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 Bootstrap for Value at Risk Prediction 

 

Abstract 

We evaluate the predictive performance of a variety of value-at-risk (VaR) models for a 

portfolio consisting of five assets. Traditional VaR models such as historical simulation with 

bootstrap and filtered historical simulation methods are considered. We suggest a new method 

for estimating Value at Risk: the filtered historical simulation GJR-GARCH method based on 

bootstrapping the standardized GJR-GARCH residuals. The predictive performance is 

evaluated in terms of three criteria, the test of unconditional coverage, independence and 

conditional coverage and the quadratic loss function suggested. The results show that classical 

methods are inefficient under moderate departures from normality and that the new method 

produces the most accurate forecasts of extreme losses.  

Keywords: Value at Risk, bootstrap, GARCH,  

JEL codes: C15, C58, G17 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

1. Introduction 

The last years and after the failure of certain big financial institutions at the beginning 

of the 90s, the Value at Risk (VaR) concept has become the major tool in market risk 

management worldwide. VaR is defined as the maximum potential loss in value of an asset or 

a portfolio with a given confidence level over a certain horizon. The popularity of VaR is mostly 

related to the simplicity of its calculation and interpretation. It summarizes the market risk 

exposure of all financial instruments in a portfolio into a single number.   

 The purpose of this paper is to analyze the capacity of the bootstrap to ameliorate the 

pertinence of VaR methods. We will consider five different VaR estimation methods: 

historical simulation with bootstrap (BHS), historical simulation with circular block bootstrap 

(CBBHS) and the filtered historical simulation method (FHS) suggested by Barone-Adesi et al. 

(1999). The FHS which takes into account parameter estimation error in GARCH models 

suggested by Christoffersen and Gonçalves (2005) is also examined. Finally, the GARCH 

model suggested by Glosten, Jagannathan and Runkle (1993) (GJR-GARCH after their 

surnames) is implemented.  

 These methods are backtested for their out-of-sample predictive ability by using the tests 

of unconditional coverage, independence and conditional coverage suggested by Christoffersen 

(1998) and the quadratic loss function suggested by Lopez (1999). 

 This paper is organized as follows: various VaR methods are discussed in section 2. 

Section 3 provides a description of the GARCH models. Section 4 presents techniques of 

backtesting: test of unconditional coverage, independence and conditional coverage of 

Christoffersen (1998) and the quadratic loss function suggested by Lopez (1999). Empirical 

results and predictive performance evaluation of several methods are presented in section 5 

using real data. Finally, the last Section concludes this paper. 

2. VaR methods 

VaR has become a golden standard for measuring and assessing risk. Different methods 

of VaR are nowadays developed in banks. VaR is defined as the potential loss that is expected 

to occur over a predetermined period and at a given confidence level 𝛼 under hypothesis that 

during a period of times the composition of the portfolio remains unchanged. 

 We will briefly present four VaR calculation methods and we will focus on the strengths 

and weaknesses of each method. Let 𝑅𝑡 = log (
𝑝𝑡

𝑝𝑡−1
) be the returns at time t where 𝑝𝑡 is the 

price of portfolio at time 𝑡. Then the VaR with confidence level 𝛼 is given by 
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𝑉𝑎𝑅𝑡(𝛼) = 𝐹−1(1 − 𝛼),                                                         (1) 

where 𝐹−1 is the inverse of the cumulative distribution function of the returns 𝑅𝑡. 

 

2.1 Bootstrap historical simulation method  

This method is undoubtedly the simplest method in its comprehension and its 

implementation. It assumes that the distribution of returns will remain the same in the past and 

in the future and hence historical returns will be used in the forecast of VaR. 

 Bootstrap historical simulation method (BHS) generates pseudo returns by sampling 

with replacement from the set of original returns. Then every bootstrap sample allows acquiring 

an estimate of VaR using (1). In the end, the average of all the VaR estimates gives us the 

bootstrap estimate of VaR. 

