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Abstract

This study examines the effects of location-dependent parking fees and time-varying con-
gestion tolls on the behavior of heterogeneous commuters and their commuting costs. To
this end, we develop a model of trip timing and parking location choices by heterogeneous
commuters and characterize its equilibrium. By comparing the equilibrium with and with-
out pricing policies, we obtain the following results: (1) without pricing policies, interactions
among heterogeneous commuters yield an inefficient distribution of trip timing and parking
locations; (2) imposing a parking fee and expanding parking capacity may concentrate the
temporal distribution of traffic demand, thereby exacerbating traffic congestion and total com-
muting cost; (3) the social optimum is achieved by combining a parking fee with a congestion
toll; and (4) the revenue obtained from pricing of parking and roads exactly equals the costs
for optimal parking and bottleneck capacity; that is, the self-financing principle holds in the
model.
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1 Introduction

Traffic demand is highly concentrated within a specific time period, a phenomenon that can be
observed in most cities. This concentration is mainly due to the fact that firms in central business
districts (CBDs) generally start work at the same time; therefore, numerous commuters want to
arrive at the same location simultaneously. This concentration of traffic demand is a major cause
of traffic congestion.

Although the temporal distribution of traffic demand tends to be clustered, it is not fully
concentrated into a specific time. This is due to the existence of commuter incentives, which
cause traffic demand to become decentralized. Avoidance of traffic congestion is one principal
reason for commuters shifting their trip timing from the peak period. Parking congestion also
leads to temporal traffic dispersion, as pointed out by previous studies (e.g., Arnott et al., 1991;
Qian et al., 2012). In particular, commuters who leave home later need to park farther from their
workplace and then walk a longer distance when parking spaces are not sufficiently numerous,
an outcome that influences commuters’ preferences for their trip timing.1 Empirical evidence
(e.g., Beesley, 1965; Quarmby, 1967; Domencich and McFadden, 1975) indicates that the cost per
unit walking time is between one to three times higher than that per unit travel time. This shows
that a commuter’s scheduling preference generated from parking competition is not negligible.
Many other commuter incentives exist that serve to shift trip timing from the peak, e.g., to arrive
at work earlier than their supervisor, to work efficiently, and so on.

These facts suggest that commuters’ scheduling preferences arise from various factors, and
therefore, differ significantly among commuters. Furthermore, heterogeneity of commuters in
their value of travel time, walking time, and schedule delay may strongly impact the distribution
of trip timing. In fact, if we consider interactions between the two groups of commuters, namely
Commuter Group A, who place a higher value on shorter travel times, and Commuter Group
B, who place a higher value on shorter walking time, the following circular causation creates
strong incentives for commuters to be “early birds” (i.e., to arrive at work earlier than other
commuters): an early departure by Commuter Group A due to their high cost per unit travel
time leads to their occupation of convenient parking spaces, thereby increasing the early-bird
incentive for commuters in Group B; conversely, an earlier departure by commuters in Group
B exacerbates traffic congestion at earlier time periods, which further increases the early-bird
incentive for commuters in Group A. Therefore, it is important to explicitly consider commuter
heterogeneity and various factors yielding scheduling preferences (e.g., parking competition,
queuing congestion) when analyzing the distribution of trip timing and the efficacy of measures
intended to alleviate traffic congestion and parking competition.

A considerable number of studies have attempted to model commuters’ choice of trip timing
and the formation of traffic congestion. The bottleneck model (Vickrey, 1969; Hendrickson and
Kocur, 1981; Arnott et al., 1990) is the most successful model. This equilibrium model provides a
simple framework and thus has inspired numerous extensions and modifications. However, as
will be discussed in Section 1.1, no studies have so far considered heterogeneity of commuters
and multiple factors in generating commuters’ scheduling preferences.

This study develops a model of trip timing and parking location choices by heterogeneous
commuters that describes traffic congestion and parking competition among commuters. We

1If parking spaces face a very high demand, commuters cannot immediately find a vacant parking space and therefore
cruise for parking. This also impacts commuters’ scheduling preferences (see, e.g., Anderson and de Palma, 2004).
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then characterize both equilibrium and socially optimal distributions of trip timing and parking
locations. It is shown that an inefficient distribution can arise as an equilibrium, such as when
commuters with high cost per unit travel time choose to travel in a highly congested period.

After characterizing the equilibrium and social optimum, this study investigates the effects of
location-dependent parking fees and time-varying congestion tolls on the distribution of trip tim-
ing and parking locations. This analysis shows that the social optimum is achieved by imposing
both of these two pricing policies. Furthermore, the revenue from parking fees and congestion
tolls exactly equals the costs of the optimal parking and bottleneck capacity, respectively, i.e., the
self-financing principle (Mohring and Harwitz, 1962) holds in our model. In contrast, an expansion
of parking capacity and the introduction of parking fees may lead to temporal concentration of
traffic demand, thereby exacerbating traffic congestion and total commuting cost.

It is noteworthy that not only parking fees but also congestion tolls can be charged at parking
gates in our framework. Therefore, the effects of the parking fee and/or the congestion toll
presented in this study can be interpreted as applying to location- and/or time-dependent parking
prices. As noted by Shoup (2005) and Fosgerau and de Palma (2013), such parking prices are
easily imposed as the technology needed to charge for parking is much simpler than that needed
to charge for driving in congested traffic.

1.1 Related literature

Since the seminal work of Vickrey (1969), numerous studies have developed models of com-
muters’ choice of trip timing. In the last few decades, many studies have been devoted to
integrating parking competition into the standard bottleneck model. Arnott et al. (1991) was the
first successful attempt to explore how parking competition among commuters affects their trip
timing in addition to investigating the efficiency of various road toll and parking fee policies.
Their model has been extended by Zhang et al. (2008, 2011), Qian et al. (2011), Yang et al. (2013),
Fosgerau and de Palma (2013), and Liu et al. (2014b), all of which examine the robustness of their
results and propose new schemes to improve traffic congestion.2 Recently, a few studies have de-
veloped bottleneck models that incorporate various factors generating the scheduling preferences
of commuters. Peer and Verhoef (2013) and Takayama (2015) described commuters’ divergence
in terms of long-run decisions regarding routine arrival times at work and short-run decisions
regarding day-specific trip timings. Fosgerau and Lindsey (2013), Gubins and Verhoef (2014),
and Fosgerau and Small (2014) considered the utility of spending time at home,3 which would
reduce commuters’ early-bird incentives. However, these studies assumed that commuters are
homogeneous.4

Bottleneck models with heterogeneous commuters have also been developed, e.g., by Newell
(1987), Arnott et al. (1994), Lindsey (2004), Ramadurai et al. (2010), van den Berg and Verhoef
(2011), and Doan et al. (2011). These studies demonstrated the properties of equilibrium, social
optimum, and optimal pricing strategies. However, they assumed that scheduling preferences
are affected only by traffic congestion.

This study extends the model of Arnott et al. (1991) to incorporate commuter heterogeneity.

2For a comprehensive review of the literature on parking congestion, see Inci (2015).
3Vickrey (1973) and Tseng and Verhoef (2008) also consider a time-varying utility of time spent at home.
4Liu et al. (2014a) extended the studies by Yang et al. (2013) and Liu et al. (2014b) to consider commuter heterogeneity.

However, in their framework, parking competition does not create commuters’ early-bird incentives, that is, commuters’
scheduling preferences arise only from traffic congestion.
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We then systematically analyze the developed model by utilizing the properties of the comple-
mentarity problems that define the equilibrium of our model. This analysis shows that at the
equilibrium, workers sort temporally and spatially on the basis of their value of time, and that
the effects of parking fees and congestion tolls on the commuting cost of each commuter type
differs significantly. Thus, each pricing policy leads to an essentially different distribution of trip
timing and parking locations.

This study proceeds as follows. Section 2 formulates our model of trip timing and parking
location choice by heterogeneous commuters. In Sections 3 and 4, we characterize the equilibrium
and social optimum, respectively. Section 5 analyzes the effects of pricing policies, namely parking
fees and congestion tolls. To demonstrate concretely the properties of our model and the effects
of pricing policies, we analyze the model under a simple setting in Section 6. Section 7 concludes.
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Figure 1: Urban spatial structure

2 The model

2.1 Basic assumptions

We consider a city consisting of a CBD and residential area connected by a single road (Figure
1). The road has a single bottleneck with capacity µ. If arrival rates at the bottleneck exceed its
capacity, a queue develops. To model queuing congestion, we employ first-in-first-out (FIFO)
and a point queue in which vehicles have no physical length as in standard bottleneck models
(e.g., Vickrey, 1969; Hendrickson and Kocur, 1981; Arnott et al., 1990, 1993).

