “Estimate B(X)”, presents the results. In APV and CV auctions,
the estimate of β differs significantly from 1 in one of the twelve treatments (at α =
.05), which is well within the limits of chance. In IPV auctions, α is insignificantly
different form zero in all cases, suggesting that subjects indeed make relative reductions.
The estimated parameters are also economically insignificant, i.e. small in relation to the
range of signals. Thus, I conclude that the theoretical prediction of either absolute or
relative reductions is validated.

Result 1. As predicted by BNE, in APV and CV auctions normalized bids (b− x)/w are
independent of x, and in IPV auctions normalized bids b/x are independent of x.

Without loss of information, both theoretically and empirically, we may thus repre-
sent bidding functions by scalars capturing the respective relative or absolute reductions.
I refer to these scalars as normalized bids. In APV and CV auctions, the normalized bid
is r = (b− x)/w. and in IPV auctions, it is r = b/x. One may think of r as the inverted
degree of bid shading.11 Values close to 0 in APV and CV auctions, or close to 1 in IPV
auctions, indicate zero bid shading.

Mixed strategies are distributions over normalized bids and thus one-dimensional.
The one-dimensionality enables analyses of average behavior aggregated over signals
and condensed plots of bid distributions in histograms (Figure 1). At least as importantly,
the condensation to one dimension is computationally critical. To see this, consider the
ex-ante hypothesis that mixed strategies are distributions over bidding functions, i.e. at
least two-dimensional. As numerical example, in auctions with 100 possible bids for
each of 100 possible signals, we need to consider merely one distribution over 100 nor-
malized bids instead of 100 distributions over 100 bids. Computing a fixed point (a mixed
equilibrium) in 100 probabilities is computationally feasible, but computing one in 1002

probabilities is not (yet). Thus, the reduction of strategy complexity allows us to compute
fixed points and apply novel belief models, namely concepts relaxing assumptions such
as rational expectations or Nash beliefs. This is discussed in detail below.

4.2 Is subject heterogeneity continuous or discrete?
To construct efficient econometric models, we need to capture subject heterogeneity: Are
subjects clustered, i.e. is heterogeneity captured only by a mixture of several (normal)
distributions? The latter is predicted by level-k, and thus, testing multimodality also is a
test of level-k. The histograms in Figures 1–3, and the respective kernel density estimates,
suggest that the distributions are unimodal. To rigorously test multimodality, I estimate

10The bootstrap is implemented as follows. The data set is resampled R = 10.000 times at the subject
level (reflecting the panel structure of the data). To define the p-value of the null hypothesis that some
statistic s is zero, let sb denote its value in sample b and let s0 denote its original value. The p-value of the
two-sided test is 1

2R #
{

b : |sb− s| > |s0|
}
+ 1

2R #
{

b : |sb− s| ≥ |s0|
}

, where s is the mean of (sb) and R the
number of samples. Other p-values are defined analogously.

11The lower the normalized bid, the higher the degree of bid shading. For example, in APV and CV
auctions, with r = −0.4, subjects bid 0.4 ·w less than their signal, r = 0 indicates bidding one’s signal,
r =−2/N is the BNE strategy in APV auctions, and r =−1 is the BNE strategy in CV auctions.
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Figure 1: First-price auctions, affiliated private values (KHL87). Inexperienced subjects
(a–b) vs. experienced subjects (c–d). Plots are histograms of r = (Bid−Signal)/w

(a) Inexp: N = 6,w = 6
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(b) Inexp: N = 6,w = 12
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(c) Exp: N = 6,w = 12

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

0
1

2
3

4
5

Eq = −0.33
Median = −0.21
Skew = −4.48*

(d) Exp: N = 6,w = 24
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Figure 2: First-price auctions with common values (KL86), inexperienced subjects (a–d)
vs. experienced subjects(e–h). Plots are histograms of r = (Bid−Signal)/w

(a) N = 4,w = 6
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(b) N = 7,w = 6
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(c) N = 4,w = 12
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(d) N = 7,w = 12
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(e) N = 3−4,w = 12,18
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(f) N = 5−7,w = 12,18
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(g) N = 3−4,w = 24,30
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(h) N = 5−7,w = 24,30
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Figure 3: First-price auctions with independent private values (DKL89). Inexperienced
subjects (a–c) and experienced subjects (d–f). Histograms of Bid/Signal
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(b) Inexp: DKL89, N = 6
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(c) Exp: DKL89, N = 3
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(d) Exp: DKL89, N = 6

0.5 0.6 0.7 0.8 0.9 1.0

0
2

4
6

8 Eq = 0.83
Median = 0.89
Skew = −2.34*

12



Table 3: Statistical tests of differences in the degree of overbidding and within-subject
variance between auctions with affiliated private values and common values

Degree of Overbidding Within-Subject Variance Between-Subj
Data APV CV APV CV Variance
Inexperienced, w = 6 −0.128 � 0.641 0.359 ≈ 0.341 0.246
Inexperienced, w = 12 0.104 � 0.523 0.052 � 0.4 0.147
Inexperienced, all w −0.058 � 0.621 0.326 ≈ 0.361 0.21
Experienced, w≤ 18 0.062 � 0.403 0.159 < 0.336 0.248
Experienced, w≥ 24 0.179 < 0.329 0.113 � 0.32 0.13
Experienced, all w 0.142 � 0.357 0.15 � 0.343 0.162

Description: The sole difference to Table 4 is that the comparison is between APV and CV auctions, instead of
inexperienced and experienced subjects.

finite mixture models with up to three components. Each component is characterized by
a mean normalized strategy, a between-subject variance regarding the subjects making
up the component, and a within-subject variance to capture individual randomization.12

The impression given by the histograms is confirmed and summarized as follows (the
detailed results are not needed further and relegated to the supplementary material).

Result 2. Across information conditions and experience levels, subject pools consist of
single components. Secondary components are either insignificant (16 of 18 treatments)
or contain less than 10 percent of the subjects (2 of 18 treatments).

As a corollary, evidence for multiple discrete levels of reasoning is not obtained.

4.3 First moments of bids: Overbidding
In the standard first-price auctions (see Table 1), normalized BNE bids are r = −1 in
CV auctions, r = −2/n in APV auctions, and r = (n− 1)/n in IPV auctions. The dif-
ference between normalized observed bid and normalized BNE bid is called “degree of
overbidding”. I estimate it controlling for subject-level random effects and evaluate sig-
nificance using bootstrapping (as before). Table 2, column “Degree of Overbidding”,
reports the results. The degree of overbidding is significantly positive in 15 out of 18
cases (at α = .005), which confirms the usual finding that subjects overbid.

Result 3. In standard first-price auctions, subjects overbid significantly.

Comparative statics of overbidding across information conditions can be studied
comparing KL86’s CV auctions and in KHL87’s APV auctions. They implement com-
mon values and affiliated private values in otherwise equivalent conditions: signal band-
widths w are similar, numbers of players N are similar, and even experimental instructions

12In order to focus on whether discrete components need to be distinguished, the within-subject vari-
ances are held fixed constant across components. The models are estimated using the EM algorithm using
25 different starting values in each case, and the number of model components is estimated by maximizing
the integrated classification likelihood (ICL), following Biernacki et al. (2000). Maximizing the ICL esti-
mates the correct number of components of finite mixtures more consistently than say Bayes Information
Criterion (BIC). See McLachlan and Peel (2000) for further information.
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Table 4: Statistical tests of the degree of overbidding and within-subject variance (with
respect to the degree of overbidding) as a function of experience

