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Abstract  

This paper explores the relationship between U.S economic activity and renewable energy 

sources namely hydroelectric power, geothermal energy, wood energy, waste energy, biofuel, 

biomass energy, and total renewable energy. Monthly data for the period January 1981 to March 

2015 is used to depict the comovements between the variables through Wavelet Squared 

Coherence (WTC) and Multiple Wavelet Coherence (MWCC) approaches. Maximal overlap 

wavelet correlation and cross-correlation measures, analogous to WTC and MWCC, show strong 

positive comovement in long-run. The causal linkage between economic activity and renewable 

energy sources is examined through bootstrap rolling window causality. The analysis reveals the 

significant reciprocal effects between the economic activity and energy use during the periods of 

extreme events. Overall, findings indicate that renewable energy sources play an important role 

in stimulating economic activity. This shows that present study has important implications for 

US energy policy authorities. 

Keywords: Bootstrap rolling causality; economic activity; renewable energy sources; time-
frequency analysis 
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I. Introduction  

The rapid climate changes have increased the importance of exploration and usage of 

renewable energy sources (Kula, 2014). It has also been reported by International Energy 

Outlook (2010) that share of renewable energy would rapidly be increasing to world energy 

source due to fast growing industrial activity over the period of 2007-2035. The use of non-

renewable energy sources is high compared to renewable energy sources but exploration of 

renewable energy sources is still a main concern of government policies (Apergis and Payne, 

2012). Furthermore, it is pointed by Apergis and Payne (2010) that price volatility of fossil fuels 

such as oil and rise in energy pollutants due to rapid usage of fossil fuels have inclined the policy 

makers to explore alternative energy sources to meet rising demand of energy for sustainable 

economic development in long-run. To explore and develop alternate energy sources such as 

renewable energy sources1, governments at global level have been providing tax credits for 

renewable energy production, subsidies as well as portfolio standards for renewable energy and 

other relevant policy initiatives have been adopted for renewable energy development (Kaygusuz 

2007, Apergis and Payne 2012). The development of renewable energy sources may secure a 

country from foreign reliance to meet domestic energy needs, increase energy efficiency and 

secure the country form energy crisis, improve environmental quality and boost economic 

activity (Kalkos and Tzeremes, 2013).   

The United States used renewable energy source such as wood to meet her 90% energy demand 

almost fifteen decades ago. With the passage of time, the United States became less reliant on 

wood energy due to rapid use of coal, petroleum and natural gas. The rise in environmental 

concerns have popularized the use of wood energy to meet energy needs in the United States 

today (EIA, 2014). The United States met 11% of total energy demand by using renewable 

energy sources in 2014 and renewable energy sources also used to generate 13% of total 

electricity over same period. More than 50% of electricity (from renewable energy sources) is 

generated from wood and waste (biomass energy) energy sources. Wood and waste energy 

sources are used for providing heat and steam to industrial sector as well space heating (EIA, 

2014). Ethanol and biodiesel are also part of biomass energy are utilized for transportation 

activity. Furthermore, non-biomass renewable energy sources produce such as i.e. hydropower, 

                                                             
1 Renewable energy sources are hydroelectricity, geothermal, solar, wind, biomass, wave, and tidal energy 
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geothermal, wind and solar2 less greenhouse gas emissions compared to fossil fuels (EIA, 2013). 

The incentive provision of the US government doubled the consumption of renewable energy 

sources use over the period of 2000-2014. In 2014, solar arrays provide net metering facility to 

43 states of the United States. The electricity generated from hydro energy sources is 6.2% of 

total electricity production in 2010 and is continuing to grow (EIA, 2013). The United States 

ranked 4 for hydroelectricity production in the world3. 

The American Outlook on Renewable Energy report (2007) indicated the reasons why the United 

States is moving for renewable energy sources: “Americans need energy that is secure, reliable, 

improves public health, protect the environment, addresses climate change, create jobs, and 

proves technological leadership. American needs renewable energy. If renewable energy is to be 

developed to its full potential, America will need coordinated, sustained federal and senate 

policies that expand renewable energy markets, promote and deploy new technology; and 

provide appropriate opportunities to encourage renewable energy use in all critical energy 

market sectors: wholesale and distributed electricity generation, thermal energy applications, 

and transportation”. Later on, the US government announced officially in 2009 to expand 

renewable energy sources to its full potential for energy security and mitigation of climate 

change. 

This inspires the researchers to examine the relationship renewable energy sources and economic 

activity either the US government initiatives to renewable energy sources promote economic 

activity or economic activity forces the US government to explore renewable energy sources. 

This study contributes in existing energy literature by: (i) the study investigates the relationship 

between renewable energy sources and economic activity for the US economy which has never 

empirically examined ever before. (ii) we have applied the series of wavelets such as continues, 

coherence, discrete and maximal overlap approaches to examine the correlation between 

renewable energy sources and economic activity. Aguiar-Conraria et al. (2008) have pointed out 

the two very important features of the wavelets analysis. First, the (discrete) wavelet transform 

has often been applied in the in most of the economic applications as a low and high pass filter. 

The economist find it hard to believe that these methods can provide better understanding of the 

                                                             
2 Solar industry in the United States has provided employed 143,000 people.  
3 China, Canada and Brazil are larger producers of hydroelectricity production in the world. 
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data in comparison to the traditional techniques i.e. band pass filtering technique. Secondly, it is 

difficult to analyze two or more time series simultaneously. Most of the previous economic 

studies have either used this technique to examine individual time series or several time series 

individually. And the decomposition is then further studied by using the using the traditional 

time series methodologies e.g. correlation or Granger causality analysis (Aguiar-Conraria et al. 

2008, p. 2865). The wavelet power spectrum deals with a single time series and helps to examine 

the variations in a time series at different frequencies and periods over different scales. The 

inability of wavelet power spectrum to deal with two time series have been overcome by 

Hudgins et al. (1993) and Torrence and Compo (2013) by developing the cross wavelet power 

and cross (squared) wavelet coherency, and phase difference. These techniques can deal with 

two time series by accommodating the time frequency analysis. These methods show the curbed 

covariance and correlation coefficient between different series in the time frequency space. The 

addition of phase term helps to examine the occurrence of pseudo cycle over the time. This phase 

difference also provides information regarding the lead-lag relationship between fluctuations of 

the two time series (Aguiar-Conraria et al. 2008, p. 2867). The continuous wavelet can also deal 

with the time series irrespective of the stationary properties. (iii), the direction of causality 

between renewable energy sources and economic activity is investigated by applying the rolling 

window Granger causality approach. We find the existence of positive strong co-movement in 

long-run confirmed by wavelets analysis. The bi-directional causality running from renewable 

energy to economic activity and vice versa is validated by the rolling causality analysis. 