The parking spaces are located between the bottleneck and CBD. The number of parking
spaces per unit of distance (i.e., density of parking spaces) is assumed to be constant, d, as in
Arnott et al. (1991). Hence, in our model, commuters need to walk from their parking location to
the CBD. A parking location is indexed by the distance l from the CBD, which equals the walking
distance. Walking time from the parking location l to the CBD is taken to be wl, where w describes
the walking time per unit of distance.

There are I types of commuters, each of whom must travel from the residential area to the CBD
and who have the same work start time t∗. The number of commuters of type i ∈ I ≡ {1, 2, · · · , I},
whom we call “commuters i,” is fixed and denoted by Ni. The commuting cost ci(t, l) of commuter
i who departs the bottleneck at time t (travels at t), parks at location l, and arrives at the CBD at
time a(t, l) = t + wl is expressed as the sum of travel time cost αi{q(t) + c f }, schedule delay cost
si(t∗ − a(t, l)), and walking time cost λiwl:

ci(t, l) = αi

{
q(t) + c f

}
+ si(t∗ − a(t, l)) + λiwl, (1)

where αi is the value of travel time of commuter i, q(t) denotes queuing time of a commuter
traveling at time t, c f is fixed free flow travel time, and λi is the value of walking time of
commuter i. Note that the value of c f does not affect the results of interest since c f is independent
of both trip timing and parking location. Therefore, we set c f = 0. We assume that arriving late is
prohibitively costly,5 i.e., all commuters must be at work by time t∗, and the schedule delay cost
function si(t∗ − a(t, l)) is linear: si(t∗ − a(t, l)) = βi{t∗ − a(t, l)}, where βi are the early delay cost per
unit of time for commuters i.

This study imposes the following assumptions for ensuring the existence of an equilibrium
and eliminating unrealistic situations.

Assumption 1. Parameters αi, βi, λi, w, µ, and d satisfy the following conditions:

5Prohibiting late arrivals does not affect the fundamental properties of our model. This assumption is made to simplify
the analysis and to present clearly the essential properties of our model. The same modeling strategy has been used in
many bottleneck models (e.g., Arnott and Kraus, 1993, 1995; Kraus and Yoshida, 2002; Kraus, 2003, 2012; Gubins and
Verhoef, 2014).
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(a) βi < αi for all i ∈ I;

(b) βi < λi for all i ∈ I;

(c) βi > {λi − βi}wµ/d for all i ∈ I;

(d) w/d < 1/µ.

Condition (a) ensures that an equilibrium in our model satisfies the FIFO property (i.e., vehicles
must leave the bottleneck in the same order as their arrival at the bottleneck), which is proved in
the literature. This condition requires that the value αi of travel time is higher than the early delay
cost βi per unit of time for all commuters i ∈ I, and implies that commuters prefer to wait at the
office rather than in the queue. If this condition is violated, there is no equilibrium satisfying the
FIFO property.

Condition (b) implies that the early delay cost βi per unit of time is less than the value λi of
walking time for all commuters i ∈ I. This ensures that commuters choose a parking location as
close as possible to the CBD and go directly to their office.6 Note that Beesley (1965), Quarmby
(1967), and Domencich and McFadden (1975) all provide supporting empirical evidence.

Under Assumption 1 (b), parking spaces are occupied in strict order from the CBD (i.e., l = 0).
This indicates that the parking location l(t) of a commuter who travel at time t is given by

l(t) =
N(t)

d
, (2)

where N(t) denotes the cumulative number of commuters who have departed the bottleneck by
time t, which is expressed using the number n̂i(t) of commuters i traveling at time t as

N(t) =
∑
i∈I

∫ t

−∞
n̂i(s) ds. (3)

Therefore, we can rewrite the commuting cost of commuter i as a function of departure time t at
the bottleneck, which we call trip timing t

ĉi(t) = αiq(t) + βi(t∗ − â(t)) + λi
wN(t)

d

= αiq(t) + βi(t∗ − t) + (λi − βi)
wN(t)

d
, (4)

where â(t) = a(t, l(t)).
To provide an intuition for the third condition (c), we consider the commuters’ choice of trip

timing t under the commuting cost (4). The time derivative dĉi(t)/dt of the commuting cost ĉi(t)
is given by

dĉi(t)
dt

= αi
dq(t)

dt
− βi + (λi − βi)

w
∑

i∈I n̂i(t)
d

. (5)

This indicates that if−βi+(λi−βi)w
∑

i∈I n̂i(t)/d is positive, commuters i can reduce their commuting
cost by choosing an earlier t when dq(t)/dt = 0 (e.g., before the queue develops). This implies
that a high walking cost λi provides an incentive for commuters i to choose an early as possible

6In the case where βi > λi, commuters choose to walk around their office until their work start time t∗.
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t so as to get a convenient parking location. To avoid strong parking competition, we introduce
condition (c), which ensures −βi + (λi − βi)w

∑
i∈I n̂i(t)/d < 0 for all t.7

Finally, condition (d) excludes the situation where the parking capacity d is unrealistically
small. In our model, the maximum walking time is w

∑
i∈INi/d, and the minimum rush hour

length in which commuters pass the bottleneck is
∑

i∈INi/µ. Thus, the length of walking time
can exceed that of the rush hour. Condition (d) ensures that such a situation does not exist. 8

2.2 Equilibrium conditions

Commuters i minimize their commuting cost ĉi(t) in (4) by choosing a trip timing t. An equilibrium
is defined as a state that satisfies the following three conditions:ĉi(t) = c∗i if n̂∗i (t) > 0

ĉi(t) ≥ c∗i if n̂∗i (t) = 0
∀i ∈ I, (6a)


∑

i∈I n̂∗i (t) = µ if q∗(t) > 0,∑
i∈I n̂∗i (t) ≤ µ if q∗(t) = 0,

(6b)

∫
n̂∗i (t) dt = Ni ∀i ∈ I, (6c)

where the asterisks denote equilibrium values.
Condition (6a) represents the no-arbitrage condition for departure time choice. This condition

means that at the equilibrium, commuters are unable to reduce commuting costs by unilaterally
changing trip timing t. Condition (6b) is the capacity constraint of the bottleneck, which requires
that the total departure rate

∑
i∈I n̂∗i (t) at the bottleneck equals the capacity µ if there is a queue;

otherwise, the total departure rate is (weakly) lower than µ. Condition (6c) is flow conservation
for commuting demand. These conditions give the equilibrium values of n̂∗i (t), q∗(t), and c∗i .

7Note that
∑

i∈I n̂i(t) ≤ µ for all t because of the capacity constraint of the bottleneck.
8If condition (d) is not satisfied, all commuters can arrive at the CBD at the same time.
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Figure 2: An example of cumulative arrival and departure curves at the equilibrium

3 Equilibrium

In this section, we characterize the equilibrium of our model. From the equilibrium conditions
(6), we can show that n̂∗i (t) has the following property:

Lemma 1. At the equilibrium, the number n̂∗i (t) of commuters i who travel at time t is

∑
i∈I

n̂∗i (t) =

µ if t ∈ [tF, tL],

0 otherwise,
(7)

where tF and tL are the first and last trip timing of commuters, respectively, which are expressed as

tF = t∗ −
(
1 +

wµ
d

) ∑
i∈INi

µ
, tL = tF +

∑
i∈INi

µ
. (8)

Proof. See Appendix A. □

Let Ŝi = {t ∈ R | ĉi(t) = c∗i }. Then, from Lemma 1, we can say that the rush hour
∪

i∈I Ŝi equals
[tF, tL].

Lemma 1 indicates that at the equilibrium, the rush hour must be a single time interval and
N∗(t) is given by

N∗(t) = µ(t − tF) (9)

as illustrated in Figure 2. Thus, the commuting cost (4) of commuters i can be rewritten as

ĉi(t) = αiq(t) − fi(t − tF) + βi(t∗ − tF), (10)

where fi is defined as

fi = βi − (λi − βi)
wµ
d
> 0. (11)

This leads to the following proposition that characterizes the equilibrium number n̂∗(t) = [n̂∗i (t)]
of commuters i traveling at time t, which we call the equilibrium distribution of trip timing.
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Proposition 1. The equilibrium distribution n̂∗(t) of trip timing coincides with the solution of the following
linear programming problem:

min
n̂(t)

∑
i∈I

∫
1
αi

{
− fi(τ − tF) + βi(t∗ − tF)

}
n̂i(τ) dτ (12a)

s.t.
∑
i∈I

n̂i(t) ≤ µ ∀t ∈ R,
∫

n̂i(t) dt = Ni ∀i ∈ I, n̂i(t) ≥ 0 ∀i ∈ I, ∀t ∈ R. (12b)

