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Abstract:

This paper examines the methods to detect the nature of the urban growth processes. It seems that
cointegration testing enables to disentangle two versions of Gibrat’s law: a first one with growth
shocks that are iid across time and cities (implying convergence of the city-size distribution towards
Zipf’s law), and an alternative one with growth shocks that are only iid over time (implying
conservation of the initial structure of the city size distribution).
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1. Introduction

Many papers dealing with urban growth theory trytdst Gibrat's law (Eeckhout, 2004,
Gonzéles-Val, 2013). According to Gabaix (1999)s tlaw is actually a random growth
process that allows explaining one of the most ingm statistical regularities in urban

economics: Zipf's law (Krugman, 1996).

Gibrat's law is a stochastic process in which cgyshare of national urban population in
period t, noted P;,, is that in periodt-1 multiplied by y;,, wherey;, is identically and
independently distributedlid) across cities and time (Gabaix, 1999):

Py = VitPit—1 1)

To test the empirical relevance of Gibrat's lawarkl and Stabler (1991) recommend
making use of unit root testing, and the literatuidely agrees on this point (see among
others Sharma, 2003). The basic Dickey-Fuller rgot test can be formulated as follows:

Aln Py =BiInPipq + & (2)
If Gibrat’s law is verified, we have the non-stak@wy unit root processin P;; = Iny;;, SO
the Dickey-Fuller test should give an estimatecuedd; = 0. The presence of a unit root
implies that urban growth depends only on exogersiuxcks §;.) without any restoring

force.

However, the presence of a unit root is also cteisiswith the alternative unit root
process\in P;, = Iny,, corresponding to another formalization of Giatlaw of
independence between growth rates and city sizes

Py = VitPie-1, 3)
wherey; isiid over time, but not across cities (so the growttckk are collinear in the cross-
section). Note that urban systems are generallsactexized by the existence of several cities
belonging to a same city-type, such as administatities, touristic cities, mining cities, etc.
One should thus expect that cities belonging tosdme city-type are affected by similar
random growth shocks, implying that in these sulpdasy urban growth should look
something like the collinear process (3). Agaihst background, it should be mentioned that
Gabaix’s proof of convergence of a Gibrat processatds a Zipf distribution has been

established for process (1), but it is not cleaethébr it still holds for the collinear process (3).



The fact that unit root testing does not enablalistinguish between the Gabaix
formalization of Gibrat’s law (1), and the alternatprocess (3), leaves a gap in the empirical
understanding of Zipf's law. In order to disentanbktween these two processes, we propose

the use of cointegration tests.

The remainder of this paper is organized as folloBgction 2 proves that
cointegration is inconsistent with the Gabaix pssc€l), but not with the collinear process
(3). Section 3 proves that process (3) does nod gise to convergence towards a Zipf

distribution. Section 4 concludes.

2. The inconsistency of cointegration with Gibrat’s lav “a la Gabaix”

Take the Gabaix (1999) formalization of Gibrat'a/Iél) with a y; . distributionf (y)
characterized b¥(y) = u, and Var(y) = o) verifying| p, | < o and0 < o7 < oo.
Taking natural logarithms, we get equation

InP;; =Iny;¢ + InP;,_q, (4)
which is evidently integrated of order 1. Remar&ttfor realistic annual city growth rates,
Iny;, is well defined, because the growth facigg is positive. In empirical applications, we

have necessarily an initial observati®g, so we can rewrite equation (1) as follows:

Pit =Vie XVit-1 X . X¥i1 X Pyp. )
In the same way, we obtain for cjty
Pit =Vjt XVjt-1 X XV¥j1 X Pjp. (6)

Now recall that cointegration between tWwd)-variablesmeans that there is some linear
combination of these variables whichl{§). So we have to find a way to link equations (5)
and (6) in a manner that enables us to formulditeear combination ofln P, andInP; . . A
general way of doing that is to raise expressid)safid (6) to power$; andd,, with
[6,8,]" # [0 0], to divide the powered equation (5) by the powergdation (6), and then to
take natural logarithms. We get the cointegratiguagion

Xije =6, InP — 8, In Py — a;j (7)

! The well-known low power of cointegration tests does not preclude this empirical use. Due to the fact that
unit root tests and cointegration tests are similarly affected by low power, the usual methods of dealing with
low unit root power can be applied to cointegration testing: i) counterchecking of non-rejections of a unit root
by means of stationarity tests such as the KPSS-test (Kwiatkowski et al., 1992) and ii) recourse to panel tests
proposed by Levin et al. (2002) and Im et al. (1995).



wherea;;, = 6; In P, — 6, In P; o has a natural interpretation as the difference eetathe
logs of initial population levels of citiesandj, and withx;;, = (6;Iny;; — 6, Iny;,) +
(61Inyje1— S Inyj 1)+ +(61Iny;1 — 8 Inyjq).
Now define the proceqs;;.}:

wije = 61nye — 8 Iny;, . (8)
w;j. IS a linear combination of (log transformad) processes, so it is itselfl, with mean
E(wijc) = ue and varianc&ar(w;;,) = o2 verifying| p, | < o and 0 < 03 < . We
can now rewritex;; . as follows:

Xije = Wije+ Wije-1+ -+ 051 9)
implying E(x;;,) = t X pu, andVar(x;;,) =t x o3. Recall that integration of order 0
requires that the first two theoretical moments fariée and independent of time. The only
vectors[d,6,]" which assure time independenceE((ﬁci]-,t) are those verifying, = §,. But
this vector choice leaves unchanged the varianeestill haveVar(xl-j,t) =tx o2. By
consequencey;;, is not integrated of order O, implying thhtP;, and In P;, cannot be

cointegrated.

