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Abstract

We develop a theory of unemployment in which workers search for jobs through
a network of firms, the labor flow network (LFN). The lack of an edge between two
companies indicates the impossibility of labor flows between them due to high frictions.
In equilibrium, firms’ hiring behavior correlates through the network, modulating la-
bor flows and generating aggregate unemployment. This theory provides new micro-
foundations for the aggregate matching function, the Beveridge curve, wage dispersion,
and the employer-size premium. Using employer-employee matched records, we study
the effect of the LFN topology through a new concept: ‘firm-specific unemployment’.
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1 Introduction

Aggregate unemployment is a fundamental economic problem resulting form several distinct

social mechanisms. These include people becoming separated from their jobs and search-

ing for new positions; firms opening vacancies and searching for new workers using diverse

strategies; and recruiters finding job seekers through the labor market. Due to the complex-

ity involved in accounting for these and other mechanisms, the composition of aggregate

unemployment has been studied under the umbrella of labor market frictions. A simplified

way to account for these frictions has been to assume that companies and job seekers meet

at random in the job market. Failure to coordinate these encounters can then be attributed

to frictions.

The seminal work of Hall (1979), Pissarides (1979), and Bowden (1980) paved the way

for the application of random matching models in order to integrate frictions into models of

equilibrium unemployment. A reduced way to capture these matching processes is through

the aggregate matching function (AMF). In its most typical form, the AMF takes two quan-

tities as inputs: total unemployment and total number of vacancies; and returns the total

number of successful matches. If the AMF produces unsuccessful matches, even when there

are more vacancies than unemployed, it means that the labor market has frictions. Although

somehow elegant, this reduced representation of the matching process sacrifices important

structural information about frictions by aggregating and homogenizing the matching pro-

cess. When we operate on aggregate quantities such as total unemployment and number of

vacancies, it is not possible to understand the role that specific workers or firms play in the

composition of aggregate unemployment. In other words, this approach assumes well-mixed

matching mechanisms that are of limited relevance when there is large heterogeneity present

in labor markets.

There have been several contributions that provide micro-foundations of the AMF and

account for different types of heterogeneity. Unfortunately, each of these models focus on a

specific type of friction (e.g., geographical distance, social networks, skills mismatch, etc.),
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which makes operationally challenging to account for all of them in a parsimonious way.

Combining labor market frictions in an integrated framework is something desirable from

both positive (to understand labor dynamics) and normative (for policy purposes) points

of view. Moreover, today’s availability of detailed labor micro-data makes it possible to

account for the empirical patterns of firm-to-firm labor flows arising from the labor market

frictions. For these reasons, a theoretical framework that takes the structure of frictions into

consideration could be extremely valuable to construct a new understanding of aggregate

unemployment.

In this paper we develop a theoretical framework of job search on networks that is

empirically motivated by previous work on firm-to-firm labor flows (Guerrero and Axtell,

2013; Guerrero and López, 2015). Here, we capture the structure of labor market frictions

through a network of firms. In this network, the presence or absence of an edge represents a

categorical relation between two firm, resulting from the frictions that determine the amount

of labor mobility between them. More specifically, the absence of an edge means that labor

flows between two unconnected firms are highly unlikely due to high frictions, while the

opposite is expected for connected firms. Together, firms and edges form the labor flow

network (LFN) of the economy. The LFN constrains labor mobility, so we assume that

an unemployed agent can only apply for jobs in those firms that are connected to his or

her last employer. This could be due to a social relationship between former co-workers;

a professional relationship between people in similar jobs at different firms; an industry-

specific relationship between competitors; geographical proximity between firms; and so on.

Therefore, instead of modeling job search as an aggregate random matching process, we

model it as random walks on graphs. As we will show in this paper, this approach allows

to infer the distribution of unemployment across the economy at the level of the firm; it

provides new insights on the effect of the structure of labor market frictions on aggregate

unemployment; it increases our understanding of equilibrium outcomes when firm behavior

correlates through LFNs; and it provides a new method to estimate firms’ hiring behavior

without the need for data on vacancies. We show that this framework is consistent with
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empirical data from employer-employee matched records of two countries, and that the

structure of the LFN may be accountable for most of the aggregate unemployment and its

temporal variation.

1.1 Arbitrary Aggregations

The idea of limiting job search to groups of firms is not new or uncommon. For example,

mismatch models posit that coordination failures between firms and workers are due to

frictions that prevent job seekers from freely moving between submarkets. Conventionally,

mobility between submarkets is studied by grouping firms into different categories and an-

alyzing the labor flows that take place between such groups. Since the early contribution

of Lucas and Prescott (1974), multisector matching models have offered a variety of ways

to think about frictions between submarkets. An example is the model of Shimer (2007),

where inter-submarket flows are modeled as a process where workers and jobs are randomly

reassigned to any submarket every period. This reassignment originates from an exogenous

random process under which it is equally likely to move between any two submarkets. Once

workers and jobs have been reallocated, matching takes place in each submarket through

local AMFs. In contrast, Sahin et al. (2014) assume that, provided with information on

vacancies, shocks, and efficiencies, workers periodically choose a submarket to move into.

Once labor is reallocated, match creation and destruction take place in each submarket.

An alternative approach proposed by Herz and van Rens (2011) assumes that workers can

search for vacancies in any submarket and firms can search for workers in the same way.

There are costs associated to searching in each submarket. Therefore, matching depends

on the optimal decisions of workers and firms about where to search. Other models com-

bine some of these elements in the tradition of Lucas and Prescott (Alvarez and Shimer,

2011; Carrillo-Tudela and Visschers, 2013; Lkhagvasuren, 2009; Kambourov and Manovskii,

2009). On the other hand, a related strand of research studies submarkets as spatially

delimited units (generally cities) (Glaeser and Gottlieb, 2009; Moretti, 2011; Manning and

Petrongolo, 2011). These models focus on the effect of local shocks when the economy is in
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spatial equilibrium, which is useful when we know the spatial location of interest. However,

as units of aggregation, spatial partitions are quite arbitrary.

Whether it is for the whole economy or for submarkets, there are a number of problems

that arise from viewing matching in aggregate terms, and here we mention a few. First, when

an AMF is responsible of pairing up workers and vacancies, it is assumed that all matches

are equally likely. This neglects the importance that specific firms have in reallocating labor

within a submarket. Second, defining a submarket is an arbitrary choice that might be

well suited for a specific problem, but not necessarily for a broader context. According to

the literature in community detection, (Girvan and Newman, 2002) aggregations should be

well defined in terms of minimizing inter-submarket flows and maximizing intra-submarket

flows in order to be empirically relevant. Conventional aggregations are not built with this

criteria, as it has been pointed out by Jackman and Roper (1987) in their classical paper

on structural unemployment:

... “there seems no particular reason why unemployed workers should regard

themselves as specific to a particular industry, and in practice the unemployed

do move between industries reasonably easily.” (Jackman and Roper, 1987, pg.

19)

Third, aggregation assumes that any worker from one submarket is equally likely to

transition to another submarket. Furthermore, it ignores the fact that only a few firms are

responsible for inter-submarket transitions. These firms are crucial to overall labor mobility

since they are diffusion outlets or bottlenecks in the process of labor reallocation. Fourth,

aggregation ‘smooths’ the search landscape, enabling firm-to-firm flows that are highly un-

likely in the short run. In fact, Guerrero and López (2015) have shown that the hypothesis

of an AMF is rejected as an explanation of empirical firm-to-firm flows, even at the level of

submarkets. Using community detection methods for network data, independent studies by

Guerrero and Axtell (2013) and Schmutte (2014) show that conventional classifications such

as industries and geographical regions poorly capture the clusters of labor that are detected
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in employer-employee matched micro-data. For these reasons, a framework that does not

rely on arbitrary aggregations to define submarkets would represent a significant method-

ological improvement. Petrongolo and Pissarides (2001) suggests the use of graph theory

as a potential tool to overcome arbitrary aggregations. We take this approach in order to

depart from the established notions of submarkets and instead look at labor dynamics as

random walks on a graph.

1.2 A Network Approach

Our theory is inspired in a simple and intuitive mechanism of job search. When a person

looks for a job in search of a vacancy, he or she approaches a group of firms that are

‘accessible’ in the short run. Such group is determined by the frictions of the labor market

and we assume that it is specific to the firm where this person was last employed. We

represent the correspondence between firms and their respective groups of accessible firms

through a LFN. In this network, firms are represented by nodes. An edge between firms i

and j means that frictions are such that j will be accessible to employees of i and vice versa.

Therefore, edges have a categorical nature that represents the possibility (or impossibility

in their absence) of labor flows between firms. Firm i’s edges determine its first neighbors,

which are equivalent to the group of accessible firms to someone employed in i. We refer to

these firms as i’s neighbor firms. As a person progresses through his or her career, he or she

traverses the economy by taking jobs at the neighbor firms of past employers. This gradual

navigation process is fundamentally different from previous approaches because the identity

of the firm (i.e., its position in the LFN) matters in order to determine the employment

prospects of the job seeker. There is a number reasons why this is important. To mention

a few, it allows to study the composition of aggregate unemployment at the firm level;

it sheds light on the effect of localized shocks and targeted policies; and it exploits the

granularity and inter-firm structure captured in employer-employee matched records. By

analyzing the steady-state equilibrium, we obtain analytical solutions that inform us about

local unemployment, local flows, firm sizes, and firm hiring behavior. In addition, this
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framework provides new micro foundations of the AMF that are consistent with important

stylized facts of labor markets such as the Beveridge curve and the employer-size premium.