2. Literature Review 

An interesting relationship of energy-growth nexus introduced by Kraft and Kraft (1978) 

who reported that economic growth is cause of energy consumption. The relationship between 

energy consumption and economic growth is still an area of interest for researchers, 

academicians and practitioners (Cho et al. 2016). The presence of causal association between 

energy consumption and economic growth provides policy guidelines not only at aggregated, 

sectoral levels but also at macro level (Salim et al. 2014). Existing energy literature provides 

numerous studies investigating the energy-growth nexus by using different indicator of energy 

consumption i.e. primary energy consumption, electricity consumption, non-renewable energy 

consumption and renewable energy consumption (Ozturk, 2010). Due to environmental concerns 
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of non-renewable energy sources usage, countries have been moving to renewable energy 

sources to meet rising energy demand for sustainable economic development (Apergis and 

Payne, 2010a)4.  

The existing energy literature on renewable energy consumption-economic growth nexus 

provides four distinct hypotheses: (i) Growth hypothesis reveals that economic growth is cause 

of renewable energy consumption i.e. unidirectional causality running from renewable energy 

consumption to economic growth (Payne, 2010). In such situation, renewable energy 

consumption plays its vital role to promote economic activity and any reduction in energy supply 

(renewable energy) will impede domestic production and in resulting, economic growth is 

declined. This hypothesis empirically supported by Bobinaite et al. (2011) for Lithuania, Pao and 

Fu (2013) for Brazil, Magnani and Vaona, (2013) for Italy, Halkos and Tzremes (2013) for 

European countries, Ohler and Fetters (2014), Inglesi-Lotz, (2015) for OECD countries and Kula 

(2014) for global level, Tiwari et al. (2015) for Sub-Saharan Africa, Bhattacharya et al. (2016) 

for 38 countries and Ibrahim (2015) for Egypt reported that renewable energy consumption 

Granger cause economic growth. (ii) Feedback hypothesis reveals the bidirectional causal 

relationship between renewable energy consumption and economic growth. This shows that 

renewable energy consumption Granger causes economic growth and in return, economic growth 

causes renewable energy consumption in Granger sense. This indicates that both variables are 

interdependent and decline in renewable supply may decline economic growth which in 

resulting, declines renewable energy demand. The bidirectional causality between renewable 

energy consumption and economic growth is supported by Sadorsky (2009), Apergis and Payne 

(2010a, b), Apergis and Payne (2012a, b), Al-mulali et al. (2013), Lin and Moubarak (2014), 

Marques et al. (2014), Shahbaz et al. (2015), Cho et al. (2015) and Chang et al. (2015) for 

emerging economies, OECD countries, Eurasia, global level, 80 developed and developing 

countries, African countries, China, Greece, Pakistan, 80 countries and G7 countries 

respectively. This implies that development of renewable energy sources should be encouraged 

for sustainable economic development and environmental quality. In such situation, renewable 

energy supply would play vital role in stimulating economic activity and energy conservation 

policies must be discouraged.                                            

                                                             
4 The usage of renewable energy sources may help in improving environmental quality by reducing energy 
pollutants. 
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Table-1: Summary of existing studies on renewable energy-growth nexus 
No. Author (s) Country/Region Variable Methodology Results  
1. Sadorsky, (2009) Emerging Economies  Y, R PVECM YR   
2. Apergis and Payne, (2010a) OECD countries Y, R, K, L PVECM YR   
3. Apergis and Payne, (2010b) Eurasia Y, R, K, L PVECM YR   
4. Apergis and Payne, (2011) Central America Y, R, K, L PVECM YR   
5. Menegaki, (2011) European countries Y, R, E, M PVECM YR   
6. Bobinaite et al. (2011) Lithuania Y, R GC YR   
7. Apergis and Payne, (2012a) Global level Y, R, K, L PVECM YR   
8. Apergis and Payne, (2012b) 80 countries  Y, R, K, L PVECM YR   
9. Tugcu et al. (2012) G7 countries  Y, R, L, HC, RD ARDL YR   
10. Pao and Fu, (2013) Brazil Y, R, K, L VECM YR   
11. Magnani and Vaona, (2013) Italy Y, R, K, L PVECM YR   
12. Ocal and Aslan, (2013) Turkey Y, R ARDL, VECM YR   
13. Al-mulali et al. (2013) African countries  Y, R FMOLS YR   
14.  Halkos and Tzremes (2013)  European countries Y, R, K, L CRSbc R leadsY  
15. Ohler and Fetters (2014)  OECD countries  Y, R, K, L PVECM YR   
16. Kula, (2014) Global level Y, R PVECM YR   
17. Lin and Moubarak, (2014) China Y, R, E, L ARDL, VECM YR   
18. Marques et al. (2014) Greece Y, R VECM YR   
19. Salim et al. (2014) OECD countries  Y, R, K, L PMGC YR   
20. Inglesi-Lotz, (2015) OECD countries  Y, R, K, M, RD FE R leadsY  
21. Shahbaz et al. (2015) Pakistan  Y, R, K, L ARDL, VECM YR   
22. Cho et al. (2015) 80 countries  Y, R, K, L PVECM YR   
23. Tiwari et al. (2015) Sub-Saharan Africa Y, R G-H YR   
24. Chang et al. (2015) G7 countries  Y, R T-Y YR   
25. Bhattacharya et al. (2016) 38 countries Y, R, K, L FMOLS R leadsY  
26. Ibrahim, (2015) Egypt  Y, R, FDI ARDL, ECM R leadsY  
      Note: Y economic growth, R  renewable energy consumption, K  capital, L  labor, M employment, E  CO2 emissions,  
        RD  research & development expenditures in energy and HC  human capital. Y  R, Y  R, Y  R, and Y  R indicates no 

causality, from economic growth to renewable energy consumption, from renewable energy consumption to economic growth and feedback 
effect between renewable energy consumption and economic growth. CRSbc Constant Returns to Scale Bootstrap causality, VECM  
vector error correction model, GC  Granger causality, G-Y  Granger and Yoon hidden cointegration approach, PVECM  panel vector 
error correction model, FE  fixed effect model, T-Y Toda and Yamamoto.  