 

2.2 Circular block bootstrap historical simulation method 

In the presence of dependence the BHS could give erroneous results. Therefore, 

alternative approaches have been developed to deal with this problem. Hall (1985) proposed to 

resample the data using data blocks. The block method can account for a possible phenomenon 

of memory (that is to say that the value of the series at time 𝑡 depends on past values present in 

the studied series). We will use the circular block bootstrap Politis and Romano (1992) which 

makes better use of the information we have about dependence. This approach assumes the data 

live on a circle so that 𝑦𝑇+1 = 𝑦1, 𝑦𝑇+2 = 𝑦2, etc. Thus, all data points get sampled with equal 

probability.  

Circular block Bootstrap historical simulation method (CBBHS) generates pseudo 

returns by applying circular block bootstrap to original returns. Then every bootstrap sample 

allows acquiring an estimate of VaR using (1). In the end, the average of all the VaR estimates 

gives us the bootstrap estimate of VaR. 

 

2.3 Filtered Historical Simulation 

To overcome the problem arising with the assumption of constant volatility, Barone-

Adesi et al. (1999) introduced the filtered historical simulation method (FHS). This method is 

a Monte Carlo based approach that combines volatility models and the BHS method. Therefore, 

it can accommodate the volatility clustering, asymmetry and heavy tails of the empirical 

distribution of returns. According to the GARCH (1, 1) model, returns are generated as                                              

   𝑅𝑡 = 𝜎𝑡𝑧𝑡,                                                                       (2) 
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where 𝑍𝑡~𝑁(0,1) and 

𝜎̂𝑡+1
2 = 𝜔̂ + 𝛼̂𝑅𝑡

2 + 𝛽̂𝜎̂𝑡
2,                                                      (3) 

where 𝑅𝑡 denotes the daily return, 𝑧𝑡 are i.i.d standard normal random variables,  σt+1
2  denotes 

the conditional variance and the parameters 𝜔, 𝛼 𝑎𝑛𝑑 𝛽  satisfy  𝜔 > 0, 𝛼 ≥ 0  and  𝛽 ≥ 0  to 

ensure the positivity of the conditional variance.  

 

Step 1.  GARCH model is fitted to the return data via quasi-maximum likelihood. Once the 

parameters (𝜔̂, 𝛽̂, 𝛼̂) are calculated, the conditional variance is calculated using (3), with  𝜎̂1
2 =

𝜔̂

1−𝛼̂−𝛽̂
 . Then, the standardized returns, 𝑍̂𝑡 =

𝑅𝑡

𝜎̂𝑡
, are computed. 

Step 2. A sample of T standardized bootstrapped returns 𝑍̂𝑡
∗  (𝑡 = 1, … , 𝑇) is generated. 

Step 3. The FHS VaR is estimated via  

𝑉𝑎𝑅𝑇+1
∗𝑖 = 𝜎̂𝑇+1𝑍̂𝑆𝐻𝐹,𝑇 

∗ , 

where  𝑍̂𝑆𝐻𝐹,𝑇 
∗  is the 𝛼-th quantile of the empirical distribution of 𝑍̂𝑡 

∗ . 

Step 4. By repeating step 2 and 3 N times we acquire a series of FHS 𝑉𝑎𝑅𝑇+1
∗𝑖 , 𝑖 = 1, … , 𝑁. 

The estimator of VaR is  

𝑉𝑎𝑅̂ =
1

𝑁
∑ 𝑉𝑎𝑅𝑇+1

∗𝑖𝑁
𝑖=1 . 

 However, estimation of the parameters of GARCH model introduces a source of error 

due to the normality assumption of the innovations. Pascual et al. (2006) used bootstrap which 

allows incorporating the uncertainty of the estimated parameters without distributional 

assumptions on the sequence of innovations. Christoffersen and Gonçalves (2005) implemented 

this method to obtain confidence intervals for the VaR and expected shortfall. Furthermore, 

Hartz et al. (2006) used the bootstrap procedure proposed by Pascual et al. (2006) as a bias-

correction method, for improving the VaR forecasting ability of the normal-GARCH model. 