Network theory has been extensively used to study labor markets in the context of

information transmission through social networks. The pioneering work of Granovetter

(1973) showed the importance that infrequently-used personal contacts have in acquiring

non-redundant information about vacancies. Although Granovetter’s hypothesis has been

recently challenged by studies that use comprehensive social media micro-data (Gee et al.,

2014,?), the importance of social networks in diffusing job information is not in question.

Other empirical studies about social networks in labor markets look at migration (Munshi,

2003), urban and rural unemployment (Wahba and Zenou, 2005), investment in personal

contacts (Galeotti and Merlino, 2014), and local earnings (Schmutte, 2010) among other

topics. On the theoretical side, there is a substantial number of models concerning so-

cial networks in labor markets, pioneered by Boorman (1975) and Montgomery (1991b).

Some studies have focused on labor outcomes as a result of the structure of social networks

(Calvó-Armengol and Jackson, 2004; Calvó-Armengol and Zenou, 2005; Calvó-Armengol

and Jackson, 2007; Schmutte, 2010). Other works analyze inequality and segregation effects

in the job market (Calvó-Armengol and Jackson, 2004; Tassier and Menczer, 2008). For a

review of these and other models, we refer to the literature survey provided by Ioannides

and Loury (2004).

Despite the wide application of network methods to study labor markets, most of this

work was only focused on the role of social networks in communicating information about

vacancies. These studies have important applications in long-term policies such as affirma-

tive action laws, but are not so useful for short-term policies such as contingency plans in

the presence of shocks. Furthermore, the role of the firm in these models becomes trivial if

not absent, which is problematic for policies that aim at incentivizing firms. In fact, little

has been done to study labor mobility on networks. To the best of our knowledge, there are

only a few studies that analyze labor flows through networks. For example, Guerrero and

Axtell (2013) study firm-to-firm labor flows using employee-employer matched records from
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Finland and Mexico. They characterize the topology of these labor flow networks and find

that network connectivity is highly correlated with employment growth at the firm level.

Using US micro-data, Schmutte (2014) constructs job-to-job networks in order to identify

four job clusters. Mobility between these clusters is highly frictional and dependent on the

business cycle. Both studies find that any clusters identified through community detection

methods have little correspondence to standard categorizations such as industrial classifica-

tion, geographical regions, or occupational groups. The LFN framework provides a new way

to analyze labor dynamics, while contributing to the use of methods from network science

in economics.

Our work complements five strands of literature. First it adds to the family of search and

matching models in labor economics by introducing the method or random walks on graphs

as a new tool to analyze labor mobility and aggregate unemployment. It also pushed the

boundaries on how employer-employee matched micro-datasets are used today. Second, it

contributes to the field of networks in labor markets by expanding the application of network

methods beyond the scope of personal contacts. Social networks are difficult to observe at a

large-scales1. Since LFNs partially capture labor flows induced by personal contacts (people

who worked together may recommend each other in the future), they serve as an additional

source of information to study the effect of social networks in the labor market. Third, it

complements the literature on micro-foundations of the AMF (Butters, 1977; Hall, 1979;

Pissarides, 1979; Montgomery, 1991a; Lang, 1991; Blanchard and Diamond, 1994; Coles,

1994; Coles and Smith, 1998; Stevens, 2007; Naidu, 2007). Because frictions are captured in

the form of a network, there is no need to assume an aggregate matching process. Fourth,

it strengthens the growing literature of inter-firm networks (Saito et al., 2007; Konno, 2009;

Atalay et al., 2011; Acemoglu et al., 2012; di Giovanni et al., 2014). By avoiding aggregation

into arbitrary submarkets, the network approach allows to study firm and labor dynamics

jointly. Fifth, it contributes to the study of local labor markets by providing a new way of

defining localities at the level of the firm, which facilitates the study local shocks and their

1Although online social networks provide a rich source of information, they are highly susceptible to
biases and multiple factors that incentivize individuals to opt out of this form of communication.
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propagation.

This paper is organized in the following way. Section 2 presents the model in two parts.

First, we solve the problem of random walks on graphs in order to show that there is a unique

steady-state. Second, we introduce a model in which firms maximize their expected steady-

state profits by setting the frequency at which they hire new workers. At this point, the

model assumes exogenous wages, which allows to obtain parsimonious predictions that can

be empirically tested with standard econometrics. In section 3, we use employer-employee

matched micro-data to test the model’s predictions. We find that our results are significant

and robust across 20 annual cross-sections of data. In section 4 we endogenize wages and

find that, in equilibrium, firms’ hiring behavior correlates through the LFN. This is our

main result because the composition of aggregate unemployment depends on the structure

of the LFN. We fit the model to the empirical data and find that the LFN topology may be

responsible for more than half of the aggregate unemployment and temporal variation. In

section 5 we discuss the results, their policy implications, and potential of this framework

for future research.

2 Model with an Exogenous Wage

2.1 Setup

Consider an economy with N firms and H workers. Let G denote a connected, unweighted,

and undirected graph that represents the LFN of the economy. G is exogenous and fixed,

and nodes represent firms. We assume that G has a single component. However, the results

are generalizable for networks with multiple components. The edges in G have no weights

because they represent a categorical aspect of the labor market: whether we should expect

labor flows between two firms or not. The network is undirected because the edges capture

some ‘affinity’ between firms such that frictions are low in both directions. This is a firm-

centric model in the sense that it emphasizes the role of firms and how their hiring behaviour
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modulates the flows on the LFN.

A specific firm i has ki edges in G, also known as the degree of i. The set Γi contains

all firms j 6= i such that i and j are directly connected through an edge, i.e. Γi is the set

of i’s neighbor firms. Every period, firm i may receive an external shock in the form of

an investment; this happens with with probability v. This investment enables i to open

vacancies, in which case we say that the firm is open to receive job applications. With

probability 1−v, firm i is not shocked, so it does not take any applications, and we say that

it is closed.

We can think of job applications as people dropping their CV in the firm’s mailbox every

period, regardless if it has vacancies or not. The firm accepts CVs only if when it is open.

Since this repeats over time, firms gain knowledge on the average number of CVs received

every time that they are open. We denote this quantity as the number Ai of applications

received. Opening each vacancy is costly, so it is in the best interest of the firm to use

the information that is has on Ai in order to avoid opening vacancies that would remain

unfilled (we assume that vacancies expire at the end of every period). For this reason, we

assume that firms open no more vacancies than Ai. Consequently, the firm has to pick a

fraction of all the applicants if they are more than the number of vacancies. For analytical

simplicity, we work with this fraction hi ∈ [0, 1], which we call the hiring policy. Firms do

not discriminate between applicants, so hi is the probability of becoming employed for every

worker that applies to firm i.

Workers are homogeneous and can be in one of two states: employed or unemployed.

Regardless of his or her state, each worker is always associated with a firm. Therefore,

jobless workers are associated to their last employers. Each worker employed by firm i

faces the possibility of becoming unemployed with probability λ. If unemployed, the worker

decides to search for a job with probability s or to remain unemployed with the complement.

If he or she chooses to search, the worker looks at the set γi ⊆ Γi of i’s neighbor firms that

received investments. Hence, we say that γi is the set of open neighbors of i and it may
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Figure 1: Firm Dynamics

The diagram illustrates the flows that take place at the level of the firm Oi denotes the total number of
unemployed agents associated to firm i who find a job, i.e. i’s total outflows.

change every period. If |γi| = 0, the job seeker remains unemployed for the rest of the

period. Otherwise, he or she selects a firm j ∈ γi at random with uniform probability and

submits a job application. For simplicity, we assume that each job seeker can submit at

most one application per period. It is possible to return to i when the last job was held

at j for which i is an element of Γj . This means that we do not allow for direct recall.

This omission does not change the qualitative character of the results, but simplifies their

intuition2. Finally, if the job application is successful, the job seeker becomes employed at j,

updating its firm association. Otherwise, it remains unemployed for the rest of the period.

Figure 1 summarizes the model in terms of the inflows and outflows Oi of firm i. These

ingredients constitute a stochastic process that can be clearly summarized in the pseudocode

2Direct recall can be easily integrated to address recall unemployment (Fujita and Moscarini, 2013).

11



of algorithm 1.

for period t do

for each firm i in G do

receive investment shock with probability v;

end

for each worker do

get associated firm i;

if employed then

become unemployed with probability λ;

end

else

become active seeker with probability s;

if active then

randomly select an open firm j ∈ γi;

submit a job application to j;

end

end

end

for each open firm i in G do

hire hiAi new workers from the pool of applicants;

end

end

Algorithm 1: Timing

The reader may be concerned about the possibility that a job seeker may occasionally

search among firms that are not connected to his or her last employer. If the probability

of such event is low, the model preserves the roughly the same characteristics because the

LFN induces a dominant effect on job search. When this probability is large, the model

becomes an ’urn-balls’ model, so the structure of the network is irrelevant. What should be
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the empirically relevant magnitude of such probability? Previous work shows that the idea

of searching on a network is empirically compelling since firm-to-firm labor flows tend to

be significantly persistent through time (López et al., 2015). In fact, unrestricted random

matching between firms and workers is formally rejected when looking at employer-employee

matched records (Guerrero and López, 2015). These results suggests that, in a more general

model, the probability of searching ‘outside’ of the network has to be calibrated with a low

value. Such a model can be easily constructed, but its solutions do not have explicit form.