 
On contrarily, (iii) Conservation hypothesis which reveals that economic growth is not cause of 

renewable energy consumption and may other factors determine economic growth. This shows 

that renewable energy consumption does not seem to play its role for enhancing domestic 

production and hence economic growth. In such situation, causality should be running from 

economic growth to renewable energy consumption and similar would not be true from opposite 

side. Renewable energy consumption is Granger cause of economic growth empirically 

supported by Salim et al. (2014) for OECD countries who noted the unidirectional causality 

running from economic growth to renewable energy consumption. Lastly, Neutral effect between 

renewable energy consumption and economic growth reveals no causal relationship between 

both variables. In Turkish economy, Ocal and Aslan (2013) reported that neither renewable 



7 
 

energy consumption causes economic growth nor economic growth causes renewable energy 

consumption in Granger sense. This shows that energy conservation policies may not impede 

economic activity and hence economic growth because both variables are independent. 

For the US economy, there are few studies investing relationship between energy consumption 

using disaggregated (energy sources), sectoral and aggregated data with conflicting empirical 

findings. At aggregated level, for example, Abosedra and Baghestani (1991) supported the 

findings of Kraft and Kraft (1978). Later on, Stern (1993) employed augmented production 

function to expose the relationship between energy consumption by applying VAR approach but 

found the neutral effect between the variables. Similarly, Stern (2000) reported a limited role of 

energy consumption in promoting US economic growth. Jin et al. (2009) incorporated energy 

prices in production function to test the association between energy consumption and economic 

growth by applying variance decomposition approach and impulse response function. Their 

analysis indicated the neutral role of energy consumption in economic growth process. Payne 

(2009) applied the Toda-Yamamoto causality for reinvestigating the association between energy 

(renewable and nonrenewable) consumption and economic growth. The results show that neither 

energy (renewable and nonrenewable) consumption causes economic growth nor economic 

growth causes energy (renewable and nonrenewable) consumption. Fallahi (2011) investigated 

the causal relationship between energy consumption and economic growth by applying Markov-

switching vector autoregressive (MS-VAR) models. The results exposed that energy 

consumption and economic growth are interdependent i.e. feedback effect. 

Hatemi-J and Uddin (2012) applied the bootstrap asymmetric causality between energy 

consumption and economic growth and their results showed that negative shock in energy 

consumption leads to negative shock in domestic output. Kocaaslan (2013) applied the Markov 

switching VAR model to investigate the direction of causal relationship between energy 

consumption and economic growth and reported that energy consumption causes economic 

growth. The results show that coal consumption is cause of economic growth and economic 

growth is caused by electricity consumption in Granger sense. Further, the feedback effect exists 

between energy consumption (natural gas, primary energy and renewable energy) and economic 

growth.     
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Table-2: Summary of studies on energy-growth nexus in the United States 
No. Author Variable Method Growth Hypothesis Feedback Effect Conservation Effect Neutral Effect 
1. Kraft and 

Kraft 
(1978) 

EC, GNP N.A   … … … 

2.  Abosedra 
and 
Baghestani 
(1991) 

EC, GNP GC   … … … 

3. Stern, 
(1993) 

EC, Y, K, L J-C, GC … … …   

4. Stern, 
(2000) 

EC, Y, K, L  … … …   

5. Jin et al. 
(2009) 

EC, EP, Y, K, L VDC, IRF … … …   

6. Payne, 
(2009) 

RE, NRE, Y T-Y   … …   

7. Fallahi, 
(2011) 

EC, Y MSC …   … … 

8. Hatemi-J 
and Uddin 
(2012) 

EC, Y BAC   … … … 

9. Kocaaslan, 
(2013) 

EC, Y MSC   … … … 

Note: Y  economic growth, GNP  gross national product, EC  energy consumption, K  capital, L  labor, EP  energy prices,  
RE  renewable energy consumption, NRE  non-renewable energy consumption, GC  Granger causality, J-C  Johansen cointegration, 
VDC  variance decomposition, IRF  impulse response function, T-Y  Toda and Yamamoto, MSC  Markov-switching causality,  
BAC  bootstrapping asymmetric causality. 
 
At disaggregated level, Ewing et al. (2007) investigated the association between industrial 

production and energy consumption. They have applied various sources of energy such as total 

energy consumption, total renewable energy, coal, fossil fuels, hydroelectricity, solar energy, 

wood energy, gas consumption, alcohol, geothermal and waste. By applying variance 

decomposition approach, their empirical analysis indicated that shocks occurring in coal, gas and 

fossil fuels explain shocks stem in industrial output i.e. growth hypothesis. Sari et al. (2008) 

reexamined the linkages between energy consumption (disaggregated) and economic growth by 

applying the bounds testing approach to cointegration. They considered employment as an 

additional determinant of energy consumption and domestic production. They found that coal is 

negatively linked with industrial production but industrial production leads fossil fuels, 

hydroelectricity, waste, wind and wood. Furthermore, industrial production declines demand for 

solar and natural gas5. By applying Toda-Yamamoto Granger causality, Bowden and Payne 

(2009) examined the relationship between economic growth and energy consumption at 

disaggregated level. Their empirical analysis indicates the feedback effect between transportation 

energy consumption and real GDP and real GDP is also Granger cause of industrial energy 

                                                             
5 Employment is negatively associated with industrial production, fossil fuels, hydroelectricity, waste and wind but 
positively linked with natural gas, solar and wood 
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demand6. The bidirectional causal relationship is noted between commercial energy consumption 

and real GDP and similar is true for residential energy consumption and real GDP. Yildirim et al. 

(2012) applied Toda-Yamamoto Granger causality and asymmetric causality to test the presence 

of causal relationship between economic growth and renewable energy sources. Their empirical 

analysis confirmed the presence of neutral effect between economic growth and kinds of 

renewable energy sources. Gross (2012) investigated the linkages between energy consumption 

and economic growth at sectoral level by applying the VECM Granger causality. The empirical 

findings indicated the conservation hypothesis in commercial sector but the feedback effect is 

noted in transportation sector. Recently, Tiwari (2014) probed the linkage between economic 

growth and energy consumption at disaggregated level by applying asymmetric Granger 

causality.           

