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Testing for Noncausal Vector Autoregressive

Representation

Mehdi Hamidi Sahneh ∗

Abstract

We propose a test for noncausal vector autoregressive representation gen-

erated by non-Gaussian shocks. We prove that in these models the Wold

innovations are martingale difference if and only if the model is correctly

specified. We propose a test based on a generalized spectral density to check

for martingale difference property of the Wold innovations. Our approach

does not require to identify and estimate the noncausal models. No spe-

cific estimation method is required, and the test has the appealing nuisance

parameter free property. The test statistic uses all lags in the sample and

it has a convenient asymptotic standard normal distribution under the null

hypothesis. A Monte Carlo study is conducted to examine the finite-sample

performance of our test.
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1 Introduction

Vector Autoregressions (VAR) have been used extensively by economists and statis-

ticians for economic analysis and to obtain forecasts. If the model is misspecified,

though, interesting dynamics of the time series process can be ignored and con-

clusions from the model might be misleading. Since estimation methods based on

second-order moment techniques do not identify noncausal processes, most eco-

nomic applications restrict themselves to causal autoregressive models. Indeed if

noncausality is incorrectly ignored, the estimates may yield suboptimal forecasts

and misleading economic interpretations. In this paper we propose a test for non-

causal VAR models generated by non-Gaussian shocks.

Causality is the standard assumption in the analysis of time series, because

without this assumption the model is unidentified using econometrics methods based

on second-order moments. However, in the non-Gaussian case, causal and noncausal

representations are distinguishable on the basis of higher order cumulants; see,

e.g. Rosenblatt (2000). Despite the significant implications for empirical work,

little is known about how to empirically detect noncausality. The only proposal

that we are aware of is Breidt et al. (1991), which is based on maximizing the

likelihood function. Specifically, all combinations of causal and noncausal models

of a given order are estimated, and the model yielding the greatest value of the

likelihood function is selected. However, this method crucially relies on the choice

of non-Gaussian distribution. If the non-Gaussian distribution is misspecified, the

correct noncausal model might not be among these representations. Even if the

noncausality is correctly identified, this procedure may pick the wrong specification

because of the misspecification of the non-Gaussian distribution.

We prove that the Wold innovations from fitting a noncausal VAR are not mar-

tingale difference (MD), if the true errors are non-Gaussian. Using our theoretical

results, we are able to propose a test for noncausal VAR, which follows the tradi-
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tional modeling strategy of imposing causality. Therefore, this approach does not

require to estimate noncausal models. Under the null hypothesis, Wold innovations

are martingale difference and standard inference applies. Under the alternative hy-

pothesis we face the situation where the econometrician fits a wrong model, and

the Wold innovations are not martingale difference.

Portmanteau test proposed by Box and Pierce (1970) and Ljung and Box (1978)

are not able to capture the nonlinear dependence structure. There are many propos-

als to test for the martingale difference property, which to the best of our knowledge,

none of them are applicable to the multivariate setting of this paper. To test for

the MD property of the Wold innovations, we extend Hong and Lee’s (2005) test

from univariate to multivariate setting. The proposed test statistic has a convenient

asymptotic standard normal distribution under the null hypothesis. No specific es-

timation method is required, and the test has the appealing nuisance parameter

free property. Moreover, our test only require as inputs estimated model residuals,

obtained from any
√
T -consistent parameter estimates.

The rest of the paper is organized as follows: Section 2 provides a formal state-

ment of the characterization of noncausal VAR representations and the testing

problem. Section 3 introduces formally the test statistic based on the general-

ized spectral density and Section 4 investigates its asymptotic properties. Section

5 examines the finite-sample performance of the test through some Monte Carlo

simulation experiments and an empirical application. Section 6 concludes. An

Appendix contains the proofs.
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2 Characterization of noncausal VAR represen-

tations

Let {xt} be a d-dimensional stationary solution of the VAR model, satisfying the

difference equation:

Φ(L)xt = ξt , t = 0,±1,±2, · · · (1)

where {ξt} are independent non-Gaussian process, and Φ(L) := Id−Φ1L−· · ·−ΦpL
p

is the autoregressive polynomial. Henceforth, Id is the d×d identity matrix, Φp 6= 0

and L is the lag operator, i.e., Lxt = xt−1. We can factor the autoregressive

polynomial as

Φ(z) = Φ†(z)Φ∗(z)

where

Φ†(z) =
∏

1≤i≤r

(1− b−1
i z), |bi| > 1

Φ∗(z) =
∏
r<i≤p

(1− b−1
i z), |bi| < 1

and where Φ∗(z) = 1 if r = p.