In contrast, focusing exclusively on job search ‘on’ the network yields explicit solutions,

which is convenient for building economic intuition.

2.2 Dynamics

The process described in algorithm 1 is a random walk on a graph with waiting times

determined by the investment shocks v, the separation rate λ, the search intensity s, and

the set of hiring policies {hi}Ni=1. In order to characterize the dynamics of the economy, we

concentrate on the evolution of the probability pi(t) that a worker is employed at firm i in

period t, and the probability qi(t) that a worker is unemployed in period t and associated to

firm i. For this purpose, let us first construct the dynamic equations of both probabilities

and then concentrate on the steady-state solution.

In period t, the probability that a worker is employed at firm i depends on the probability

(1 − λ)pi(t − 1) that he or she was employed at the same firm in the previous period and

did not become separated. In case that the worker was unemployed during t− 1, then pi(t)

also depends on: the probability qi(t− 1) that the worker was associated to a neighbor firm

j; on the probability Pr(γ
(i)
j ) of having a particular configuration γ

(i)
j of open and closed

neighbors of j such that i is open; and on the probability 1/|γ(i)
i | that the worker picks i from

all of j’s open neighbors. Altogether, summing over all possible neighbors and all possible

configurations of open neighbors, and conditioning to the search intensity and hiring policy,

the probability that a worker is employed by firm i in period t is
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pi(t) = (1− λ)pi(t− 1) + shi
∑
j∈Γi

qj(t− 1)
∑
{γ(i)
j }

Pr
(
γ

(i)
j

) 1∣∣∣γ(i)
j

∣∣∣ , (1)

where {γ(i)
j } denotes the set of all possible configurations of open and closed neighbors of j

where i is open.

The probability that a worker is unemployed during t while associated to firm i depends

on the probability λpi(t − 1) of becoming separated from i in the previous period. On the

other hand, if the worker was already unemployed, the probability of remaining in such state

depends on: the probability 1− s of not searching in that period; the probability Pr(γi = ∅)

that no neighbor firm of i is open; and the probability 1 − hj of not being hired by the

chosen open neighbor j. Accounting for all possible non-empty sets γi of open neighbors,

the probability of being unemployed in t and associated to firm i is given by

qi(t) = λpi(t− 1) + qi(t− 1)

s∑
γi 6=∅

Pr(γi)
1

|γi|
∑
j∈γi

(1− hj) + sPr(γi = ∅) + (1− s)

 . (2)

In the steady-state, pi(t) = pi(t − 1) = pi and qi(t) = qi(t − 1) = qi for every firm

i. We concentrate on the steady-state solution in order construct a model that allows to

study how firm behavior modulates labor flows and affects aggregate unemployment. The

following results follow from solving eqs. (1) and (2).

2.3 Firm Size and Number of Applications

In order to construct a firm-centric model, we are study the steady-state average firm size

and the average number of job applications received. Abusing notation, we denote these

averages as Li and Ai respectively. The next propositions follow from solving eqs. (1)

and (2).
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Proposition 1. The process specified in algorithm 1 has a unique steady-state where prob-

abilities pi and qi are time-invariant for every firm i.

Existence follows from a standard result in random walks on graphs (Bollobás, 1998)

(see appendix). Uniqueness comes from condition

1 =

N∑
i=1

pi +

N∑
i=1

qi,

which indicates that all probabilities should add up to one, implying that every worker is

either employed or unemployed, and associated to only one firm. This result implies that

a unique steady-state is always reached regardless of how the hiring policies in {hi}Ni=1

are assigned to each firm in the LFN. López et al. (2015) provide more general results for

heterogeneous separation rates and heterogeneous investment shocks. However, this version

is more suitable for economic modeling because it yields explicit solutions with intuitive

economic meaning.

Proposition 2. The steady-state average size of a firm i that follows eqs. (1) and (2) is

Li =
ϕ

λ
hih̄Γiki, (3)

where h̄Γi is the average hiring policy of i’s neighbor firms and ϕ is a normalizing constant.

For now, let us defer the explanation of ϕ for a few paragraphs. Equation (3) suggests

that, ceteris paribus, the size of a firm increases with its degree. As expected, firms can

increase their own sizes through larger hiring policies. Equation (3) captures an externality:

a firm’s hiring policy affects the size of its neighbor firms. This result follows from an

intuitive mechanism. If firm i hires more people from its pool of applicants, it increases its

own size. In consequence, more people will become separated from i through the exogenous

separation process governed by λ (which also reduces the size of the firm). More unemployed

individuals associated to i translates into a larger pool of job seekers that will potentially
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apply for a job at i’s neighbor j. Therefore, if everything else is constant, Aj increases,

contributing to j’s growth. This mechanism becomes evident in the following result.

Proposition 3. The steady-state average number of applications received by a firm i that

follows eqs. (1) and (2) is

Ai = λϕh̄Γiki. (4)

The proof follows from the fact that, in the steady-state, the number of separated em-

ployees λLi must equal the number of newly hired ones hiAi in order for Li to remain

constant through time (see appendix).

2.4 Hiring Policy and Profits

Once with firm size and number of applications, we propose a simple profit-maximization

model inspired in (Barron et al., 1987). This model captures the interdependence between

economic behaviors of connected firms. This model is simple in the sense that it contains

the most basic ingredients to account for how firms adapt to the model parameters, but not

for more sophisticated behavior such as discriminating between job candidates or invest-

ing in human and physical capital. These and other factors can be incorporated in more

complicated versions. However, introducing more parameters and mechanisms defeats the

purpose of gaining a clean intuition about how hiring behavior modulates labor flows and

determines the composition of aggregate unemployment. For this reason, this model is ideal

for the task.

The goal of firm i is to maximize its expected steady-state profit Πi. All firms produce

with labor as their only input and have linear technologies such that productivity y is

additive. When a firm engages in production, it pays the market wage w ∈ (0, 1) only to

those workers who are not separated in the corresponding period. Firm size Li is important

in the maximization process because it determines the size of the output. Another variable
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that firms take into account is the average number of applications Ai received in the steady-

state. Firm i expects to hire hiAi new workers, so the hiring policy hi serves as an instrument

to compensate for the separated workers. We capture the cost of opening vacancies through

a cost associated to the hiring policy of the firm. Let us assume that larger firms incur in

marginally higher costs because they invest more in recruiting, screening, and other related

administrative processes. The overall hiring cost is normalized by a parameter c ∈ (0, 1), so

the cost incurred by firm i is cLihi.

Since hiring only takes place when the firm receives an investment, only a fraction of

these costs are incurred when a firm is closed. Let κ ∈ [0, 1] denote such fraction. These

sunk costs can be interpreted as setup expenses for screening future applications. The firm’s

problem is to maximize profits by setting an optimal hiring policy h∗i . Therefore, the firm

solves the problem

max
hi

Πi = (1− λ)(y − w)Li + v(y − w)hiAi − vcLihi − (1− v)κcLihi, (5)

We assume that firms understand how hiring policies affect Ai and Li, and that they

take their neighbors’ hiring policies as given. This is formalized by substituting eqs. (3)

and (4) in eq. (5), which provides convexity to the profit function in order to obtain the

optimal hiring policy

h∗ =
ψ

2φ
(y − w), (6)

where ψ = (1− λ+ vλ) and φ = c(v + κ− vκ). We have removed sub-index i because the

optimal hiring policy is independent of ki. This result is quite intuitive in a neoclassical

sense, since higher wages are compensated with lower hiring policies. It also suggests that,

with a unique exogenous wage, all firms set the same optimal hiring policy. This means

that we can rewrite some of these results exclusively as functions of ki. More specifically,

we rewrite the firm size as
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Li = ϕh∗2ki, (7)

and the profit as

Π∗i =
ϕψ3

8λφ2
(y − w)3ki, (8)

which later will be useful for empirical testing.

2.5 Firm-Specific Unemployment and Aggregation

Solving eqs. (1) and (2) yields the average number of unemployed individuals associated to

firm i in the steady-state. This is a bottom-up construction of unemployment that takes into

account how it is distributed across firms, so we term it firm-specific unemployment. This

new measure provides information about the employment prospects of a firms’ ex-employees

and the tools to identify pools of local unemployment. Firm-specific unemployment is

obtained from the following result.