Degree of Overbidding Within-Subject Variance Between-Subj
Data Inexperienced Experienced Inexperienced Experienced Variance
Independent private values auctions (DKL89, KL93)
N = 3 0.104 ≈ 0.148 0.16 ≈ 0.123 0.033
N = 5 0.08 > −0.144 0.142 < 0.36 0.077
N = 6 −0.021 < 0.036 0.164 ≈ 0.11 0.039
all N 0.05 ≈ 0.04 0.156 ≈ 0.178 0.119
all, contr. for N 0.05 ≈ 0.041 0.155 ≈ 0.179 0.103
Affiliated private values auctions (KHL87)
w = 12 0.104 ≈ 0.062 0.051 ≈ 0.172 0.17
All data −0.058 � 0.142 0.331 > 0.15 0.134
All, contr. for w 0.058 ≈ 0.04 0.192 ≈ 0.209 0.117
Common value auctions (KL86)
N ≤ 4, w ∈ {12,18} 0.538 > 0.228 0.415 ≈ 0.343 0.208
N ≤ 4, all w 0.63 � 0.316 0.37 ≈ 0.363 0.233
N ≥ 5, all w 0.613 � 0.389 0.344 ≈ 0.309 0.254
all N, w ∈ {12,18} 0.517 ≈ 0.404 0.397 ≈ 0.332 0.263
all N, all w 0.621 � 0.359 0.357 ≈ 0.332 0.242
all N, all w, contr. for w 0.573 ≈ 0.411 0.349 ≈ 0.337 0.247

Description: The table reports the results of one set of statistical tests per row. Given the subset of data specified in column
1, two null hypotheses are simultaneously tested: (i) H0 : the degree of overbidding does not differ between inexperienced
and experienced subjects, and (ii) H0 : the residual (i.e. within-subject) variances do not differ between them. These
nulls are tested in regression models with the degree of overbidding as independent variable and the level of experience
as independent variable (without intercept). �,� indicate rejection of H0 at the .005 level and >,< indicate rejection
at .05, where the p-values are bootstrapped as described above. Considering the Bonferroni correction for the multiple
testing problem inherent in this analysis, results should be significant roughly at the .005 level. Terms such as the degree
of overbidding are used as defined above (e.g. Table 2).

and logistics are similar. The econometric approach is the same as before, regressing the
degree of overbidding on the information condition (APV or CV), controlling for subject-
level random effects and bootstrapping p-values. Table 3 presents the results: Across
conditions and experience levels, the degree of overbidding is significantly higher in CV
auctions (5 of 6 times at α = .005).

Result 4. The degree of overbidding is higher in CV auctions than in APV auctions.

4.4 Second moments of bids: Strategic randomization
As shown above, subjects make either relative or absolute reductions to their signal.
They randomize, however, as the positive within-subject variances in Table 2 show. Ran-
domization may be strategic in the sense of mixed equilibrium or erratic in the sense of
stochastic choice. Arguably, randomization may be (partially) strategic even if subjects
are not aware of their randomization, e.g. “rock-paper-scissors” tends to be perceived as
tactical game, but it can be fully erratic only if the within-subject variance decreases as
subjects gain experience. Based on this idea, I test for strategic randomization.

Estimates of the within-subject standard deviations are obtained in the regressions
above (Table 2), and their interaction with experience is evaluated in models with differ-
ent within-subject variances for the two levels of experience. Table 4 presents the results
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in the columns on the “Within-Subject Variance”. I test the null hypothesis that variance
is constant in multiple ways, either holding the conditions such as number of players
N or signal bandwidth w constant, or pooling the data and then controlling for N or w.
Overall, the results strongly indicate that the within-subject variance does not change as
subjects gain experience. This holds both in treatment-wise comparisons when they are
possible, noting that treatment parameters in some experiments are changed as subjects
gain experience (see Table 2), and after pooling treatments. Between the 13 tests in Table
4, there is exactly one significant relation for either direction at the .05 level, and none at
the .005 level suggested by the Bonferroni correction.

Result 5. The within-subject variance is constant, suggesting strategic randomization.

4.5 Third moments of bids: Skewness
Regarding the third moments of the bid distribution, the histograms in Figures 1–3 show
that the overall distributions are significantly left-skewed in private value auctions (in
both IPV and APV auctions), while skewness tends to be inverted in CV auctions.13 In
all five cases where exact treatment-wise comparisons between inexperienced and expe-
rienced subjects are possible, the estimated skewness further shifts toward left-skewed
distributions as subjects gain experience. Due to subject heterogeneity, however, the
overall skewness may not equate with the average individual skewness. The average in-
dividual skewness is the skewness of the errors when regressing the normalized bids on
the intercept controlling for subject-level random effects. These estimates, reported in
Table 2 in column “Skewness”, are similar to the overall skewness estimates: Skewness
is mostly significant, at least at p = .05, and if it is significant, then toward left-skewness
in PV auctions and toward right-skewness in CV auctions.

Result 6. Distributions of bids are left-skewed in private value auctions and right-skewed
in common-value auctions.

5 Behavioral models in relation to the stylized facts
Table 5 summarizes the relation of the predictions of the models reviewed in Section 2
to the stylized facts just distilled. On this qualitative basis, type projection explains all
observations that existing concepts explain, and in addition it explains observations that
existing concepts do not explain. Specifically, type projections explains first moments
(overbidding) as well as the existing concepts in combination, and it uniquely explains
most observations on the higher moments (randomization and skewness).

To illustrate, I discuss the predictions of type projection equilibrium in some detail
(for full details, see Breitmoser, 2015).14 For simplicity, I consider first-price auctions
assuming continuity of signals and bids. A player gets signal x, his expectation of the

13All of the histograms additionally present information on the skewness of the distributions of normal-
ized bids. An asterisk is printed next to the skewness estimate if it deviates significantly from zero. As
above, significance of the skewness is evaluated by bootstrapping, resampling at the subject level.

14The predictions of the existing concepts are well-known and therefore skipped here. BNE for expected
payoffs by definition does not predict overbidding, risk aversion (CRRA) predicts overbidding in private
value auctions, and cursed equilibrium predicts overbidding in common value auctions. All these concepts
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Table 5: Stylized facts in relation to the models’ predictions

Empirical Theoretical prediction
Observation Exp payoff Risk aversion Cursed Eq Level-k Type projection

Distribution Unimodal × × × ×
Overbidding PV Yes × ×
Overbidding CV Yes × (×) ×
Overbidding Comp CV>PV × (×) ×
Individual variance Const ×
Skewness PV Left ×
Skewness CV Right

Note: The predictions for expected payoffs (Eq. 1), risk aversion (Eq. 5), cursedness (Eq. 4), and type
projection (Eq. 3) are for BNE. The predictions for level-k are derived for the standard assumption (Stahl
and Wilson, 1995; Nagel, 1995) that level-0 players randomize uniformly given their actual knowledge.
Crawford and Iriberri (2007) discuss a level-k model where level-0 players randomize uniformly given
“my” knowledge. This model predicts overbidding in CV auctions, which I indicate using parentheses.

object value conditional on x is v(x). The expectation conditional on own signal x and
highest opponent signal y is v(x,y). The density of the highest opponent signal y con-
ditional on the own signal x is fY (y|x). A pure strategy b? is a continuous, monotonic
function mapping signals x to bids b ∈R. Now, applying Equation (3), the expected pay-
off of a type-projecting player bidding b∈R, conditional on own signal x and in response
to the opponents’ bidding function b?, is

Πρ(b|b?,x) = (1−ρ)
∫ b−1

? (b)

x

(
v(x,y)−b

)
fY (y|x)dy+ s ·ρ

∫ x

x

(
v(x,y)−b

)
fY (y|x)dy. (6)

The second summand captures the case of projection. In this case, the expected payoff
depends on the relation of b and b?(x), with s = 0 if b < b?(x), s = 1/n if b = b?(x),
and s = 1 if b > b?(x). One may think of s as the probability of winning in the case
of projection. The optimal bid b maximizes the expected payoff of i, and in any pure
equilibrium, b = b?(x) obtains. The implications of projection relate to two well-known
phenomena, loser regret and broken Bayesian updating.

