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ABSTRACT 
 
Little attention has been given to the correlation coefficient when data come from discrete or 
continuous non-normal populations. In this paper we considered the efficiency of two correlation 
coefficients which are from the same family, Pearson’s and Spearman’s estimators. Two discrete 
bivariate distributions were examined, the Poisson and the Negative Binomial. The comparison 
between these two estimators took place using classical and bootstrap techniques for the construction of 
confidence intervals. Thus, these techniques are also subject to comparison. Simulation studies were 
also used for the relative efficiency and bias of the two estimators. Pearson’s estimator performed 
slightly better than Spearman’s. 
 
1. INTRODUCTION 
Bootstrap and jackknife are well-known resampling methodologies for obtaining 
nonparametric confidence intervals of a parameter. In most statistical problems one needs an 
estimator of an unknown parameter of interest as well as some assessment of its variability. In 
many such problems the estimators are complicated functionals of the empirical distribution 
function and it is difficult to derive trustworthy analytical variance estimates for them. 
Bootstrap (Efron, 1979, 1982, 1987) and jackknife (Miller, 1974) use straightforward but 
extensive computing to produce reliable indications of the variability of an estimator. For the 
justification of bootstrap with regard to the foundation of its theoretical basis we have to say 
the following. The primary objective of this technique is to estimate the sampling distribution 
of a statistic. Essentially, bootstrap is a method that mimics the process of sampling from a 
population, like one does in Monte Carlo simulations, but instead drawing samples from the 
observed sampling data. The tool of this mimic process is the Monte Carlo algorithm of Efron 
(1979).  

This process is explained properly by Efron and Tibshirani (1993), who also noted that 
bootstrap confidence intervals are approximate yet better than the standard ones. 
Nevertheless, they do not try to replace the theoretical ones and neither is bootstrap a 
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substitute for precise parametric results, but rather a way to reasonably proceed when such 
results are unavailable.  

Bootstrap is in line with the general direction which Rao has imposed for the statistical 
discipline and is “to extract all the possible information from the data” (Rao, 1989). One, 
however, can pose the following question: Why is the bootstrap estimate of variance 
converging to the true variance? The answer is the following: The strong law of large 
numbers implies that 22ˆ SSB   almost surely as B , in which case B stands for the 
number of bootstrap samples and S  stands for the standard deviation. What is the permissible 
necessary value of B? In this respect we use the reference of Booth and Sarkar (1998). These 
researchers suggested that a choice between 200 and 800 is satisfactory for the estimation of 
the standard error and thus for the construction of confidence intervals. With the great power 
of computing today we can have a safe choice of B equal to 1000, although Chernick (2008) 
suggests using B=100,000.  
In this paper we have not used powerful bootstrap variations like the partial likelihood 
approach and bootstrap calibration. These methods have been proposed by Davison et al. 
(1992), Beran (1987), Loh (1987) and Efron and Tibshirani (1993).    

The choice for study of correlation coefficients was due to the fact that not much attention has 
been given to this parameter and most of the authors who have dealt with it used bivariate 
normal or log-normal distributions. Efron and Tibshirani (1993) used bootstrap techniques to 
estimate the standard error of (Pearson’s) rho in the bivariate normal distribution. They also 
showed that the non-parametric delta method can be badly biased. Dolker et al. (1982) 
pointed out some possible problems in the correlation coefficient for very small sample sizes. 
The probability of such discrepancies (same bivariate vectors) is very low in our case. 
Rasmussen (1987) worked on the estimation of Pearson’s correlation coefficient for normal 
and non-normal distributions and saw that Pearson’s coefficient is robust to deviations from 
the normality assumption. Hall et al. (1989), Frangos and Schucany (1990) and Lee and 
Rodgers (1998) studied the bivariate normal and log-normal distributions. In all cases, 
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continuous bivariate distributions, and mainly the normal distribution, were examined. There 
are more examples of researchers who studied the correlation coefficient. For instance, Young 
(1988) used the Gaussian, log-normal and t distributions, and Hall et al. (1989) also used 
normal and log-normal distributions but with small sample sizes (n=8, 10 and 12). Lunneborg 
(1985) used a sample of the famous LSAT data for which the distribution is close to bivariate 
normal.  

In this paper the correlation coefficient is examined in the bivariate Poisson and Negative 
Binomial distributions. The disadvantage of these two bivariate distributions is that the 
correlation coefficient is strictly non negative. However, the bivariate Poisson has a nice 
property. When the covariance term is zero and hence the correlation coefficient is zero, we 
end up with two independent Poisson variates (Kawamura, 1973). Both of these discrete 
distributions have a wide variety of applications, such as sports (Karlis and Ntzoufras, 2003, 
2005) or medicine (hospital and doctor visits for instance). For more information about the 
applications of the Poisson or Negative Binomial models one can also read the two papers by 
Greene (2007). 