A VAR process defined by (1) is said to be causal if and only if all the roots of

Φ(z) lie outside the unit circle in the complex plane (i.e. r = p). If some of the

roots of Φ(z) lie inside the unit circle, then we say the VAR model is noncausal

(see Brockwell and Davis, 1991, ch 3). We use the abbreviation VAR(r,s), where

s = p− r, for the noncausal VAR model specified by (1), where r is the number of

roots outside the unit disk and s is the number of roots inside the unit disk. In the

causal case, i.e. s = 0, we use the conventional VAR(p) abbreviation.
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Despite the evidence pointing out to noncausal representations in econometrics

and statistics models, little is known about how to empirically detect noncausality.

The only proposal in the literature that we are aware of is that of Breidt et al. (1991)

and Lanne and Saikkonen (2011). These authors propose to fit a conventional causal

VAR model by least squares or Gaussian ML, using conventional model selection

criteria to specify the lag order p. Assuming a non-Gaussian error distribution, all

causal and noncausal models of order p are estimated and of these models the one

that maximizes the log-likelihood function is selected. However, if the non-Gaussian

distribution is misspecified, this procedure may pick the wrong specification because

of the misspecification of the non-Gaussian distribution.

A natural way of testing the specification of a causal VAR(p) model, is to check

if the residuals are uncorrelated. In practice, the order p is often selected so that the

residuals are white noise. However, one can show that if noncausality is excluded

incorrectly, the Wold innovations are still uncorrelated. Therefore, estimation meth-

ods based on second-order moment techniques do not identify noncausality.

In the non-Gaussian case, however, causal and noncausal models are distin-

guishable using higher order cumulants (Lii and Rosenblatt, 1982). Using time-

reversibility argument, Breidt and Davis (1992) proved that the Wold innovations

from fitting a causal model to a noncausal one are iid, if and only if the error is

non-Gaussian. Unfortunately, this result does not extend to the multivariate case

(Chan et al., 2006). Moreover, testing for serial dependence of the Wold innovations

is restrictive and may lead to rejection of the null of causality by mistake. To see

this, consider the case where the true unobserved errors are martingale difference

process, for example GARCH. If the model is causal, then Wold innovations have

the same structure as the true unobserved errors. Therefore, if we test for serial

dependence, we reject the null of causality, although the model is causal.

In this paper, I use the information structure available in the Blaschke matrix
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to propose a new test to empirically detect noncausality1. A standard result for

ARMA processes is that any VAR(r,s) process {xt} which is noncausal with respect

to the noise sequence {ξt} can also be modeled as a causal VAR(r,s) with respect to

a new noise sequence {εt}. One can show that the true unobserved shocks, {ξt}, will

be related to the Wold innovations, {εt}, through Blaschke matrices. Under some

mild conditions stated in Assumption 1, I prove that if the model is noncausal, the

Wold innovations are not MD, i.e., they are non-linearly predictable, despite being

white noise.

Assumption 1. ξt is an independent process that is continuously distributed with

a non-Gaussian distribution such that (a+ 1)th moment finite for some a ≥ 2 and

Var(ξt) > 0.

Proposition 2.1: Let Assumption 1 hold. The non-Gaussian VAR model (1) is

causal if and only if the Wold innovations {εt} are MD.

For the proof see appendix. Assumption 1. is commonly used in the empirical

studies. It can be further relaxed to allow for the true unobserved shocks to be

dependent. The proof holds under sub-independence assumption2. This is a gen-

eralization of the concept of independence of random variables, i.e., if two random

variables are independent then they are sub-independent, but not conversely, see

Hamedani (2013). Unfortunately, the connection between sub-independence and

MD is not clear in the literature, and we do not attempt to justify it here.

Non-Gausianity is needed to achieve identification. In fact, there are many

studies that emphasize considering non-Gaussian distributions and other higher

order time-varying moments (see e.g., Harvey and Siddique, 1999, 2000; Jondeau

and Rockinger, 2003). Note that, what is needed is the existence of some moments

1Blaschke matrices are complex-valued filters which take the roots from inside to outside the
unit disc (Lippi and Reichlin, 1994).

2Two random variables are said to be sub-independent if the characteristic function of their
sum is equal to the product of their marginal characteristic functions, i.e., φx+y(t) = φx(t)φy(t).
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higher than the third for at least one of the shocks, and no specific distributional

assumption is needed. The continuity assumption is also mild and could be dropped

in the univariate case or if there is only one root of the det Θ(L) that is inside the

unit circle. This is stated in the following corollary.