Estimation of the FHS VaR as suggested by Christoffersen and Gonçalves (2005) takes place 

as follows.  

 

Step 1.  GARCH model is fitted to the return data by maximum likelihood. Once the parameters 

(𝜔̂, 𝛽̂, 𝛼̂) are calculated, the conditional variance, using (3), is calculated.  

Step 2. The standardized returns are calculated:  𝑍̂𝑡 =
𝑅𝑡

𝜎̂𝑡
.  

Step 3. Obtain {𝑅𝑡
∗, 𝑡 = 1, … , 𝑇}  using the recursive formulas 

𝜎̂𝑡+1
2 ∗ = 𝜔̂ + 𝛼̂𝑅𝑡

2∗ + 𝛽̂𝜎̂𝑡
2 ∗ 

                     𝑅𝑡
∗ = 𝜎𝑡

∗𝑍𝑡
∗,  𝑡 = 1, … , 𝑇,                 (4) 
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where 𝜎̂1
2 ∗ = 𝜎̂𝑡

2 =
𝜔̂

1−𝛼̂−𝛽̂
 and 𝑍𝑡

∗  is a random draws with replacement from the original 

standardized returns series 

Step 4. Re-estimate the GARCH (1,1) for the replicate sample by maximum likelihood, 

resulting in a new set of parameters (𝜔̂∗, 𝛽̂∗, 𝛼̂∗)  

Step 5. A bootstrap prediction of volatility 𝜎̂𝛵+1
2 ∗   is obtained by using  

𝜎𝑇+1
2∗̂ = 𝜔∗̂ + 𝛼∗̂𝑅𝑇

2∗ + 𝛽∗̂𝜎𝑇
2∗̂, given the initial values  𝑅𝑇

∗ = 𝑅𝑇 and  

𝜎̂𝑇
2 =

𝜔̂∗

1−𝛼̂∗−𝛽̂∗ + 𝛼̂∗ ∑ 𝛽̂∗𝑗 [𝑅𝑇−𝑗−1
2 − (

𝜔̂∗

1−𝛼̂∗−𝛽̂∗)]𝑇−2
𝑗=0                                 (5) 

The equation (5) uses the initial series of returns therefore 𝜎𝑇
2 is small when returns at the end 

of period are small and large when these one are large. Therefore, 𝜎̂𝑡+1
2 ∗ incorporates the 

variability due to parameter estimation and take into account the state of process when we make 

an estimate.  

Step 5. Estimation of the FHS VaR takes place as 

𝑉𝑎𝑅𝑇+1
∗𝑖 = 𝜎̂𝑇+1𝑍̂𝑆𝐻𝐹,𝑇 

∗ , 

where  𝑍̂𝑆𝐻𝐹,𝑇 
∗ is the 𝛼 empirical quantile of 𝑍̂𝑡 

∗  . 

Step 6. Steps 3, 4 and 5 are repeated N times and a series of VaR,  𝑉𝑎𝑅𝑇+1
𝑖 , 𝑖 = 1, … , 𝑁 is 

acquired. The FHS estimator of VaR is given by  

𝑉𝑎𝑅̂ =
1

𝑁
∑ 𝑉𝑎𝑅𝑇+1

∗𝑖𝑁
𝑖=1 . 

 

2.3 GJR-GARCH (1, 1) model 

GARCH models allow us to express the conditional variance as a linear function of 

lagged squared returns and lagged conditional variance terms and it can successfully capture 

several characteristics of financial time series, such as heavy tails and volatility clustering.  

Bollerslev et al. (1992) showed that the GARCH(1,1) model (given in (2) and (3)) fits 

adequately to many financial time series.   

 GARCH model presents some implementation drawbacks, since bad and good news, 

have the same impact on the conditional variance. Indeed, equity markets often seem to display 

a strong asymmetry, a negative return boosts volatility by more than a positive return of the 

same absolute magnitude (Engle and Ng, 1993).  