3. Methodology 

3.1 Wavelet approaches  

3.1.1 Continous wavelet approach and wavelet coherence 

Wavelets are ‘small waves’ that grow and decay in a limited time period. The results from a 

mother wavelet i.e. ψ(t) can be expressed as a function of two parameters: the first one shows 

where the wavelet is centered (τ: translation parameter) while the second indicates the analysis 

resolution (s: dilation parameter). Formally, wavelets are defined as: 

  
 s

s
t

s
tts 







 





1)(,  with   , s 0. (1) 

To be a mother wavelet, )(, tts  must have a zero mean, 0)( 



dtt  when squared, must be 

integrated to unity: 



 1)(2 dtt . This condition implies that ψ(t) is limited to an interval of 

time. Furthermore, the continuous wavelet transform (hereafter, CWT) has the aptitude to 

decompose and reconstruct a given time series x(t) — the admissibility condition — based on the 

following formula: 

 

                                                             
6 Ziramba (2009) reported the feedback causality between oil consumption and industrial growth for South Africa.  
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The CWT (denoted by C ) also preserves time series characteristics, therefore: 

  

 2

22 ),(1
s
dsdsw

C
x x 












 



. (3) 

In the wavelet literature, various wavelet functions types are proposed including the Coiflet, 

Symmlet, Haar, Debauchies, and Gabor wavelets. Therefore, choosing the suitable wavelet is a 

critical matter since wavelet coefficients ),(, sWx  contain combined information on both the 

function x(t) and wavelet-based decompositions )(, tts , the properties of used time series are 

crucial.  

The most frequently used wavelet is undeniably the Morlet’s wavelet introduced by Goupillaud 

et al. (1984).  Formally, the Morlet’s wavelet is given by:  

 2

2

2

2

4
1

)(
t

ti eeet

















  , (4) 

where the term 2

2

e guarantees the admissibility condition. Thus, for 5 , the above-mentioned  

term becomes negligible and the Morlet wavelet is obtained as: 

 

   2

2

4
1

)(
t

ti eet


 
  ; (5) 

meanwhile, the Fourier transform of the true Morlet wavelet is given by: 

 

 
 22

2
1

4
1

2)(


 





f

ef . (6) 

The spectral density of time series across two-dimensional time scales can also be estimated 

using the wavelet power spectra (hereafter, WPS). Torrence and Compo (2008) compute white 

and red noise WPS and derive the corresponding distribution for the local wavelet power 

spectrum at each time n and scale s, as follows: 
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 , (7) 

where the value of Pf is the mean spectrum at the Fourier frequency f corresponding to the 

wavelet scale s and where υ is equal to 1 or 2 for real or complex wavelets, respectively. 

WTC can be defined as the ratio of cross-spectrum to the product of the spectrum for each series 

and can be viewed of as local correlation between two time series in the time-frequency 

dimension (Aguiar-Conraria et al. 2008)). Thus, a WTC value close to one shows high degree of 

synchronization between time series but a WTC value close to zero implies no relationship. 

Although the WPS describes time series variance, with times of large variance showing large 

powers, the cross-wavelet power of two time series depicts the covariance between these time 

series at each scale or frequency. The WTC isolates regions in the time-frequency domain where 

the stated time series co-move, even if they may not exhibit a common high power. 

Following Goupillaut et al. (1984), the cross-wavelet transform of two time series x(t) and y(t) is 

defined as follows: 

 Wxy(τ,s)= Wx(τ, s) W*
y(τ, s), (8) 

In the eqution-8, Wx(τ, s) and Wy(τ, s) designate the CWTs of x(t) and y(t), respectively. τ is a 

position index indicating the scale and the symbol * refers to a complex conjugate. The cross-

wavelet power can easily be calculated using the cross-wavelet transform as |Wxy(u, s)|. Torrence 

and Webster (1999) define the squared wavelet coherence (hereafter, SWC) coefficient as 

follows: 

  
  

   

XY
t

t
X Y

t t

S s W s
R s

S s W s S s W s



 


      
   

21
2

2 21 1
, (9) 

 



12 
 

S is a smoothing operator. WTC can be considered as a correlation coefficient localized in the 

time-frequency domain with a value that ranges between 0 and 1 (see e.g. Grinsted et al. 2004). 

3.1.2 Wavelet Multiple coherence 

The multiple wavelet coherence (MWC) can be perused as a generalization of the bivariate 

coherence approach this it enables us to depicts the co-movement between a set of independent 

time series across time scales. Obviously, the MWC is more flexible than the standard WC since 

it encompasses the higher dimensionality of the data. Following Huang et al. (2016), the MWC 

is defined as follow: 

 (10) 

The mentioned ratio is the squared result of the MWC of three time series (including IPI and two 

kinds of renewable energy assets).  are the wavelet squared coherence 

between each combination of pairs. 

3.1.3. The maximal overlap wavelet  

The maximal overlap wavelet is a discrete wavelet transform (WDT) and has several names in 

the wavelet literature such as the “non-decimated DWT”, the “stationary DWT”, the “translation-

invariant DWT” and the “time-invariant DWT” (e.g. Nason and Silverman, 1995; Coifman and 

Donoho, 1995). While wavelet coefficients are related to non-overlapping differences of 

weighed averages from the original signal in the case of WDT, the MODWT algorithm computes 

all the shifted time intervals describing overlapping differences (considering all possible 

differences) at each scale and thus allows us to obtain the maximum amount of information 

about the variability of the signal. The number of wavelet and scaling coefficients at every scale 

is equal to the original number of observations. The MODWT filter is obtained directly from the 

discrete wavelet transform (DWT) filter. Thus, the MODWT scaling kj, and wavelet kj, filters 

are given by: 

       kj,
j

kj
/2
,

2


  



13 
 

 kj,
2/

,
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kj

                                           (11) 

 

For a time series, X with arbitrary sample size N, the Jth level MODWT scaling tj ,
~ and 

wavelet tjw ,
~  coefficients are obtained using the following formulas: 
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3.1.4 The correlation and cross wavelet cross correlation 

In this section, we provide a brief description of the maximal overlap wavelet correlation and 

cross correlations, useful for assessing the main lead/lag relationships between economic activity 

and energy consumption. 

 

Wavelet variance has proven to be useful in providing an accurate scale-based decomposition of 

the time-varying sample variance (Serroukh et al. 2000). Let Xt be a second-order stationary 

stochastic process with zero mean. As the wavelet variance decomposes the variance of tx  on a 

scale-by-scale basis (see Percival, 1995), the wavelet variance at scale τj is given by: 

 )(
2

1
,

2
, tj

j
jX wVar


  , (13) 

where 12  j  and tjw ,  is the wavelet coefficient (defined below). The estimated wavelet 

variance of tx  for a given scale sj can also be expressed in terms of the normalized sum of the 

squared wavelet coefficients as: 
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,

1

0

2
,

2
,

~1
2

1)(~ jj N

t
tj

N

t
tjJ

j
jx w

N
w

N
 . (14) 

Overall, the MODWT variance estimator is efficient given its flexible properties (see Gallegati 

2008). The MODWT provides a straightforward solution to the tricky problem of time series 

boundary effects. For the stochastic processes Xt and Yt, wavelet covariance for scale j is defined 

as: 
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Y
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X
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The MODWT covariance between Xt and Yt can be expressed in terms of the wavelet 

coefficients at different scales j by: 