3 Testing for noncausal representations

Under the null of causality ξt(θ0) = εt(θ0), which following Proposition 2.1 can be

restated as

H0 : εt(θ0) is MD for some θ0 ∈ Ξ (2)

where θ0 = vec{Φ1, · · · ,Φp,Θ1, · · · ,Θq,Σε}, and vec(.) denote an operator on a

matrix which cascades the columns of the matrix from the left to the right and

forms a column vector.

Testing (2) is not an easy task. There are many proposals to test for the mar-

tingale difference property see Hong (1999), Domı́nguez and Lobato (2003), Hong

and Lee (2005), among others. To the best of our knowledge, none of these tests

are applicable to the multivariate setting of this paper. Alternatively, it is possible

to apply a sequence of univariate test to each series. However, using a multivariate

procedure will avoid the multiple testing problem and is more powerful, since it is

possible that a single series is not MD, but the collection of several series is MD.

Moreover, {εt} is unobserved and residuals depend on a
√
T -consistent estimator

for θ0, which may cause the loss of the nuisance parameter-free property of the

asymptotic distribution of the test statistics.

To overcome these problems and checking for non-linear predictability at all lags

in the sample, I extend the generalized spectral test of Hong and Lee (2005) to the

multivariate setting. Compared with the existing tests in the literature, this test

has some advantages: first, with the frequency domain approach, one can allow
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infinite number of lags as the sample size increases; second, the test has a standard

normal limiting distribution and parameter estimation uncertainty has no impact

on the asymptotic distribution of the test statistics.3 The proposed test can also

be used to test the martingale hypothesis in the multivariate setting for observed

raw data without any modification.

My proposal for testing the MD property of the Wold innovations is based upon

the generalized spectrum of Hong (1999):

f(ω, u, v) ≡ 1

2π

∞∑
j=−∞

σj(u, v)e−ijω, (3)

where ω ∈ [−π, π] is the frequency, i ≡
√
−1, (u, v) ∈ Rd × Rd, and

σj(u, v) = cov(eiu
′εt , eiv

′εt−|j|), j = 0,±1, ...

where εt ≡ εt(θ). Note that f(ω, u, v) is a complex-valued scalar function, although

εt is a d × 1 vector. The function f(ω, u, v) captures any type of pairwise serial

dependence in {εt}, including that with zero autocorrelation function.

The generalized spectrum f(ω, u, v) is not suitable for testing (2), because it

also captures the serial dependence in higher order moments. For example f(ω, u, v)

captures GARCH dependence, although the process could be a MDS. However, just

as the characteristic function can be differentiated to generate various moments of εt,

f(ω, u, v) can be differentiated to capture the serial dependence in various moments.

To capture (and only capture) the serial dependence in the conditional mean, one

can use

f (0,1,0)(ω, u, v) ≡ 1

2π

∞∑
j=−∞

σ
(1,0)
j (0, v)e−ijω, ω ∈ [−π, π]

where

σ
(1,0)
j (0, v) ≡ ∂

∂u
σj(u, v)

∣∣
u=0

= cov(iεt, e
iv′εt−|j|)

3Tests based on bootstrap procedures which take into account the impact of parameter esti-
mation uncertainty may also be considered (see e.g., Gonçalves and Kilian, 2004).
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is a d×1 vector. The measure σ
(1,0)
j (0, v) checks whether the autoregression function

E(εt|εt−j) = 0 at lag j is zero.4

In the present context, εt is not observed. Suppose we have T observations

{xt}Tt=1 which is used to estimate the model and to obtain the estimated model

residual

ε̂t ≡ Θ̂−1(L)Φ̂(L)xt (4)

where θ̂ is a
√
T -consistent estimator for θ0. Examples of θ̂ are conditional least

squares and quasi-maximum likelihood estimator. We can estimate f (0,1,0)(ω, 0, v)

by a smoothed kernel estimator

f̂ (0,1,0)(ω, 0, v) ≡ 1

2π

T−1∑
j=T−1

(1− |j|
T

)1/2k(j/h)σ̂
(1,0)
j (0, v)e−ijω, ω ∈ [−π, π] (5)

where σ̂
(1,0)
j (0, v) = ∂

∂u
σ̂j(u, v)

∣∣
u=0

, σ̂j(u, v) = ϕ̂j(u, v)− ϕ̂j(u, 0)ϕ̂j(0, v), and

ϕ̂j(u, v) =
1

T − |j|

T∑
t=j+1

eiu
′ε̂t+iv′ε̂t−|j|

where h ≡ h(T ) is a bandwidth, and k : R → [−1, 1] is a symmetric kernel. Ex-

amples of k(·) include the Bartlett, Daniell, Parzen and Quadratic spectral kernels.