 Section 2 of this paper describes the Normal, Basic, Percentile, ABC, Studentized and the 
accelerated bootstrap (BCa) methods, using both the positive and negative jackknives to 
estimate the acceleration constant a. Section 3 describes the Classical method of constructing 
confidence intervals for the correlation coefficient. Section 4 describes some characteristics of 
these confidence intervals. The comparison is accomplished by an extensive simulation study 
in which the properties of these intervals are examined in sections 4 and 5. All algorithms 
were implemented in R 2.9.0 and the package “boot” was used. 

2. NON PARAMETRIC BOOTSTRAP CONFIDENCE INTERVALS 
Let X1, X2,,....,Xn, be n independent and identically distributed random variables from an 
unknown probability distribution Fθ(x). Let F̂  be the empirical distribution function, having 
mass n1  at each observed ix . The essence of bootstrap methodology is that one draws 
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random samples **
2

*
1 ,...,, nXXX  with replacement from F̂  and then calculates 

),...,(ˆˆ **
1

*
n  as an estimate of θ. After B replications of this process, one has an 

empirical distribution of *
b̂ (b=1,…,B) values, which serves as an estimate of the unknown 

sampling distribution of ̂ . Following Efron (1987), to construct nonparametric confidence 
intervals for θ via the Percentile method (PM), one uses the 100α and 100(1-α) percentiles of 
the bootstrap distribution of θ. The 100(1-2α)% central confidence interval for θ is given by 

)]1(ˆ),(ˆ[ 11 aGaG BB       (2.1) 

with     B
ttG bB
}ˆ{#)(ˆ *                  

(2.2) 

being the estimated bootstrap distribution function.  
Normal method (or standard confidence interval) has the known form of 

)]ˆ(ˆ),ˆ(ˆ[ )()1(   SESE      (2.3) 

where )ˆ(SE  is a reasonable estimate of the standard error of ̂  based upon the *
b̂  

(b=1,…,B)  values and )(1)(    can be obtained from the tables of standard normal 
distribution.       

The bias-corrected method with acceleration constant α, (BCα), introduced by Efron and 
Tibshirani (1986) and discussed in detail by Efron (1987), is a procedure for improved 
confidence intervals for problems where there exists a monotone transformation g such that 

)ˆ(ˆ  g  and )( g  satisfy the approximation ),,(~ˆ 2
0   ZN   where 

.1     

This yields the 100(1 – 2α)% confidence interval 

]))}1[((])),[(({ 11    ZGZG BB    (2.4) 
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where       

)ˆ(ˆ1
ˆˆ][

0
00


 

      (2.5) 

Note that Bias Correction (BC) intervals are BCα, with 0ˆ   and they further reduce to PM 

when  0Ẑ0  . The bias correction 0Ẑ  is calculated using the formula .}ˆˆ{#Ẑ *b10 






    

How does one find ̂ ?  Efron (1987) showed that for one-parameter families, ),(Tf  of 
sampling distributions of  

T =̂ , a good approximation is  

))T(i(SKEW6
1ˆ ˆ       (2.6a) 

where )),((ˆ TiSKEW    is the skewness of Fisher’s score function 

)(ln)/()( TfTi    at  ˆ . He also proposed that for data from an arbitrary 

distribution F  and )(  Ft  the constant ̂  is reasonably well approximated by 

2/3n

1i
2i

n

1i
3i

)I(

)I(
6
1ˆ










                    (2.6b) 

where iI  is the influence function of the functional t at the point ix . Two different finite 
sample estimates of the influence function iI  are investigated here: the negative jackknife 

:)( I  

)],...,,,...,(ˆ),...,(ˆ)[(1( 1111 niini xxxxxxnI                       (2.7a) 

and the positive jackknife :)( I  

)].,...,(ˆ),,...,(ˆ)[(1( 11 nini xxxxxnI              (2.7b) 
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The ABC method (stands for approximate bootstrap confidence intervals) is a method of 
approximating the BCα interval endpoints analytically, without using any Monte Carlo 
replications at all (Efron and Tibshirani, 1993). It requires the resampling vector 

),...,,( **
2

*
1

*
nPPPP   which consists of the proportions 

n
xxnNP ij

ii
}{#/

**
**  , i=1,2,…,n. Therefore, the statistic e.g.  n

i
iA

1
**̂  is expressed 

as .ˆ
1

**  n

i
ii AP  The calculation of the confidence limits requires the calculation of some 

empirical influence components and of the acceleration constant which is again calculated as 
1/6 times the standardized skewness of the empirical influence components.   