Proof. See Appendix B □

Let us define the (travel) time-based cost as the cost converted into equivalent travel time.
Then, since the time-based cost of a commuter i is given by the cost divided by αi, we can say
that {− fi(t − tF) + βi(t∗ − tF)}/αi represents the sum of the time-based schedule delay cost and the
time-based walking time cost of a commuter i who travels at time t. Therefore, Proposition 1
indicates that at the equilibrium, the sum of the total time-based schedule delay cost and the total
time-based walking time cost is minimized, but the sum of total schedule delay cost and walking
time cost is not necessarily minimized.9

The condition (6a) shows that the commuting cost ĉi(t) of a commuter i is minimized at t ∈ Ŝi,
and thus, we have ĉi(ti) ≤ ĉi(t j)

ĉ j(t j) ≤ ĉ j(ti)
∀ti ∈ Ŝi, ∀t j ∈ Ŝ j, ∀i, j ∈ I. (13)

This leads to the following condition:

ĉi(ti)
αi
+

ĉ j(t j)
α j
≤

ĉi(t j)
αi
+

ĉ j(ti)
α j

∀ti ∈ Ŝi, ∀t j ∈ Ŝ j, ∀i, j ∈ I. (14)

Substituting (10) into this, we have the condition that characterizes the distribution of trip timing:(
fi
αi
−

f j

αi

)
(ti − t j) ≥ 0 ∀ti ∈ Ŝi, ∀t j ∈ Ŝ j, ∀i, j ∈ I. (15)

This condition indicates that commuters depart the bottleneck (arrive the CBD) in order of increasing
fi/αi. This implies that − fi/αi represents the incentive for a commuter i to be an “early bird”
(i.e., to arrive at work earlier than other commuters) and that competition for parking creates
commuters’ early-bird incentives because d(− fi/αi)/dd > 0. Furthermore, when fi/αi < f j/α j, the
parking location of a commuter i must be (weakly) closer to the CBD than that of a commuter j.
Therefore, commuters with high λi do not necessarily park close to the CBD.

We next investigate the properties of the equilibrium commuting cost [c∗i ]. For this, we suppose
in this section that fi−1/αi−1 ≤ fi/αi for all i ∈ I\{1} without loss of generality, and consider ti−1,i

such that ti−1,i ∈ Ŝi−1 ∩ Ŝi.10 Then, the difference in the time-based equilibrium commuting cost

9It is noteworthy that the sum of the total schedule delay cost and total walking time cost is minimized at the
equilibrium if we consider homogeneous commuters.

10It follows from Lemma 1 and (15) that for any i ∈ I\{1}, there exists a value of ti−1,i that satisfies ti−1,i ∈ Ŝi−1 ∩ Ŝi.
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between commuters i − 1 and i is given by

c∗i
αi
−

c∗i−1

αi−1
=

(
βi

αi
−
βi−1

αi−1

)
(t∗ − tF) −

(
fi
αi
− fi−1

αi−1

)
(ti−1,i − tF) ∀i ∈ I\{1}, (16a)

ti−1,i = tF +

∑i−1
k=1 Nk

µ
. (16b)

This shows that the values of fi/αi, βi/αi, and Ni/µ determine the sign of the difference c∗i/αi −
c∗i−1/αi−1. For example, if βi−1/αi−1 ≥ βi/αi for all i ∈ I\{1}, then the time-based equilibrium
commuting cost of a commuter i−1 is higher than that of a commuter i, i.e., a commuter traveling
earlier incurs a higher time-based commuting cost. It is noteworthy that this property cannot be
observed in the standard bottleneck model. In fact, when we consider the case without parking
congestion (i.e., d→∞), (16a) is rewritten as

lim
d→∞

{
c∗i
αi
−

c∗i−1

αi−1

}
=

(
βi

αi
−
βi−1

αi−1

) ∑I
k=i Nk

µ
. (17)

Because limd→∞ fi = βi, this shows that in the standard bottleneck model, a commuter traveling
later incurs a higher time-based commuting cost.

We consider the effects of the expansion of the parking capacity d on the equilibrium com-
muting cost. It follows from (16b) that at the equilibrium, the travel time cost αiq(t), the schedule
delay cost βi(t∗ − â(t)), and the walking time cost λiwl(t) of a commuter i are expressed as

αiq(t) = αi

i∑
k=1

(
fk
αk
− fi
αi

)
Nk

µ
+ βi

(
1 +

wµ
d

) ∑
k∈INk

µ
, (18a)

βi(t∗ − â(t)) = βi

(
1 +

wµ
d

) t∗ − t − w
d

∑
k∈I

Nk

 , (18b)

λiwl(t) = λi
wµ
d

{(
1 +

wµ
d

) ∑
k∈INk

µ
− (t∗ − t)

}
. (18c)

Differentiating these costs with respect to d, we have

d{αiq(t)}
dd

=
wµ
d2

αi

i∑
k=1

(
λk − βk

αk
−
λi − βi

αi

)
Nk

µ
− βi

∑
k∈INk

µ

 , (19a)

d{βi(t∗ − â(t))}
dd

= βi
wµ
d2

t +
w
d

∑
k∈I

Nk − tF

 > 0, (19b)

d{λiwl(t)}
dd

= −λi
wµ
d2

t +
w
d

∑
k∈I

Nk − tF

 < 0. (19c)

(19b) and (19c) shows that expanding parking capacity reduces walking time cost but increases
schedule delay cost. Furthermore, (19a) indicates that this expansion can increase the travel time
cost. This is because the early-bird incentive − fi/αi for commuters i decreases with increases in
d. Hence, expanded parking capacity may lead to a temporal concentration of traffic demand,
thereby exacerbating the bottleneck congestion. These results indicate that expanding parking
capacity may also increase the commuting cost c∗i and the total commuting cost TC∗, which are
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given by

c∗i = βi

(
1 +

wµ
d

) ∑
k∈INk

µ
− αi

i∑
k=1

(
fi
αi
− fk
αk

)
Nk

µ
, (20a)

TC∗ =
∑
i∈I
βiNi

(
1 +

wµ
d

) ∑
k∈INk

µ
−

∑
i∈I
αiNi

i∑
k=1

(
fi
αi
− fk
αk

)
Nk

µ
. (20b)

In fact, we can easily see that such a situation actually exists by differentiating TC∗ with respect
to d.

The results obtained above can be summarized as follows:

Proposition 2. The equilibrium distribution of trip timing has the following properties:

(a) Commuters with smaller fi/αi travel earlier and park closer to the CBD.

(b) Suppose without loss of generality that fi−1/αi−1 ≤ fi/αi for all i ∈ I\{1}. Then, the difference in the
equilibrium time-based commuting cost between commuters i − 1 and i is expressed as

c∗i
αi
−

c∗i−1

αi−1
=

(
βi

αi
−
βi−1

αi−1

)
(t∗ − tF) −

(
fi
αi
− fi−1

αi−1

)
(ti−1,i − tF) ∀i ∈ I\{1}. (21)

(c) Expansion of the parking capacity d decreases the walking time cost but increases the schedule delay
cost of all commuters. Furthermore, this expansion can increase the total travel time cost (i.e.,
bottleneck congestion) and total commuting cost.
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4 Social optimum

This section characterizes the optimal distribution of trip timing and parking locations. We define
the social optimum as a state wherein the total commuting cost is minimized. The total commuting
cost TC(n(t, l)) is represented as a function of the numbern(t, l) = [ni(t, l)] of commuters who travel
at time t and park at location l, which we call distribution of trip timing and parking locations:

TC(n(t, l)) =
∑
i∈I

"
ci(τ, ℓ) ni(τ, ℓ) dτdℓ. (22)

Therefore, the optimal distribution of trip timing and parking locations coincides with a solution
to the following problem:

min
n(t,l)

TC(n(t, l)) (23a)

s.t.
∑
i∈I

∫
ni(t, l) dl ≤ µ ∀t ∈ R,

∑
i∈I

∫
ni(t, l) dt ≤ d ∀l ∈ R+, (23b)"

ni(t, l) dt dl = Ni ∀i ∈ I, ni(t, l) ≥ 0 ∀i ∈ I, ∀t ∈ R,∀l ∈ R+. (23c)

Because the queue at the bottleneck is completely eliminated at the social optimum as proved in
the studies involving standard bottleneck models, the total commuting cost can be rewritten as

TC(n(t, l)) =
" {

λiwℓ + βi{t∗ − a(τ, ℓ)}
}
ni(τ, ℓ) dτdℓ (24)

The Karush–Kuhn–Tucker (KKT) conditions of this problem are given byco
i (t, l) = co

i if no
i (t, l) > 0

co
i (t, l) ≥ co

i if no
i (t, l) = 0

∀i ∈ I, ∀t ∈ R, ∀l ∈ R+, (25a)


∑

i∈I
∫

no
i (t, l) dl = µ if pq(t) > 0∑

i∈I
∫

no
i (t, l) dl ≤ µ if pq(t) = 0

∀t ∈ R, (25b)