The factor (1− |j|
T

)1/2 is a finite-sample correction. The effect of this correction factor

is to put less weight on very large lags, for which we have less sample information.

It could be replaced by unity.

Under H0, the generalized spectral derivative f (0,1,0)(ω, 0, v) becomes a flat spec-

trum:

f
(0,1,0)
0 (ω, 0, v) ≡ 1

2π
σ

(1,0)
0 (0, v), ω ∈ [−π, π]

4The hypothesis of E(εt|Iεt−j) = 0 a.s. is not the same as the hypothesis of E(εt|εt−j) = 0 a.s.
for all j > 0. The former checks all type of dependencies, whereas the latter one only captures
pairwise dependencies. See Hong (1999) for more discussion on this.
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which can be consistently estimated by

f̂
(0,1,0)
0 (ω, 0, v) ≡ 1

2π
σ̂

(1,0)
0 (0, v), ω ∈ [−π, π]

The estimators f̂ (0,1,0)(ω, 0, v) and f̂
(0,1,0)
0 (ω, 0, v) converge to the same limit under

H0, and generally converge to different limits under H1. Thus, any significant

divergence between them can be interpret as evidence of the violation of the MDS

property, and hence, of the non-fundamentalness of the process.

Our test statistic, which is the multivariate version of M̂ of Hong and Lee (2005),

is given as follows:

M̂ ≡
[ T−1∑
j=1

k2(j/h)Tj

∫ ∥∥σ̂(1,0)
j (0, v)

∥∥2
dW(v)− Ĉ

]/√
D̂ (6)

where Tj = T − j, W(v) =
∏d

c=1W (vc), W : R → R+ is a nondecreasing function

that weighs sets symmetric about zero equally, and the unspecified integrals are

taken over the support of W(·). Examples of W (·) include the CDF of any sym-

metric probability distribution, either discrete or continuous. Ĉ and D̂ are estimate

of the mean and the variance of T
∫∫ π
−π ‖f̂

(0,1,0)(ω, 0, v)− f̂ (0,1,0)
0 (ω, 0, v)‖2dωdW(v),

Ĉ(p) ≡
T−1∑
j=1

k2(j/p)
1

T − j

T−1∑
t=j+1

‖ε̂t‖2

∫ ∣∣ψ̂t−j(v)
∣∣2 dW (v)

D̂(p) = 2
T−2∑
j=1

T−2∑
l=1

k2(j/p)k2(l/p)
d∑
a=1

d∑
b=a

∫ ∫ ∣∣∣∣ 1

T −max(j, l)

×
T∑

t=max(j,l)+1

ε̂atε̂
′
btψ̂t−j(v)ψ̂∗t−l(v

′
)

∣∣∣∣2 dW (v)dW (v
′
)

where ψ̂t(v) = eiv
′ε̂t − T−1

∑T
t=1 e

iv′ε̂t .

To derive the limit distribution of the test, I need to impose some regularity
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conditions. Throughout, I use C to denote a generic bounded constant, ‖.‖ the

Euclidean norm, and A∗ the complex conjugate of A.

Assumption A1. {xt} is a d× 1 strictly stationary time series process, and εt are

MDS with E‖ε4t‖ ≤ C, where εt is Wold innovation from estimating an invertible

model.

Assumption A2. For q sufficiently large, there exists a strictly stationary process

{εq,t} measurable with respect to the sigma field generated by {εt−1, εt−2, · · · , εt−q}

s.t. as q →∞, εq,t is independent of {εt−q−1, εt−q−2, · · · } for each t, E[εq,t|It−1] = 0

a.s., E‖εt− εq,t‖2 ≤ Cq−κ for some constant κ ≥ 1, and E‖εq,t‖4 ≤ C for all large q.

Assumption A3. The estimator θ̂ is such that
√
T (θ̂ − θ∗) = OP (1), where

θ∗ ≡ plimT→∞θ̂. Under H0, θ∗ = θ0.

Assumption A4. Let x̄0 = (x0; · · · ;x1−p; ε0; · · · ; ε1−q) be some assumed initial

values. Then E‖x̄2
0‖ <∞.