Loser regret If a projecting player bids less than opponents with the same signal,
b < b?(x), he underestimates the probability of winning, as he believes to lose with cer-
tainty in the projection case. If he bids more than opponents with the same signal, he
overestimates the probability of winning, as he believes to win with certainty in the pro-
jection case. This induces an incentive to outbid opponents with the same signal, in all
information conditions (in first-price auctions). These incentives resemble loser regret
(Engelbrecht-Wiggans, 1989), i.e. to anticipate regret if a higher bid would have won the
auction profitably. Projecting players act as if they anticipate “conditional loser regret”,
i.e. regret if a higher bid would have won the auction against opponents with the same
valuation. The differences are minor, as loser regret materializes only if the opponents’
values are similar. Thus, I will say that projection induces loser regret as observed by

predict pure equilibria, which explains neither randomization nor skewness. For detailed discussion on the
existing concepts and on level-k, let me refer to Crawford and Iriberri (2007).
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Figure 4: Projection predicts skewed overbidding in both APV and CV auctions. Risk
aversion and cursedness predict symmetric overbidding in APV and CV, respectively

(a) APV: Projection ρ
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(b) APV: Risk aversion α
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(c) CV: Projection ρ

−1.5 −1.0 −0.5 0.0

0.
0

1.
0

2.
0

3.
0

Normalized Bid

N
or

m
al

iz
ed

 D
en

si
ty

ρ = 0
ρ = 0.2
ρ = 0.4
ρ = 0.6
ρ = 0.8

(d) CV: Curse χ
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Filiz-Ozbay and Ozbay (2007) and Engelbrecht-Wiggans and Katok (2007).15

Broken Bayesian updating If one outbids opponents with the same signal, b > b?(x),
the expected object value under projection is equal to the expectation under cursedness
(exchanging ρ and χ). Then, projection attenuates Bayesian updating. If b < b?(x), the
expected payoff conditional on winning equates with the Bayesian expectation. Hence,
the conditional expectation is biased only if one outbids opponents with the same value.
In standard common value auctions, the bias is an upward bias, i.e. the conditional ex-
pectation exhibits an upward jump at b = b?(x). Besides inducing cursed expectations,
the upward jump adds to the loser regret. Thus, the incentives of projecting players to
outbid opponents of the same type are strongest in common value auctions. On a qual-
itative basis, type projection therefore predicts that if we hold the degree of projection
constant, overbidding occurs in both information conditions, but the normalized degree
of overbidding is larger in common value auctions than in private value auctions.

Randomization For purpose of contradiction, assume there exists a pure ρ-TPE, ρ ∈
(0,1), with equilibrium strategy b?. Any ε > 0 implies that outbidding the opponents by
b= b?(x)+ε increases the probability of winning in case of projection (weight ρ> 0) dis-
cretely from 1/n to 1, while it decreases the expected payoff conditional on winning only
infinitesimally.16 If the conditional payoff after bid increment is positive, the projecting
player prefers outbidding the opponents to matching their bids. In turn, a symmetric,
pure strategy profile can be an equilibrium only if it induces non-positive expected pay-
offs. Then, however, projecting players can realize positive profits by deviating to bids
b < b?(x) if ρ < 1. Hence, a ρ-TPE must be mixed if bids are continuous.17

15Note that the projected probability of winning is discontinuous in b if the opponents play a pure
strategy. It jumps at b = b?(x) where one “overtakes” opponents with the same signal. The discontinuity
will disappear once we allow for mixed strategies, but the incentive to slightly outbid opponents with
similar values is robust to allowing for mixed strategies.

16Without projection, ρ = 0, both effects are infinitesimal and thus balanced in a pure BNE.
17This prediction applies in all auctions exhibiting strategic complements, i.e. in all auctions considered

here (see Breitmoser, 2015), but for example not in second-price IPV auctions.
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Skewness Given that it is mixed, it is easy to see that the type projection equilibrium
strategy must be left-skewed, i.e. that the density is increasing (under strategic comple-
mentarity). Along the support of the equilibrium, a player is indifferent. A projecting
player can be indifferent toward increasing his bid only if the increase would reduce his
expected payoffs without projection, but the reduction is offset by the increase in the
share of opponents perceived to be overtaken due to projection. The latter is the den-
sity of the opponents’ strategy, which therefore must be increasing. To formalize the
argument, consider a two-player APV or CV auction with strategic complements, uncon-
ditional value being equal to one’s signal x, and an opponent playing a mixed strategy
σ randomizing over normalized bids r < 0. Let Fσ denote the c.d.f. of σ and let Π̃(r|σ)
denote one’s expected payoff (without projection) of normalized bid r in response to σ.
The expected payoff of a projecting player is Π̃ρ(r|σ) = (1−ρ)Π̃(r|σ)− r ρFσ(r). Tak-
ing the derivative with respect to r < 0, in the interior of the support, using the fact that it
is zero there, and rearranging terms, we obtain

σ(r) =−Fσ(r)
r

+
1−ρ

ρ
· Π̃
′(r|σ)

r
. (7)

Now, σ(r) is increasing in r, as Fσ(r) is increasing and Π̃′(r|σ) is decreasing (for details,
see Breitmoser, 2015). Figure 4 plots the predictions of type projection in APV and
CV auctions, alongside those of risk aversion in APV auctions and cursedness in CV
auctions.18 The predictions are plotted for logit equilibria as analyzed below, which
illustrates that the predicted shape of the equilibrium strategies is robust to (small) logit
errors. In contrast to projection, risk aversion and cursed equilibrium predict (largely)
symmetric distributions even with logistic errors.

6 Toward a robust analysis of bidding
Table 5 suggests that type projection comprehensively explains bidding. This suggestion
is tested rigorously next. A test is necessary, as the stylized facts cover complexity and
moments of bidding fairly systematically, but their analysis cannot be complete. An anal-
ysis of the full distribution, exploiting the properties of maximum likelihood estimators,
can complete the picture and show which models indeed capture behavior. Specifically,
a model’s ability to explain signs of moments (“stylized facts”) does not imply that the
moments are of the correct scale, that they are captured simultaneously or that they are
predicted robustly across conditions (the comparative statics). Joint explanation of mo-
ments and comparative statics are tested in structural analyses if we pool treatments and
experiments—and in this sense, the structural analysis will put the discussion of model
adequacy on a solid econometric basis. Several issues are to be considered, though.

18Risk aversion does not affect equilibrium predictions in common value auctions and cursedness does
not affect predictions in private value auctions. Hence, the corresponding plots are skipped.
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6.1 Stochastic choice
The objective is to identify payoff structure (Eqs. 1–5) and belief systems. All concepts
but type projection equilibrium predict pure strategies and thus fit the observations only
if we allow for stochastic choice (i.e. “errors”). To not rule out these models right away,
and in line with virtually all previous analyses, I allow for stochastic choice. There is
no consensus on modeling stochastic choice, however. Analyses in experimental game
theory typically allow for “logistic” perturbations of utilities. Given strategic beliefs σ̃i
and payoff structure π̃i, subjects do not choose best responses (Eq. 2) but logit responses

Logitti(σ̃−i|π̃i,λ) =
{

σ
l(ai)

}
ai∈Ai

with σ
l(ai) =

exp{λ π̃i
(
ai|ti, σ̃−i

)
}

∑a′i∈Ai exp{λ π̃i
(
a′i|ti, σ̃−i

)
}
. (8)

Logit implies that the higher the expected payoff of an action, the higher its probability,
with the precision parameter λ ranging from λ = 0 (uniform randomization) to infinity
(best response, Eq. 2). In contrast, empirical analyses of auctions typically allow for
“behavioral” perturbations of choices. Using the notation in Eq. (2),

Behavti(σ̃−i|π̃i,λ) =
{

σ
b(ai)

}
ai∈Ai

with σ
b(ai) = f

(
ai−BRti(σ−i|πi)

)
(9)

where f (·) is the density function of the error distribution. Analyses typically estimate
the parameters hidden in BRti by least squares. Behavioral errors imply that the closer an
action to the best response (in the strategy space), the higher its probability. These models
have been tested repeatedly, and it appears that choice probabilities relate more closely to
utility differences than to distances in strategy space (e.g. McKelvey and Palfrey, 1995,
Weizsäcker, 2003, Breitmoser, 2013). For this reason, I assume logistic errors.19

6.2 Identifying payoff structure and belief system
The belief systems usually considered in analyses of auctions may be labeled “equilib-
rium beliefs” (rational expectations), “level-k beliefs” (as defined above), and “Nash be-
liefs”. By Nash belief, I refer to the belief that opponents play the BNE strategies for the
respective payoff structure, e.g. cursed equilibrium in the case of cursed payoffs. Note
the subtle difference between “equilibrium beliefs” and “Nash beliefs”: players with so-
called equilibrium beliefs have rational expectations and anticipate errors of opponents
(e.g. logistic errors), while players with Nash beliefs do not anticipate errors.