Following Abramovitch and Singh (1985), as well as Loh (1987), we investigate a studentized 
statistic that is resampled to yield bootstrap confidence intervals for  . The approximation of 
the distribution of )ˆ(/)ˆ(  SE  was carried out using the bootstrap distribution of the 
studentized pivotal quantity (SPQ), namely 

),ˆ(/)ˆˆ( ***  SEt                     (2.8) 

where )ˆ(SE  is the square root of the estimated ).ˆ(Var  Denote by BtttG bs /}{#)( *   

the bootstrap distribution of the studentized quantity .*t  The bootstrap confidence interval has 
the form: 

)]ˆ()(ˆ),ˆ()1(ˆ[ 11  SEaGSEaG ss
     (2.9) 

The estimator for the standard error (the denominator in 2.8) of Pearson’s correlation 
coefficient is .3/)ˆ1( 2  n  The assumption of normality is necessary in order for this 
estimator to hold true, even though this assumption is not realistic at all. As for Spearman’s 
correlation coefficient, a different approach was used. Instead of performing a second 
bootstrap in each bootstrap sample to estimate the standard error we estimated this standard 
error using simulation. That is, for every combination of sample size and value for the 
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correlation coefficient we generated 1000 pairs, estimated the Spearman correlation 
coefficient and then calculated the standard deviation of these values.    

The Basic method is a combination of the Percentile and Studentized methods. Instead of 
trying to find the empirical distribution of *

b̂  (b=1,…,B), this method finds the empirical 

distribution of .ˆˆ*  b  Note that this statistic is the same as in the studentized method with 

the only difference being that the denominator (standard error of ̂ ) is set equal to one).  The 
confidence interval for the parameter   is given by the formula: 

)],(ˆˆ2),1(ˆˆ2[ 11 aGaG       (2.10) 

where )(1 tGB
  is the same as in (2.2). 

3. CLASSICAL CONFIDENCE INTERVAL 
The classical confidence interval (Fisher’s method) for the correlation coefficient is extracted 

through the Z-transform, ).(tanh)1
1ln(5.0 1 

 
  

The confidence interval for z is ],[)](ˆ),(ˆ[ UL     

where )(tanhˆ 1 r  and ).3/(1)(2  n  

It follows that the confidence interval for the correlation coefficient is given by 

)]1/()1(),1/()1[( 2222  UULL eeee    (3.1) 

The above formula was applied to both coefficients, since normality was assumed. 

4. SOME CHARACTERISTICS OF THE ABOVE CONFIDENCE INTERVALS 
The transformation respecting property allows us to construct confidence intervals for a 
parameter, then transform the endpoints of the interval and end up with confidence intervals 
for a transformation of the original parameter of interest. If, for instance, we have constructed 
a confidence interval for a parameter  , then the interval for  is derived straightforwardly 
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by squaring the endpoints of the initial confidence interval. The accuracy term refers to the 
rate of convergence, of the coverage probability, to the desired level of coverage. A central 
(1-2α) confidence interval is supposed to have probability α of not covering the true value of 

  from above and below. In the case of a sample this probability is equal to α+ n
c  or  α+ n

c  

for some constant .c  In the first case the fraction goes to zero at rate n/1 , whereas in the 
second case it goes to zero at rate ./1 n  We refer to the first case with the term second-order 
accuracy and with the term first-order accuracy to the second case.  

The Normal (or Standard) method is known to be neither transformation respecting nor 
second-order accurate. Percentile and Basic methods are transformation respecting, but not 
second-order accurate. The BCα method is both transformation respecting and second-order 
accurate. The Studentized method is second-order accurate but not transformation respecting. 
If interest lies in estimating the correlation coefficient of the bivariate normal distribution then 
Fisher’s transform works quite well. The problem arises in non normal populations like in our 
case. The drawback of not using a transformation is that one can end up with an interval not 
satisfying the range restriction. We did not use any transformation in the Studentized method 
and the result was obvious for small sized samples (n=10). The interval was larger than the set 
of permissible values for the correlation coefficient since this method is not range-preserving. 
The ABC method is both second-order accurate and transformation respecting. One could 
also say that since the Studentized method performs double bootstraps when the denominator 
is not known (in our case it is known), it needs more computational effort. On the other hand 
the ABC method requires far fewer replications than its counterpart (BCα) needs. More 
information on the advantages and disadvantages of the various bootstrap methods can be 
found in Hall (1988), Efron and Tibshirani (1993), and DiCiccio and Efron (1996). 

5. SIMULATIONS AND RESULTS 
A simulation study was performed as follows: 2000 independent samples of size 10, 20, 50 
and 100 were generated from bivariate Poisson and bivariate Νegative Binomial distributions. 
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Each time we estimated the correlation coefficient using the two estimators and for the 
bootstrap confidence intervals construction, the number of bootstrap samples was set equal to 
B=1000. Bivariate Poisson variates were generated according to the method described in 
Morgan (1984). The probability mass function of the bivariate Poisson is given by the 
following formula: 

)](exp[!)!()!(),( 321
),min(

0
321 




  
yx yx

yxyYxXP   (5.1) 

Parameters 1  and 2  were fixed at 0.5 and 1, respectively. What did not remain constant 
was the parameter of the covariance term ).( 3  The correlation between X and Y is given by 
the following formula 

))(( 3231
3 

                           (5.2) 

For the selected values of the correlation, 0.25, 0.5, 0.75 and 0.9, the values of the covariance 
were 0.24, 0.73, 2.22 and 6.71, respectively.  