Assumption A5. k : R → [−1, 1] is symmetric about 0, and is continuous at 0

and all points except a finite number of points, with k(0) = 1 and |k(z)| ≤ C|z|−b

as z →∞ for some b > 1.

Assumption A6. W : R → R+ is nondecreasing and weights sets symmetric

about zero equally, with
∫
‖v‖4dW (v) ≤ C.

Assumption A7. Define ψt(v) ≡ eivεt − T−1
∑T

t=1 e
ivεt and Σ ≡ E(εtε

′
t). Then,

{∂εt
∂θ
, εt} is a strictly stationary process such that

(a)
∑∞

j=1 ‖cov[∂εt
∂θ
, ψt−j(v)]‖ ≤ C;

(b)
∑∞

j=1 sup(u,v)∈R2 |σj(u, v)| ≤ C;

(c)
∑∞

j=1

∑∞
l=1 sup(u,v)∈R2

∥∥E[(εtε
′
t − Σ)ψt−j(u)ψt−l(v)]

∥∥ ≤ C;
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(d)
∑∞

j=−∞
∑∞

l=−∞
∑∞

τ=−∞ supv∈R‖κj,l,τ (v)‖ ≤ C, where κj,l,τ (v) is the fourth or-

der cumulant of the joint distribution of the process {∂εt
∂θ
, ψt−j(v), ∂εt−l

∂θ
, ψ∗t−τ (v)}.

Assumption A8.
∑∞

j=1 supv∈R ‖σ
(1,0)
j (0, v)‖ ≤ C.

Assumption A1 is a regularity condition on the data generating process (DGP)

{xt}. Assumption A2 is required only under H0, which states that the MDS {εt}

can be approximated by a q-dependent MDS process {εt} arbitrarily well when q

is sufficiently large. Because {εt} is a MDS, Assumption A2 essentially imposes

restrictions on the serial dependence in higher order moments of {εt}. It covers

GARCH and stochastic volatility processes as special cases; see e.g. Hong and Lee

(2005). Assumption A3 requires a
√
T -consistent estimator θ̂, which may not be

asymptotically most efficient. It can be a conditional least squares estimator or a

conditional quasi-maximum likelihood estimator.

Assumption A4 is a start-up value condition. It ensures that the impact of

initial values assumed in the observed information set is asymptotically negligible.

Assumption A5 is a regularity condition on the kernel k(.). It includes all commonly

used kernels in practice. For kernels with bounded support, such as the Bartlett

and Parzen kernels, we have b = ∞: For kernels with unbounded support, b is

some finite positive real number. Assumption A6 is a condition on the weighting

function W (.) for the transform parameter v. It is satisfied by the CDF of any

symmetric continuous distribution with a finite fourth moment. Assumption A7

provides some covariance and fourth order cumulant conditions on {∂εt−1

∂θ
, εt}, which

restricts the degree of serial dependence in {∂εt−1

∂θ
, εt}. Finally, Assumption A8

impose a condition on the serial dependence in {εt}. The asymptotic properties

of the test statistic is stated in the following theorem. The proof is similar to the

univariate case of Hong and Lee (2005), and for the sake of space is given in the

online Appendix.

Proposition 4.1: Let h = cT λ for 0 < λ < (3 + 1
4b−2

)−1 and 0 < c <∞. Then:
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(a) Under Assumptions A1-A7 and H0, M̂
d→ N(0, 1).

(b) Under Assumptions A1-A8 and H1 , limT→∞ P [M̂ > C(T )] = 1 for any

sequence C(T ) = o(T/h1/2).

Under the null, M̂ has a simple standard normal distribution. Under the

alternative hypothesis, E(εt|εt−j) 6= 0 a.s., at some lag j > 0. Then we have∫
‖σ(1,0)

j (0, v)‖2dW(v) > 0 for any weighting function W(·) that is positive, mono-

tonically increasing and continuous, with unbounded support on R. Therefore, M̂

has asymptotic unit power at any given significance level.

An important feature of M̂ is that the use of the estimated residuals {ε̂t} in place

of the true errors {εt} has no impact on the limit distribution of M̂ . The reason

is that the convergence rate of the parametric parameter estimator θ̂ to θ0 is faster

than that of the nonparametric kernel estimator f̂ (0,1,0)(w, 0, v) to f (0,1,0)(w, 0, v).

Consequently, the limit distribution of M̂ is solely determined by f̂ (0,1,0)(w, 0, v),

and replacing θ0 by θ̂ has no impact asymptotically.