∑

i∈I
∫

no
i (t, l) dt = d if pp(l) > 0∑

i∈I
∫

no
i (t, l) dt ≤ d if pp(l) = 0

∀l ∈ R+, (25c)"
no

i (t, l) dt dl = Ni ∀i ∈ I. (25d)

where pq(t), pp(l), and co
i are the Lagrange multipliers for the first, second, and third constraints

of (23), respectively, and co
i (t, l) is defined as

co
i (t, l) = λiwl + βi{t∗ − a(t, l)} + pq(t) + pp(l). (26)

LetSo
i = {(t, l) ∈ R×R+ | co

i (t, l) = co
i }. Then, the condition (25a) leads to the following condition:

for any (ti, li), (t̃i, l̃i) ∈ So
i such that ti < t̃i,

co
i (ti, li) + co

i (t̃i, l̃i) ≤ co
i (ti, l̃i) + co

i (t̃i, li) ∀(ti, li), (t̃i, l̃i) ∈ So
i , ∀i ∈ I. (27)

12



Substituting (26) into this condition, we obtainco
i (ti, li) + co

i (t̃i, l̃i) = co
i (ti, l̃i) + co

i (t̃i, li) if a(t̃i, li) ≤ t∗

co
i (ti, li) + co

i (t̃i, l̃i) < co
i (ti, l̃i) + co

i (t̃i, li) if a(t̃i, li) > t∗
∀(ti, li), (t̃i, l̃i) ∈ So

i , ∀i ∈ I. (28)

The condition (28) characterizes the distribution no
i (t, l) of trip timing and parking locations for

commuters i. The first condition shows the existence of a situation wherein the total commuting
cost does not change even if commuters i change their trip timing and/or parking location, i.e., the
optimal distribution is not uniquely determined. The second condition indicates that a commuter
i who travels later tends to park closer to the CBD as a late arrival incurs prohibitive cost. This
property is quite different from that at the equilibrium.

Condition (25a) also gives us the condition that the commuting costs of commuters i and j
satisfy co

i (ti, li) + co
j(t j, l j) ≤ co

i (t j, li) + co
j(ti, l j)

co
i (ti, li) + co

j(t j, l j) ≤ co
i (ti, l j) + co

j(t j, li)
∀(ti, t j) ∈ So

i ,∀(t j, l j) ∈ So
j ,∀i, j ∈ I. (29)

Substituting (26) into this condition, we have the following lemma.

Lemma 2. For any i, j ∈ I, (ti, li) ∈ So
i , and (t j, l j) ∈ So

j , the following conditions are satisfied.

(a) The trip timing ti and t j satisfy
(βi − β j)(ti − t j) ≥ 0 if a(ti, l j) ≤ t∗, a(t j, li) ≤ t∗,

ti < t j if a(ti, l j) ≤ t∗, a(t j, li) > t∗,

ti > t j if a(ti, l j) > t∗, a(t j, li) ≤ t∗.

(30)

(b) If λi − βi ≥ λ j − β j, then li ≤ l j.

Proof. See Appendix C. □

This lemma shows the properties of the optimal distribution no(t, l) of trip timing and parking
locations. The condition (30) suggests that during time interval [tF, t∗ − wlCmax], commuters travel
in order of increasing βi, where lCmax is the closest parking location of commuters with the greatest
βi. In the time interval [t∗ − wlCmax, t∗], commuters who park l < lCmax travel. This result sharply
contrasts to the equilibrium case, in which commuters park in order of increasing distance from
the CBD (i.e., park outwards).

Lemma 2 (b) shows that a commuter with larger λi − βi parks closer to the CBD at the social
optimum. This implies that a commuter’s parking location is affected not only by the value of
walking time λi but also by the value of schedule delay βi. Therefore, commuters with high value
of walking time may not park close to the CBD if their value of schedule delay is high.

The following proposition summarizes these results.

Proposition 3. The optimal distribution of trip timing and parking locations has the following properties:

13



(a) For any i ∈ I and (ti, li), (t̃i, l̃i) ∈ So
i such that ti ≤ t̃i,co

i (ti, li) + co
i (t̃i, l̃i) = co

i (ti, l̃i) + co
i (t̃i, li) if a(t̃i, li) ≤ t∗,

co
i (ti, li) + co

i (t̃i, l̃i) < co
i (ti, l̃i) + co

i (t̃i, li) if a(t̃i, li) > t∗.
(31)

(b) For any i, j ∈ I, (ti, li) ∈ So
i , and (t j, l j) ∈ So

j such that ti ≤ t j,{
βi ≤ β j and a(t j, li) ≤ t∗

}
or t j + li > t∗, (32a){

(λi − βi) − (λ j − β j)
}

(li − l j) ≤ 0. (32b)

This proposition shows that the optimal distribution of trip timing and parking locations has
quite different properties from the equilibrium one. Therefore, the planner needs to implement
policies to achieve the social optimum. In the next section, we will propose some possible policies
and examine their effects.
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5 Effects of parking fees and congestion tolls

In the previous section, we show that the equilibrium distribution of trip timing and parking
locations does not coincide with the optimal one. This is because at the equilibrium, commuters
will park outwards and queuing congestion occurs. This implies that the introduction of parking
fees and congestion tolls may improve the commuting cost of commuters. Therefore, this section
examines the effectiveness of such policies.

5.1 Parking fees

We first consider the situation in which the planner imposes a location-dependent parking fee
pp(l) to equalize demand for parking at location l with supply d (i.e., a competitive parking fee).
We assume that under this policy, commuters can choose their parking location before their trip.
The commuting cost of a commuter i who travels at time t and parks at location l is then expressed
as

cp
i (t, l) = pp(l) + ci(t, l)

= pp(l) + αiq(t) + λiwl + βi{t∗ − a(t, l)}., (33)

Since the parking fee pp(l) equalizes demand and supply for parking at location l, the equilibrium
conditions are given bycp

i (t, l) = cp∗
i if np

i (t, l) > 0

cp
i (t, l) ≥ cp∗

i if np
i (t, l) = 0

∀i ∈ I, ∀t ∈ R, ∀l ∈ R+, (34a)


∑

i∈I
∫

np
i (t, l) dl = µ if q(t) > 0∑

i∈I
∫

np
i (t, l) dl ≤ µ if q(t) = 0

∀t ∈ R, (34b)


∑

i∈I
∫

np
i (t, l) dt = d if pp(l) > 0∑

i∈I
∫

np
i (t, l) dt ≤ d if pp(l) = 0

∀l ∈ R+, (34c)"
np

i (t, l) dt dl = Ni ∀i ∈ I. (34d)

Condition (34a) is the no-arbitrage condition for commuters’ choice of trip timing and park-
ing location. (34b) and (34c) represent the capacity constraints of the bottleneck and parking,
respectively. Note that (34c) can be interpreted as the market clearing condition. In fact, this
condition suggests that if demand

∑
i∈I

∫
ni(t, l)dt for parking at location l equals the supply d,

then pp(l) ≥ 0. Condition (34d) is conservation law of the population.
Let Sp

i = {(t, l) ∈ R×R+ | c
p
i (t, l) = cp∗

i }. Then, (34a) gives us the following conditions on np(t, l):
for any i ∈ I, (ti, li), (t̃i, l̃i) ∈ Sp

i such that ti < t̃i,

cp
i (ti, li) + cp

i (t̃i, l̃i) ≤ cp
i (ti, l̃i) + cp

i (t̃i, li). (35)
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Substituting (33) into (35), we obtaincp
i (ti, li) + cp

i (t̃i, l̃i) = cp
i (ti, l̃i) + cp

i (t̃i, li) if a(t̃i, li) ≤ t∗

cp
i (ti, li) + cp

i (t̃i, l̃i) < cp
i (ti, l̃i) + cp

i (t̃i, li) if a(t̃i, li) > t∗
∀(ti, li), (t̃i, l̃i) ∈ Sp

i , ∀i ∈ I. (36)

These conditions coincide with (28), which implies that the properties of the equilibrium distri-
bution np

i (t, l) of trip timing and parking locations of commuters i are the same as those at the
social optimum.

Condition (34a) also gives the following conditions that should be satisfied at the equilibrium
with the existence of parking fees:

cp
i (ti, li)
αi

+
cp

j (t j, l j)

α j
≤

cp
i (t j, li)
αi

+
cp

j (ti, l j)

α j

cp
i (ti, li) + cp

j (t j, l j) ≤ cp
i (ti, l j) + cp

j (t j, li)

∀(ti, li) ∈ Sp
i , ∀(t j, l j) ∈ Sp

j , ∀i, j ∈ I, (37)

Substituting (33) into (37) yields the following lemma.