Proposition 4. The steady-state average unemployment associated to a firm i that follows

eqs. (1) and (2) is

Ui =
ϕhiki

s[1− (1− v)ki ]
. (9)

The normalizing constant ϕ captures the population conservation condition H =
∑
i Li+∑

i Ui, so it takes the form

ϕ =
H∑

i∈G hih̄Γiki

[
1
λ + 1

sh̄Γi
[1−(1−v)ki ]

] . (10)

Equation (9) becomes more intuitive when multiplying by
λh̄Γi

λh̄Γi

, in which case we obtain
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Ui =
λLi

sh̄Γi [1− (1− v)ki ]
. (11)

Note that sh̄Γi [1 − (1 − v)ki ] is the transition probability from unemployment to em-

ployment for a worker associated to firm i. The reciprocal of this probability is the average

duration t̄ui of an unemployment spell for an individual whose last job was in i. Therefore,

we can rewrite eq. (9) as

Ui = λt̄ui Li, (12)

which will become useful for empirical testing. In general, firm-specific unemployment is

an interesting measure because it not only provides a highly granular unit of the compo-

sition of aggregate unemployment, but also yields information about how good will be the

employment prospects of someone working at a particular company.

Due to the independence between degree and hiring policy implied by eq. (6), aggregation

of unemployment is straightforward given that the firm-specific unemployment rate is defined

as

ui =
Ui

Ui + Li
=

λ

λ+ sh∗[1− (1− v)ki ]
, (13)

which is non-increasing and convex in ki. Note that for a LFN where all firms have the

same degree, eq. (13) is equivalent to Beveridge curve obtained in ‘urn-balls’ models.

Let the LFNs of two economies be represented by graphs G and G′, with corresponding

degree distributions P and P ′, and aggregate unemployment rates u =
∑kmax

k=1 ukP (k) and

u′ =
∑kmax

k=1 ukP
′(k). Then, the next results follow from network stochastic dominance

(Jackson and Rogers, 2007a,b; López-Pintado, 2008).

Proposition 5. If P strictly first-order stochastically dominates P ′, then u < u′.
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Proposition 5 is quite intuitive since the average firm connectivity of G is higher than in

G′. An LFN with higher connectivity reflects an economy with lower labor market frictions.

Under these conditions, job seekers have better chances of finding open firms and new job

opportunities.

Proposition 6. If P ′ is a strict mean-preserving spread of P , then u < u′.

Proofs of propositions 5 and 6 follow from direct differentiation of eq. (13), which shows

that u is non-increasing and convex in ki. Proposition 6 means that more degree heterogene-

ity translates into higher unemployment. Heterogeneity in a LFN reflects the ‘roughness’

of the search landscape. It is analogous to heterogeneity in search and matching models.

However, there is the fundamental difference: agents traverse the economy by gradually

navigating the LFN, instead of being randomly allocated to any firm. As we will learn

ahead, this subtle difference in the reallocation process induces significant effects in aggre-

gate unemployment when hiring policies are heterogeneous. We will show that the LFN not

only has an ordinal effect on aggregate unemployment, but also a significant impact on its

level and temporal variation.

At this point, it is important to summarize what we have achieved so far. We introduced

a model of job search as random walks on a graph, influenced by the optimal hiring policies

of firms. In doing so, we characterized the dynamics of the model and constructed the

equations that describe them. We showed that the model has a unique steady-state, which

yields economically intuitive expressions for Li and Ai. The firm size captures an externality

through which the hiring behavior of a firm affects the size of its neighbors. Assuming a

unique exogenous market wage, we solved the profit-maximization problem of the firm,

suggesting independence between hiring policies and degree. This allowed us to rewrite

some of the results in a form in which ki is identifiable, which we will exploit ahead in order

to perform empirical tests. Finally, we obtained an expression for Ui, which is a new granular

measure of how a firm contributes to unemployment. Using network stochastic dominance,

we learnt that degree heterogeneity in the LFN induces higher aggregate unemployment

rates. In the next section, we will test some of our theoretical results using empirical data.
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3 Empirical Support

In this section, we test the model’s predictions when wages are considered exogenous and

homogeneous. For this purpose, we use employer-employee matched micro-data from two

countries and we introduce a method to reconstruct LFNs. Given the simple form of our

results, these tests should not be interpreted as an attempt to provide definite empirical

measures. Instead, we use them as a way to show that our theory is empirically sound.

3.1 Data

We use different datasets of employer-employee matched records. The first is the Finnish

Longitudinal Employer-Employee Data (FLEED), which consists of an annual panel of

employer-employee matched records of the universe of firms and employees in Finland. The

panel was constructed by Statistics Finland from social security registries by recording the

association between each worker and each firm (enterprise codes, not establishments), at the

end of each calendar year. If a worker is not employed, it is not part of the corresponding

cross-section. The result is a panel of 20 years that tracks every firm and every employed

individual at the end of each year (approximately 2× 105 firms and 2× 106 workers).

FLEED can be merged with other datasets that provide information about companies.

For this, we employ Statistics Finland’s Business Register, an annual panel providing number

of employees and profits per firm. The Business Register is constructed from administra-

tive data from the Tax Administration, and from direct inquiries from Statistics Finland

to business with more than 20 employees. FLEED and the Business Register provide data

on labor flows, firm sizes, and profits from different sources. Unfortunately, their temporal

aggregation prevents us from measuring firm-specific unemployment because it is not pos-

sible to observe whether a person underwent an unemployment spell between jobs. For this

purpose, we employ an additional dataset.

We use a dataset from Mexico consisting of employer-employee matched records with
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daily resolution. The data was obtained by sampling raw social security records from the

Mexican Social Security Institute. Approximately 4 × 105 individuals who were active

between 1989 and 2008 were randomly selected and their entire employment history was

extracted (hence, covering dates prior to 1989). This procedure generates a dataset with

nearly 2×105 firms. The records contain information about the exact date in which a person

became hired/separated by/from a firm. Therefore, it is possible to identify unemployment

spells, duration of each spell, and associations between job seekers and their last employer.

Although the datasets show firm-to-firm flows, they do not contain explicit information

about the LFN. In order to construct ki from the data, we identify those firm-to-firm flows

that most likely took place in the network, as opposed to those that result from random

hops generated from a more aggregate process (e.g., through an AMF). For this purpose,

we identify significant edges. If the labor flows between a pair of firms have a higher volume

than what we would expect under an AMF, that is an indicator of a significant edge between

firms.

3.2 Significant Edges

The idea of significant edges begins with the null hypothesis of the AMF being responsible

for every firm-to-firm labor flow observed in data. Consider the total number of matches

M that take place in a given period with U unemployed and V vacancies. Suppose that an

AMF M = f(U, V ) is responsible for these matches. This assumption implies that these M

matches are created with homogeneous probability. A second, less obvious assumption, is

that any distribution of vacancies across firms is acceptable. To explain this point, consider

the number of vacancies Vi in firm i. Under the AMF, the number of matches is M ≤∑N
i Vi = V . In an AMF, any sequence {V1, V2, ..., VN} such that

∑N
i Vi = V is permissible.

The same applies to any sequence {M1,M2, ...,MN} such that
∑n
i Mi = M , where Mi

denotes the number of matched individuals whose last employer was firm i. Employer-

employee matched records provide information about these sequences.
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We use the information contained in FLEED in order to infer the statistical significance

of labor flows between pairs of firms. Here we describe the spirit of the test, but all the

details are provided in the appendix. Using empirical data, we construct a weighted directed

graph G′ where an edge ei,j indicates that there was at least one flow from i to j. The total

number of flows from i to j are captured in the weight of ei,j . The test consists of comparing

the observed weight of ei,j against its expected weight under the hypothesis that labor

reallocation takes place through an AMF. When its weight is larger than the expectation

under the null, we say that ei,j is a significant edge. Obviously, the null hypothesis can be

further refined using alternative models. However, Guerrero and López (2015) have shown

that the number of significant edges tends to be high, even when considering local AMFs.

Figure 2(a) shows that more than 80% of the edges are significant in 20 different cross-

sections of FLEED. Moreover, most of the labor flows in the economy take place on signifi-

cant edges. Figure 2(b) illustrates the topology revealed by these labor flows, and highlights

the small number of edges that are not significant. These non-significant edges tend to be

concentrated among the largest firms; they are so large that flows between them can be ex-

pected under a homogeneous matching process. In order to reconstruct a LFN we generate

an undirected unweighted graph with edges corresponding to the significant edges found G′.

The resulting network provides the degree ki of each firm. We perform this procedure for

every annual cross-section in FLEED in order to test our results.

3.3 Empirical Testing

We test the prediction concerning degree and firm size, expressed in eq. (7) by estimating

the model

Li = βLki + εi, (14)
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Figure 2: Significant Edges a the Finnish LFN
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(b) Labor Flow Network

Figure 2(a) shows the percentage of edges that can be considered significant. Each bar corresponds to one
cross-section from FLEED. Figure 2(a) provides a graphical representation of the network obtained from
significant edges. The image shows the 2,000 most connected firms in the period 2007-2008. Significant
edges are colored in white.

where εi is an error term and βL = ϕh∗2. If the model is empirically consistent, then the null

hypothesis of βL = 0 should be rejected. In a similar spirit, we test the predicted positive

relationship between degree and profits suggested in eq. (8) by estimating the model

Πi = βΠki + εi, (15)

where βΠ = ϕψ3

8λφ2 (y − w)3.

We estimate both models for each annual cross-sections in FLEED. Table 1 shows that

the data validates the model’s prediction eq. (7) in all cross-sections, confirming a positive

relationship between degree and firm size. Equation (8) is valid in most of the cross-sections.