Random values from a Negative Binomial distribution can be generated in many ways, by the 
process of compounding a Poisson distribution as in the univariate case or with the help of 
two univariate Negative Binomial variates and one univariate Binomial variate. These 
methods are better described in Kocherlakota and Kocherlakota (1992). In this paper the 
method of rejection sampling was used. For more information on the computer generation of 
the bivariate Negative Binomial distribution one can also look at Loukas and Kemp (1986). 
The distribution function is given by the formula 

ryx ppppyxr
yxryYxXP )1(!!)!1(

)!1(),( 2121 
                          (5.3) 

The correlation between X and Y is given by the following formula 

)1)(1( 21
21

pp
pp
                               (5.4) 
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The values of the correlation coefficients were set equal to 0.25, 0.5 and 0.75.  The 
confidence intervals for the correlation coefficient valued 0.9 in the bivariate Negative 
Binomial distribution were not computed due to computational difficulties. We set the 
parameters 1p  and 2p  to the values of (0.1393, 0.2786), (0.2287, 0.4574) and (0.2898, 
0.5796), respectively. The number of successes ( r ) was set equal to 5. Bootstrap confidence 
intervals with coverage probability 1-2α= n =0.95 for the correlation coefficient were 
calculated with each of the eight methods described above. Tables l & 3 and 2 & 4 present the 
expected coverage and average length of the confidence intervals for the Poisson and 
Negative Binomial cases, respectively. 

5.1 Pearson's estimator 
Tables 1 and 2 summarize the results of the simulations for Pearson’s estimator. In the 
Poisson distribution, when the values of the correlation coefficient are less than or equal to 
0.5 and the sample size is equal to 10, the average length exceeds unity. The Studentized 
method provides good confidence intervals in general (amongst the ones compared) but with 
the cost that the average length is the largest in all cases. The average length exceeded the 
length of the interval of possible values of the correlation coefficient. Since the pivotal 
quantity used here was not the same as Fisher’s, this problem occurs naturally. However, as 
the sample size increases the estimated coverage probability reaches the nominal level of 0.95 
faster and better than in the other methods. The Normal and Basic methods did not work very 
well in general. As correlation and sample size increase, they tend to provide better results.  

The average lengths are in accordance with the lengths of the other methods, but this is not 
true for the estimated coverage. BCα and Fisher’s based intervals are the most stable in 
general. No matter the value of the correlation and the sample size, they tend to produce 
stable results in terms of coverage probabilities. The ABC and Percentile methods perform 
well for large sample sizes but in general are not to be preferred as they tend to underestimate 
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the true coverage probability, but not more than Normal and Basic methods.  The Percentile 
method leads to similar conclusions. 

 

Table 1. Estimates of the actual coverage, 95.0n  in percent (first line) and the expected 
length, (second line): Poisson distribution using Pearson’s formula 