In principle, it is possible to combine any of these belief models with any pay-
off structure π̃i ∈ {πi,π

CRRA
i ,π

Proj
i ,πCurse

i }. Indeed, previous analyses examined a fairly
large variety of combinations, but unfortunately with little overlap between studies. Go-
eree et al. (2002b) examine equilibrium beliefs in conjunction with risk aversion (and
logit errors). Eyster and Rabin (2005) examine cursed equilibrium, i.e. Nash beliefs in
conjunction with cursed payoffs (and behavioral errors). Crawford and Iriberri (2007)

19In turn, models of behavioral errors are rather tractable if one additionally assumes that subjects do not
anticipate the errors of their opponents (Bajari and Hortacsu, 2005, discuss some differences in tractability).
Subjects not anticipating errors consequently anticipate the BNE strategies. In the presence of errors, this
violates rational expectations, but it simplifies estimation as only the BNE strategies need to be computed,
not the equilibrium strategies accounting for errors.
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show that level-k beliefs fit better than Nash beliefs in private and common value auc-
tions, assuming either expected or cursed payoffs and logit errors. Bajari and Hortacsu
(2005) show that Nash beliefs with behavioral errors fit about as well as equilibrium be-
liefs with logit errors (in the sense that the differences are insignificant). That is, the only
model considered by two studies is equilibrium beliefs with logit errors, considered in
Goeree et al. (2002b) and Bajari and Hortacsu (2005), and in turn, the existing results do
not form a comprehensive picture of the behavioral forces underlying bidding.

In addition, the studies show that the identified payoff structure depends on the
assumed belief system and vice versa. This relates to analyses of choice under risk,
where identification of utility functions and probability weighting depends on the model
of stochastic choice, see e.g. Hey (2005), Blavatskyy and Pogrebna (2010), and Wilcox
(2011). Thus, to reliably analyze the payoff structure, we have to relax the assump-
tions on belief formation and simultaneously allow for all three of the standard models—
loosely speaking, to let the data decide. To illustrate how this is achieved, let me define
quantal response equilibrium (McKelvey and Palfrey, 1995) with logit errors.

Definition 1 (Quantal response equilibrium). Given π̃i ∈{πi,π
CRRA
i ,π

Proj
i ,πCurse

i }, a strat-
egy profile σ = (σ1, . . . ,σn) is a λ-QRE if all types ti ∈ Ti of all players i ∈ N choose
σi(·|ti) = Logitti(σ−i|π̃i,λ).

QRE is the standard model in behavioral game theory, and successfully captures
behavior in e.g. the centipede game (Fey et al., 1996), the traveler’s dilemma (Capra
et al., 1999), public goods games (Goeree et al., 2002a), monotone contribution games
(Choi et al., 2008), and beauty contests (Breitmoser, 2012). Now assume that players
believe their opponents play QRE, i.e. their belief is strategically balanced but noisy, and
to their belief, they logit respond with their own, presumably higher precision.

Definition 2 (Asymmetric quantal response equilibrium). Given a payoff structure π̃i ∈
{πi,π

CRRA
i ,π

Proj
i ,πCurse

i }, a strategy profile σ = (σ1, . . . ,σn) is a (λ,κ)-AQRE if there
exists a κ-QRE σ′ such that for all ti ∈ Ti of all i ∈ N, σi(·|ti) = Logitti(σ

′
−i|π̃i,λ).

By AQRE, players λ-logit respond to a κ-QRE.20 AQRE nests the three models
discussed above, QRE for κ = λ, Level-1 for κ = 0, and logit response to Nash beliefs
for κ = ∞, and additionally allows for a continuum in-between these extremes. Thus,
AQRE is indeed flexible enough to let the data speak for itself, and in addition, it is
parsimonious, nesting the three models by adding just one parameter.

The main difficulty with using AQRE is that the underlying QRE needs to be com-
puted explicitly.21 This is not generally straightforward, as mixed bidding functions are
rather complex, but thanks to the above result that subjects’ strategies are one-dimensional,
AQRE is computationally feasible using current technology.22 Thus, the above result on
complexity allows us to endogenize the belief assumptions made in the literature.

20AQRE differs from the asymmetric logit equilibrium defined by Weizsäcker (2003) only insofar as
opponents do not know that I use some κ 6= λ. Here, they simply play the QRE with precision λ.

21As indicated already, the insight of Bajari and Hortacsu (2005) allowing to avoid the fixed point com-
putation underlying QRE—by exploiting rational expectations and using observed behavior as beliefs—is
infeasible here. By assumption, observed behavior forms an AQRE and subjects do not have rational
expectations. Thus, the fixed point defining QRE needs to be computed explicitly.

22For illustration, consider again a grid with 100 different normalized bids over which the bidders ran-
domize. In an auction with 5 bidders and say 100 possible signals, evaluating the payoff function is possi-
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As discussed next, addressing the concerns voiced by Haile et al. (2008) that a suffi-
ciently generalized QRE can fit everything, I verify the fallacy to overfitting by examining
predictive adequacy. As robustness checks, I additionally consider the best known alter-
native belief models, namely level-k (Stahl and Wilson, 1995; Nagel, 1995), cognitive
hierarchy (Camerer et al., 2004) and noisy introspection (Goeree and Holt, 2004). These
models are defined in Appendix A and discussed briefly below.

6.3 Robustly measuring model adequacy
I report results for three measures of model adequacy. The descriptive adequacy mea-
sures goodness-of-fit in-sample, the predictive adequacy measures the reliability of pre-
dictions across experiments, and the inferential adequacy measures accuracy of the object
values (signals) inferred from bids. Generally, the measure to be used depends on the pur-
pose of the analysis, and thus reporting all three measures may help clarify which model
is suitable for which purpose. The main purpose here is to identify payoff structure and
beliefs in a manner ensuring that they can be used reliably in future work. To this end,
predictive adequacy is most appropriate.

To clarify, let me introduce some notation. De denotes the data set associated with
experiment e, D = ∪eDe denotes the pooled data, and define D−e = D\De (the data sets
used here are listed in Table 1). Given a model, p denotes a generic parameter vector
and p?(D′) denotes the maximum likelihood estimate given data set D′. Finally, |p|
denotes the the dimensionality of p, |D′| denotes the number of subjects in data set D′,
and ll(p|D′) denotes the log-likelihood of the model with parameters p given data D′.

As usual, I measure descriptive adequacy by Bayes information criterion (Schwarz,
1978), using the number of subjects as number of observations.

Definition 3 (Descriptive adequacy). BIC =−ll
(

p?(D) |D
)
+ |p?(D)|/2 · log |D|

Descriptive adequacy is informative, as a high compatibility with stylized facts does
not guarantee descriptive adequacy. The pooled data, including scale of moments and
comparative statics, need to be explained using a single parameter vector.

Second, I measure predictive adequacy by fitting the parameters to one information
condition, using the estimate to predict the remaining data, and rotating such that all data
sets are used as training data.23 There is no penalty term as in BIC, as by definition
no parameter is adjusted to the data set used in the validation stage, i.e. no degree of
freedom is used. To be aligned with the other measures, I report the absolute values of
the log-likelihoods, which implies that “less is better” for all measures.

ble by simulation using quasi-random numbers, which in turn can be implemented in a massively parallel
manner on a GPU (which is reasonably standard, see e.g. Breitmoser, 2012). On top of it, finding the fixed
point for the distribution over 100 normalized bids is possible, but finding the fixed point for 100× 100
probabilities is not (yet) possible using “regular” computers.