 To overcome this limitation, asymmetric GARCH models were introduced. The most 

popular models proposed to capture the asymmetric effects are the Exponential GARCH 

(EGARCH) model of Nelson (1991), the Asymmetric GARCH (AGARCH) model of Engle 
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and Ng (1993), and the GJR-GARCH model (Glosten et al., 1993). Engle and Ng (1993) 

compared asymmetric volatility models and concluded that the GJR-GARCH is the best.  

 The GJR-GARCH(1,1) model allows negative and positive past shocks to have a 

different effect on future conditional second moments. This model simply augments the 

standard GARCH (1, 1) formulation with an additional ARCH term conditional on the sign of 

the past innovation 

𝑅𝑡 = 𝜎𝑡𝑍, 

 σt+1
2 = 𝜔 + 𝛼𝑅𝑡

2 + 𝜃𝐼𝑡𝑅𝑡
2 + 𝛽 σt

2 =𝜔 + (𝛼 + 𝜃𝐼𝑡)𝑅𝑡
2 + 𝛽 σt

2,  

where 𝑅𝑡  denotes the daily return, 𝑍𝑡 are i.i.d standard random variables,  σt+1
2  denotes the 

conditional variance, 𝐼𝑡 denotes the indicator function, 𝐼𝑡 = 1 if  𝑅𝑡 < 0 and 𝐼𝑡 = 0 otherwise 

and the parameters 𝜔, 𝛼, 𝛽  and 𝜃  satisfy  𝜔 > 0, 𝛼 ≥ 0 ,  𝛽 ≥ 0  and 𝛼 + 𝜃 > 0  to ensure the 

positivity of the conditional variance. Thus, the effect of positive innovation is given by 𝛼 and 

the effect of negative return is given by 𝛼+𝜃. Hence this model allows a response of volatility 

to news with different coefficients for good and bad news.  

The distribution assumed for the standardized returns in equation of GJR-GARCH can have an 

impact on the conditional volatility estimate. Indeed, there is no distribution that consistently 

produces better results for all returns series. Furthermore, Kuester et al. (2006) have found that 

the distribution used in the filtering stage influence the FHS VaR obtained. That is why we will 

apply the method of Christoffersen and Gonçalves (2005) which use Pascual et al. (2006) 

method that forecast the GARCH density based on a bootstrap procedure to obtain forecast of 

conditional volatilities which allows it incorporating the parameter uncertainty without relying 

on any particular assumption about the distribution of standardized returns. We will also 

replacing the GARCH model by GJR-GARCH. Thus, our method can incorporate parameter 

uncertainty, accommodate the volatility clustering, asymmetry and heavy tails of the empirical 

distribution of returns. 

 

3. Evaluating VaR methods 

Various tests have been suggested for evaluating VaR model accuracy. In this paper, 

statistical adequacy will be tested based on Christoffersen (1998) and Lopez (1999) backtesting 

measures.  
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3.1 Unconditional coverage 

Denoting the daily return of the portfolio at time 𝑡 as 𝑅𝑡 .The ex-ante VaR at time 𝑡 denoted 

as 𝑉𝑎𝑅𝑡. Christoffersen (1998) defines the sequence of VaR violations as 

𝐼𝑡(𝛼) = {
1 𝑖𝑓  𝑅𝑡 < 𝑉𝑎𝑅𝑡

0  𝑖𝑓   𝑅𝑡 ≥ 𝑉𝑎𝑅𝑡
}. 

 The unconditional coverage test implicitly assumes that the violations are independent 

and it examines whether the observed violation rate is statistically equal to the expected one. 

Nevertheless, if the unconditional cover allows making sure that the proportion of the 

exceptions for given period guarantees the nominal cover, it cannot detect clustered violations. 

For that purpose, Christoffersen (1998) introduced a second test, which is the test of 

independence. 

 

3.2 Tests of independence 

The second test proposed by Christoffersen (1998) checks whether violations are time 

dependent. Indeed, this test verifies that VaR violations observed at two different dates must be 

independently distributed. Thus, this test verifies whether the variable 𝐼𝑡(𝛼) associated with the 

exception in the date t, is independent from 𝐼𝑡−𝑘(𝛼) for any value of 𝑘 different from 0.  