Correlations Sample 
sizes 

Methods 
Normal Basic Percentile ABC BCα(I-) BCα(I+) Studentized Fisher’s 

ρ=0.25 

n=10 85.4 
1.154 

76.6 
1.136 

89.6 
1.136 

90.45 
1.128 

92.8 
1.188 

93.6 
1.194 

98.4 
-* 

94.2 
1.126 

n=20 87.35 
0.826 

82.7 
0.819 

91.85 
0.819 

91.2 
0.794 

92.95 
0.826 

93.5 
0.829 

95.8 
1.064 

93.15 
0.829 

n=50 90.95 
0.534 

88.95 
0.533 

93.0 
0.533 

92.4 
0.526 

92.5 
0.534 

92.85 
0.534 

94.15 
0.584 

92.9 
0.534 

n=100 91.8 
0.386 

90.4 
0.386 

92.85 
0.386 

93.15 
0.383 

92.65 
0.387 

93.05 
0.386 

93.6 
0.404 

92.9 
0.386 

ρ=0.5 

n=10 84.35 
1.007 

75.4 
0.987 

90.1 
0.987 

87.74 
0.987 

92.35 
1.053 

93.8 
1.077 

96.55 
- 

92.75 
1.077 

n=20 88.55 
0.683 

82.5 
0.677 

92.3 
0.677 

91.4 
0.666 

93.45 
0.6927 

94.2 
0.701 

95.85 
0.875 

93.4 
0.701 

n=50 91.7 
0.44 

89.2 
0.44 

92.65 
0.44 

92.65 
0.439 

93.1 
0.444 

93.4 
0.446 

94.55 
0.482 

92.45 
0.446 

n=100 92.5 
0.316 

91.1 
0.316 

93.6 
0.316 

93.6 
0.316 

93.45 
0.317 

93.45 
0.317 

94.45 
0.33 

92.75 
0.317 

 
ρ=0.75 

n=10 86.85 
0.692 

76.0 
0.672 

90.8 
0.672 

87.995 
0.696 

93.4 
0.747 

94.15 
0.798 

96.45 
- 

93.35 
0.798 

n=20 87.75 
0.424 

81.45 
0.419 

90.95 
0.419 

90.8 
0.427 

92.05 
0.4407 

92.7 
0.455 

93.7 
0.54 

92.75 
0.455 

n=50 91.55 
0.263 

88.15 
0.263 

93.55 
0.263 

93.45 
0.267 

93.45 
0.269 

93.75 
0.272 

95.0 
0.285 

92.85 
0.272 

n=100 92.5 
0.187 

89.95 
0.187 

93.65 
0.187 

92.9 
0.19 

93.0 
0.19 

93.25 
0.191 

93.55 
0.195 

92.15 
0.191 

ρ=0.9 

n=10 87.7 
0.372 

73.3 
0.35 

89.4 
0.35 

84.2 
0.377 

91.6 
0.419 

92.5 
0.473 

95.25 
- 

93.15 
0.473 

n=20 88.45 
0.2 

81.7 
0.197 

91.75 
0.197 

90.2 
0.208 

91.65 
0.214 

92.1 
0.225 

93.5 
0.25 

93.8 
0.225 

n=50 91.5 
0.116 

86.05 
0.116 

93.7 
0.116 

93.65 
0.12 

93.5 
0.12 

93.65 
0.122 

94.4 
0.125 

93.4 
0.122 

n=100 92.6 
0.082 

90.7 
0.082 

93.55 
0.082 

93.85 
0.084 

94.4 
0.084 

94.35 
0.085 

94.15 
0.085 

92.9 
0.085 

 * Length greater than 2.  
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Table 2. Estimates of the actual coverage, 95.0n  in percent (first line) and the expected 
length, (second line): Negative Binomial distribution using Pearson’s formula 

Correlations Sample 
sizes 

Methods 
Normal Basic Percentile ABC BCα(I-) BCα(I+) Studentized Fisher’s 

ρ=0.25 

n=10 86.0 
1.19 

78.0 
1.173 

92.0 
1.173 

88.45 
1.151 

93.4 
1.209 

94.4 
1.218 

98.6 
-* 

94.6 
1.218 

n=20 86.8 
0.824 

82.7 
0.817 

90.9 
0.817 

89.7 
0.787 

91.8 
0.825 

92.55 
0.826 

94.05 
1.05 

92.9 
0.826 

n=50 90.35 
0.535 

88.15 
0.533 

92.55 
0.533 

91.45 
0.525 

91.9 
0.535 

92.3 
0.534 

93.4 
0.583 

92.5 
0.534 

n=100 90.3 
0.387 

89.35 
0.386 

91.2 
0.386 

90.9 
0.384 

90.9 
0.387 

91.0 
0.387 

91.1 
0.404 

91.5 
0.387 

ρ=0.5 

n=10 87.2 
1.032 

77.9 
1.012 

91.4 
1.012 

88.05 
1.004 

93.45 
1.077 

94.35 
1.098 

98.05 
- 

93.75 
1.098 

n=20 88.9 
0.699 

83.9 
0.694 

91.7 
0.694 

89.85 
0.674 

92.0 
0.705 

92.85 
0.713 

94.65 
0.883 

93.5 
0.713 

n=50 92.55 
0.444 

90.25 
0.443 

94.4 
0.443 

93.25 
0.438 

93.25 
0.444 

93.8 
0.446 

95.05 
0.483 

93.7 
0.446 

n=100 93.3 
0.32 

91.8 
0.32 

93.05 
0.32 

92.7 
0.318 

92.45 
0.321 

92.7 
0.321 

93.7 
0.334 

92.55 
0.321 

 
ρ=0.75 

n=10 87.95 
0.707 

76.0 
0.686 

91.45 
0.686 

86.2 
0.699 

92.55 
0.769 

93.85 
0.811 

96.75 
1.497 

92.9 
0.811 

n=20 88.9 
0.435 

82.15 
0.43 

91.95 
0.43 

90.0 
0.427 

92.25 
0.447 

92.55 
0.46 

94.2 
0.542 

92.35 
0.46 

n=50 93.35 
0.264 

90.35 
0.263 

94.9 
0.263 

93.8 
0.264 

93.85 
0.267 

94.5 
0.269 

94.75 
0.284 

94.4 
0.269 

n=100 93.7 
0.187 

92.1 
0.187 

94.8 
0.187 

93.45 
0.187 

93.45 
0.188 

93.55 
0.188 

94.4 
0.194 

93.5 
0.189 

 * Length greater than 2.  
 