23The tendency to distinguish descriptive and predictive adequacy is a rather recent development in
analyses of decision-theoretic models (Wilcox, 2008; Hey et al., 2010), learning models (Erev and Roth,
1998; Camerer and Ho, 1999; Tang, 2003; Ho et al., 2008), and simple games (Blanco et al., 2011; Shapiro
et al., 2014). I am not aware of existing analyses in Bayesian games in general or auctions in particular. The
approach adopted here may be called cross-validation (Browne, 2000) with nonrandom holdout samples
(Keane and Wolpin, 2007).
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Definition 4 (Predictive adequacy). LLpred = −∑e ll
(

p?(De) |D−e
)
/(n− 1) using n as

number of experiments analyzed

Predictive adequacy assesses the reliability of estimates in other experiments, and
this way, it assesses robustness of the behavioral relevance of a motive. In general, high
descriptive adequacy does not imply predictive adequacy (see also Hey et al., 2010), as
predictive adequacy requires goodness-of-fit not just in the ex-post sense, after fitting
the model to the data, but also in an ex-ante sense, after fitting the model to different
data. This allows me to address Haile et al. (2008), who show that in any game with
K ≥ 2 actions, a generalized logit model with K− 1 parameters can fit any choice pat-
tern. Given this dimensionality, any model should be able to fit perfectly, but in analyses
of auctions, hundreds of parameters would be required and parameters would have to
be treatment-specific. Nonetheless, by verifying predictive adequacy, I can explicitly
address the concerns of Haile et al. and transparently evaluate (lack of) reliability.

Finally, the inferential adequacy also is evaluated out-of-sample, but now, we infer
signals from bids rather than predicting bids from signals (following Bajari and Hortacsu,
2005). Given an observation and a set of parameters (estimated using training data),
the theoretical bidding function for the respective out-of-sample treatment is determined
and the expectation of the signal conditional on the observed bid is computed. This
conditional expectation is called inferred signal. The inferential adequacy is the mean
absolute deviation (MAD) to the actual signals. The supplementary material additionally
lists the results for the mean squared deviation (MSD), which are very similar. Formally,
let m(p|D′) denote the mean absolute deviation of inferred signals to actual signals if
inference is made using parameter vector p on data set D′.

Definition 5 (Inferential adequacy). MAD = ∑e m
(

p?(De) |D−e
)

Inferential adequacy is desirable in empirical work (Bajari and Hortacsu, 2005) and
complements predictive adequacy by its focus on the expectation of the underlying signal.
Specifically, the first moment of its distribution needs to be predicted, rather than the full
distribution as in likelihood-based procedures.

7 Analysis of bidding in auctions
The analysis distinguishes inexperienced subjects (first five auctions, following Crawford
and Iriberri, 2007) and experienced subjects (last five auctions), and throughout I report
the results for all three measures of model adequacy. The objective to obtain results
useful in future work suggests to use predictive adequacy, which also evaluates potential
overfitting, but the results are robust to the chosen measure of model adequacy. The levels
of significance used above, 0.05 and 0.005, are used equally here, and the likelihood ratio
tests again are bootstrapped (using nested or non-nested Vuong tests, as appropriate).

Initially, I analyze the “standard” auctions in Table 1, i.e. auctions with common
value (CV, Kagel and Levin, 1986), affiliated private values (APV, Kagel et al., 1987), or
independent private values (IPV, Kagel and Levin, 1993; Dyer et al., 1989). Given the
magnitude of the between-subject variances in Table 2, I allow for heterogeneous sub-
jects as described in Appendix A. The appendix also specifies the (standard) likelihood
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Table 6: Analysis of the payoff structure (for all measures of adequacy: less is better)

(a) Inexperienced subjects (first five auctions), across all standard auctions (IPV, APV, CV)

Adequacy Exp Payoff Risk Aversion Projection Cursedness
Descriptive 4108 � 3911 � 3742 � 3967
Predictive 4261 ≈ 4203 � 4034 � 4449
Inferential 2226 � 2636 � 1759 � 2110

Average (λ,κ,α) 45,0.12 0.39,15,0.34 11,3.1,0.44 20,1.3,0.73

(b) Experienced subjects (last five auctions), across all standard auctions (IPV, APV, CV)

Adequacy Exp Payoff Risk Aversion Projection Cursedness
Descriptive 4005 � 3573 � 3377 � 3805
Predictive 4069 � 3799 > 3686 � 4200
Inferential 4460 > 4004 ≈ 3498 ≈ 3650

Average (λ,κ,α) 47,0.05 0.34,14,0.24 18,3.3,0.48 130,0.21,0.78

Note: The payoff structures are defined in Eqs. (1)–(5) and the measures of model adequacy are defined
in Definitions 3–5. The row “Average (λ,κ,α)” lists the average estimates of precision λ, belief parameter
κ (of AQRE), and degree α of risk aversion/cursedness/projection (depending on model). Significance at
0.05 is indicated by <,>, and significance at 0.005 is indicated by�,� (which implements the Bonferroni
correction for nine simultaneous tests per level of experience).

function and the numerical approach to its maximization.24 Robustness checks of belief
systems and homogeneous subject pools are discussed below, while the full set of details
and all parameter estimates are provided as supplementary material.

7.1 Which payoff structure is most adequate?
The analysis proceeds sequentially. First, I analyze the payoff structure, defined in Eqs.
(1)–(5), under the general model of strategic beliefs (AQRE, Def. 2) nesting the three
standard models: rational expectations, naive beliefs, and Nash beliefs.

Question 1. Allowing for all of the standard belief systems, which payoff structure cap-
tures bidding: expected payoffs, risk aversion, cursedness, or projection?

The results are presented in Table 6. The overall picture is rather clear-cut: Type pro-
jection generally is most adequate, corroborating the compatibility with the stylized facts,
and in most cases the differences to the other payoff structures are highly significant. The
descriptive adequacy of projection shows that a fairly constant degree of projection fits
behavior across conditions. Its predictive adequacy shows that even if fitted to single data
sets, the estimated degree of projection is comparably robust and enables meaningful pre-
dictions of behavior in other conditions. This indicates that type projection itself has a
robust impact on behavior and that its descriptive adequacy is not due to overfitting.

The predictive adequacy also uncovers the most striking differences to the other
concepts. Both risk aversion and cursedness significantly improve on expected payoffs

24Briefly, all parameters (precision λ, belief asymmetry κ, and degrees of risk aversion, cursedness, and
projection) are randomly distributed across subjects, while each subject is assumed to bid according to
a constant set of parameters. The latter is consistent with the lack of time trends found above, for both
inexperienced subjects (first five auctions) and experienced subjects (last five auctions).
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descriptively (i.e. in-sample) but fail to consistently improve on it predictively (out-of-
sample). Their behavioral content in relation to expected payoffs is not robust. In turn,
type projection does not only yield higher predictive adequacy than expected payoffs for
both inexperienced and experienced subjects—it fits better out-of-sample than expected
payoffs does in-sample. Thus, type projection is of robust relevance in bidding. The
results on inferential adequacy are similar, though not quite significant in all cases.

Result 7. Type projection is the dominant model of the payoff structure. It is most ade-
quate by all measures, for both experienced and inexperienced subjects, and it uniquely
improves on expected payoffs out-of-sample.

7.2 How are beliefs formed?
The result that type projection is an adequate representation of the payoff structure, both
under the generalized belief system nesting the usual beliefs (shown above) and under
other belief systems (shown in the supplementary material), can now be used to identify
the belief system itself. Besides equilibrium (QRE) and asymmetric QRE (Definitions ,
Def. 1 and 2), I will consider noisy introspection (NI, Goeree and Holt, 2004), cognitive
hierarchy (CHM, Camerer et al., 2004), and level-k (Nagel, 1995; Stahl and Wilson,
1995), see Definitions 6-8 in Appendix A. The procedure is otherwise consistent with
the one used to answer Question 1.

