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FUNCTIONAL COEFFICIENT MOVING AVERAGE MODEL WITH

APPLICATIONS TO FORECASTING CHINESE CPI

Song Xi Chen, Lihua Lei and Yundong Tu*

Peking University

Abstract: This article establishes the functional coefficient moving average model

(FMA), which allows the coefficient of the classical moving average model to adapt

with a covariate. The functional coefficient is identified as a ratio of two con-

ditional moments. Local linear estimation technique is used for estimation and

asymptotic properties of the resulting estimator are investigated. Its convergence

rate depends on whether the underlying function reaches its boundary or not, and

asymptotic distribution could be nonstandard. A model specification test in the

spirit of Härdle-Mammen (1993) is developed to check the stability of the functional

coefficient. Intensive simulations have been conducted to study the finite sample

performance of our proposed estimator, and the size and the power of the test. The

real data example on CPI data from China Mainland shows the efficacy of FMA.

It gains more than 20% improvement in terms of relative mean squared prediction

error compared to moving average model.

Key words and phrases: Moving Average model, functional coefficient model, fore-

casting, Consumer Price Index.

1 Introduction

Autoregressive Integrated Moving Average (ARIMA) models have been pop-

ular in time series analysis due to the simplicity and adaptability. An ARIMA(p, d, q)

model has the following expression:

(1−B)d(1− φ1B − · · · − φpBp)xt = µ+ (1 + θ1B + · · ·+ θqB
q)εt

where B is the lagged operator and {εt} is a white noise series with zero mean

and finite variance. On the one hand, it describes a special dependence structure

*Corresponding author. Guanghua School of Management and Center for Statistical Science, Peking
University, Beijing, China, 100871
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of data while on the other hand it can be regarded as an approximation to

all stationary process according to Wold Decomposition Theorem. In the past

decades, numerous works in statistics and econometrics have been devoted into

studying and extending the ARIMA model and its applications (to cite a few,

Box and Jenkins, 1970; Box and Tiao, 1975; Dahlhaus, 1989; Cleveland and

Tiao, 1976 ; Granger and Joyeux, 1980; Hannan and Deistler, 1988; Engle and

Granger, 1987).

One important application of ARIMA model is to forecast Consumer Price

Index (CPI). The growth rate of CPI can be regarded as a proxy of inflation

rate, which is a chief target of macro-economic management by various

governments and is an important economic indicator for investors. One pop-

ular model for the CPI is ARIMA(0,1,1) (Nelson and Schwert, 1977; Schwert

1987; Barsky 1987) :

(1−B)xt = µ+ (1− θB)εt

where {xt} represents logarithm of CPI. Although the model is easy to imple-

ment, it puts rather stringent restrictions to the inflation dynamics that the

autocovariance should be constant over time. However, it is observed for the

US data that the estimates of θ are not stable over time and are fairly volatile.

Stock and Watson (2006) interpreted this instability as the variation of variance,

which changes inversely with the magnitude of MA coefficient estimates. The

parameter instability is also observed in our analysis when analyzing monthly

CPI data of China Mainland from January 1990 to March 2014. We build the

ARIMA(0,1,1) model on the year-on-year CPI monthly growth data, and esti-

mate the MA coefficient θ on an expanding window basis and a rolling window

basis with a 60-month window-width. These estimates are plotted in Figure 1.

It can be seen that the estimates of θ are quite variable.

Based on the above observations, we consider an extension of ARIMA(0,1,1)

model in which the MA coefficient is a smooth function of a state covariate zt

such that

(1−B)xt = µ+ (1− θ(zt)B)εt. (1)

This model is called Functional Moving Average (FMA) model of order 1, or

Shall we call it a co-state variable or covariate ?
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Figure 1: Estimates of θ on an expanding window basis (panel (a)) and a rolling window
basis (panel (b))

FMA(1). The co-state variable zt contains information that affects the

dynamics of xt, and does not has to be exogeneous. The dynamic ad-

missible to zt is very general as indicated by the Assumption A3-A5

given in Section 2.2. We provides a testing procedure that determines

whether a given variable is qualified as co-state variable which can be

used to improve the inference and prediction of xt in Section 2.4. In

this paper, we focus on inference on FMA(1). The extension to higher order FMA

will be discussed later in the conclusion section. The choice of zt can be

made based on, for example, related economic theory, or through a data driven

procedure. In this paper, we develope a test procedure to check if a variable zt is

adequate to function as a co-state variable. We note that our FMA model

is related to the state-dependent models of Priestley (1980) and the

autoregressive functional moving average (ARFMA) model of Wang

(2008), where the latter is a specific form of the former. However, the

ARFMA model has the functional coefficient of the MA parts being

functions of the legged values of the state variabe xt itself. Our FMA

framework has the functional coefficient depends on a co-variable zt,

which is not necessarily legged value of the state variable. Of course,

ARFMA and FMA can be united under a more generakl framework
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with multivariate state variables. In any case, the asymptotic proper-

ties of the estimators for the state-dependent and the ARFMA models

have yet to be made. And we provide such results in this paper for

the FMA(1) model.