These tests provide support of the empirical soundness of the model, allowing us to proceed

with further tests and theoretical developments.

We proceed to test the theoretical prediction connecting degree and firm-specific unem-

ployment, as expressed in eq. (9). For this, we estimate the model
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Year Firm Size Firm Profit
βL N R2 βΠ N R2

1988 7.135*** 19,251 0.466 9.031e+04** 19,251 0.060
(4.963e-01) (4.963e-01)

1989 8.200*** 19,184 0.549 1.352e+05*** 19,184 0.136
(6.766e-01) (6.766e-01)

1990 11.595*** 16,164 0.398 2.291e+05*** 16,164 0.088
(1.294e+00) (1.294e+00)

1991 15.706*** 12,752 0.437 2.975e+05*** 12,752 0.059
(1.409e+00) (1.409e+00)

1992 17.776*** 12,306 0.416 2.250e+05 12,306 0.019
(1.620e+00) (1.620e+00)

1993 15.763*** 13,750 0.248 2.662e+05* 13,750 0.030
(1.746e+00) (1.746e+00)

1994 15.156*** 16,074 0.461 3.074e+05*** 16,074 0.049
(2.320e+00) (2.320e+00)

1995 15.308*** 16,675 0.432 2.561e+05*** 16,675 0.049
(2.278e+00) (2.278e+00)

1996 14.193*** 20,188 0.541 3.710e+05*** 20,188 0.097
(1.879e+00) (1.879e+00)

1997 11.478*** 20,220 0.627 2.405e+05* 20,220 0.065
(1.436e+00) (1.436e+00)

1998 10.803*** 25,485 0.570 4.247e+05* 25,485 0.069
(1.902e+00) (1.902e+00)

1999 8.509*** 27,340 0.380 7.583e+05* 27,340 0.076
(1.147e+00) (1.147e+00)

2000 9.074*** 27,575 0.419 2.506e+05** 27,575 0.024
(1.577e+00) (1.577e+00)

2001 10.879*** 26,882 0.500 7.449e+04 26,882 0.007
(2.048e+00) (2.048e+00)

2002 10.229*** 26,546 0.515 5.255e+05 26,546 0.042
(1.669e+00) (1.669e+00)

2003 10.021*** 27,350 0.518 3.511e+05 27,350 0.036
(1.661e+00) (1.661e+00)

2004 8.855*** 29,719 0.506 2.245e+05 29,719 0.021
(1.751e+00) (1.751e+00)

2005 7.991*** 34,089 0.596 2.172e+05 34,089 0.032
(1.180e+00) (1.180e+00)

2006 7.221*** 36,813 0.575 3.474e+05* 36,813 0.021
(9.297e-01) (9.297e-01)

Table 1: Empirical test of theoretical predictions eqs. (7) and (8). The corresponding
estimated models are eqs. (14) and (15). Robust standard errors in parentheses. * p < 0.05,
** p < 0.01, *** p < 0.001.
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Ui = βλxi + εi, (16)

where βλ = λ is the estimated separation rate and xi = t̄ui Li.

Using data from Mexico, we measure the number of associated employed and unemployed

individuals in each firm during a single day of every year. By measuring for a single day,

we guarantee that the unemployed individuals are different from the employed ones. For

each firm, we choose the day when they have the maximum amount of both employed and

unemployed, in other words the day of the year that maximizes UiLi for each firm i. We

compute t̄ui by averaging the duration (in number of days) of unemployment spells (shorter

than 24 months) associated to firm i. If the sample size of unemployment spells per firm is

high, the total number of firms in the sample becomes too low. On the other hand, the data

becomes highly noisy (many firms with UiLi ≤ 1) if the sample size of unemployment spells

per firm is too low. Therefore, we select firms with at least 80 associated unemployment

spells in order to maximize both the number of unemployment spells per firm and the

number of firms in the sample.

Table 2 shows that the theoretical prediction in eq. (12) is empirically consistent. More-

over, all the estimated separation rates fall in the interval (0, 1), which is reassuring if we

think of the model as a new way to estimate the separation rate.

Figure 3 provides a graphical illustration of the three theoretical predictions that are

tested using empirical data. It is clear that the predicted relationships are not only sta-

tistically significant but positive. Each panel corresponds to an annual cross-section of the

datasets: panel A corresponds to eq. (7), panel B to eq. (8), and panel C to eq. (12). With

this qualitative corroboration of the empirical soundness of the model, we proceed to extend

the model in order to analyze equilibrium unemployment.
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Year βλ N R2

1999 0.001* 83 0.457
(4.203e-04)

2000 0.001*** 89 0.502
(3.726e-04)

2001 0.002*** 92 0.506
(3.153e-04)

2002 0.002*** 93 0.581
(3.448e-04)

2003 0.002*** 93 0.729
(3.250e-04)

2004 0.002*** 84 0.731
(3.894e-04)

2005 0.003*** 86 0.610
(4.936e-04)

2006 0.003*** 80 0.507
(6.643e-04)

2007 0.003*** 76 0.695
(4.880e-04)

2008 0.003*** 72 0.702
(5.379e-04)

2009 0.001** 69 0.426
(3.868e-04)

2010 0.001*** 63 0.670
(2.242e-04)

Table 2: Empirical test of theoretical prediction eq. (12). The corresponding estimated
model is eq. (16). Robust standard errors in parentheses. * p < 0.05, ** p < 0.01, ***
p < 0.001.

Figure 3: Model Prediction vs. Empirical Data

The figures were constructed using the cross-section corresponding to 2006 of each dataset. The scattered
dots correspond to empirical observations and the solid lines to the fitted models eqs. (14) to (16).
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4 Equilibrium and Aggregate Unemployment

So far we have developed a model where there is a unique exogenous market wage. This

allows us to gain new insights about the effect of the LFN on firm dynamics and unemploy-

ment. One of the main findings is an externality through which firms affect their neighbors’

sizes through their hiring policies. However, it is important to study how this externality

interacts with the LFN topology when h∗i is heterogeneous. For this purpose, we endogenize

wages and study the equilibrium of the economy. We define equilibrium as a sextuple

Θ =
(
{h∗i }Ni=1, {w∗i }Ni=1, {L∗i }Ni=1, {A∗i }Ni=1, {U∗i }Ni=1, ϕ

∗)
of optimal hiring policies, wages, firm sizes, applications, firm-specific unemployment, and

a condition of population conservation.

Obtaining the equilibrium of the economy boils down to solving for the set of optimal

hiring policies {h∗i }Ni=1. For this, we first introduce a wage generating mechanism and then

solve for the equilibrium wage. This enables us to obtain {h∗i }Ni=1, and all subsequent

quantities of interest. Next, we characterize {h∗i }Ni=1 and present theoretical results for

three stylized networks. Finally, we calibrate the model to the Finnish empirical LFNs to

show that their topology can have a dramatic impact on aggregate unemployment and its

temporal variation.

4.1 Hiring Policies

In order to endogenize wages, we have chosen an aggregate supply approach. We make this

choice for simplicity and analytical convenience, but other types of labor supply could be

incorporated if needed. Let us assume that firms demand labor at different moments, so
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the aggregate supply responds to each one independently with a wage wi. The inverse labor

supply has the form

wi =
y`i
b+ `i

, (17)

where `i is the individual demand of firm i and b > 0 is a parameter that affects the price

elasticity. The wage is asymptotic to the productivity because we assume that workers are

aware of the firms’ incentives for not paying more than productivity y.

On the other hand, the labor demand of firm i is equivalent to the number of new

hires. We assume that firms are wage takers, so their profit-maximization problem remains

unchanged. Therefore the labor demand of firm i takes the form

`i = h∗iAi. (18)

Substituting eq. (18) in eq. (17) and using eq. (3) yields the equilibrium wage

w∗i =
yϕh∗i h̄

∗
Γi
ki

b+ ϕh∗i h̄
∗
Γi
ki

=
yλLi
b+ λLi

, (19)

which explicitly shows that larger firms pay higher wages. In other words this result captures

the the well-known employer size premium (Brown and Medoff, 1989; Brown et al., 1990).

It also suggests that firms with a higher degree pay higher salaries when compared to other

firms with the same hi and h̄Γi .

Substituting eq. (19) in eq. (6) yields i’s equilibrium hiring policy

h∗i = min

1,
φb−

√
φ2b2 + φψϕ2byh̄∗Γiki

−2φϕh̄∗Γiki

 , (20)

where the firm sets either a fraction in (0, 1), or a corner solution where it hires all applicants.
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Note that eq. (20) is continuous and maps [0, 1] into itself because hi ∈ [0, 1] and h̄Γi ∈ [0, 1].

Therefore, by Kakutani’s fixed point theorem we know that a unique set {h∗i }Ni=1 exists, so

does equilibrium Θ.

Equation (20) captures captures the interaction between the hiring behavior of firm i

(expressed through hi) and the hiring behavior of its neighbors. This interaction correlates

hiring policies across the LFN. This has important implications on how we understand labor

reallocation. For example, if a worker leaves a firm with a low hiring policy, he or she will

most likely have immediate access to firms with slightly different hiring policies. In contrast,

a standard random matching process allows job seekers to jump between firms with strikingly

different hiring policies. This difference has a profound effect on our understanding of local

shocks and unemployment traps due to the congestion effects generated by the navigation

process on the LFN. In order to elaborate on this point, we present further theoretical

predictions and their economic intuition.