Similar conclusions are to be drawn in the bivariate Negative Binomial distribution case as 
well. The Normal and Basic methods perform the same as before and as the sample size 
increases from n=20 to n=50 the estimation of the coverage probability is closer to the desired 
nominal level but the average length is not reduced by the same amount as before. The 
Percentile method estimates the coverage to be more than 0.90 irrespective of the sample size 
or the correlation value. The performance of the ABC method is about the same as before. 
The stability of BCα and Fisher’s methods are also met in this case. Studentized confidence 
intervals are more conservative; they overestimate the nominal level of 0.95 for small samples 
but later approximate the desired level.  
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Although these conclusions are drawn with respect to Pearson’s formula, similar conclusions 
can be drawn when using Spearman's formula. 

5.2 Spearman's estimator 
Tables 3 and 4 summarize the simulation results for Spearman’s estimator. In the bivariate 
Poisson case, when the values of the true correlation coefficient are less than or equal to 0.5 
and the sample is of size 10, the average length of the 95% confidence intervals exceeds unity 
except for the ABC method with a correlation equal to 0.5. The estimated coverage tends to 
the nominal level as the values of the correlation and the sample size increase, but the 
convergence seems to be faster as the true values of the coefficient increase rather than as the 
sample size increases.  

The Normal and Basic methods perform better with this non-parametric estimator and the 
Percentile method works much better in comparison to the parametric estimator regardless of 
the combinations of the sample size and the correlation coefficient values. The ABC method 
shows a significant improvement also. The BCα methods and Classical method (Fisher’s 
transform) work very well under any circumstances, which was also the case before. 
However, BCα methods perform a little better using Spearman's estimator.     

In contrast to Pearson's estimator, the Studentized method as applied in Spearman’s estimator 
does not perform similarly. The coverage is approached for large samples only (from 50 and 
above) and as the correlation increases the approach is better.    
With Negative Binomial distribution, things are slightly different. The average length exceeds 
unity in the same occasions as with the Poisson distribution. Normal and Basic methods using 
this non-parametric estimator perform slightly better than using the parametric estimator. The 
performance of the Percentile method is roughly at the same levels for both estimators, and so 
is the ABC method. The results for BCα, Studentized and Fisher's methods are similar using 
either estimator.  
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Table 3. Estimates of the actual coverage, 95.0n  in percent (first line) and the expected 
length, (second line): Poisson distribution using Spearman’s formula 