 

3 .3 Conditional coverage 

Finally, the third test of Christoffersen (1998) is the test of conditional coverage which 

jointly examines the conjecture that the total number of failures is statistically equal to the 

expected one and the VaR violations are independent. Thus, the conditional coverage test can 

be decomposed into a test of the unconditional coverage plus a test of independence. 

 

3.4 Loss functions 

In most cases, there is more than one model that satisfies Christoffersen’s tests and 

hence, the risk manager cannot select a unique method. To overcome this shortcoming, Lopez 

(1999) suggested measuring the accuracy of VaR forecasts based on a loss function. We are 

going to consider the quadratic function which takes into account the scale of the exceptions 

𝐿𝑡+1 = {

  
1 + (𝑅𝑡+1 − 𝑉𝑎𝑅𝑡+1)2 𝑖𝑓   𝑅𝑡+1 ≤ 𝑉𝑎𝑅𝑡+1

0  𝑖𝑓   𝑅𝑡+1 ≥ 𝑉𝑎𝑅𝑡+1

}.                                 (6) 

This loss function (6) accounts for the magnitude of the tail losses and adds a score of 1 

whenever a violation is observed. Under this framework, a method will be preferred if it 

minimizes the total loss ∑ 𝐿𝑡
𝑇
𝑡=1 . 
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4. Empirical Results 

The main propose of this study is to empirically assess different VaR estimation methods. 

 

4.1 Data and descriptive statistics 

The data set used throughout this paper consists of daily returns of portfolio composed 

of five shares: AXA, Peugeot, L’Oreal, Air France and Air liquid and it is assumed that the 

portfolio weights are equal and constant over time. The sample period is from April 24, 2003 

to February 27, 2009 with the total of 1500 observations. The sub-period from March 22, 2006 

has been reserved for backtesting purposes. We computed the daily log returns which defined 

by Rp(t) = log(
pt

pt−1
⁄ ), where pt is the price of portfolio at time 𝑡. All computations were 

implemented with MATLAB 7.1 and R 3.1.  

  

 

Figure 1. Evolution of daily portfolio returns from April 24, 2003 to February 27, 2009  

 

Mean Minimum Maximum 
Standard 

deviation 
Skewness Kurtosis Jaque-Bera 𝑄2-Test 

-0.0003 -0.0845 0.111 0.0158 0.0846 10.0107 727.88 45.7726 

Table 1. Summary statistics of the returns. 

 

 Figure 1 shows that daily returns of portfolio are highly volatile. Thus, we can conclude 

that the portfolio returns have the features of volatility clustering.  

 From Table 1 we see that the mean of daily log returns is close to zero. The maximum 

and minimum statistics are quite large in absolute value, indicating the presence of extreme 

returns. Positive skewness implies that positive extreme returns are more likely to occur than 

the normal distribution forecasts. Kurtosis is greater than 3, which means that extreme events 

occur more frequently in the sample data than can be expected under normal distribution. 

0 500 1000 1500
-0.1

-0.05

0

0.05

0.1

0.15
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Furthermore, the Jarque-Bera normality test provides further evidence of the non normality of 

the distribution..  

 Moreover, the Ljung-Box 𝑄2  test shows a significant autocorrelation, since there is 

volatility clustering, that is, the returns are not i.i.d and GARCH type models should be 

considered when estimating VaR. Hence, any VaR method must account for volatility 

clustering, excess kurtosis and skewness at the same time. 

 

4.2 Out-of-sample evaluation 

For evaluating performance of competing VaR methods, we compare VaR in terms of 

out-of-sample one-step-ahead predictive ability. For each method, a rolling window of 750 

observations of daily data are used in estimation, and used to form a VaR forecast for day 751. 

After this, data from day 2 till 751 is used in estimation to obtain a VaR forecast for day 752. 