For the collinear process (3), we get exactly tppasite result. Proceeding in the
same was as above, we find:
Xije = [61 — 82] X [Inye +Inyq + -+ Inyq]. (10)
By choosingd; = §,, we obtain the degenerate random variahle = 0 for which time

independency of first and second moments is thwadrified.
3. Gibrat’'s law and convergence to Zipf's law

The formal proof of convergence of Gibrat’s growdha Zipf's distribution is based on city

i’s share of national urban populatidh; = Zpl‘f (Gabaix, 1999). Gibrat’s law thus writes as
it
follows
Sit = YieSit-1- (11)

Gabaix shows that the tail distribution of cityes#,(S) = P(Si,t > S) converges to the Zipf

distribution which is characterized lﬂ(si,t > S) = a S1, for some parameter and over a

large range of size%



Equation (11) can be rewritten
Pie =Vit Ve Pie— (12)

with y, = =—= and allows to break down the Gibrat random gromrbcess into overall

urban growth shockg, and city: specific growth shockg; ..

Importantly, one cannot relax the assumption afoavth process based on shocks that
areiid across timeand cities. Suppose in fact growth shocks which iadeacross time but
collinear in the cross section, impacting growtltitiesi andj in the same sense (i.e. a given
shock cannot simultaneously lead to an increasts @ind to a decrease g§ population). In
this instance, equation (12) transforms to therwedr process (3), whejg isiid across time
and has some convenient density distributjo¥).? Process (3) implies the following

expression for city’s population share in periath n :

Siane = A = S 03

Equation (13) highlights that there is no convergetowards a Zipf distribution, because the
initial distribution of city size shares is perfigctonserved over time. So we can conclude
that the assumption of growth shocks thatiedecross timeand cities cannot be relaxed in

the Gabaix (1999) proof.
4. Discussion and conclusion

Most papers applying time series methods on thésisaof urban growth focus on
unit root testing in order to prove the validity @ndom growth a la Gibrat. By contrast,
cointegration testing is scarcely used in thisrditere: Chen et al. (2013) highlight
cointegrated growth of a minority of Chinese citiglsaring important location-specific
characteristics (same region, same resource endowrate.); Sharma (2003) finds
cointegration between the growth of the summed [atiom of a set of 100 major Indian
cities and the population growth of most of thevidlal cities of this set (89%). While these
contributions reveal the existence of cointegrasochemes in urban growth series, they do

not formalize the logical relationships betweembtegration, Gibrat’s law and Zipf's law.

Our paper aims at filling this gap. In fact, we whtihat (unit root testable) random

growth may correspond to two versions of Gibratsv,| with diametrically opposed

? Formally, Yi+ becomes a time-invariant collinearity coefficient p; = 1V .
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implications for cointegration and convergence ba&ra The well-known Gabaix

formalization (1) establishes that growth shocks ial across time and cities, ensuring
convergence of the city-size distribution towardpfg law (Gabaix, 1999); we prove that
this process is inconsistent with cointegrated giywth® The second version of Gibrat's law
(3) is characterized by growth shocks that iadeacross time, but collinear in the cross-
section; process (3) is consistent with cointegmtbut it does not converge towards Zipf's

law.

In spite of their technical similarityunit root tests and cointegration tests should th
be regarded as complementary tools, likely to mle\guidance on the precise nature of urban
growth and to give a better empirical understanadingipf's law.
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Appendix 1

The proof presented in section 2 can be extend&h#&wma’s approach of testing for
cointegration between the natural logarithms oheadividual cityi’'s size and the sum of
city sizes across all P, = ;P . If eachi grows according to equation (1), the growth of

Paue is given by

Pane = YauePau,t-1 (A)
with v = ;;—L;_tl . Proceeding in the same way as in section 2,ete g
Xiait = Wiae + Oiane—1+ -+ Opau (B)

With ;e = 61Iny;r — 8, Inygy, , characterized b (w;an ) = e andVar(w;qne) =
o3, verifying |uz| < o and0 < ¢3 < . The two first moments of; 4y, areE (x; qi1¢) =
U X Ug and Va?”(xl allt) =t X 05+ 2N % NIz ke Cov (Wiait+kr Diaie-1)-  TiMe
independency of ar(x; 41, ) requires tha€ov (w;aie , Wiane—1) = -0.503, but this is not a
general property of; 5, ¢ It is for example not verified for standard déeysiistributions

(normal, uniform, lognormal etc), implying thiatP; , andln P,;; . are not cointegrated.