Question 2. Given the identified model of the payoff structure (type projection), which
belief system captures bidding?

First, to provide context, let me briefly review existing results. In small normal-form
games with dominated strategies, subjects exhibit low depth of reasoning: They do not
choose dominated strategies but fail to take into account that opponents reason similarly
(Costa-Gomes et al., 2001; Weizsäcker, 2003; Costa-Gomes and Weizsäcker, 2008). In
games without dominated strategies, in particular in games with unique mixed equilibria,
equilibrium beliefs are most adequate (Goeree et al., 2003; Brunner et al., 2011). In
large normal form games, beliefs tend to be in-between these extremes: subjects may
underestimate the precision of others, but not as extremely as level-1 (Goeree et al.,
2002a; Costa-Gomes and Crawford, 2006; Breitmoser, 2012). This can be captured by
e.g. AQRE with λ> κ> 0 and NI with 1> κ> 0. Auctions are similarly large games, and
following Goeree et al. (2002b) equilibrium beliefs are adequate (i.e. QRE). Bajari and
Hortacsu (2005) show that equilibrium beliefs are about as adequate as Nash beliefs.25

The results of the current analysis, provided in Table 7, largely corroborate these
observations. To organize the results, let us take the unique one-parametric model (QRE)
as benchmark and ask which of the two-parametric models improve on it consistently.
As for inexperienced subjects, the only model that improves on QRE consistently (by all
three measures) is AQRE, but in two of the three cases, the significance of the differences
is not robust to the Bonferroni correction. Thus, I say that AQRE weakly improves on
QRE for inexperienced subjects. As for experienced subjects, no model consistently
improves on QRE, which has the highest predictive adequacy and thus fits most robustly.

25In turn, Crawford and Iriberri (2007) show that for a specific assumption of level-0 behavior and
assuming expected payoffs, level-k models may fit better than equilibrium beliefs.
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Table 7: Analysis of the belief systems (for all measures: less is better)

(a) Inexperienced subjects (first five auctions), across all standard auctions (IPV, APV, CV)

Adequacy Level-k CHM QRE AQRE NI
Descriptive 3760 ≈ 3762 ≈ 3771 > 3742 ≈ 3751
Predictive 4091 > 4014 � 4082 > 4034 ≈ 4035
Inferential 1962 � 2210 � 2110 � 1759 � 2116

Average (λ,κ,ρ) 43,4.8,0.44 47,7.1,0.44 45,0.4 11,3.1,0.44 16,0.54,0.5

(b) Experienced subjects (last five auctions), across all standard auctions (IPV, APV, CV)

Adequacy Level-k CHM QRE AQRE NI
Descriptive 3404 � 3435 ≈ 3406 > 3377 � 3454
Predictive 3644 � 3697 � 3599 � 3686 � 3609
Inferential 3370 � 3565 ≈ 3508 ≈ 3498 > 3251

Average (λ,κ,ρ) 29,11,0.42 29,8,0.42 52,0.45 18,3.3,0.48 16,0.62,0.52

Note: The belief models are defined in Definitions 1, 2, 6–8, and the measures of model adequacy are
defined in Definitions 3–5. The row “Average (λ,κ,ρ)” lists the average estimates of precision λ, belief
parameter κ (depending on model), and degree ρ of projection (depending on model). Significance at 0.05
is indicated by <,>, and significance at 0.005 is indicated by�,�.

Result 8. Inexperienced subjects tend to underestimate the precision of others. Beliefs
converge to rational expectations (QRE) as subjects gain experience.

Thus, in line with the literature, inexperienced bidders exhibit comparably noisy
beliefs (relating to Crawford and Iriberri, 2007), though level-k is not the most adequate
model, which confirms the observations that bid distributions are unimodal (Result 2).
Experienced bidders are well described holding equilibrium beliefs (relating to Goeree
et al., 2002b, and Bajari and Hortacsu, 2005). To illustrate the goodness-of-fit, Figure 5
plots the predicted densities of QRE with projection over the histograms of normalized
bids. These plots refer to inexperienced subjects; the respective plots for experienced
subjects are similar and provided as supplementary material.

7.3 Further experience effects
QRE fits behavior of experienced subjects most robustly and fits only weakly worse than
AQRE for inexperienced subjects. Therefore, I focus on QRE (with projection) to analyze
behavioral differences between inexperienced and experienced subjects. Similar analyses
for the other belief schemes are provided in the supplementary material.

Parameter estimates As described above, the models evaluated so far allow for un-
observed heterogeneity: QRE-precision and degree of projection are constant for each
subject but distributed randomly in the population. Table 8 presents their mean values for
each of the data sets and for the pooled data set, separately for inexperienced and expe-
rienced subjects. In all information conditions, the mean precision increases as subjects
gain experience, to the extent that behavior largely converges to projection equilibrium
without errors in private value auctions. The degree of projection is on average constant,
slightly increasing for private value auctions and substantially decreasing for common
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Figure 5: The predictions of QRE with projection (solid lines) in relation to the data
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Note: The histograms plot the normalized bids for each information condition in standard auctions (see
Table 1), always aggregated across treatments, focusing on inexperienced subjects. On top, the solid line
depicts the predicted choice probabilities of QRE with projection, equally averaged across treatments.

value auctions. In the latter case, the degree of projection is initially very high (ρ = 1)
but declines to one of the lowest values across conditions as subjects gain experience.
The high initial value indicates that inexperienced subjects struggle comprehending com-
mon values, and the subjects struggling the most actually go bankrupt in CV auctions.
Bankrupt subjects are removed from the experiment and therefore not present in the pool
of experienced subjects, which slightly biases the average degree of projection in CV
auctions in relation to the other auctions. Aside from that, the mean degree of projection
is near 0.5, which indicates that type projection is indeed a constant factor in bidding.

Table 8: Average precision and degrees of projection in standard auctions

Subjects CV, 1st CV, 2nd APV IPV Pooled
Inexperienced 1.7,1 30,0.58 18,0.3 26,0.42 45,0.4
Experienced 8.2,0.28 45,0.65 41,0.46 52,0.45

Note: The average parameters are reported for QRE with projection, listing the QRE precision first and the
degree of projection second. “CV, 1st” and “CV, 2nd” indicate first and second price auctions (respectively)
with common value, see Table 1.

Are subjects heterogeneous? Next, I investigate how the extent of subject heterogene-
ity depends on the level of experience. Contrary to the heterogeneous model considered
so far, in the homogeneous model, subjects are collectively described by a representative
agent with “average” precision λ and “average” degree of projection ρ. The procedure is
otherwise equal to above. The results are presented in Table 9. As for inexperienced sub-
jects, allowing for heterogeneity improves the goodness-of-fit descriptively (in-sample),
but neither predictively nor inferentially. In this case, allowing for heterogeneity induces
overfitting. As for experienced subjects, allowing for heterogeneity highly significantly
improves on the representative-agent model according to all three measures. This com-
plements the earlier finding that experienced subjects exhibit higher precision and ra-
tional expectations, suggesting that experienced subjects understand auctions, including
their opponents, which allows them to actually bid according to their preferences.
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Table 9: Analysis of significance of subject heterogeneity

(a) Inexperienced subjects (first five auctions)

Adequacy Homog. Heterog.
Descriptive 3893 � 3771
Predictive 4075 ≈ 4082
Inferential 2108 ≈ 2110

Average pars 17,0.43 45,0.4

(b) Experienced subjects (last five auctions)

Adequacy Homog. Heterog.
Descriptive 3570 � 3406
Predictive 4030 � 3599
Inferential 4613 � 3508

Average pars 11,0.61 52,0.45

Note: The tables report results for QRE with projection, assuming either homogeneous or heterogeneous
subjects (the latter as above and as described in Appendix A). Significance at 0.05 is indicated by <,>,
and significance at 0.005 is indicated by�,�.