Lemma 3. For any i, j ∈ I, (ti, li) ∈ Sp
i , and (t j, l j) ∈ Sp

j , the following conditions hold at the equilibrium
with the existence of parking fees:

(a) The trip timings ti and t j satisfy

(
βi

αi
−
β j

α j

)
(ti − t j) ≥ 0 if a(ti, l j) ≤ t∗, a(t j, li) ≤ t∗,

ti < t j if a(ti, l j) ≤ t∗, a(t j, li) > t∗,

ti > t j if a(ti, l j) > t∗, a(t j, li) ≤ t∗.

(38)

(b) If λi − βi ≥ λ j − β j, then li ≤ l j.

Proof. Similar to the proof of Lemma 2. □

This lemma characterizes the equilibrium distribution of trip timing and parking locations
with the existence of parking fees. Lemma 3 (a) shows that commuters with smaller βi/αi travel
earlier during the time interval [tF, t∗ − wlCmax] and that commuters parking at l ≤ lCmax travel
during [t∗ − wlCmax, t∗], where lCmax is the closest parking location for commuters with the greatest
βi/αi. Therefore, in general, the optimal distribution of trip timing cannot be achieved only by
imposing a parking fee. In contrast, Lemma 3 (b) coincides with Lemma 2 (b), which implies that
the existence of parking fees leads to the optimal distribution of parking locations.11

In order to investigate the properties of the equilibrium commuting cost cp∗
i , we consider the

equilibrium trip cost τp∗
i and equilibrium parking cost ρp∗

i , which are defined as

cp∗
i = τ

p∗
i + ρ

p∗
i , (39a)

τp∗
i = αiq(ti) + βi(t∗ − ti), (39b)

ρp∗
i = pp(li) + (λi − βi)wli, (39c)

11This property has been shown in Arnott et al. (1991), which considers homogeneous commuters.
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where (ti, li) ∈ Sp
i . By using ti j such that (ti j, li) ∈ Sp

i and (ti j, l j) ∈ Sp
j and li j such that (ti, li j) ∈ Sp

i

and (t j, li j) ∈ Sp
j , we have

τp∗
i

αi
−
τp∗

j

α j
=

(
βi

αi
−
β j

α j

)
(t∗ − ti j). (40a)

ρp∗
i − ρ

p∗
j =

{
(λi − βi) − (λ j − β j)

}
wli j. (40b)

(40a) shows that if βi/αi > β j/α j, then τp∗
i /αi ≥ τp∗

j /α j. That is, a commuter traveling later incurs a
higher time-based equilibrium trip cost. (40b) indicates that a commuter who parks closer to the
CBD incurs a higher equilibrium parking cost.

The results obtained above are summarized as follows.

Proposition 4. The equilibrium distribution np(t, l) = [np
i (t, l)] of trip timing and parking locations, the

equilibrium trip cost [τp∗
i ], and the equilibrium parking cost [ρp∗

i ] with the existence of parking fees satisfy
the following conditions:

(a) For any i ∈ I, (ti, li), (t̃i, l̃i) ∈ Sp
i such that ti < t̃i,cp

i (ti, li) + cp
i (t̃i, l̃i) = cp

i (ti, l̃i) + cp
i (t̃i, li) if a(t̃i, li) ≤ t∗,

cp
i (ti, li) + cp

i (t̃i, l̃i) < cp
i (ti, l̃i) + cp

i (t̃i, li) if a(t̃i, li) > t∗.
(41)

(b) For any i, j ∈ I, (ti, li) ∈ Sp
i , and (t j, l j) ∈ Sp

j such that ti ≤ t j,{
βi

αi
≤
β j

α j
and a(t j, li) ≤ t∗

}
or t j + li > t∗, (42a){

(λi − βi) − (λ j − β j)
}

(li − l j) ≤ 0. (42b)

(c) A commuter traveling later incurs a higher equilibrium time-based trip cost.

(d) A commuter parking closer to the CBD incurs a higher equilibrium parking cost.

This proposition suggests that the optimal distribution of parking locations is achieved by
introducing parking fees. However, we should note that because βi/αi > fi/αi for all i ∈ I,
this policy reduces the early-bird incentives for all commuters. This may lead to a temporal
concentration of traffic demand, thereby exacerbating the bottleneck congestion. In Section 6, we
will observe that such a situation actually exists. This fact suggests that parking policies may
in fact exacerbate traffic congestion and should be implemented along with a measure aimed to
alleviate peak congestion.

5.2 Congestion tolls

We next examine the effects of a time-varying congestion toll pq(t). This toll pq(t) completely
eliminates the bottleneck congestion12 but does not affect commuters’ parking location prefer-
ences. Thus, under this policy, commuters park outwards. It is noteworthy that since we consider

12Note that the tradable bottleneck permits proposed by Akamatsu (2007) and Wada and Akamatsu (2013) have the
same effect as the congestion toll.
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heterogeneous commuters, the congestion toll pq(t) does not equal the travel time cost αiq(t) at
the equilibrium without pricing policies and is set so that the travel demand

∑
i∈I n̂i(t) equals the

supply (capacity) µ. Therefore, the equilibrium is defined as a state that satisfies the following
conditions: ĉq

i (t) = cq∗
i if n̂q

i (t) > 0

ĉq
i (t) ≥ cq∗

i if n̂q
i (t) = 0

∀i ∈ I, ∀t ∈ R, (43a)


∑

i∈I n̂q
i (t) = µ if pq(t) > 0∑

i∈I n̂q
i (t) ≤ µ if pq(t) = 0

∀t ∈ R, (43b)

∫
n̂q

i (t) dt = Ni ∀i ∈ I, (43c)

where ĉq
i (t) is the commuting cost of a commuter i traveling at time t, which is given by

ĉq
i (t) = pq(t) + λi

wµ
d

(t − tF) + βi{t∗ − â(t)}. (44)

cq∗
i denotes the equilibrium commuting cost under the congestion toll.

Condition (43a) is the no-arbitrage condition for commuters’ trip timing choices. (43b) denotes
the bottleneck capacity constraints, which ensure that the bottleneck congestion is completely
eliminated at the equilibrium. Condition (43c) provides the flow conservation for commuting
demand.

We can easily show that equilibrium conditions (43) are equivalent to the following optimiza-
tion problem:

Proposition 5. The equilibrium distribution n̂q(t) = [n̂q
i (t)] of trip timing with the existence of congestion

tolls coincides with the solution of the following linear programming problem:

min
n̂(t)

∑
i∈I

∫ {
λi

wµ
d

(τ − tF) + βi{t∗ − â(τ)}
}

n̂i(τ) dτ (45a)

s.t.
∑
i∈I

n̂i(t) ≤ µ ∀t ∈ R,
∫

n̂i(t) dt = Ni ∀i ∈ I, n̂i(t) ≥ 0 ∀i ∈ I, ∀t ∈ R. (45b)

Proof. Similar to the proof of Proposition 1. □

This proposition suggests that the sum of total schedule delay cost and total walking time cost,
which equals the total commuting cost minus total toll revenue, is minimized at the equilibrium.
Hence, the congestion toll achieves the social optimum under condition (2) (i.e., parking spaces
are occupied in strict order from the CBD). Furthermore, by comparing Propositions 1 and 5, we
can see that commuters with large αi (rich commuters) will gain a great deal from the congestion
toll, but commuters with small αi (poor commuters) may lose.

Let Ŝq
i = {t ∈ R | ĉ

q
i (t) = cq∗

i }. Then, as in Section 3, condition (43a) gives the following condition
that is satisfied at the equilibrium with the existence of congestion tolls:

ĉq
i (ti) + ĉq

j (t j) ≤ ĉq
i (t j) + ĉq

j (ti) ∀ti ∈ Ŝq
i , ∀t j ∈ Ŝq

j , ∀i, j ∈ I. (46)
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Substituting (44) into (46), we have(
fi − f j

)
(ti − t j) ≥ 0 ∀ti ∈ Ŝq

i , ∀t j ∈ Ŝq
j , ∀i, j ∈ I. (47)

This condition shows that commuters travel in order of increasing fi and that the value of the
travel time αi does not affect the equilibrium distribution n̂q(t) of trip timing. Furthermore,
since commuters park outwards in this case, the congestion toll cannot significantly improve the
distribution of parking locations.

We suppose in this section that fi−1 ≤ fi for all i ∈ I\{1} without loss of generality. Then, by
using ti−1,i such that ti−1,i ∈ Ŝq

i−1 ∩ Ŝ
q
i , we can easily show that the equilibrium commuting cost cq∗

i

satisfies

cq∗
i − cq∗

i−1 =
(
βi − βi−1

)
(t∗ − tF) − (

fi − fi−1
)

(ti−1,i − tF), (48a)

ti−1,i = tF +

∑i−1
k=1 Nk

µ
, (48b)

tF = t∗ −
(
1 +

wµ
d

) ∑
k∈INk

µ
. (48c)

This implies that similar to the equilibrium with no pricing policies, the values of fi, βi, and
Nı/µ determine the sign of the difference cq∗

i − cq∗
i−1. Hence, if βi−1 ≥ βi for all i ∈ I\{1}, then

the equilibrium commuting cost of a commuter i − 1 is higher than that of a commuter i, i.e., a
commuter who travels earlier incurs a higher commuting cost.