   Y
tj

N

t

X
tjjXY

j
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0
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 . (16) 

Finally, the cross-covariance and its normalized version for scale j  at lag λ is given as follows: 
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N
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X
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3.2. The bootstrap Rolling MWALD causality test  

Following Balcilar et al. (2010) and Tang (2013, 2015), we apply the bootstrapping rolling 

causality test to the pair wised IP-renewable energy consumption. The mentioned method is 

enough flexible to adequately capture the time varying causality features. Zapata and Rambaldi 

(1997) stated that the MWALD is more feasible because of its simplicity and its higher 

performances in larger samples. Furthermore, Mantalos (2000) proved that bootstrap test exhibits 

the highest accuracy in all estimates regardless of the cointegration properties. These pioneer 

findings motivates our choice of the bootstrap MWALD test which relies on the following 

bivariate VAR(2) specification: 

          (19) 

lnIPt and lnECt are the logarithm of IP and renewable energy consumption respectively while 

 are assumed to follow a white noise process with zero mean and non singular covariance 

matrix. , I, j=1, 2 and L is the lag operator defined in the bivariate 

framework. The null hypothesis that IP index not Granger causes a given renewable energy 
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consumption can be tested by imposing zero restrictions i.e.  for . The 

optimal number of lag L is determined by the information criteria (AIC). 

4. Empirical Results  

4.1. Data Overview 

The study uses monthly data of Industrial Production Index (IP) and renewable energy sources 

namely Hydroelectric Power Consumption (HPC), Geothermal Energy Consumption (GEC), 

Wood Energy Consumption (WEC), Waste Energy Consumption (WaEC), Biofuel Consumption 

(BiEC), Total Biomass Energy Consumption (BEC), and Total Renewable Energy Consumption 

(REC) of U.S for the period January 1981 to March 20157. The IPI data is extracted from 

International Financial Statistics (CD-ROM, 2015) and data of renewable energy sources is 

obtained from the US Energy Information Agency (https://www.eia.gov/). Table-3 reports the 

descriptive statistics of the variables.  

Table-3: Descriptive Statistics 
Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis JB Stats. 

IPI 77.516 83.971 106.30 46.831 17.765 -0.1784 1.5334 39.014*** 
HEC 239.74 236.55 357.38 145.71 45.772 0.2756 2.4019 11.329*** 
GEC 13.299 14.500 19.684 3.2200 3.9777 -0.8805 2.8064 53.752*** 
WEC 189.49 184.54 252.90 128.70 23.845 0.2089 2.1172 16.336*** 
WaEC 33.491 35.307 54.461 6.7440 10.621 -0.7984 3.0513 43.711*** 
BiEC 47.521 16.867 182.65 0.9760 56.742 1.2593 2.9532 108.66*** 
BEC 270.50 253.23 417.84 178.54 53.158 1.0890 3.2220 82.086*** 
REC 554.89 528.61 867.50 395.40 102.10 1.2380 3.9821 121.49*** 
Note: *** indicates the rejection of null hypothesis of normality at 1% level of significance. JB stands for Jarque-Bera 
test. 

 
4.2 Wavelet power spectrum and bias correction  

An adequate application of the wavelet decomposition approach corrects the so called “bias 

problem”. This may arise toward the low frequency oscillations not only in the wavelet power 

spectra but also in the wavelet cross spectrum (Liu et al. 2007, Veleda et al. 2012). Following Ng 

and Chan (2012), the bias problem is rectified for the industrial production index as well as the 

                                                             
7 We have used renewable energy supply. It is understood that all renewable energy is consumed which is produced 
by utilizing different sources of renewable energy.  
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seven involved renewable energy sources. Figure-1 shows their respective wavelet power 

spectrum. 

Following the standard practice, we use contour plots to present the wavelet power and 

coherence spectrum. The contour plots approach involves three dimensions: period, time and 

wavelet coherence power. The period and time are denoted on vertical and horizontal axes but 

the level of similarity is indicated by color coding respectively that ranges from blue (low 

similarity) to red (high similarity). The thick black continuous line in Figure-1 presented above 

isolates regions where the wavelet squared coherence is statistically significant at 5% level. 

Comparatively, biofuel energy consumption and industrial production power spectra are almost 

governed by the blue color over the whole sample and from lowest to highest frequencies. This 

implies that these two indices not depict intense variations across time scales and are relatively 

stable. Hydroelectric energy consumption depicts significant drifts as the red color is 

omnipresent regardless of the frequencies. This shows the continuum of red vortices compressed 

to each other’s located inside the cone of significance underlining the importance of specific 

abrupt changes occurred from the short to the long run. Wood, waste and biomass energy 

consumption have similar behavior showing a sharply disintegrating red vortices at high 

frequencies thus implying a short lived drifts. 

a). Industrial Production Index (IP) b). Hydroelectric Power Consumption (HPC) 

  
c). Geothermal Energy Consumption (GEC) d). Wood Energy Consumption (WEC) 
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e). Waste Energy Consumption (WaEC) f). Biofuels Consumption (BiEC) 

  
g). Total Biomass Energy Consumption (BEC) h). Total Renewable Energy Consumption (REC) 

  
Figure-1: Wavelet power transform 

 
4.3. Wavelet coherence analysis  

To better assess the co-movement patters of the pair wised industrial production and the seven 

renewable energy sources indices, we rely on the wavelet bivariate coherence (WTC) and 

multiple coherence (WMC). This latter allows capturing the multivariate aspects of interactions 

between the involved variables. 

  

The wavelet squared coherence plots for the seven pair wised IP- renewable energy sources are 

conveyed in Figure-2. In Figure-2 arrows pointing towards left (right) means a negative 

(positive) relationship between the pairs. Throughout the visual inspection, we identify a weak 
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relationship between IP and renewable energy source over the whole sample as indicated by the 

islands of blue color (i.e. low level of coherence). Additionally, we note quite similar pattern 

across the pairs. This weak co-movement is evident at the higher frequencies (top of the graphs) 

between 2 and 16 months. However, significant positive co-movement is located at low 

frequencies (bottom of the graphs) especially during the start and the end of sample period. It is 

worth noting that positive interactions are depicted at low and middle frequencies since some red 

vortices were detected between 16 and 128 trading months. The red areas are disconnected from 

each other as they are cut by the blue zones. This mainly proves the occurrence of abrupt 

changes over the whole period for all pairs and underlines the plausible inversion of the tendency 

of co-movements between the given variables. This implies that IP and renewable energy sources 

are expected to commove over different frequencies and across different time scales. In other 

words these markets tend to be aligned in long-run regardless of renewable energy source.  