4 Monte Carlo evidence and empirical applica-

tion

4.1 Simulation study

In order to assess the finite sample performance of our proposed test, we conduct a

Monte Carlo study. To investigate the empirical size and power of M̂ , we consider

AR (or VAR) processes with iid centralized log-normal errors as follows:

1. (DGP1): Univariate, causal AR(1) process

yt = 0.5yt−1 + ξt, ξt ∼ lognorm(0, 1)

13



Table 1: Empirical size of the test: univariate case (DGP1)

T = 100 T = 250 T = 400

h̄ 10% 5% 1% 10% 5% 1% 10% 5% 1%
A: Bartlett

5 6.2 4.4 2.3 7.3 5.3 1.8 7.7 4.9 1.7
10 7.5 5.2 2.5 7.8 5.8 2.2 7.9 4.7 1.9
15 8.6 5.8 2.9 8.4 5.3 2.5 8.2 4.8 1.9

B: Parzen
5 5.5 3.8 2.0 6.0 4.2 1.2 6.5 4.4 1.4
10 5.7 4.4 2.1 6.4 5.2 1.6 7.2 4.6 1.7
15 6.3 4.3 2.3 7.9 5.1 1.6 8.0 4.7 1.6

Notes: (1) h̄ is the preliminary lag order used in a plug-in method to select a data-
driven lag order ĥ0; (2) The number of replication is 1000.

2. (DGP2): Univariate, noncausal AR(1) process

yt = 0.5yt+1 + ξt, ξt ∼ lognorm(0, 1)

3. (DGP3): Bivariate, causal VAR(1) process

xt,1
xt,2

 =

0.2 0.1

0 0.5


xt−1,1

xt−1,2

+

ξt,1
ξt,2



4. (DGP4): Bivariate, noncausal VAR(1) process

xt,1
xt,2

 =

0.2 0.1

0 0.5


xt+1,1

xt+1,2

+

ξt,1
ξt,2



Some comments are in order. First, M̂ involves d− and 2d− dimensional nu-

merical integration, which can be computationally cumbersome when d is large. In

practice, one may approximate the integrals by choosing a finite number of grid

points symmetric about zero or generate a finite number of points drawn from the
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Table 2: Empirical power of the test: univariate case (DGP2)

T = 100 T = 250 T = 400

h̄ 10% 5% 1% 10% 5% 1% 10% 5% 1%
A: Bartlett

5 68.8 61.2 47.2 93.9 89.9 82.1 98.8 98.1 95.6
10 63.2 56.9 42.9 91.0 86.6 78.0 98.5 97.2 94.1
15 58.7 52.2 37.5 88.5 83.3 72.7 97.8 96.1 91.0

B: Parzen
5 68.8 62.3 47.1 94.0 90.4 83.2 98.9 98.1 95.9
10 67.2 59.1 46.2 93.3 89.1 80.8 98.4 97.6 95.0
15 64.9 57.0 44.1 91.9 88.1 79.1 97.8 96.9 94.5

Notes: (1) h̄ is the preliminary lag order used in a plug-in method to select a data-
driven lag order ĥ0; (2) The number of replication is 1000.

Table 3: Empirical size of the test: bivariate case (DGP3)

T = 100 T = 250 T = 400

h̄ 10% 5% 1% 10% 5% 1% 10% 5% 1%
A: Bartlett

5 2.4 0.8 0.0 2.8 1.0 0.2 5.8 3.6 1.2
10 2.2 0.8 0.0 2.4 1.0 0.4 6.2 3.4 1.0
15 2.0 1.0 0.2 2.8 0.8 0.4 5.6 3.0 1.0

B: Parzen
5 2.8 1.2 0.4 3.2 1.6 0.2 6.4 4.0 1.0
10 2.6 1.4 0.4 2.8 1.8 0.2 6.0 3.6 1.0
15 2.6 1.2 0.2 2.8 1.2 0.4 5.4 3.2 0.8

Notes: (1) h̄ is the preliminary lag order used in a plug-in method to select a data-
driven lag order ĥ0; (2) The number of replication is 500.
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Table 4: Empirical power of the test: bivariate case (DGP4)

T = 100 T = 250 T = 400

h̄ 10% 5% 1% 10% 5% 1% 10% 5% 1%
A: Bartlett

5 48.4 28.6 10.4 94.0 87.0 65.4 99.2 98.4 96.0
10 44.0 24.8 8.6 91.0 82.2 56.8 99.0 98.4 95.8
15 39.4 21.2 7.6 87.6 76.8 51.8 99.0 97.8 92.2

B: Parzen
5 50.2 27.8 12.8 96.8 88.2 64.8 100.0 99.0 95.8
10 48.4 26.2 11.8 92.2 86.8 58.6 99.8 98.2 95.4
15 47.6 24.4 11.0 88.0 84.4 55.8 99.2 98.0 94.6

Notes: (1) h̄ is the preliminary lag order used in a plug-in method to select a data-
driven lag order ĥ0; (2) The number of replication is 500.

uniform distribution on [−1, 1]d. Alternatively, for some weighting functions there

is a closed form expression for the test statistics. In this paper, we use a closed

form solution obtained by choosing dW(·) as the d−dimensional Gaussian CDF.