In econometrics and time series literatures (Hamilton, 1994), the MA coef-

ficients are often explained as the Impulse Response (IR). To be precise, for any

series xt that can be written in a MA(∞) form:

xt = µ+
∑
j≥0

θjεt−j ,

the j-th order IR is ∂xt
∂εt−j

= θj for any j ≥ 0. It measures the effect of a shock

on the response after j periods. For FMA(1) model, the 1-st order IR is θ(zt),

which is a function of the state variable rather than a constant as in the MA(1)

model. This flexibility brings closer linkage to the real world as the effect of a

shock is often affected by the state of the world.

Our work is closely related to a large body of literature on varying coefficient

models. They have been well developed in nonparametric statistics and time

series analysis, including ARCH/GARCH (Engle, 1982; Bollerslev, 1986), TAR

(Tong, 1983; Chan and Tong, 1986; Tong, 1990; Tiao and Tsay, 1994; Caner

and Hansen, 2001), EXPAR (Haggan and Ozaki, 1981; Ozaki, 1982) and FAR

(Chen and Tsay, 1993; Cai, Fan and Li, 2000; Fan, Yao and Cai, 2003). This

literature focuses mainly on extending the AR component of the ARIMA model,

while the current work aims to relax the flexibility of the MA component. See

also Priestley (1980) and Wang (2008).

The unique feature in the inference for the FMA(1) model is the esti-

mation technique. Unlike the FAR(1) model which has a regression form, local

polynomial regression cannot be directly applied to FMA (1). Nevertheless, we

find that the functional coefficient is identified via the conditional autocovariance

function. As a result, the functional coefficient can be consistently estimated by

first estimating the autocovariance function. To this end, local linear least square

is used to obtain estimates of conditional moments.

We note to the readers that this paper could be extended in several direc-

tions. First, an AR component could be incorporated to allow for more general
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dependence structure. Second, the FMA(1) model could also be generalized to

allow for multiple state variables Zt. To avoid the curse of dimensionality, a

single index structure for θ(·), such as θ(Z>t γ), could be imposed and estimation

procedure adapted from Ichimura (1993) can be used. Nevertheless, the identifi-

cation and estimation technique proposed in this paper would not simply apply

in either case. We leave these complicated extensions for future research.

The rest of paper is structured as follows. The next section introduces the

details for identification and estimation of the FMA model. The asymptotic

distribution of the proposed estimator is established and a model specification

test is also developed. Section 3 presents simulation results that evaluate the

finite sample performance of our estimator, and the size and power of the model

specification test. Section 4 shows the efficacy of FMA model by forecasting

Chinese CPI data and compare it to MA(1) models. Section 5 concludes with

remarks on future work. All technical lemmas and proofs are left in the appendix.

2 Theoretical Property

2.1 Identification and Estimation

For MA(1) model

xt = µ+ εt + θεt−1

where {εt} is a white noise process with variance σ2, the variance and the first

autocovariance of xt is

E((xt − µ)2) = (1 + θ2)σ2,

E((xt − µ)(xt−1 − µ)) = θσ2.

Higher order autocovariances are all 0’s. Then θ could be estimated via the ratio

of two moments after certain transformation.

Now suppose that xt follows a FMA model with the state variable zt, i.e.

xt = µ+ εt + θ(zt)εt−1.

where {εt} is a white noise with variance σ2, θ(zt) is a smooth function with
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|θ(zt)| ≤ 1. Conditional on zt, its autocovariance functions follows a similar

structure as those of MA(1). To see this, it follows from the definition that

E((xt− µ)2|zt = z) = E(ε2t |zt = z) + 2θ(z)E(εtεt−1|zt = z) + θ2(z)E(ε2t−1|zt = z)

E((xt − µ)(xt−1 − µ)|zt = z) = E(εtεt−1|zt = z) + E(θ(zt−1)εtεt−2|zt = z)

+θ(z){E(ε2t−1|zt = z) + E(θ(zt−1)εt−1εt−2|zt = z)}.

If for j, k = 0, 1,

E(εt−kεt−j |zt) = E(εt−kεt−j) = σ2I(j = k) and (2)

E(εt−jεt−2|zt, zt−1) = E(εt−jεt−2) = 0, (3)

then

E((xt − µ)2|zt = z) = (1 + θ2(z))σ2 and (4)

E((xt − µ)(xt−1 − µ)|zt = z) = θ(z)σ2. (5)

Now the two conditional moments have the same form with those of the

MA(1) model. The condition (2) and (3) are satisfied if (zt, zt−1) is independent

of (εt, εt−1, εt−2) for all t. In practice, zt is often taken as lagged variables (e.g.,

xt−d, for some d > 2) that contain the state information, as in FAR (Cai, Fan and

Yao, 2000). This requirement is not as stringent as it appears, since it is often

reasonable in application to assume the independence between the future innova-

tions and the past variables. This condition is precisely described in Assumption

(A5) below.