The equilibrium commuting cost cq∗
i of a commuter i is obtained from (48) as

cq∗
i = βi

(
1 +

wµ
d

) ∑
k∈INk

µ
−

i∑
k=1

(
fi − fk

) Nk

µ
. (49)

Therefore, if fi−1/αi−1 ≥ fi/αi (i.e., αi−1 ≤ αi) for all i ∈ I\{1}, we have

cq∗
i − c∗i = αi

I∑
k=i

(
fi
αi
− fk
αk

)
Nk

µ
−

i∑
k=1

( fi − fk)
Nk

µ
. (50)

This indicates that a value of iq ∈ I\{1} exists such that cq∗
k − c∗k ≥ 0 for all k ∈ {1, · · · , iq − 1} and

cq∗
k − c∗k ≤ 0 for all k ∈ {iq, · · · , I}, which implies that rich commuters gain but poor commuters lose

from the imposition of a congestion toll.
The total commuting cost TCq and the total toll revenue Pq are obtained as

TCq =
∑
i∈I

βiNi

(
1 +

wµ
d

) ∑
k∈INk

µ
−Ni

i∑
k=1

( fi − fk)
Nk

µ

 , (51a)

Pq =
∑
i∈I

Ni

 i∑
k=1

fk
Nk

µ
− fi

Ni

2µ

 . (51b)

This shows that the expansion of the parking capacity d may increase the total commuting cost
TCq but must decrease TCq − Pq. That is, the expansion of the parking capacity reduces the total
commuting cost if the planner redistributes the toll revenue.

We summarize the results obtained above in the following proposition.
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Proposition 6. The equilibrium distribution of trip timing with the existence of congestion tolls has the
following properties:

(a) Commuters with smaller fi travel earlier and park closer to the CBD.

(b) Suppose without loss of generality that fi−1 ≤ fi for all i ∈ I\{1}. Then, the difference in the
equilibrium time-based commuting cost between commuters i − 1 and i is expressed as

cq∗
i − cq∗

i−1 =
(
βi − βi−1

)
(t∗ − tF) − (

fi − fi−1
)

(ti−1,i − tF) ∀i ∈ I\{1}. (52)

(c) If the planner redistributes the toll revenue, the expansion of the parking capacity d must decrease
the total commuting cost; otherwise, the expansion may increase the total commuting cost.

5.3 Combination of parking fees and congestion tolls

We finally consider the effects of introducing parking fees and congestion tolls. In this case, the
distribution npq(t, l) = [npq

i (t, l)] of trip timing and parking locations, the congestion toll pq(t), the
parking fee pp(l), and the commuting cost cpq

i at the equilibrium are obtained from the following
conditions: cpq

i (t, l) = cpq∗
i if npq

i (t, l) > 0

cpq
i (t, l) ≥ cpq∗

i if npq
i (t, l) = 0

∀i ∈ I, ∀t ∈ R, ∀l ∈ R+, (53a)


∑

i∈I
∫

npq
i (t, l) dl = µ if pq(t) > 0∑

i∈I
∫

npq
i (t, l) dl ≤ µ if pq(t) = 0

∀t ∈ R, (53b)


∑

i∈I
∫

npq
i (t, l) dt = d if pp(l) > 0∑

i∈I
∫

npq
i (t, l) dt ≤ d if pp(l) = 0

∀l ∈ R+, (53c)"
npq

i (t, l) dt dl = Ni ∀i ∈ I, (53d)

where cpq
i (t, l) is the commuting cost of a commuter i who travels at time t and parks at location l

cpq
i (t, l) = pq(t) + pp(l) + λiwl + βi{t∗ − a(t, l)}. (54)

Because conditions (53) coincide with (25), the optimal distribution of trip timing and parking
locations is achieved by introducing parking fees and congestion tolls.

Let Spq
i = {(t, l) ∈ R × R+ | cpq

i (t, l) = cpq∗
i }. We then examine the properties of the equilibrium

trip cost τpq∗
i and equilibrium parking cost ρpq∗

i , which are defined as

cpq∗
i = τ

pq∗
i + ρ

pq∗
i , (55a)

τpq∗
i = pq(ti) + βi(t∗ − ti), (55b)

ρpq∗
i = pp(li) + (λi − βi)wli, (55c)

where (ti, li) ∈ Spq
i . By using ti j such that (ti j, li) ∈ Spq

i and (ti j, l j) ∈ Spq
j and li j such that (ti, li j) ∈ Spq

i
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and (t j, li j) ∈ Spq
j , we have τpq∗

i − τ
pq∗
j and ρpq∗

i − ρ
pq∗
j as follows

τpq∗
i − τ

pq∗
j =

(
βi − β j

)
(t∗ − ti j). (56a)

ρpq∗
i − ρ

pq∗
j =

{
(λi − βi) − (λ j − β j)

}
wli j. (56b)

Condition (56a) shows that a commuter traveling later incurs a higher time-based equilibrium
trip cost. Condition (56b) indicates that a commuter who parks closer to the CBD incurs a higher
equilibrium parking cost.

These results establish the following proposition.

Proposition 7. The equilibrium distribution of trip timing and parking locations, the equilibrium trip
cost [τpq∗

i ], and the equilibrium parking cost [ρpq∗
i ] with the existence of parking fees and congestion tolls

have the following properties.

(a) The equilibrium distribution of trip timing and parking locations coincides with the optimal one.

(b) A commuter traveling later incurs a higher equilibrium trip cost.

(c) A commuter parking closer to the CBD incurs a higher equilibrium parking cost.

The effects of the parking fee and congestion toll on the distribution of trip timing and
parking locations are summarized in Table 1. The results obtained in this section demonstrate
that introducing pricing policies significantly changes the distribution of trip timing and parking
locations, thereby leading to complex changes in commuters’ commuting costs. As an example,
we consider a case where for all i ∈ I\{1},

fi−1 > fi, βi−1 > βi, λi−1 − βi−1 > λi − βi, αi−1 > αi, (57a)

fi−1

αi−1
<

fi
αi
,
βi−1

αi−1
<
βi

αi
,
λi−1 − βi−1

αi−1
<
λi − βi

αi
. (57b)

That is, commuters with smaller (larger) i are rich (poor). In this case, Propositions 2, 4, 6, and 7
give us the difference in the commuting costs between commuters i − 1 and i for all i ∈ I\{1} as

c∗i
αi
>

c∗i−1

αi−1
, (58a)

τp∗
i

αi
>
τp∗

i−1

αi−1
, ρp∗

i < ρ
p∗
i−1, (58b)

cq∗
i < cq∗

i−1, (58c)

τpq∗
i < τ

pq∗
i−1, ρp∗

i < ρ
p∗
i−1. (58d)

This shows that the effect of each pricing policy on each type of commuter can differ quite radi-
cally. Hence, the planner should understand these mechanisms to ensure that any implemented
road/parking policy will be effective.

We have shown that combining parking fees with congestion tolls achieves the social optimum.
However, some commuters may be worse off compared with the no-pricing equilibrium if the
planner does not appropriately redistribute the revenue earned from the pricing of road and
parking. Therefore, as a benchmark of appropriate redistribution, we propose that the revenue is
used for financing the bottleneck and parking capacity as in Mohring and Harwitz (1962), Strotz
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Table 1: Equilibrium distribution of trip timing and parking locations with/without policies

policy the order of trip timing the order of parking location
no-pricing policies ascending order of fi/αi ascending order of fi/αi

parking fee ascending order of βi/αi * descending order of λi − βi
congestion toll ascending order of fi ascending order of fi

parking fee + congestion toll ascending order of βi * descending order of λi − βi

* t ∈ [tF, t∗ − wlCmax]

(1965), Keeler and Small (1977), Arnott et al. (1993), Arnott and Kraus (1995), Yang and Meng
(2002), Akamatsu (2007), and Verhoef (2007).

We consider that the planner chooses a parking and bottleneck capacity, d and µ, so as to
minimize the social cost, which is defined as the sum of the total commuting cost TC(n(t, l))
defined in (24), parking capacity cost Kp(d), and bottleneck capacity cost Kq(µ). Therefore, the
optimal parking and bottleneck capacity, do and µo, is obtained from the following problem:

min
n(t,l),d,µ

TC(n(t, l)) + Kp(d) + Kq(µ) s.t. (23b), (23c). (59)

The capacity costs Kp(d) and Kq(µ) are assumed to be homogeneous of degree one in d and µ,
respectively.