This procedure is repeated until the VaR of all observations will be forecast. The results will be 

firstly examined graphically and secondly by using the violation rate, the likelihood ratio tests 

statistics for the unconditional coverage, independence and conditional coverage and the 

quadratic loss function (6). In all cases, bootstrap was used with 1000 re-samples.  

 

4.2.1 Graphical analysis 

 Figure 2(a) shows that the VaR estimates computed with the BHS and CBBHS methods 

are representative of actual portfolio losses. We can see also that this method is not an efficient 

VaR estimator since it does not react adequately to the changes in the market and occurrence 

of extreme events that is to say it does not adapt adequately and timely to the changes. Indeed, 

the subprime and financial crises increase dramatically market volatility. The BHS and CBBHS 

methods (Figure 2(a)) do not update the VaR number quickly enough when market volatility 

rises.  

 In order to incorporate volatility clustering in bootstrap method we use FHS. We can 

see from Figure 2(b) that the FHS method provides a major improvement over the BHS method. 

Indeed it reacts much stronger to volatility changes in returns than the others methods do. 

Therefore, it seems to describe more efficiently the tails of the empirical distribution.  

 A comparison between the FHS method proposed by Barone-Adesi et al. (1999) and 

that proposed by Christoffersen and Gonçalves (2005) is presented in Figure 2(b). The 

Christoffersen and Gonçalves (2005) FHS VaR estimates are more accurate than the Barone-

Adesi et al. (1999) FHS VaR estimates. Thus, we have evidence to say that when the bootstrap 

is applied to estimate GARCH parameters the estimated VaR will be more precise.  
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 To highlight the pertinence of asymmetric GARCH models, we are going to compare 

results given by FHS-GJR-GARCH method with those given by FHS-GARCH method offered 

by Christoffersen and Gonçalves in (2005) (see Figure 2(c)).  

            Figure 2(c) shows that the FHS-GJR-GARCH VaR estimates are generally higher and 

considerably more volatile than the FHS-GARCH VaR estimates. Therefore, this method seems 

to capture the portfolio risk adequately. Indeed, this method can accommodate the volatility 

clustering, leverage effect, asymmetry and heavy tails of the empirical distribution of portfolio 

returns. Furthermore, this method allows incorporating parameter uncertainty in GARCH 

model.   

 The majority of methods performed poorly at the 99 percent level of confidence. In 

addition, we observe that conditional VaR forecasts increase with increasing volatility but also 

decrease with decreasing volatility. Unconditional models on the other hand, produce VaR 

forecasts that react to changing market conditions slowly. The FHS with GJR-GARCH 

volatility model produces more accurate forecasts and performs better than all other methods.  

 

 
(a) 

 
(b) 

 
(c) 

March 2006 March 2007 March 2008 March 2009
-0.1

-0.05

0

0.05

0.1

0.15

 

 

Portfolio returns

BHS VaR

CBBHS VaR

March 2006 March 2007 March 2008 March 2009
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 

 

Portfolio returns

FHS VaR Barone-Adesi et al. (1999) 

FHS VaR Christoffersen and Gonçalves (2005)

March 2006 March 2007 March 2008 March 2009
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 

 
Portfolio returns

FHS-GARCH VaR Christoffersen and Gonçalves (2005) 

FHS-GJR-GARCH VaR Christoffersen and Gonçalves (2005) 



12 
 

Figure 2. Portfolio returns and 99 percent VaR estimates of (a) the BHS method, (b) FHS as 

suggested by Barone-Adesi et al. (1999) and Christoffersen and Gonçalves (2005) and (c) FHS-

GJR-GARCH method with the FHS-GARCH suggested by Christoffersen and Gonçalves 

(2005).  

4.2.2 Comparison of the VaR methods  

VaR methods are compared with respect to four criteria: violation rate and likelihood 

ratio tests statistics for the unconditional coverage, independence and conditional coverage (see 

Table 2).  