 

The most intense positive interactions, as the red color have long lasting durations; occur 

between IP-WaEC and IP-BiEC pairs during the beginning of sample period while IP-WEC and 

IP-BEC pair show high significant interaction towards the end of sample period. These pairs may 

exhibit a convergent pattern thus co booming or co crashing together. This finding is important 

since it prove that an increase in the industrial production will induce a substantial increase in the 

consumption of these specific energy sources in long-run. In other word, the consumption of 

these energy sources may contribute towards the industrial production in US. 

 
a). WTC: IP – HPC b). WTC: IP – GEC 

  
c). WTC: IP – WEC d). WTC: IP – WaEC 
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e). WTC: IP – BiEC f). WTC: IP – BEC 

  
g). WTC: IP – REC 

 
Figure-2: Wavelet squared coherence 

 
The WMC plots between the IP, WoEC and BEC as well as IP, WaEC and BiEC triplets are 

shown in Figure-3. We focalize the attention only on these indices since they especially 

exhibited positive co-movements. Interestingly, the co-movement between the three variables 

follows a heterogeneous pattern over time and frequency. The strength of interactions varied 

when moving from the high frequency to the low frequencies. It is easily remarkable how the 

high frequency (between 2 and 8 months) is governed by a succession of disconnected small 

vortices with color migration from blue to yellow. The given anomalies reflect weak co-

movements. In addition, some yellow-red small areas appeared sharply disintegrating at the 

highest frequencies. The lowest frequencies are already governed by strong positive co-

movement that reaches its zenith at both extremities of figures (in Figure-3). These vortices are 
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dispersed on the whole sample period, likely proving the strong interplays between the 

considered triplets across time scales. Obviously, striking similarities are detected across the 

triplets with reference to the blue color but there is a clear difference when dealing with the 

positive co movements. It seems that an increase in the industrial production will trigger much 

more the increase of waste and biofuel energy than wood and biomass energy. Overall, we find 

that increasing the level of industrial production (may be by adopting a new production 

technology or by modernizing the existing one) push the economy to higher consumption levels 

of particular energy resources, therefore a rigorous monitoring of their degradation should be 

undertaken to avoid any future shortage. 

 
a). IP Vs. WoEC and BEC b). IP Vs. WaEC and BiEC 

  
Figure-3: wavelet multiple coherence 

4.4. Maximal overlap wavelet correlation and cross correlation analysis  

To further assess the primary findings provided by WTC and WMC methods, we rely on the 

discrete wavelet approach. Thus the maximal overlap wavelet correlation and cross correlations 

are estimated for each pair wised data8.  

 

In spite of its wide use, the maximal overlap wavelet has flexible properties (See e.g. Gallegati 

2008, 2012) allowing it to be the best suitable to adequately encircle the dynamic interplays 

between the given variables across time scales. The overall aim of this section is to elucidate the 

wavelet correlation between the mentioned variables across monthly time scale periods. The 
                                                             
8 IPI and each Energy Consumption index was decomposed via the MODWT by using the LA(8) FILTER. The 
decomposition level was fixed to 5 (the choice of the optimal decomposition length is based on the formula provided 
by Donoho (1995) as follow: L= log(T)2) . We obtained up to five details (d1 = 2-4 months, d2=4-8 months, d3=8-16 
months, d4=16-32 months and d5=32-64 months) and a smoothed trend noted S5  
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pair-wise correlation coefficients were computed as in equation-19 and are reported in Figure-4 

where the blue line track their evolution while the dotted green and red lines show the upper and 

lower band for the 95% confidence interval. The strength of correlation can be classified into 

four types as economic activity-renewable energy consumption may be strongly correlated 

(between 0.5 and1) modestly correlated (below 0.5), less correlated (between 0 and 0.5) or anti –

correlated (negative correlations). A visual inspection of the graphs suggests that all the pairs 

have a common increasing trend of correlation from short-run to long-run. In other words, all the 

series are likely to converge by adopting homogenous alignments in long-run. The correlation 

increases in crescendo with weak variations around the zero line in the short and middle term but 

register a meaning full jump at the coarser scales. More precisely, the level of correlation is 

negligible given the weak amplitudes but when reaching the last scale, the correlation feature 

clearly switched to become very close to unity. Given that all IP-renewable energy sources 

display highly positive correlations in long-run, we may expect that an overall increase of 

industrial production may cause a rise in renewable energy demand as previously supported by 

the WC and WMC approaches. 

 
a). MODWT WC: IP – HPC b). MODWT WC: IP – GEC 

  
c). MODWT WC: IP – WEC d). MODWT WC: IP – WaEC 

  
e). MODWT WC: IP – BiEC f). MODWT WC: IP – BEC 
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g). MODWT WC: IP – REC 

 
Figure-4: Maximal overlap wavelet correlations for the Pair-wise IP–Renewable Energy 

 
 

The Wavelet Cross-Correlations (WCC) estimates will serve to check the consistency of 

previous findings thus the CCF plots of IP-renewable energy pairs are exposed in Figure-5 to 11. 

The time delay between the two signals is chosen to include 12 lags. Such lead-lag relationship 

implies a sufficiently large time delay of one year (12 months) allowing for a richer exploration 

of lead lags patterns. Knowing that the response of IP to renewable energy sources or vice versa 

may not occur immediately in the first lags, the most intense attractions may appear after N 

months that’s why this choice seems reasonable enough to capture possible significant cross 

correlations effects across time scales. 

 

To facilitate the reading of the wavelet CCF curves, it is important to note that the right half of 

each figure corresponds to the leading effects played by IP that drives renewable energy 

consumption while the left half describes the leading role of renewable energy source when IP 

becomes the follower. A close look at figures reveals almost a similar shape of cross correlations 

patters across the pairs. It is easily remarkable how the cross-correlations tend to stabilize at 

coarser scales while more drifts /spikes are located at the finest scales. The CC curves become 

smoother at scale 4 and 5 regardless of the IP-renewable energy combinations meaning that the 

attractions forces are less contaminated by abrupt changes approximately after 16 -64 months. At 

scale 1, numerous compressed peaks are detected reflecting the great instability of the 
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interactions between each pair wised IP-renewable energy source at both sense. This also 

highlights the reciprocal dominance of a given index on the other by exerting significant lead/lag 

effects. Higher are the number of peaks in the left/right regions more intense is the driving force 

played by the leading indicator, thus if significant number of successive oscillations are located 

on the extreme right, it implies that IP is likely to lead renewable energy consumption (each 

series) while the reverse intensity of causation is confirmed if the peaks are concentrated on the 

extreme left. Depending on the pair, CC intensity is reduced when the short run fluctuations 

completely disappear at scale 4 (16-32 months) since the curves almost merge with the 

horizontal axis. Obviously, the middle run can be perceived as a transitory period where there is 

neither leader nor follower. Even, if the causal links are found, they are relatively weak given 

that oscillations are slightly below or above the zero line (almost between -0.2 and 0.2 

amplitudes). The amplitude of CC reach their zenith  after  five years (64 months) but the 

influential role of IP on a given renewable energy or vice versa is relatively weak since it ranges 

between -0.5/-0.4 and 0.4/0.5. These results also corroborate the previous findings as they testify 

on the changing patterns of lead lag relationship than can be either positive or negative. 