The KKT conditions of this problem are given by (25) and the following two conditions
dKq(µ)

dµ
−

∫
pq(τ)dτ = 0 if µ > 0,

dKq(µ)
dµ

−
∫

pq(τ)dτ ≥ 0 if µ = 0,
(60a)


dKp(d)

dd
−

∫
pp(ℓ)dℓ = 0 if d > 0,

dKp(d)
dd

−
∫

pq(τ)dℓ ≥ 0 if d = 0.
(60b)

Since Kq(µ) and Kp(d) are homogeneous of degree 1, the conditions (60) yield

Kq(µo) = µo
∫

pq(t)dt, (61a)

Kp(do) = do
∫

pp(l)dl. (61b)

This leads to the following proposition.

Proposition 8. Suppose that the parking and bottleneck capacity costs, Kp(d) and Kq(µ), are homogeneous
of degree one in d and µ, respectively. Then, parking fee revenues equal the cost Kp(do) for the optimal
parking capacity do, and congestion toll revenues equal the cost Kq(µo) for the optimal bottleneck capacity
µo.

This proposition shows that the self-financing result holds in our model.
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6 A simple example

This section analyzes the model in a simple setting to show concretely properties of equilibrium
and effects of pricing policies. We assume that commuters are divided in two groups (i.e., I = 2)
and that N1 = N2 = N/2. In addition, the parameters αi, βi, λi are assumed to satisfy

f1
α1
<

f2
α2
,

β1

α1
<
β2

α2
,

λ1 − β1

α1
<
λ2 − β2

α2
, (62a)

f1 > f2, β1 > β2, λ1 − β1 > λ2 − β2. (62b)

Note that this assumption gives

α1 > α2, λ1 > λ2, β1 − β2 > f1 − f2. (63)

Both (62) and (63) imply that commuters 1 and 2 can be considered rich and poor commuters,
respectively.

6.1 Equilibrium with no pricing policies

We first consider a situation in which neither parking fees nor congestion tolls are imposed. Let
tF
i and tL

i be the first and last trip timing of commuters i, respectively. Then, Proposition 2 and
(62) gives tF

i and tL
i as follows:

tF
1 = tF = t∗ −

(
1 +

wµ
d

) N
µ
, tL

1 = tF
2 = t∗ − w

d
N − N

2µ
, tL

2 = tL = t∗ − w
d

N. (64)

It follows from (6a) and this that the equilibrium commuting cost c∗i and queuing time q(t) are
obtained as

c∗1 = f1
N
µ
+ λ1

w
d

N, c∗2 = α2

(
f1
α1
+

f2
α2

)
N
2µ
+ λ2

w
d

N, (65a)

q(t) =


f1
α1

(t − tF
1) if t ∈ [tF

1 , t
L
1 ],

f2
α2

(t − tF
2) +

f1
α1

N
2µ

if t ∈ [tF
2 , t

L
2 ].

(65b)

Figure 3 illustrates the queuing time q(t). Thus, total queuing time Q∗ and total commuting cost
TC∗ at the equilibrium are given by

Q∗ =
[
3

f1
α1
+

f2
α2

]
N2

8µ
, (66a)

TC∗ =
[(

2 +
α2

α1

)
f1 + f2 + 2 (λ1 + λ2)

wµ
d

] N2

4µ
. (66b)

Differentiating (65) and (66) with respect to d, we have

dc∗1
dd
= −β1

w
d2 N < 0, (67a)

dc∗2
dd
=

{
α2

α1
λ1 − λ2 −

α2

α1
β1 − β2

} w
2d2 N, (67b)
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Figure 3: Equilibrium queuing time q(t)

dQ∗

dd
=

{
3
λ1 − β1

α1
+
λ2 − β2

α2

}
w

8d2 N2 > 0, (67c)

dTC∗

dd
=

{
α2

α1
λ1 − λ2 −

(
2 +
α2

α1

)
β1 − β2

} w
4d2 N2. (67d)

(67) indicates that expanding parking capacity d exacerbates traffic congestion. Furthermore, if
λ1 > (λ2+2β1+β2)α1/α2+β1, then expanding parking capacity also increases the total commuting
cost.

6.2 Equilibrium with parking fees

We next examine the effects of instituting parking fees. Let lCi and lFi be the parking location for
commuters i closest to and farthest away from the CBD, respectively. Then, tF

i , tL
i , lCi , and lFi are

obtained from Proposition 4 and (62):

tF
1 = tF = t∗ − N

µ
, tF

2 = t∗ −
(
1 +

wµ
d

) N
2µ
, tL

2 = t∗ − w
2d

N, tL
1 = tL = t∗, (68a)

lF2 =
N
d
, lC2 = lF1 =

N
2d
, lC1 = 0. (68b)

Condition (34a) and this give us the equilibrium commuting cost cp
i , queuing time q(t), and

parking fee pp(l) as follows (Figure 4):

cp
1 =

(
3β1 + β2 − f1 − f2

) N
2µ
, cp

2 =
{(

1 −
wµ
d

)
α2

α1
β1 +

(
3 +

wµ
d

)
β2 − 2 f2

} N
2µ
, (69a)

q(t) =


β1

α1
(t − tF

1) if t ∈ [tF
1 , t

F
2], [tL

2 , t
L
1 ],

β1

α1

N
2µ
+
β2

α2
(t − tF

2) if t ∈ [tF
2 , t

L
2 ],

(69b)

pp(l) =


(λ1 − β1)w(lF1 − l) + (λ2 − β2)w

N
2d

if l ∈ [lC1 , l
F
1],

(λ2 − β2)w(lF2 − l) if l ∈ [lC2 , l
F
2],

(69c)
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(a) Queuing time q(t) (b) Parking fee pp(t)

Figure 4: Equilibrium with parking fees

Thus, we can easily see the effects from imposing parking fees upon commuting cost, total
queuing time, and total commuting cost as

cp∗
1 − c∗1 =

{
3(λ1 − β1) − (λ2 + β2)

} w
2d

N, (70a)

cp∗
2 − c∗2 =

{
α2

α1
(λ1 − 2β1) + (λ2 − 2β2)

} w
2d

N, (70b)

Qp −Q∗ =
[
3
β1 − f1
α1

+
β1

α1

(
2 −

wµ
d

)
+
β2 − f2
α2

]
N2

8µ
> 0, (70c)

TCp − Pp − TC∗ =
[(

1 + 2
α2

α1

)
λ1 −

(
5 + 4

α2

α1

)
β1 + 3λ2 − 5β2

] w
d

N2

8
, (70d)

where Qp, TCp, Pp are the total queuing time, total commuting cost, and total revenue from
parking at the equilibrium with parking fees, respectively. This indicates that Qp > Q∗ and
that TCp − Pp > TC∗ if the first bracket on the right hand side of (70d) is positive. This result
clearly shows that imposing parking fees can increase not only traffic congestion but also total
commuting cost.

6.3 Equilibrium with congestion tolls

We investigate the properties of the equilibrium with congestion tolls in operation. tF
i , tL

i is readily
obtained as in Section 6.1

tF
2 = tF = t∗ −

(
1 +

wµ
d

) N
µ
, tL

2 = tF
1 = t∗ − w

d
N − N

2µ
, tL

1 = tL = t∗ − w
d

N. (71)

The equilibrium commuting cost cq
i and congestion toll pq(t) are represented as (Figure 5)

cq
1 =

(
f1 + f2

) N
2µ
+ λ1

w
d

N, cq
2 = f2

N
µ
+ λ2

w
d

N, (72a)

pq(t) =


f2(t − tF

2) if t ∈ [tF
2 , t

L
2 ],

f2
N
2µ
+ f1(t − tF

1) if t ∈ [tL
1 , t

L
1 ].