4.2 Theoretical Implications

Let us build some intuition about the relationship between the equilibrium aggregate unem-

ployment and network topology. Figure 4 illustrates the the effect that the supply elasticity

has on wage dispersion and equilibrium hiring policies. Consider the firm with the largest

labor demand `max, which determines the maximum wage in the economy. The latter is

higher in an economy with a more inelastic labor supply, considering everything else con-

stant. A higher wage implies a lower hiring policy for this firm, increasing the dispersion

between the maximum hiring policy hmax and the lowest one hmin. Firms with different

degrees set different hiring policies (assuming that h̄Γi does not cancel the effect of ki).

In a heterogeneous network, diversity of hiring policies plays a central role in determining

the level of unemployment because because it correlates degrees with hiring policies in a

negative way.

We know by eq. (3) that higher a ki induces a larger firm size. Then, the negative
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Figure 4: Wage Dispersion and Hiring Policies

The left panel shows two aggregate labor supplies with different elasticities obtained from eq. (17). It also
presents the corresponding wages that the firm with the largest demand `max would have to pay when
confronting each supply. The right panel maps these wages through eq. (6), into the hiring policies that
would be set by the firm with the largest demand.

correlation between ki and hi means that a larger proportion of workers (those in the

largest firms) are searching for jobs in firms with lower hiring policies (their neighbors).

Following this logic, we can expect that a LFN with a degree distribution that is a mean-

preserving spread of another one induces higher a level of unemployment. In this example,

we have introduced wage dispersion through the supply elasticity. However, the model is

flexible enough to allow firm heterogeneity in parameters such as the separation rate λ,

the productivity y, the hiring cost c, the sunk cost κ, and the search intensity s. This is

an important strength of the model because it facilitates more realistic calibrations that

consider the cross-sectional variation of firms; an important feature to understand other

things such as the effect and propagation of local shocks.

In order to demonstrate the previous intuition, we solve the model for three stylized

networks that are representative of real-world topologies: (i) a regular graph with a delta

degree distribution, (ii) an Erdős-Rényi graph with a binomial degree distribution, and (iii)

a scale-free network with a Pareto degree distribution. Solving the model for the regular

31



network is straightforward since all firms have the same ki = k. Therefore, substituting h̄∗Γi

by h∗ in eq. (20) together with eq. (10) yields

h∗ =
bN(yψθ − 2λφ) +

√
b2N2(2λφ+ yψθ)2 + 8byNHλ2φψθ

4φθ(bN +Hλ)
, (21)

where θ = [1− (1−v)k]. For the case of the networks with heterogeneous degrees, we solved

eq. (20) numerically.

Panel A in fig. 5 shows the Beveridge curves generated by the model. Here, we portray

the Beveridge curve as the relationship between the unemployment rate and the average

hiring policy. The curves are generated by solving the equilibria of different levels of the

hiring cost c in the interval [0.1, 0.9]. Two notable features stand out in this diagram. First,

curve from the scale-free network is significantly distant from the other two. Second, the

three curves collapse when h̄∗ = 1. This is quite intuitive when we consider the sampling

process that workers undergo in the LFN. If all firms set hiring policies near 1, the likelihood

of getting a job depends mostly on the investment shocks, which happen uniformly across

firms. In this situation, a job seeker at a firm with few edges has almost the same chance

of finding a job as a worker at a firm with many connections. This also relates to the

dispersion of {h∗i }Ni=1 because when firms hire all applicants there is no diversity of hiring

policies, which nullifies the effect of the LFN topology.

Panel B in fig. 5 shows the employer-size premium across the three networks. It is clear

that the network with largest degree heterogeneity also has the largest wage dispersion. The

topology of the network does not shift the L−w curve so we cannot expect significant changes

in the average wage due to network structure. Panel C demonstrates the interaction between

firms’ hiring behavior and their neighbors’. As suggested in eq. (20), there is a negative

relationship between h∗i and h̄∗Γi . These correlations are clustered by levels of h∗i and their

dispersion is larger in the scale-free network.

As shown in panel D of fig. 5, firms with more edges tend to set lower hiring policies.
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The mechanism is simple: with more neighbors, Ai grows and so does i’s demand for labor.

More demand implies a higher wage to be paid by the firm, which shifts its profit curve

to the left. In order to compensate for higher salaries, the firm needs to re-adjust h∗i to a

lower level. Finally, as predicted by eqs. (3) and (9), firms with higher connectivity tend

to be larger and have more associated unemployed agents. In addition, the network with

a Pareto degree distribution also exhibits a larger firm size dispersion, which is consistent

with real-world economies.

4.3 Empirical Implications

We have shown that the LFN topology has important theoretical implications in the com-

position of aggregate unemployment. We would like to conclude by analyzing real-world

LFNs and learning something about the empirical implications of their topologies. For this

purpose, we calibrate the model to match the observed aggregate unemployment rates of

Finland throughout 20 years, while controlling for its LFNs and separation rates. In order

to estimate λ, we make use of our last theoretical result

Proposition 7. The steady-state average number of unemployed who become employed after

being associated to a firm i that follows eqs. (1) and (2) is

Oi = ϕhih̄Γiki. (22)

The proof follows from the fact that, in the steady-state, Oi = λLi (see appendix). The

intuition is simple: we can consider firm-specific unemployment as a pool of people that is

constant through time. The inflows into Ui are λLi while the outflows are Oi. In order for

Ui to be constant, the inflows and the outflows must be equal.
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Figure 5: Equilibrium Outcomes on Different Network Topologies

Equilibrium solutions for an example calibration: {N = 200, H = 4000, λ = .05, y = 1, v = .8, c = .1,
κ = .5, s = 1, b = 1 }, and different network topologies with the same average degree of 6. The solution
for the network with a Dirac delta degree distribution was obtained through eq. (21), while the ones for
the binomial and Pareto degree distributions were obtained numerically. Panel a shows the solutions for
different levels of c. The rest of the panels show the cross-sectional variation of the solution for representative
networks.
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Taking advantage of eq. (22), we use the steady-state condition Oi = λLi in order to

estimate the model

Oi = βλLi + εi, (23)

where βλ = λ. We calibrate the model to a daily frequency, so the estimated separation

rate becomes β̂dλ = 1− (1− β̂λ)
1

365 (see appendix).

We use the annual unemployment rates in Finland from Eurostat for each period covered

in FLEED. It should be noted that eq. (20) provides a new way of estimating the hiring

behavior of firms. This is an important contribution because the method takes advantage

of the labor inflows and outflows of each firm and does not depend on data about vacancies.

An important consideration in the calibration process is avoiding trivial solutions. In

other words, we should carefully choose a set of parameters that yields an equilibrium where

firms set heterogeneous hiring policies (as opposed to all firms setting the corner solution).

This is important because empirical LFNs have degree distributions with a wide spread

(Guerrero and Axtell, 2013). If all firms (or most) set corner solutions, the equilibrium would

not be consistent with wage dispersion and the skewed firm size distributions observed in real

data. Therefore, parameters c, κ, and b play a crucial role. As previously discussed, b allows

wage dispersion, so an inelastic labor supply is desirable in order to generate heterogeneous

hiring policies. Parameter c determines the overall level of wi, hence of h∗i . Finally, κ limits

the maximum wi by making the firm more sensitive to the investment shocks, even when it is

closed. We normalize y = 1, assume full search intensity (s = 1), and allow v to be a degree

of freedom to calibrate the model and match the observed level of aggregate unemployment.

Once calibrated, we use the model to compute a counter-factual. This counter-factual

consists of evaluating the model under a different network structure, while keeping every-

thing else constant. More specifically, we estimate what would be the aggregate unem-

ployment rate in Finland if the frictions of the labor market would have a homogeneous
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structure. In other words, we compute aggregate unemployment when ki = k, which is

given by eq. (13), where h∗ corresponds to the solution of the homogeneous case in eq. (21).

We perform this exercise for different supply elasticities in order to gain some insights about

the minimum and maximum effects of the network topology.

Figure 6 shows the difference in aggregate unemployment between the fitted model and

the counter-factual. We present results for three levels of supply elasticity3. As discussed

previously, a more inelastic labor supply generates more wage dispersion, which contributes

to a larger difference in unemployment between the real LFN and the regular network. We

interpret this difference as the contribution of the network structure to aggregate unem-

ployment. Under a very elastic labor supply, the contribution is marginal. However, if the

supply is highly elastic, the contribution of the network topology can account for more than

90% of the unemployment rate. Given that real economies exhibit wage dispersion, the LFN

is likely to have a significant effect on aggregate unemployment.