 
a). Level 1 (2-4 months) 

b). Level 2 (4-8 months) 

  
c). Level 3 (8-16 months) d). Level 4 (16-32 months) 

  
e). Level 5 (32-64 months) 

 
Figure-5: WCC IP-HPC 
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a). Level 1 (2-4 months) b). Level 2 (4-8 months) 

  
c). Level 3 (8-16 months) d). Level 4 (16-32 months) 

  
e). Level 5 (32-64 months) 

 
Figure-6: WCC IP-GEC 

 
a). Level 1 (2-4 months) b). Level 2 (4-8 months) 

  
c). Level 3 (8-16 months) d). Level 4 (16-32 months) 

  
e). Level 5 (32-64 months) 

 
Figure-7: WCC IP-WEC 
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a). Level 1 (2-4 months) b). Level 2 (4-8 months) 

  
c). Level 3 (8-16 months) d). Level 4 (16-32 months) 

  
e). Level 5 (32-64 months) 

 
Figure-8: WCC IPI – WaEC 

 
 
a). Level 1 (2-4 months) 

b). Level 2 (4-8 months) 

  
c). Level 3 (8-16 months) d). Level 4 (16-32 months) 

  
e). Level 5 (32-64 months) 

 
Figure-9: WCC IPI – BioEC 
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a). Level 1 (2-4 months) b). Level 2 (4-8 months) 

  
c). Level 3 (8-16 months) d). Level 4 (16-32 months) 

  
e). Level 5 (32-64 months) 

 
Figure-10: WCC IPI - BEC Pair 

 
a). Level 1 (2-4 months) b). Level 2 (4-8 months) 

  
c). Level 3 (8-16 months) d). Level 4 (16-32 months) 

  
e). Level 5 (32-64 months) 

 
Figure-11: WCC IPI - REC Pair 
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4.5. Time varying rolling window results  

There are two worth noting points from the findings of previous analysis, 1). The relationship 

between the IP and renewable energy sources varies over the sample period. 2). The wavelet 

framework mainly relies on the correlation dynamics to capture the interplay between the 

variables. Although wavelet based analysis have several advantages over traditional econometric 

techniques, as mentioned in previous sections, yet does not provide the cause and effect 

relationship between the variables of study. To overcome this limitation and given that the 

relationship between IP and renewable energy sources varies over time, we rely on MWALD 

rolling causality test recently applied by Tang (2013) and Tang et al. (2015). This method is 

based on a bivariate VAR specification (see equation-22). We have applied MWALD rolling 

causality test to verify the bivariate causality between IP and all kinds of renewable energy 

consumption. Table-4 reports the full sample causality estimates for both causality directions 

thus when IP may lead renewable energy sources (right panel) or when IP follows renewable 

energy sources (left panel). At each case, we report the LR statistics and p-values obtained 

through 2000 bootstrap iterations9. The null hypothesis of no Granger causality is rejected when 

p-value are close to zero. Table-4 shows that only HPC and WoEC Granger cause IP given that 

their LR statistics are significant at 1% and 5% while their p-values are close to zero. For rest of 

cases, the neutral effect is present. Furthermore, IP does not lead renewable energy sources in all 

the cases. These results are almost coincident with those previously revealed by the wavelet 

approaches since a weak bivariate relationship was found between IP-renewable energy sources. 

The absence of lead/lag effects already confirm the intuition that increase in renewable energy in 

US will not exerts any harmful impact on environment thus economic development will not 

cause any serious threat on renewable energy resources.  

 
                                                             
9 The rolling window MWALD causality test procedure initially estimates the MWALD statistics for a predefined 
beginning sub-sample. For next estimation, the first (next) observation is removed (added) from the beginning (end) 
of the initial sub-sample. The relationship is subsequently re-estimated. In this study we estimate MWALD statistics 
using a sub-sample of 50, 60 and 70 months are used in this study. So if T=50, the first MWALD causality test 
statistics are obtained using a sub-sample period from January 1981 (start of our study period) to February 1985 (i.e. 
T= 50 observations). Then the second test statistic is obtained by using data from February 1981 to March 1985. 
This rolling procedure continues until the last observation is employed to examine for the causal relationship. 
This procedure is repeated for T=60 and T=70 to ensure the robustness of estimates, although we use 2000 
bootstraps, under different estimation sub-sample.  
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Knowing that renewable energy sources are considered as alternative potential substitutes to 

traditional energy sources, we may expect that the increase of industrial production level will not 

require the use of these alternative resources (reserves). To better validate the aforementioned 

intuitive results, it is crucial to take into account the plausible occurrence of time varying abrupt 

changes that may drive the behavior of IP-renewable energy. We mean that their linkages may be 

subject to significant shadow changes that are unobservable by using a static approach that’s why 

we further estimated a rolling window MWALD test over the sample period. 

Table-4: Full sample bootstrap Granger causality tests 
 LR-statistic Bootstrap p-value  LR-statistic Bootstrap p-value 

 11.374** 0.0160  3.3420 0.4700 

 7.2877 0.1500  7.5195 0.1440 

 30.997*** 0.0000  4.0537 0.3840 

 2.7595 0.6100  6.6125 0.2160 

 7.1567 0.1580  5.3690 0.3520 

 2.9280 0.6240  3.4328 0.4740 

 3.1725 0.4320  3.5808 0.4900 
Note: p-value is calculated using 2000 bootstrap repetitions. *, ** & *** denote significance at 10%, 5% and 1% level, 
respectively.  
 