(72b)
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Figure 5: Congestion toll pq(t) without parking fees

Thus, the difference between cq
i and c∗i is given by

cq
1 − c∗1 = −( f1 − f2)

N
2µ
< 0, (73a)

cq
2 − c∗2 =

(
−α2

α1
f1 + f2

) N
2µ
> 0. (73b)

This shows that the impact of congestion tolling varies among commuters. Furthermore, we can
easily obtain the difference between the total commuting costs, TCq and TC∗:

TCq − TC∗ =
{
2 f2 −

(
1 +
α2

α1

)
f1
} N2

4µ
, (74a)

TCq − Pq − TC∗ =
{
−2

(
1 +
α2

α1

)
f1 − ( f1 − f2)

} N2

8µ
< 0, (74b)

where Pq is the total toll revenue. This indicates that TCq > TC∗ if 2 f2 > (1+α2/α1) f1 and that TCq−
Pq < TC∗, which suggests that the appropriate redistribution of toll revenue is quite important
for achieving a Pareto improvement. In this example, if the planner equally redistributes toll
revenue, a Pareto improvement is achieved:

cq
1 − Pq/N − c∗1 = − f1

N
2µ
− ( f1 − f2)

N
8µ
< 0, (75a)

cq
2 − Pq/N − c∗2 =

[
−4
α2

α1
f1 − ( f1 − f2)

] N
8µ
< 0. (75b)

6.4 Equilibrium with both parking fees and congestion tolls

We finally consider the case wherein both parking fees and congestion tolls are imposed. Propo-
sitions 3 and 7, and (62) give tF

i , tL
i , lCi , and lFi as follows:

tF
2 = tF = t∗ − N

µ
, tL

2 = tF
1 = t∗ − N

2µ
, tL

1 = tL = t∗, (76a)

lF2 =
N
d
, lC2 = lF1 =

N
2d
, lC1 = 0. (76b)
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(a) Congestion toll pq(t) (b) Parking fee pp(t)

Figure 6: Equilibrium with parking fees and congestion tolls

As illustrated in Figure 6, commuting cost cpq
i , parking fee pp(l), and congestion toll pq(t) are given

by

cpq
1 =

(
2β1 + 2β2 − f1 − f2

) N
2µ
, cpq

2 =
(
2β2 − f2

) N
µ
, (77a)

pq(t) =


β2(t − tF

2) if t ∈ [tF
2 , t

L
2 ],

β2
N
2µ
+ β1(t − tF

1) if t ∈ [tF
1 , t

L
1 ].

(77b)

pp(l) =


(λ1 − β1)w(lF1 − l) + (λ2 − β2)w

N
2d

if l ∈ [lC1 , l
F
1],

(λ2 − β2)w(lF2 − l) if l ∈ [lC2 , l
F
2],

(77c)

Comparing cpq
i and c∗i , we have

cpq
1 − c∗1 =

(
2β1 + 2β2 − 3 f1 − f2 − 2λ1

wµ
d

) N
2µ
, (78a)

cpq
2 − c∗2 =

(
4β2 −

α2

α1
f1 − 3 f2 − 2λ2

wµ
d

) N
2µ
. (78b)

This shows that commuters generally cannot reduce commuting costs only as a result of imposi-
tion of parking fees and congestion tolls. As in Section 6.3, a Pareto improvement is achieved by
equally redistributing the revenue Ppq obtained from parking fees and congestion tolls:

cpq
1 − Pq/N − c∗1 =

[
−4(β1 − β2) − 7

wµ
d
β1 − 3 f1 − f2

] N
8µ
< 0, (79a)

cpq
2 − Pq/N − c∗2 = −

[
4(β1 − β2) − ( f1 − f2) + 8β2

wµ
d
+ 4
α2

α1
f1
] N

8µ
< 0. (79b)
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7 Conclusions

This study developed a theoretical model of trip timing and parking location choices by heteroge-
neous commuters by extending the framework of Arnott et al. (1991) and examined the effects of
parking fees and congestion tolls. We showed that the equilibrium distribution of trip timing and
parking locations is quite different from the optimum due to strategic interactions among hetero-
geneous commuters. Furthermore, we clarified that these strategic interactions limit the efficacy
of policies intended to alleviate traffic congestion and parking competition. More specifically,
expanding parking capacity and introducing parking fees may lead to temporal concentration of
traffic demand, thereby exacerbating traffic congestion and increasing total commuting cost. In
contrast, a combination of parking fees and congestion tolls achieves an optimal distribution of
trip timing and parking locations.

Our results suggest that the effects of each pricing policy upon each commuter type are
significantly different. This implies that the “winner” and “loser” among commuters will vary
according to which pricing policy is imposed, and thus, appropriate redistribution of the revenue
from such policies is quite important to achieve a Pareto improvement. As a benchmark of
appropriate redistribution, we proposed that the revenue is used for financing parking and road
capacity. We then demonstrated that the revenue from parking fees and congestion tolls exactly
equals the costs of optimal parking and bottleneck capacity, respectively; that is, the self-financing
principle (Mohring and Harwitz, 1962) holds for the model.

This study introduces a number of assumptions to clearly present how strategic interactions
among heterogeneous commuters result in an inefficient outcome and limit the efficacy of pricing
policies. For example, in our model, commuters need not search vacant parking lots and cannot
use public transport.13 Since relaxing these assumptions may lead to changes in commuters’
choice of trip timing and parking location, it would be valuable for future research to extend our
model in these directions.

13Many studies have considered cruising to search for a parking lot (e.g., Glazer and Niskanen, 1992; Anderson and
de Palma, 2004; Calthrop and Proost, 2006; Arnott and Inci, 2006; Arnott and Rowse, 2009; Arnott and Inci, 2010; Arnott
et al., 2015; Inci and Lindsey, 2015; Geroliminis, 2015) and public transport (e.g., Yang et al., 2013; Liu et al., 2014a,b).
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A Proof of Lemma 1

Suppose to the contrary that there exist ti ∈ Ŝi, t j ∈ Ŝ j, and tk ∈ (ti, t j) such that
∑

m∈I n̂∗m(ti) =∑
m∈I n̂∗m(t j) = µ and

∑
m∈I n̂∗m(tk) < µ (i.e., q(tk) = 0). Then, it follows from equilibrium condition

(6a) that ĉi(ti) ≤ ĉi(tk). Thus, if â(tk) ≤ t∗, we have

q(ti) ≤
βi

αi
(ti − tk) +

1
αi

(
λi − βi

) w
d
{N(tk) −N(ti)}

≤ − 1
αi

{
βi −

(
λi − βi

) wµ
d

}
(tk − ti) < 0. (80)

Similarly, if â(tk) ≥ t∗, the condition ĉ j(t j) ≤ ĉ j(tk) gives

q(t j) ≤γ j(tk − t j) +
(
λ j + γ j

) w
d

{
N(tk) −N(t j)

}
≤

{
γ j +

(
λ j + γ j

) wµ
d

}
(tk − t j) < 0. (81)

But this contradicts the equilibrium condition (6b).
Furthermore, commuting cost (4) suggests that

∑
m∈I n̂∗m(t) < µ (i.e., q(t) = 0) for all t ∈ R+

cannot be an equilibrium. Therefore, we obtain Lemma 1. □

B Proof of Proposition 1

The Karush–Kuhn–Tucker (KKT) conditions of problem (12) is expressed as
q∗(t) +

1
αi

ĉi(t) = c∗i if n̂∗i (t) > 0,

q∗(t) +
1
αi

ĉi(t) ≥ c∗i if n̂∗i (t) = 0,
(82a)


∑

i∈I n̂∗i (t) = µ if q∗(t) > 0,∑
i∈I n̂∗i (t) ≤ µ if q∗(t) = 0,

(82b)

∫
n̂∗i (t) dt = Ni ∀i ∈ I, (82c)

where q∗(t) and c∗i are the Lagrange multipliers for the first and second constraints, respectively.
Because these conditions are equivalent to the equilibrium conditions (6) with (10), the equilibrium
distribution n̂∗(t) of trip timing coincides with the KKT points for the problem (12). □

C Proof of Lemma 2

We prove Lemma 2 (a) and (b), in turn.
(a) It follows from the condition (25b) that for any i, j ∈ I, (ti, li) ∈ So

i , and (t j, l j) ∈ So
j ,

co
i (ti, li) + co

j(t j, l j) ≤ co
i (t j, li) + co

j(ti, l j). (83)

Substituting (26) into this, we have (30). □
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(b) At the social optimum, a commuter’s parking location lies in [0,
∑

k∈INk/d], i.e., for any
i ∈ I and (ti, li) ∈ So

i , li ∈ [0,
∑

k∈INk/d]. It follows from this that for any i ∈ I, there exists j ∈ I
and li j such that (ti, li j) ∈ So

i and (t j, li j) ∈ So
j . Furthermore, the condition (25b) gives

co
i (ti, li j) = co

i (t̃i, li) ∀(ti, li j), (t̃i, li) ∈ So
i , (84a)

co
j(t j, li j) = co

j(t̃ j, l j) ∀(t j, li j), (t̃ j, l j) ∈ So
j . (84b)

From (84), pp(li) − pp(l j) such that l j ≤ li j ≤ li is given by

pp(li) − pp(l j) = (λi − βi)w(l j − li) +
{
(λi − βi) − (λ j − β j)

}
w(li j − l j). (85)

The condition (25b) implies that co
i (t, l) satisfies

co
i (ti, li) ≤ co

i (ti, l j). (86)

Substituting (26) into this, we obtain

pp(li) − pp(l j) ≤ (λi − βi)w(l j − li). (87)

Combining (85) into this yields {
(λi − βi) − (λ j − β j)

}
(li j − l j) ≤ 0. (88)

This leads to Lemma 2 (b), and we thus complete the proof. □
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