Correlations Sample 
sizes 

Methods 
Normal Basic Percentile ABC BCα(I-) BCα(I+) Studentized Fisher’s 

ρ=0.25 

n=10 88.8 
1.2039 

80.6 
1.1805 

93.2 
1.1805 

89.92 
1.1375 

95 
1.2239 

95.2 
1.2337 

80.6 
1.1805 

94.2 
1.2367 

n=20 90.45 
0.8442 

86.9 
0.8396 

93.05 
0.8396 

90.7 
0.7951 

94.65 
0.8541 

94.8 
0.8553 

86.9 
0.8396 

92.75 
0.8553 

n=50 93.4 
0.5337 

91.85 
0.534 

94.5 
0.534 

92.35 
0.5263 

95.5 
0.5368 

95.55 
0.5369 

91.85 
0.534 

92.35 
0.5369 

n=100 94.05 
0.3777 

93.9 
0.3786 

94.95 
0.3786 

94.0 
0.3845 

95.3 
0.3794 

95.3 
0.3794 

93.9 
0.3786 

93.4 
0.3794 

ρ=0.5 

n=10 86.0 
1.0551 

79.4 
1.0395 

91.6 
1.0395 

88.16 
0.9861 

92.4 
1.0994 

93.0 
1.1196 

79.4 
1.0395 

92.6 
1.1196 

n=20 91.5 
0.7274 

87.3 
0.7222 

94.2 
0.7222 

91.25 
0.6735 

95.3 
0.7507 

95.55 
0.7537 

87.3 
0.7222 

93.45 
0.7537 

n=50 94.05 
0.4525 

92.9 
0.4519 

95.45 
0.4519 

93.3 
0.4381 

95.7 
0.4597 

95.75 
0.4599 

92.9 
0.4519 

93.15 
0.4599 

n=100 94.15 
0.3178 

94.1 
0.3181 

94.6 
0.3181 

92.85 
0.3181 

94.7 
0.3209 

94.7 
0.321 

94.1 
0.3181 

92.1 
0.321 

 
ρ=0.75 

n=10 88.4 
0.7848 

79.8 
0.7686 

92.6 
0.7686 

86.61 
0.6805 

93.0 
0.8456 

94.2 
0.8847 

79.8 
0.7686 

92.2 
0.8847 

n=20 91.15 
0.4969 

85.25 
0.4919 

94.75 
0.4919 

90.15 
0.4296 

93.9 
0.5246 

94.1 
0.5307 

85.25 
0.4919 

92.9 
0.5307 

n=50 93.45 
0.2965 

91.3 
0.2955 

94.3 
0.2955 

92.2 
0.267 

93.95 
0.3063 

94.0 
0.3068 

91.3 
0.2955 

93.0 
0.3068 

n=100 94.2 
0.2058 

93.6 
0.2058 

93.4 
0.2058 

93.3 
0.1879 

93.2 
0.2097 

93.15 
0.2098 

93.6 
0.2058 

92.9 
0.2098 

ρ=0.9 

n=10 92.6 
0.4985 

80.0 
0.4824 

96.8 
0.4824 

86.48 
0.3846 

93.8 
0.5548 

95.0 
0.6076 

80.0 
0.4824 

94.0 
0.6076 

n=20 94.0 
0.2924 

86.9 
0.2871 

96.35 
0.2871 

90.15 
0.209 

93.8 
0.3097 

94.2 
0.3172 

86.9 
0.2871 

93.45 
0.3172 

n=50 94.3 
0.1552 

91.1 
0.1541 

94.85 
0.1541 

93.0 
0.122 

92.85 
0.1601 

92.9 
0.1608 

91.1 
0.1541 

93.25 
0.1608 

n=100 95.6 
0.1033 

94.3 
0.1031 

94.45 
0.1031 

93.2 
0.0843 

92.9 
0.1055 

92.85 
0.1056 

94.3 
0.1031 

92.95 
0.1056 
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Table 4. Estimates of the actual coverage, 95.0n  in percent (first line) and the expected 
length, (second line): Negative Binomial distribution using Spearman’s formula 

Correlations Sample 
sizes 

Methods 
Normal Basic Percentile ABC BCα(I-) BCα(I+) Studentized Fisher’s 

ρ=0.25 

n=10 84.6 
1.2219 

78.2 
1.2034 

90.0 
1.2034 

85.57 
1.0786 

92.6 
1.2419 

93.4 
1.253 

78.2 
1.2034 

93.0 
1.253 

n=20 90.8 
0.8656 

87.8 
0.8601 

94.15 
0.8601 

90.6 
0.7859 

95.35 
0.8909 

95.45 
0.872 

98.15 
1.1189 

93.3 
0.872 

n=50 92.85 
0.5405 

92.4 
0.5402 

93.95 
0.5402 

91.8 
0.5265 

94.4 
0.5421 

94.4 
0.5422 

92.4 
0.5402 

93.75 
0.5422 

n=100 91.35 
0.3813 

91.35 
0.3822 

91.6 
0.3822 

91.35 
0.3822 

91.8 
0.3829 

91.8 
0.3829 

91.35 
0.3822 

91.65 
0.3829 

ρ=0.5 

n=10 89.7 
1.1347 

82.75 
1.1169 

95.6 
1.1687 

88.38 
0.9877 

95.8 
1.1591 

96.6 
1.1802 

82.75 
1.1169 

93.55 
1.1802 

n=20 92.45 
0.7643 

89.55 
0.7593 

95.05 
0.7593 

89.85 
0.6816 

95.1 
0.7751 

95.2 
0.778 

98.15 
0.999 

93.3 
0.778 

n=50 94.25 
0.4671 

94.0 
0.4666 

94.45 
0.4666 

92.15 
0.4426 

94.3 
0.471 

94.3 
0.4713 

94.0 
0.4666 

93.05 
0.4713 

n=100 93.8 
0.3248 

94.3 
0.3251 

92.55 
0.3251 

92.8 
0.3251 

92.05 
0.3266 

92.05 
0.3267 

94.3 
0.3251 

92.45 
0.3267 

 
ρ=0.75 

n=10 93.85 
0.8928 

85.7 
0.8743 

96.8 
0.8743 

86.31 
0.7222 

96.15 
0.9101 

96.9 
0.9482 

85.7 
0.8743 

93.6 
0.9482 

n=20 95.25 
0.5437 

90.35 
0.5388 

96.3 
0.5388 

90.5 
0.4364 

95.3 
0.5502 

95.55 
0.5567 

90.35 
0.5388 

93.2 
0.5567 

n=50 95.6 
0.3077 

93.9 
0.3071 

94.5 
0.3071 

91.7 
0.2654 

94.1 
0.3101 

94.05 
0.3107 

93.9 
0.3071 

92.7 
0.3107 

n=100 95.45 
0.2086 

94.9 
0.2084 

93.35 
0.2084 

93.4 
0.1875 

92.95 
0.2093 

92.95 
0.2095 

94.9 
0.2084 

93.1 
0.2095 

 

5.3 Examination of some properties of these two estimators under the given distributions 
The bias of the estimators is under examination in this section. We generated 1,000,000 pairs 
of data from each distribution using the 4 chosen correlation values (0.25, 0.5, 0.75 and 0.9) 
and estimated the correlation using both estimators. We repeated this procedure 1000 times. 
Finally, the mean of the 1000 estimators was compared to the true correlation value and the 
bias was extracted. The variance of these 1000 estimators was also calculated. The results are 
shown in Table 5.  