It is argued by Tang et al. (2015) that causal relationship may be unstable owing to frequent 

changes in the global economic environment. The causality test using the entire sample period is 

no sufficiently powerfull to reflect such changes. It is an inaccurate measure for the IP-renewble 

energy interplays since it is possible that a causal relationship exists in certain periods but does 

not exist in other periods. More precisley, we considered three long run windiw size (T = 50, 60 

and 70 months) to adequaly captures any plausible causality effects in both directions. Figure-12 

shows the unidirectional time varying causality running from renewable energy consumption 

(each series) to IP and vice versa i.e. feedback effect. The red horizental line indciate the 10% 

level of significance while vertical axis reflects the p-values between 0 and 1 thus when the 

rolling causality curves flucutuale below this line which means that a significant causality is 

detected. Upper are the causality amplitudes; higher is the probability of no causal links. A close 

look to Figure-12 reveals a great instability of both causality directions as the amplitudes varied 

widely over the whole period regardless of the window size. Interestingly, there are much more 

significant peaks when HPC lead IP since i.e. numerous successive boom and busts are depicted 

the red lines implying the abrupt changes in the causality pattern. Three causality peaks are 
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located under 10% level of significance and they perfectly coincident with the occurrence of well 

known extreme events: the first high causality attraction corresponds to the occurrence of 1989-

1990 crisis period, the second major causality interplays is coincident with 1997 Asian currency 

crisis and the last peak is located around 2000-2001 period which was marked by two extreme 

events in the US history (the dot-cum bubble followed by 2001 terrorist attack). All the 

mentioned periods of turmoil seem to have an impact on causality between IP and renewable 

energy consumption (each series) thus when the US economy was affected by these crises, 

industrial production process was much more dependent on renewable energy sources as source 

of economic safety. The IP plays the leading role during 1985-1988 period, marked by 

significant causal links while the remaining period is characterized by higher and insignificant 

causality fluctuations. 

 

The unidirectional causality running from GEC to IP varies suddenly over the whole period with 

common trend regardless of the rolling window size. Almost all the fluctuations are located 

above the red line when the IP is the leader excepting two peaks that coincide with 2005-2006 

and 2012-2015 periods. The inverted causality time path exhibits significant oscillations with 

long lasting duration at particular crisis times, firstly in 1988, than the longest duration is found 

for 1996-2009 period and the last one happened recently in fall of 2014. Obviously, GEC plays a 

leading role to stimulate IP over 13 years testifying the continuum of dependence between the 

US economic production and consumption of geothermal energy. In others words, we may 

conclude that GEC is a corner stone of the US industry that ensures its continuity. The visual 

inspection of Figure-12 proves that WoEC significantly leads IP in the aftermath of the global 

financial crisis (between 2009 and 2012) when the US experienced her biggest historical 

downturn thus the US economy was more consuming renewable energy sources to guarantee a 

minimum of safety of its global economy. IP leads WoEC over short lived period located in 

1985-1986 and between 2001-2003 periods. IP similarly leads BioFC and WaEC (the reciprocal 

hypothesis is also valid) given that the significant causality amplitudes are located at the same 

dates of extreme events i.e. over the period of 1985-1988, followed by the 1995-1997 and 2009 

as well as 2012-2015 periods respectively. These results imply a significant impact of these 

crises that induced a rising consumption of the two mentioned energy sources to boost the US 

industrial production.  
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a)   

  
b)   

  
c)   

  
d)   
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e)   

  
f)   

 
 

 

g)   

  
Figure-12: The Results of Bootstrapped Rolling MWALD Causality Test 

 
5. Conclusion and Policy Implications  

In this paper, we examined dynamic linkages between economic activity and renewable energy 

sources in U.S. The monthly data for the period of January 1981 to March 2015 is used for 

continuous wavelet (CWT) namely wavelet transform (WT), wavelet squared coherence (WTC), 

wavelet multiple coherence (WMC). The results of discrete wavelet analysis i.e. wavelet 
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correlation and wavelet cross-correlation reinforce the CWT analysis. To capture different 

regime present in IP-renewable energy nexus, we finally investigate this link through full sample 

MWALD and bootstrap rolling window MWALD test using TY framework.  

 

Both wavelet and rolling Wald test approaches highlighted the particular period of times where 

the US production and renewable energy sources exhibited significant interplays despite their 

diversity thus to ensure the continuum of the global economic prosperity, all sources should be 

taken into account, therefore the combination of all these renewable energy resources is 

undoubtedly the credible economic engine that will protect against any barriers that may curtail 

economic development. The policy makers should carefully think on the best and efficient 

strategies to optimize the allocation of the given resources. Given the casual nexus at 10% of 

significance regardless of the causality direction, the rolling MWALD test corroborates the 

previous findings established through wavelet between IP-renewable energy pairs and the 

existence of possible positive relationship across time horizon and especially in the long run. The 

results and findings of this study are in line with the important information’s provided by the 

2014 EIR report dealing with the US renewable energy sources. This latter underlined the 

importance of total energy consumption in USA during 2014 for what 9.8% belongs to mixed 

renewable energies. The given report also mentioned that the highest consumed resources were 

the hydropower, biomass wood and biomass fuel as proven by the rolling test results. 

 

Moreover, the findings of this work are convergent with those of Bilgili et al. (2015) as they 

similarly confirmed the co-dominance of positive /negative correlation between the US industrial 

production and renewable energy sources. The authors found significant sub periods of high 

attractions including 1988-1989, 1989-1991, 1995-1997, 2000-2003 and 2005-2008 periods 

respectively when either energy consumption or IP played the leading role. By using the partial 

wavelet coherence they also reached similar conclusions with reference to the periods of highest 

co-movement patterns. Given the striking similarities between the three approaches applied in 

this paper and the convergence within the recent empirical finding in this research fields, the US 

policy makers may orient their energy policies to the adoption of the rules that may guarantee 

sustainable development: growing consumption of renewable energy sources through time 

(expected increase by a rate of 2.5% per year until 2040 according to the EIA) will push the 
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policy authorities to follow demand side management strategies for renewable energies to  

further boost the customer services in consumption of energy (Ardakani et al. 2014, Biglili et al. 

2015). The effectiveness of such measures requires making most renewable energy sources 

competitive despite that the amount of energy in a given amount of raw biomass tends to be 

significantly less through time thus police makers are encouraged to also account on the non 

renewable DSM strategies to reduce the exploitation pressure on the renewable energy resources. 

Another reasonable solutions are the resorts to subsidies for low emitting renewables that will 

eventually, increase welfare (economic growth) together with an increase in environ- mental 

efficiency (during economic growth). According to the recent IRE report (2014), some of today’s 

more promising processes for tapping renewable energy involve using chemical or thermal 

conversion in an attempt to mimic the results of a long lasting process that create rich energy 

fossil fuel from biomass. In other words, we may conclude that the US overall continuum of 

economic growth is conditional on optimal diversification/mix of renewable energy resources for 

what some relevant policy measures need to be established in a way to harmonize between the 

government assistance (subsidies) and the new advanced technologies. 
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