Finally, the LFN topology not only affects the level of aggregate unemployment, but also

its variation through time. In this exercise, it is evident that more degree heterogeneity also

increases the magnitude of annual variations of the unemployment rate. This is an impor-

tant result considering that the origins of unemployment volatility is a highly debated topic

(Mortensen and Nagypál, 2007; Pissarides, 2009; Shimer, 2010; Obstbaum, 2011). If struc-

tural changes or shocks take place (e.g., changes in λ or v), the labor reallocation process is

smoother on a regular structure than on a heterogeneous one. This is quite intuitive when

thinking in terms of job search as a gradual navigation on the LFN. A shock or a struc-

tural change generates heterogeneous adjustments of hiring policies when the network is not

regular (and assuming wage dispersion). If the LFN has firms that concentrate many connec-

tions, labor reallocation becomes susceptible to the congestion effects that these companies

generate by re-adjusting their hiring policies. In a regular LFN the reallocation process is

smoother because the shock or structural change generates the same re-adjustment across

3The bump in the counter-factual of 1997 is caused by an anomaly in the data. Due to changes in data
administration, 1997 registers a substantial increase in N (see table 1). Most of these firms have ki = 1, so
the average degree drops nearly 50% with respect to 1996.
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Figure 6: Equilibrium Unemployment and Counterfactuals

The diamonds correspond to the observed annual aggregate unemployment rate. The grey line was obtained
by calibrating the model to match the observed unemployment rates of each year using parameter values:
y = 1, s = 1, c = .1, κ = .5, and H = 2, 000, 000 (the size of the Finnish labor force). N is the number of
firms in the data, λ was estimated form the data, and v varies between years due to the fitting procedure.

all firms, which happen to have the same number of employees and associated unemployed.

Therefore, the LFN offers a new perspective to study unemployment volatility and points

towards the need to understand the propagation of shocks and structural changes through

the gradual reallocation of labor that takes place on the network, something that we leave

for future work.

5 Discussion and Conclusion

We developed a framework to study aggregate unemployment from new network-theoretic

micro-foundations of job search as a gradual navigation process on a LFN. By employing

the method of random walks on graphs, we solved the model for the steady-state and equi-

librium. The framework allows to study the composition of aggregate unemployment with

a resolution at the level of each firm. It also shows that an externality emerges between
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neighbor firms: ‘my growth affects your growth’. We found that when labor is reallocated

through networks with degree heterogeneity, hiring policies correlate through neighbor firms.

Depending on the elasticity of the labor supply, the model generates wage dispersion and

the topology of the LFN contributes in a significant way to the level of aggregate unemploy-

ment. This means that the way in which labor market frictions are structured (the network

topology) plays a central role in the process of labor reallocation because this structure

determines the pathways that labor uses to navigate through different firms. Through their

hiring behavior, firms modulate the flows of labor, generating pockets of local unemploy-

ment and congestion effects. This framework provides a rich and elegant, description of

decentralized labor markets with the possibility of preserving important information that is

lost through arbitrary aggregations.

Our theory is empirically supported by comprehensive micro-data on employer-employee

matched records. It suggests that the role of firm connectivity is key to link individual firm

dynamics to aggregate unemployment. Moreover, we found that, in the case of Finland,

the structure of the LFN may account for most of the aggregate unemployment rate and its

temporal variation. The framework also provides a new way to estimate separation rates

and hiring policies. In addition, our results suggest that the collection of new information

such as firm-specific unemployment could be useful to complement our knowledge about

aggregate unemployment and the role of labor policy. For example, it would shed light on

the origins of unemployment volatility and mismatch unemployment.

On the theoretical side, the LFN framework can be employed to consider firm-specific

phenomena such as recall unemployment. In addition, this framework is particularly well

suited to study the propagation of local shocks and structural changes, a major issue in labor

policy discussions. Its localized nature allows it to be implemented through other methods

such as computer simulation and agent-computing models (Freeman, 1998; Geanakoplos

et al., 2012) in order to study the impact and timing effects of specific policies. This

facilitates the study of a much richer set of problems that are difficult to address from an

aggregate perspective. For example, we could use employer-employee matched records to
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calibrate an agent-computing model with the real LFN and then simulate local shocks to

groups of firms. The computational model would allow us to obtain information about how

labor would flow out of the affected parts of the economy, and gradually find its way to firms

with better employment prospects. Characterizing this gradual navigation process would

be extremely helpful in designing policies that aim not only to alleviate unemployment, but

to smooth transitional phases of the economy.
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Appendix (For Online Publication)

Proof of proposition 1

Let pi(t) and qi(t) be the probabilities of being employed and unemployed at firm i in period
t respectively. Both quantities are dynamically described by

pi(t) = (1− λ)pi(t− 1) + shi
∑
j∈Γi

qj(t− 1)
∑
{γ(i)
j }

Pr
(
γ

(i)
j

) 1∣∣∣γ(i)
j

∣∣∣ , (24)

and

qi(t) = λpi(t− 1) + qi(t− 1)

s∑
γ 6=∅

Pr(γi)
1

|γi|
∑
j∈γi

(1− hj) + sPr(γi = ∅) + (1− s)

 . (25)

There, where γ
(i)
j indicates a configuration of open and closed neighbors of j, such that i

is open. The symbol {γ(i)
j } denotes the set of all possible configurations of open and closed

neighbors of j where i is open. The set γi contains all open neighbors of i, and we denote
∅ the set of neighbors of i when all of them are closed.

In the steady-state, pi(t) = pi(t − t) = pi and qi(t) = qi(t − t) = qi. Note that∑
γ 6=∅ Pr(γi) + Pr(γi = ∅) = 1, so the system defined by eqs. (24) and (25) becomes

0 = −λpi + shi
∑
i∈Γi

qj
∑
{γ(i)
j }

Pr
(
γ

(i)
j

) 1∣∣∣γ(i)
j

∣∣∣ (26)

0 = λpi − qis
∑
γ 6=∅

Pr(γi)h̄Γi . (27)

Let us write qi in terms of pi as

qi =
λ

s
∑
γ 6=∅ Pr(γi)h̄Γi

pi, (28)

and then substitute pi with eq. (40) to obtain

qi =
∑
i∈Γi

qjhi
∑
{γ(i)
j }

Pr
(
γ

(i)
j

)
/
∣∣∣γ(i)
j

∣∣∣∑
γ 6=∅ Pr(γi)h̄Γi

, (29)

To understand this further, we write the previous equation in matrix form making use
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of the adjacency matrix of the graph, A, for which Aij = Aji = 1 if i and j have an edge
connecting them, and zero otherwise. This produces the expression

N∑
j=1

Aij

hi
∑
{γ(i)
j }

Pr
(
γ

(i)
j

)
/
∣∣∣γ(i)
j

∣∣∣∑
γ 6=∅ Pr(γi)h̄Γi

− δ[i, j]

λpj = 0 (30)

for all i. This represents a homogeneous system of linear equations, which always has the
trivial null solution, and has non-trivial solutions if and only if the matrix contained inside
brackets is singular which, among other things, implies that the matrix does not have full
rank. To show that our model has non-trivial solutions indeed, we define the matrix Λ,
with element Λij corresponding to the expression inside brackets

Λij := Aij

hi
∑
{γ(i)
j }

Pr
(
γ

(i)
j

)
/
∣∣∣γ(i)
j

∣∣∣∑
γ 6=∅ Pr(γi)h̄Γi

− δ[i, j]. (31)

This matrix does not possess full rank as can be explicitly seen from the fact that all columns
add to zero. To show this, we first sum Λij over i

N∑
i=1

Λij = −1 +

N∑
i=1

Aij

hi
∑
{γ(i)
j }

Pr
(
γ

(i)
j

)
/
∣∣∣γ(i)
j

∣∣∣∑
γ 6=∅ Pr(γi)h̄Γi

(32)

where −1 comes from −
∑
i δ[i, j]. We can now show that the numerator and denominator

of the second term are indeed equal. To see this in detail, we organize the elements of {γ(i)
j }

by cardinality |γ(i)
j |, and rewrite the numerator as

N∑
i=1

Aijhi
∑
{γ(i)
j }

Pr(γ
(i)
j )/|γ(i)

j | =
|Γj |∑
c=1

1

c

∑
i

Aijhi
∑
|γ(i)
j |=c

Pr(γ
(i)
j ), (33)

where the last sum is over all elements of {γ(i)
j } with equal size c. Now, the sum over i

guarantees that each neighbor of j belonging to a particular γ
(i)
j is summed, along with the

corresponding hr, where r ∈ γ(i)
j . Therefore, the sum over i can be rewritten as

∑
i

Aijhi
∑
|γ(i)
j |=c

Pr(γ
(i)
j ) =

∑
|γj |=c

∑
r∈γj

hr

Pr(γj) (34)

and inserting this into the sum over c leads to

|Γj |∑
c=1

1

c

∑
|γj |=c

∑
r∈γj

hr

Pr(γj) =
∑
γj 6=∅

∑
r∈γj hr

|γj |
Pr(γj) =

∑
γj 6=∅

〈h〉γjPr(γj) (35)
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Therefore,
N∑
i=1

Aijhi
∑
{γ(i)
j }

Pr(γ
(i)
j )/|γ(i)

j | =
∑
γj 6=∅

〈h〉γjPr(γj) (36)

which means that for all j, (eq. (32)) is identically zero, guaranteeing that the system has
non-trivial solutions.