Result 9. As subjects gain experience, their average precision increases, the average
degree of projection remains largely constant, and subjects exhibit heterogeneity.

7.4 Are multi-motive models more adequate?
Projection and cursedness as defined in Eqs. (3) and (4) can be complemented by any
outcome-based utility function. In auctions, is is natural to consider risk aversion (CRRA).
On the one hand, examining type projection in relation to a model merging type projec-
tion and risk aversion allows us to verify to which degree risk aversion complements
projection. On a qualitative basis, type projection explains overbidding in private value
auctions as well as risk aversion, and in addition it explains randomization and skewness.
It is not obvious that risk aversion covers facets of behavior neglected by projection. On
the other hand, examining type projection in relation to a model merging cursedness and
risk aversion illustrates to which degree projection (with a given degree of projection)
covers the facets explained by risk aversion and cursedness with independent degrees of
risk aversion and cursedness, respectively.

The analytical approach is as before. Based on the above results, I focus on het-
erogeneous subjects and equilibrium beliefs, but comprehensive robustness checks are
provided as supplementary material. The results, reported in Table 10, are clear and can
be summarized succinctly. The in-sample differences are small and insignificant, i.e. type
projection describes behavior comprehensively and does not miss out on any aspect cap-
tured by the other models despite its relative parsimony (corroborating the stylized facts
compiled in Table 5). The predictive adequacy significantly improves with type projec-
tion on its own, indicating that its parsimony indeed improves robustness. Augmenting
type projection by risk aversion improves the inferential adequacy when subjects are ex-
perienced, which may be of relevance in empirical work.26

Result 10. Multi-motive models do not improve on type projection in-sample (descrip-
tively) or out-of-sample (predictively). Complementing projection by risk aversion im-
proves inferential adequacy for experienced subjects.

26One caveat is that large and diverse data sets are required to reliably estimate both degree of projection
and degree of risk aversion (risk aversion on its own lacks inferential adequacy). This seems to be the
case in the present analysis but is unlikely to be satisfied in field work. Another caveat is that the models
considered here are estimated by maximum likelihood, and thus inferential adequacy is a side effect. If
inferential adequacy is the main objective, a different estimator may be appropriate.
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Table 10: Evaluation of models with multiple motives

(a) Inexperienced subjects (first five auctions), across standard auctions (IPV, APV, CV)

Adequacy Proj + RA Projection Curse + RA
Descriptive 3772 ≈ 3771 ≈ 3790
Predictive 4160 � 4082 � 4235
Inferential 2127 ≈ 2110 � 2312

Average pars 46,0.37,0.88 45,0.4 20,0.73,0.64

(b) Experienced subjects (last five auctions), across standard auctions (IPV, APV, CV)

Adequacy Proj + RA Projection Curse + RA
Descriptive 3378 ≈ 3406 ≈ 3424
Predictive 3732 � 3599 � 3762
Inferential 2916 � 3508 ≈ 3209

Average pars 67,0.31,0.71 52,0.45 68,0.72,0.46

Note: The tables report results for QRE with projection. The order of average parameters is (λ,ρ,α) for
“Proj + RA”, (λ,ρ) for “Projection”, and (λ,χ,α) for “Curse + RA”, where λ is the QRE-precision, and
α,ρ,χ are the degrees of risk aversion, projection, and cursedness, respectively. Significance at 0.05 is
indicated by <,>, and significance at 0.005 is indicated by�,�.

7.5 Do results also hold in non-standard auctions?
As previewed in Section 2, the auctions labeled “non-standard” are the IPV auction of
Goeree et al. (2002b, GHP02) and the CV auction of Avery and Kagel (1997, AK97).

One the one hand, GHP02’s auction is labeled non-standard as both signals and
bids are discrete, restricted to integers ranging from 0 to 12. This framework may be
challenging for type projection, as projecting bidders have a strong incentive to infinites-
imally outbid opponents with similar values. The incentive to outbid is weaker if discrete
bid increments are required, but it is existent and thus qualitatively compatible with over-
bidding as observed by GHP02. This raises the question if the degree of projection is
sufficiently similar between discrete and continuous auctions to consider projection a ro-
bust factor in bidding. On the other hand, AK97 consider an auction where the individual
signals X1,X2 are each uniform on [1,4] and the common value is X1 +X2.27 This auc-
tion is labeled non-standard as signals conditional on value are not independent. It is a
second-price auction, and thus the loser regret implied by projection in first-price auctions
is switched off. Projection still implies cursed value perception, i.e. it is largely similar
to cursed equilibrium, and thus both concepts are compatible with AK97’s observation
that players with signals below average overbid and players with signals above average
underbid in relation to the BNE.28 This raises the question if the missing loser regret in

27Turocy (2008) discusses the value structure in detail. Such common values arise if one might find
oneself in a position to sell the object later (thus, the opponent’s value matters) or due to prestige effects.

28A difference remains: type projection equilibria are mixed. For contradiction, assume a pure equilib-
rium and consider a player i with a below-average signal xi < 2.5. If i marginally outbids opponents with the
same signal, the expected value conditional on winning is the cursed value V = ρ(xi +2.5)+(1−ρ)(2xi),
and if he marginally underbids opponents with the same signal, the conditional value equates with the
Bayesian expectation without projection V = 2xi (both as shown above). Thus, one’s conditional expecta-
tion is not continuous at the opponent’s bid, rules out the existence of pure equilibria.
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Table 11: Overview of model adequacy in non-standard auctions

(a) Inexperienced subjects (first five auctions)

Exp Payoff Risk Aversion Projection Cursedness
AK97 553 � 556 � 534 < 542

AK97→ Standard 4269 > 4255 � 4040 ≈ 4080
Average pars 3.5 3.2,1 6.9,1 5.3,1

GHP02 694 � 421 < 439 � 700
GHP02→ Standard 4252 � 3979 � 3842 � 4203

Average pars 1.2 13,0.44 25,0.5 1.3,0.51

(b) Experienced subjects (last five auctions)

Exp Payoff Risk Aversion Projection Cursedness
AK97 524 ≈ 525 ≈ 515 ≈ 517

AK97→ Standard 4214 � 4026 � 3647 � 3888
Average pars 37 11,0.99 16,0.45 14,0.59

GHP02 631 � 354 ≈ 349 � 627
GHP02→ Standard 4261 � 3826 � 3474 � 4128

Average pars 1.6 11,0.54 97,0.35 2.1,0.51

Note: The rows labeled “AK97” and “GHP02” refer to the descriptive adequacy of the models with respect
to the data of Avery and Kagel (1997) and Goeree et al. (2002b), respectively. The average parameters
estimated for these data sets are provided in the rows labeled “Average pars”. The rows labeled “AK97
→ Standard” and “GHP02 → Standard” refer to the predictive adequacy using estimates from the non-
standard auctions to standard auctions. Significance at 0.05 is indicated by <,>, and significance at 0.005
is indicated by�,� (which implements the Bonferroni correction).

this second-price auction and the occurrence of underbidding (for high values) implies
that the degree of projection differs between AK97’s auction and standard auctions to the
extent that it cannot be considered a robust factor in bidding.

The procedure is largely similar to above. Besides descriptive adequacy, Table 11
reports the accuracy of predicting behavior in standard auctions using estimates from
either non-standard auction. The remaining measures of adequacy yield similar results
and are reported in the supplementary material. The differences in-sample (descriptive
adequacy) are small, but differences are large out-of-sample: Projection predicts very
well, showing that it is of constant relevance across standard and non-standard auctions.
Notably, the estimated degrees of projection are similar to those in standard auctions for
both inexperienced subjects and experienced subjects, respectively, and using estimates
from GHP02’s discrete private auctions, type projection predicts behavior in standard
auctions better than the other models capture it in-sample.