 The violation rate is defined as the number of violations divided by the total number of 

forecasts. If the VaR method is correctly specified, the failure rate should be equal to pre-

specified VaR level. Thus, at 99 percent confidence level, it is only allowed for violation rate 

to be violating around 1 percent.  

VaR methods 
VaR violations 

(violation rate) 
𝐿𝑅𝑢𝑐 𝐿𝑅𝑖𝑛𝑑 𝐿𝑅𝑐𝑐 Loss function 

BHS 
11 (1.47 

percent) 
1.4613 0.3288 1.7901 11.0022 

CBBHS  
10 (1.335 

percent) 
0.769 0.271 1.067 10.0018 

FHS  
7 (0.935 

percent) 
0.033 0.132 0.184 7.000 

FHS GARCH 
5 (0.668 

percent) 
0.947 0.067 1.028 5.000 

FHS GJR-GARCH 
0 (0.000 

percent) 
Undefined Undefined Undefined 0.0000 

Table 2. Violation rates and the likelihood ratio test statistics for the unconditional coverage, 

independence and conditional coverage. The numbers in bold indicate rejection of the null 

hypothesis at the 5 percent significance level.  

 

 According to this criterion, the best model among these methods is the FHS-GJR-

GARCH since it is able to forecast correctly all the losses. The next best model is the FHS-

GARCH having 5 violations and the third best model is the FHS which has 7 violations.  

 At first, we examined whether the observed violation rate was equal to the expected one. 

We then checked whether the probability of a violation occurring in one day is independent 

from events occurred the day before. Finally, we applied the conditional coverage test.  
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 Based on the violation rate and the three backtesting measures, the methods that give 

accurate forecasts are the CBBHS, BHS, the FHS, the FHS and the GJR-GARCH models.  

 

4.2.3 Model selection  

According to the backtesting results, there are many methods that perform well. 

Therefore, we use the quadratic loss function to choose the VaR method which yields the least 

loss. Table 2 presents the summary results of the quadratic loss function approach.  

 The results lead to the conclusion that even though CBBHS, BHS or FHS and FHS 

GARCH provide correct conditional coverage for 99 percent confidence level, risk managers 

should be very careful when using it. Amongst these methods, the FHS-GJR-GARCH is 

preferred since it minimizes the value of the quadratic loss function (6). Therefore, the 

combination of an HS method and an asymmetric volatility model yields the best results.  

 

6. Conclusions  

The results of this paper provide an important implication to investors, risk managers 

and financial institutions. It show that the consideration of the asymmetric effect of the positive 

and negative returns in conditional variance and the use of bootstrap to reduce parameters 

estimation errors in GARCH models are necessary for accurate estimation of risk. 

 We proposed a new method to estimate VaR, the FHS GJR-GARCH which is a 

bootstrap based approach that combines asymmetric volatility model and the BHS method. In 

addition, it extends the resampling technique of Pascual et al. (2006) which accounts for 

parameters estimation error in GARCH models.   

 The BHS methods do not update VaR quickly when market volatility increases. The 

FHS GJR-GARCH method is the best performer since it provides more precise VaR estimates 

and its testing results are more significant. We saw that bootstrap reduces significantly the error 

of the parameters in the GARCH(1,1) model and improves considerably the performance of 

VaR methods. In addition, the consideration of the asymmetric effect of the positive and 

negative returns in conditional variance allows giving more precise results. Consequently, 

investors are encouraged to use the FHS GJR-GARCH method to estimate VaR.  

 The methods presented and studied above are well-suited for providing forecasts of 

portfolio returns. However, the dependence in the comouvements of asset returns in portfolio 

is important. Thus, to expand on the work done in this paper, FHS GJR-GARCH method needs 

to be improved in ways that account for correlations. In other words, a multivariate volatility 

models should be adopted to have a complete picture of the risk. A possible suggestion, for 
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further research could be the dynamic conditional correlation GJR-GARCH (DCC-GJR-

GARCH) model which can accommodate the volatility clustering, correlation dynamics, 

leverage effect and heavy tails of the empirical distribution. 
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