Since the matrix for a connected graph has rank N−1, its kernel is one-dimensional, and
thus, to choose a unique solution that belongs to the kernel of Λ we need a single additional
condition. In our case, this condition corresponds to

N∑
i=1

(pi + qi) = 1, (37)

which guarantees that each individual is either employed or unemployed and associated to
only one firm each period. Q.E.D.
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Proof of proposition 2

Let us consider eqs. (26) and (27) and note that the probability Pr(γi) of obtaining a specific
configuration γi of open and closed neighbors follows the binomial v|γi|(1− v)ki−|γi|. Then,
we obtain that

∑
{γ(i)
j }

Pr(γ
(i)
j )/|γ(i)

j | →
kj∑

|γ(i)
j |=1

(
kj − 1

|γ(i)
j | − 1

)
v|γ

(i)
j |(1− v)kj−|γ

(i)
j |

|γ(i)
j |

=
1− (1− v)kj

kj
. (38)

For the sum
∑
γj 6=∅ h̄ΓiPr(γj), we note that each hiring policy hi for i ∈ Γj appears( kj−1

|γj |−1

)
times among all the terms where there are |γj | open neighbors to j. We can then

write

∑
γj 6=∅

h̄ΓiPr(γj)→
kj∑
|γj |=1

(
kj − 1

|γj | − 1

)∑
i∈Γj

hi

|γj |
v|γj |(1− v)kj−|γj | = h̄Γi(1− (1− v)kj ), (39)

where h̄Γi :=
∑
i∈Γj

hi/kj , i.e., the average hiring policy of the full neighbor set of j.

Therefore, eqs. (26) and (27) simplify into

0 = −λpi + shi
∑
i∈Γi

qj
1− (1− v)kj

kj
(40)

0 = λpi − qish̄Γi [1− (1− v)ki ]. (41)

It is easy to see by inspection that the solution to the system is

pi =
χhih̄Γiki

λ
(42)

qi =
χhiki

s[1− (1− v)ki ]
(43)

χ =
1∑

i∈G hih̄Γiki

[
1
λ + 1

sh̄Γi
[1−(1−v)ki ]

] . (44)

Given that the workers’ actions are independent from each other, the evolution of the
firm size follows the binomial
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Pr(Li) =

(
H

Li

)
pLii (1− pi)Hi−Li , (45)

so the steady-state average firm size Li (abusing notation) is

Li = Hpi =
ϕhih̄Γiki

λ
, (46)

where ϕ = Hχ. Q.E.D.
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Proof of proposition 3

Consider the probability ai(t) that a worker submits a job application to firm i in period
t. This depends on: the worker becoming an active searcher; on the probability qj(t − 1)
of being unemployed in a neighbor j ∈ Γi during the previous period; on the probability

Pr(γ
(i)
j ) of j having a configuration γ

(i)
j of open of closed neighbors in which i is open; and

on the probability of choosing i over all other alternative neighbors of j. Accounting for all
possible events and configurations of neighbors, this probability is written as

ai(t) = s
∑
j∈Γi

qj(t− 1)
∑
{γ(i)
j }

Pr
(
γ

(i)
j

) 1∣∣∣γ(i)
j

∣∣∣ . (47)

In the steady-state ai(t) = ai(t − 1) = ai and qi(t) = qi(t − 1) = qi, and by replacing
eqs. (38) and (43) we obtain

ai = χh̄Γiki. (48)

Since the workers’ behaviors are independent from each other, the number of job appli-
cations received by firm i in any period follows the binomial

Pr(Ai) =

(
H

Ai

)
aAii (1− ai)Hi−Ai , (49)

so the steady-state average number of applications Ai (abusing notation) is

Ai = Hai = ϕh̄Γiki, (50)

where ϕ = Hχ. Ai fulfills the steady-state balance condition λLi = hiAi. Q.E.D.
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Proof of proposition 4

Let us consider the steady-state solution for the probability qi of being unemployed and
associated to firm i, as written in eq. (43). Given that the workers’ actions are independent
from each other, the evolution of the firm-specific unemployment follows the binomial

Pr(Ui) =

(
H

Ui

)
qUii (1− qi)Hi−Ui , (51)

so the steady-state average firm-specific unemployment Ui (abusing notation) is

Ui = Hqi =
ϕhiki

s[1− (1− v)ki ]
, (52)

where ϕ = Hχ. Q.E.D.
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Proof of proposition 7

Consider the probability oi(t) that a worker associated to firm i finds a job at a different firm
in period t. This event depends on: the probability qi(t−1) that the worker was unemployed
and associated to firm i ∈ Γj during the previous period, on the worker’s search intensity,
on the probability Pr(γi) of i having a configuration γi of open of closed neighbors; and on
the probability of choosing one particular firm over all other alternatives available in Γi.
Altogether, these factors constitute probability

oi(t) = qi(t− 1)s
∑
γi 6=∅

Pr (γi)
1

|γi|
. (53)

In the steady-state oi(t) = oi(t − 1) = oi and qi(t) = qi(t − 1) = qi, and by replacing
eqs. (39) and (43) we obtain

oi = χhih̄Γiki. (54)

Since the workers’ behaviors are independent from each other, the number of i’s outflows
in any period follows the binomial

Pr(Oi) =

(
H

Oi

)
oOii (1− oi)Hi−Oi , (55)

so the steady-state average outflows Oi (abusing notation) is

Oi = Hoi = ϕhih̄Γiki, (56)

where ϕ = Hχ. Oi fulfills the steady-state balance condition Oi = λLi. Q.E.D.
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Test for significant edges

In order to introduce the test, consider 4 workers who become separated from firm i and
eventually find jobs at different firms. Workers 1 and 2 find jobs in firm j, while workers 3 and
4 become employed by l and m respectively. These flows can be represented as the elements
aij = 2, ail = 1, and aim = 1 of the adjacency matrix of a directed multigraph Gm, defined as
an ordered pair with a set of nodes and a multiset of edges. The element aij = 2 means that
an edge from i to j appears two times in Gm. We generalize this example to the case where
firm i has kini = Vi incoming matched workers and kouti = Mi outgoing matched job seekers.
Then, we can think of the AMF as a generating mechanism of Gm, for any degree sequences
{kin1 , kin2 , ..., kinN } and {kout1 , kout2 , ..., koutN } such that

∑N
i k

in
i =

∑N
i k

out
i = M . By randomly

matching the job seekers and vacancies of each firm, the AMF generates a random graph
Gm. This process takes into account the fact that some firms receive more workers than
others. In fact, this network formation process corresponds to a well established framework
called the directed configuration model (Holland and Leinhardt, 1981; Molloy and Reed,
1995; Bollobás, 1998).

The directed configuration model hypothesizes that edge formation is the result of ran-
dom matching between nodes. It begins with nodes that possess severed incoming and
outgoing edges, also known as stubs. Outgoing stubs can only be paired with incoming
stubs. The procedure consist of randomly taking one outgoing stub and pairing it to an
incoming one. This sequential process generates a topology for Gm. Under reasonable as-
sumptions, it is possible to approximate the probability distribution of the presence an edge
as a binomial distribution.

Let âij denote the number of edges from i to j generated by the directed configuration
model. Suppose that Gm has a degree distribution with finite mean. A result by Wilson
et al. (2013) shows that, for N →∞, âij is a random variable such that

âij ∼ Binomial
(
kouti , kinj /n

)
, (57)

where n is the total number of edges in Gm. The first parameter corresponds to the number
of outgoing stubs of i (the number of trials), and the second corresponds to the probability
that an outgoing stub will be matched with an incoming stub from j.

Equation (57) allows to statistically test the significance of individual edges in Gm. The
test consists of comparing aij against the expectation âij and it takes the from of the p-value
of a Binomial test

p(i→ j) = Pr(âij ≥ aij). (58)

We compute eq. (58) for each edge of every network. If the p-value is less than 0.05,
we consider that edge significant and take it as an indicator that there is a significant edge
underlying those labor flows. Recall that an edge has a categorical nature in the sense that
it indicates whether we would expect (under the null) labor flows between the firms that it
connects or not.
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Estimation of Separation Rates for Finland

Year βλ N R2

1988 0.188*** 34,279 0.407
(2.900e-02)

1989 0.102*** 32,771 0.301
(2.224e-02)

1990 0.105*** 25,260 0.246
(2.442e-02)

1991 0.049*** 19,143 0.252
(9.445e-03)

1992 0.028*** 16,810 0.141
(4.575e-03)

1993 0.188 17,667 0.174
(1.270e-01)

1994 0.150* 20,756 0.279
(7.513e-02)

1995 0.068*** 21,012 0.151
(1.759e-02)

1996 0.059*** 24,076 0.382
(6.019e-03)

1997 0.065*** 51,493 0.509
(8.652e-03)

1998 0.088*** 31,322 0.281
(1.590e-02)

1999 0.208* 33,648 0.409
(8.141e-02)

2000 0.154** 34,008 0.342
(4.993e-02)

2001 0.088*** 33,331 0.323
(1.667e-02)

2002 0.066*** 33,031 0.376
(1.103e-02)

2003 0.070*** 33,842 0.367
(1.041e-02)

2004 0.592*** 35,924 0.609
(1.528e-01)

2005 0.074*** 41,978 0.415
(1.029e-02)

2006 0.127*** 44,403 0.524
(3.286e-02)

2007 0.086*** 42,767 0.470
(1.171e-02)

Table 3: Estimation of annual separation rates for Finland via eq. (23). Robust standard
errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.
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