Result 11. In non-standard auctions, type projection also fits best, and in addition, it
occurs to the same degree in standard and non-standard auctions.
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8 Conclusion
The purpose of the paper was to analyze payoff structures and belief systems in auctions,
in a manner ensuring that the results are robust and applicable in future analyses. The
initial hypothesis was that previous analyses yield conflicting results because they use
different assumptions on strategic beliefs and possibly omit a common behavioral factor.
The former was resolved using a simple model of strategic beliefs nesting the models
typically used in analyses of auctions. Regarding the latter, type projection was an ex-ante
plausible candidate to be a behavioral factor, as it is robustly observed in psychological
research and intuitively applies to all Bayesian games with symmetric type sets—such
as auctions. Yet, despite the large amounts of studies dedicated to either, auctions in
economics and projection in psychology, the only published paper mentioning a potential
link between bidding and projection appears to be Engelmann and Strobel (2012).

The results are consistent and clear. Type projection represents a constant factor
in bidding, by its relation to the stylized facts and by both descriptive and predictive
adequacy to capture behavior. This holds across information conditions and across levels
of experience, and the degree of projection also is largely invariant—while subjects’
beliefs approach rational expectations and their precision in maximizing utility increases
with experience. Finally, projection is comprehensive, as e.g. complementing it by risk
aversion does not improve model adequacy. Thus, there are good reasons to consider type
projection a factor of behavior in auctions, and by extension in type-symmetric Bayesian
games, which suggests ample opportunity for further research.

In this regard, three points may be worth noting. First, projection likely affects be-
havior not only in auctions, but similarly in other Bayesian games with symmetric type
sets, including games where social preferences matter. In general, though, experimental
work in economics tends to attribute deviations from Nash equilibrium either to prefer-
ences, such as risk aversion or inequity aversion, or to belief asymmetry, such as level-k.
Intuitively, each of these influences affects behavior in general, but projection should not
be neglected simply because the literature focused on other concepts so far: Judging by
the psychological evidence, the relevance of projection appears to be rather universal.

Second, analysts of empirical auctions may consider projection at least alongside
risk aversion in econometric analyses of bidding. This has both a downside and an up-
side. On the downside, projection equilibria are mixed and their computation may require
information that analysts do not immediately have, e.g. the upper bound of values in pri-
vate value auctions. Less information is required, and some tractability is gained (see
Bajari and Hortacsu, 2005), if one is willing to neglect projection and assume “Nash
beliefs” (players’ beliefs are equilibrium strategies without errors). These assumptions
are highly debatable, though. My results challenge the neglect of projection, and most
analyses, including Crawford and Iriberri (2007) and above, show that subjects tend to
underestimate the precision of others, i.e. the opposite of Nash beliefs. Further on the
upside, projection equilibria fit much more robustly than received models across private
and common values, which suggests that they are less prone to misspecification of the
information conditions. This is promising as many empirical auctions take place in hy-
brid conditions (Haile, 2001; Goeree and Offerman, 2002). These advantages may well
outweigh the additional computational burden, but more work clearly is required.

Finally, Engelmann and Strobel (2012) have shown that subjects are less likely to
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project if they are provided with the objective information in the best possible way. This
suggests that the fallacy to projection may be subject to policy intervention, and future
work may determine the best way of providing objective information. Further, to the de-
gree that overbidding is due to risk aversion, educating subjects does not help efficiency.
To the degree that overbidding is due to projection, educating subjects increases the ef-
ficiency in at least two ways: Subjects stop randomizing in equilibrium, which ensures
that the bidder with the highest value wins, and in cases where not just the winners pay
their bids (e.g. contests), a reduction of overbidding increases efficiency. Thus, the above
findings also have novel policy implications.

A Relegated definitions
Belief models As described above, I endow all models with logistic errors. Noisy
introspection (Goeree and Holt, 2004) is a model inspired by relaxing rationalizability
through allowing for logistic errors. Each type plays a λ-logit response to the belief that
his opponents play a λ ·κ-logit response to the belief their opponents play a λ ·κ2-logit
response to their belief, and so on, using κ ∈ [0,1]. The model contains quantal response
equilibrium and level-1 as special cases, for κ = 1 and κ = 0, respectively.

Definition 6 (Noisy introspection, NI). Given π̃i ∈ {πi,π
CRRA
i ,π

Proj
i ,πCurse

i }, a strategy
profile σ = (σ1, . . . ,σn) is consistent with (λ,κ)-noisy introspection if all types ti ∈ Ti of
all players i ∈ N choose σi(·|ti) = Logitti(σ

1
−i|π̃i,λ) with

σ
k
i (·|ti) = Logitti(σ

k+1
−i |π̃i,λ ·κk) (10)

The cognitive hierarchy model (Camerer et al., 2004) adapts the level-k model by
assuming that level-k players do not play a logit response to the belief that all opponents
are level k−1, but a logit response to the belief that the opponents are at any level k′ < k
(including level-0). Players are assumed to have rational expectations about the relative
frequencies of these levels, and overall levels are assumed to have Poisson distribution
in the population. Given the Poisson distribution, let f (k) = Pr(level = k) denote the
relative frequency of level k overall (given distribution parameter κ), and define the con-
ditional probability g(k′|k) = Pr(level = k′ | level < k). The level-0 strategy is uniform
randomization, σ0(·|ti) = 1/|Ai|.

Definition 7 (Cognitive hierarchy model, CHM). Given π̃i ∈ {πi,π
CRRA
i ,π

Proj
i ,πCurse

i }, a
strategy profile σ = (σ1, . . . ,σn) is consistent with (λ,κ)-cognitive hierarchy if all types
ti ∈ Ti of all players i ∈ N choose σ(·|ti) = ∑k≥0 f (k) ·σk(·|ti) with

σ
k(·|ti) = Logitti(τ

k−1
−i |π̃i,λ) and τ

k−1(·|ti) =
k−1

∑
k′=0

g(k′|k) ·σk′(·|ti). (11)

I use the parsimonious approach of Camerer et al. (2004) to capture the distribution
of levels via Poisson also to complete the level-k model. Again, f (k) = Pr(level = k)
denotes the relative frequency of level k in the population (given distribution parameter
κ), and the level-0 strategy is uniform randomization, σ0(·|ti) = 1/|Ai|.
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Definition 8 (Level-k). Given a payoff structure π̃i ∈ {πi,π
CRRA
i ,π

Proj
i ,πCurse

i }, a strategy
profile σ = (σ1, . . . ,σn) is consistent with (λ,κ)-level-k if all types ti ∈ Ti of all players
i ∈ N choose σ(·|ti) = ∑k≥0 f (k) ·σk(·|ti) with

σ
k(·|ti) = Logitti(σ

k−1
−i |π̃i,λ). (12)

Subject heterogeneity, likelihood function and maximization The precision param-
eters λ and κ are bounded at zero and have independent gamma distributions, whereas
the degrees of risk aversion, projection and cursedness are bounded at both 0 and 1 and
have independent beta distributions. Thus, each subject is described by a parameter vec-
tor p ∈ P with joint density f (). Using os = (os,t) to describe the observations of subject
s ∈ S at time t ∈ T , and σ(os,t | f ) as the probability of observation os,t under density f ,
the individual likelihood given the observations os of subject s is

ls( f |os) =
∫

P
∏
t∈T

σ(os,t |p) · f (p)dp. (13)

The predictions σ(os,t | f ) implicitly depend also on the underlying belief model, e.g. QRE
or AQRE. The integral is evaluated by simulation, using quasi random numbers, see Train
(2003) and e.g. the supplement to Bellemare et al. (2008). Aggregating across subjects,
the log-likelihood of the respective model with parameter density f is

ll( f ) = ∑
s∈S

log ls( f |os). (14)

QREs are computed using a homotopy method leaning on Turocy (2005). Parameters
are estimated by maximizing the log-likelihood, sequentially applying two maximization
algorithms. Initially, I use the robust, gradient-free NEWUOA algorithm (Powell, 2006)
and I verify convergence using a Newton-Raphson algorithm. The estimates are tested by
extensive cross-analysis to ensure that global maxima are found. All parameter estimates
are provided as supplementary material.
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