Second, a practical issue in implementing the test is the choice of the bandwidth

parameter ĥ. Following Hong and Lee (2005), one can choose a data-driven band-

width ĥ = ĉ0T
1

2q+1 via the plug-in method, which lets data themselves determine

an appropriate lag.5 The data-driven bandwidth ĉ0, involves the choice of a prelim-

inary bandwidth h̄, which can be fixed or grow with the sample size T . Applying

the data-driven method to choose the bandwidth, while considering a wide range

of the bandwidth, h̄ ∈ {4, · · · , 16}, the simulation results show that the test is not

sensitive to the choice of preliminary bandwidth. For the sake of space, we only

report the results for h̄ = 5, 10 and 15, using the Bartlett and Parzen kernels. Sim-

ulations suggest that the choice of k(·) has little impact on both the level and the

power of the test.

Table 1 reports the empirical rejections probabilities of M̂ under DGP1 at the

10%, 5% and 1% levels for the sample size T = 100; 250 and 400. Overall, the

5q is called the characteristic exponent of k(.). For Bartlett kernel, q = 1; for Daniell, Parzen,
QS, and Tukey kernels, q = 2.
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size of the test under the null of causality is appropriate and is robust to the choice

of kernel and preliminary bandwidth h̄. Table 3 reports the empirical power of M̂

against the noncausal univariate AR process. Overall,M̂ is powerful against DGP3.

The power is robust to the choice of kernel and bandwidth parameter h̄.
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Appendix A

I first prove Lemma 1, which is an extension of Theorem 5.4.1 Rosenblatt (2000),

by dropping the identically distribution assumption. In Lemma 2, I use Lemma 1 to

prove the univariate case of Proposition 2.1, and then show that under Assumption

1 the multivariate case can be reduced to the univariate case. Lemma 1: Consider

a univariate causal and non-invertible VARMA(p, q) model, that is, rΦ = rp and

rΘ < rq. Let φt(τ) denote the characteristic function of ξt and φtτ0(·) = ∂φt(·)
∂τ0

. Then

linearity of the best predictor in mean square implies that

∞∑
k=−∞

(
γk −

∞∑
l=1

βlγk−l
)
ht−k(

∞∑
l=1

τlγk−l) = 0 (A.7)

where ht(ϑ) =
φtτ0 (ϑ)

φt(ϑ)
and βl’s are the coefficients of the best linear predictor of xt

in mean square

x∗t =
∞∑
l=1

βlxt−l

Proof of Lemma 1: Writing (1) in the MA form we have:

xt =
∞∑

k=−∞

γkξt−k, γk = 0 ∀k < 0 (A.8)

The joint characteristic function of {xt−j, j ≥ 0} is given by

ηt(τ0, τ1, · · · , τp, · · · ) = E
{
exp
(
i
∞∑
l=0

τlxt−l
)}

=
∞∏

k=−∞

φt−k
( ∞∑
l=0

τlγt−l
)

(A.9)

18



while the joint characteristic function of {xt−j, j ≥ 1} is

η̃t(τ1, · · · , τp, · · · ) =
∞∏

k=−∞

φt−k
( ∞∑
l=1

τlγt−l
)

(A.10)

Differentiating ηt(τ0, τ1, · · · , τp, · · · ) w.r.t. τ0 we have

∂

∂τ0

ηt(τ0, τ1, · · · , τp, · · · )|τ0=0 = ηtτ0(0, τ1, · · · , τp, · · · )

=

∫
ixt exp(i

∞∑
l=1

τlxt−l) dF
t(xt, xt−1, · · · , xt−p, · · · ) (A.11)

= i

∫
E[xt|xt−s, s > 0] exp(i

∞∑
l=1

τlxt−l) dF
t(xt−1, · · · , xt−p, · · · )

where F t(xt, xt−1, · · · , xt−p, · · · ) is the joint cumulative distribution function of

xt−j, j ≥ 0. Also by differentiating the logarithm of (A.9) w.r.t. τ0 we get:

ηtτ0(0, τ1, · · · , τp, · · · )
ηt(0, τ1, · · · , τp, · · · )

=
∞∑

k=−∞

γkh
t−k(

∞∑
l=1

τlγk−l). (A.12)

Similarly, differentiating the logarithm of η̃t(τ1, · · · , τp, · · · ) w.r.t. τj, j = 1, 2, · · · ,

we have

∂

∂τj
log η̃t(τ1, · · · , τp, · · · ) =

∞∑
k=−∞

γk−jh
t−k(

∞∑
l=1

τlγk−l), j = 1, 2, · · · (A.13)

If the best predictor in mean square is linear we must have

ηtτ0(0, τ1, · · · ) =
∞∑
k=1

βkη̃
t
τk

(τ1, τ2, · · · ) (A.14)

which implies
∞∑

k=−∞

(
γk −

∞∑
l=1

βlγk−l
)
ht−k(

∞∑
l=1

τlγk−l) = 0. (A.15)

�

Lemma 2: Let Assumption 1 hold. The univariate non-Gaussian AR model (1) is
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causal if and only if the Wold innovations {εt} are MDS.

Proof of Lemma 2: A standard result for AR processes is that any AR(p) process

{xt} which is non-causal with respect to the noise sequence {ξt} can also be modeled

as a causal AR(p) with respect to a new noise sequence {εt} defined by6

εt =

∏
r<i≤q

(1− biL)∏
r<i≤q

(1− b−1
i L)

ξt, |bi| < 1. (A.16)

which can be written as:
q−r∑
i=0

αiεt−i = et (A.17)

where et =
∑q−r

i=0 βiξt−i. Then (A.17) Lemma 1 and Corollary 5.4.2 of Rosenblatt

(2000) implies that the best one-step predictor of εt is non-linear, i.e., E[εt|εt−s, s ≥

1] is non-linear. If εt were a MD, i.e. E[εt|εt−s, s ≥ 1] = 0, Lemma 1 implies that:

∞∑
k=−∞

γkh
t−k(

∞∑
l=1

τlγk−l) = 0 (A.18)

Since µa+1 6= 0, we have

∞∑
k=−∞

γkγk−l1 · · · γk−la = 0, l1, · · · , la = 1, 2, · · · . (A.19)

For the ath order partial derivative of the expression (A.18) w.r.t τl1 , · · · , τla at

τl1 = · · · = τla = 0, ia+1µa+1a! is multiplied by the expression (A.19) on the left.

Since

(1− bz)(1− b−1z)−1 = b2 + (b2 − 1)
∞∑
j=1

bjz−j

we have γk = 0 for k > 0. Therefore (A.19) is equal to

∞∑
k=0

γ−kγ−k−l1 · · · γ−k−la = 0, l1, · · · , la = 1, 2, · · · . (A.20)

6See Brockwell and Davis (1991), page 103.
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Also

γ−k =

p∑
j=r+1

αjb
k
j , k > 0

for some coefficients αj 6= 0, j = r + 1, · · · , p. Therefore, equations (A.20) can be

written as
p∑

j1,··· ,ja=r+1

αj1 · · ·αjabl1j1 · · · b
la
ja

∞∑
k=0

γ−k(bj1 · · · bja)k = 0

l1, · · · , la = 1, · · · , p. Consider the set of equations obtained by letting l1, · · · , la =

1, · · · , s. The matrix of this set of equations is

M = (Mj,l) = {αj1 · · ·αjabl1j1 · · · b
la
ja
}

where j = (j1, · · · , ja), l = (l1, · · · , la), j1, · · · , ja = r + 1, · · · , p, l1, · · · , la =

1, · · · , s. The determinant of this matrix is (
∏p

u=r+1 αu)
2a multiplied by the 2a-th

power of the Vandermonde determinant

|blj; j = r + 1, · · · , q, l = 1, · · · , s|

Since the determinant is nonzero, we must have

γ(bj1 , · · · , bja) =
∞∑
k=0

γk(bj1 , · · · , bja)k

This implies (bj1 · · · bja), for j1, · · · , ja = r + 1, · · · , p are also zeros of γ(z), a clear

contradiction. Therefore the assumption that E[εt|εt−s, s > 0] = 0 cannot hold. �

Proof of Proposition 2.1: The proof is similar to the Corollary 2.1 in Hamidi Sah-

neh (June, 2015).�
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