As seen from Table 5 in the Poisson case, Pearson’s estimator is asymptotically unbiased 
whereas Spearman’s estimator is not. In fact, it always has a small negative bias. One element 
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these two estimators have in common is their asymptotic normality. The distribution of both 
estimators for the sample examined was clearly non-normal (not even of symmetric form) and 
that was evident from their confidence intervals. Furthermore, Pearson's estimator converges 
to normality faster than his competitor’s estimator. This was apparent since this procedure 
was repeated with 10,000 pairs of data and normality (using Shapiro's test) was rejected 
sometimes for Spearman's estimator, but never for Pearson's estimator. 

Table 5. Estimated bias for large sample sizes (the variance is presented in parentheses) 
 

 Poisson distribution Negative Binomial distribution 
Correlations Pearson’s 

 estimation 
Spearman’s  
estimation 

Pearson’s 
 estimation 

Spearman’s  
estimation 

ρ =0.25 0.2499 
(1.062 x10-5) 

0.2346 
(6.53x10-6) 

0.2182 
(1.045x10-4) 

0.1995 
(8.885x10-5) 

ρ =0.5 0.5 
(6.9x10-6) 

0.4817 
(6.49x10-6) 

0.4823 
(6.67x10-5) 

0.4568 
(6.23x10-5) 

ρ =0.75 0.7499 
(2.29x10-6) 

0.7354 
(2.48x10-6) 

0.7458 
(2.31x10-5) 

0.7267 
(2.41x10-5) 

ρ =0.9 0.9 
(4.25x10-7) 

0.8919 
(5.7x10-7) 

- - 

 

5.4 Comparison of the estimators in terms of the mean square error 
MSE is a criterion used to assess at some degree the efficiency of an estimator and to compare 
estimators. It is defined as the sum of the variance of the estimator and the squared bias of the 
estimator.  

In this section, we compared the estimators using a wider range of values for the covariance 
parameter for each of the already studied sample sizes (n=10, n=20, n=50 and n=100). That is, 
we used values for the correlation coefficient ranging from 0.05 to 0.95, each time increasing 
by 0.01. The MSE for both estimators was estimated for all values using different sample 
sizes each time for both distributions. For every value of the correlation and each sample size, 
random values from each distribution were generated and the correlation coefficient was 
calculated 1000 times. Then the mean and the variance of these 1000 values were calculated 
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and used for the extraction of the MSE. The results are shown in Figures 1 and 2 for the 
Poisson and negative Binomial, respectively. 

 

 
 Figure 1. Poisson distribution 
It can be seen that MSE values are very close to each other. Approximately half of the time, 
the difference between the MSE of Pearson’s and the MSE of Spearman’s estimator is 
positive. Regardless of the sign of the difference, the maximum difference between them does 
not exceed 0.003. In addition, for small values of the correlation, the MSE of Spearman’s 
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estimator is lower than that of Pearson’s estimator, but as the correlation increases, the 
opposite pattern occurs.   

 
 Figure 2. Negative binomial distribution 

6. DISCUSSION 
In this study an examination was performed of several bootstrap confidence intervals for the 
correlation coefficient when the populations are discrete. The two bivariate distributions that 
were examined were the Poisson and the Negative Binomial. Furthermore, two estimators 
were compared--Pearson’s and Spearman’s formula. What was apparent was that as the 
correlation between the two variables increases, the accuracy of the coverage probability also 
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increases. The same is true with the sample size. As for the comparison of the confidence 
intervals, the BCα family of confidence intervals exhibited great stability under all 
circumstances. The same is true for Fisher’s transformation, regardless of the estimator used 
(parametric or not).  

MSE as a criterion for a further comparison of these two estimators showed that they produce 
results that are very close. A further examination though showed that Pearson’s formula is 
asymptotically unbiased, whereas its non-parametric alternative is not. In addition, the 
parametric estimator tends to normality faster that the non-parametric estimator.  

In our opinion, based upon the findings of the simulations we propose the use of Pearson’s 
estimator instead of Spearman’s and the Fisher’s transform for confidence intervals 
construction. The reason is that Fisher’s transformation is simpler than the Bcα, which also 
performs very well in general.  

There are still more bootstrap techniques for the correlation coefficient and certainly many 
more bivariate distributions (discrete or continuous) whose correlation coefficients are to be 
examined.  
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