Nonparametric method of moments can be used to estimate θ(z). To do so,

we need to estimate two conditional moments (4) and (5). Many nonparametric

estimators could be used such as the Nadaraya-Watson estimator (Nadaraya,

1964; Watson, 1964) and the local polynomial estimator (Fan and Gijbel, 1996).

We prefer to using the local linear estimators due to its attractive statistical

properties including the minimax efficiency, automatic boundary correction and

a simpler form of the asymptotic bias. Denote the local linear estimator of the

(2) and (3) give the impression that the zt are exogeneous.
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variance and the autocovariance by â0(z) and â1(z), i.e.

(âj(z), b̂j(z)) = argmin(a,b)

T∑
t=1

{(xt − x̄)(xt−j − x̄)− a− b(zt − z)}2K(
zt − z
h

),

for j = 0, 1, where x̄ = T−1
∑T

t=1 xt is a consistent estimator for µ, k(·) is a

kernel function and h is the smoothing parameter.

Denote g(w) = w/(1 + w2), which is monotone in w ∈ [−1, 1]. A natural

estimator for g{θ(z)} is

ĝ{θ(z)} =
â1(z)

â0(z)
. (6)

Note that |g(w)| ≤ 1/2 for all w ∈ [−1, 1]. To incorporate this restriction,

we consider the constrained estimator

g̃{θ(z)} = ĝ{θ(z)}I(|ĝ{θ(z)}| ≤ 1
2) + 1

2I(ĝ{θ(z)} > 1
2)− 1

2I(ĝ{θ(z)} < −1
2). (7)

Then, θ(z) can be estimated by

θ̂(z) = h(g̃{θ(z)}),

where h : [−1/2, 1/2]→ [−1, 1], and

h(x) = g−1(x) =

{
1−
√

1−4x2

2x ( if x 6= 0);

0 ( if x = 0).

It is noted that our estimation for g(θ(z)) is based on a ratio estimator and

may not be efficient. Therefore, efficient estimator for θ(z) may be constructed,

which is left for further investigation.

2.2 Large Sample Theory

To maximize the clarity of presentation, we only consider the case where zt

is a scalar. The extension to allow for multi-dimensional state variables follows

in a similar fashion and is further remarked in the conclusion. The following

regularity conditions are assumed to obtain the large sample properties.

(A1) h = O(T ε0−1) as T →∞ for some ε0 ∈ (0, 1).
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(A2) The kernel function K(·) is symmetric and Liptchitz on its support SK =

[−1, 1], in that there exists a M > 0 such that |K(x) −K(y)| ≤ M |x − y|
for all x, y ∈ SK .

(A3) (i) {εt} is a white noise sequence with Eε2t = σ2 < ∞, E|εt|2δ < ∞ for

some δ > 2; (ii) {εt, zt} is a strictly stationary α-mixing process with the

mixing coefficients satisfying the condition α(k) < ck−β for some β >

max{2δ−2
δ−2 ,

2−ε0
ε0
} and constant c > 0.

(A4) (i) The density function p(z) of zt has a bounded second derivative; (ii) the

conditional density function of (z1, zm) given (x1, · · · , xm) is bounded by a

C0 > 0 uniformly with m ≥ 0; (iii) the conditional density of xt given zt is

continuous.

(A5) (i) For each t and j, k = 0, 1, E(εt−kεt−j |zt) = σ2I(j = k) and E(εt−jεt−2|zt, zt−1) =

0; (ii) E(|εt−j |2δ|zt = z) ≤ M < ∞ for some M and j = 0, 1, 2, and the

same δ in (A2).

(A6) The coefficient function θ(z) has continuous second derivative and |θ(z)| ≤
1 for any z ∈ R.

Conditions (A1) and (A2) are standard assumptions in the kernel smooth-

ing literature. For instance, the second-order Epanechnikov kernel satisfies this

requirement and is used throughout the paper. Conditions (A3) and (A4) are

used by Masry and Fan (1997) for α-mixing processes. The condition imposed

on β in (A3) is a technical requirement. If εt satisfies the Cramér Condition,

i.e. Eeλ|εt|
α
< ∞ for some λ, α > 0, then δ can be arbitrarily large and hence

(A3) can be reduced to β > 2 if ε0 >
2
3 . Condition (A5.i) is needed for identifi-

cation of the model, which has been discussed in the last subsection. (A5.ii) is

a technical condition in order to apply the result of Masry and Fan (1997). It

holds under (A3) if zt is independent of (εt, εt−1, εt−2). (A6) places smoothness

condition on the functional coefficient. We note that In particular, zt does

not have to be exogeneous. The dynamic admissible to zt is very gen-

eral as indicated by the Assumption A3-A5, which are largely of the

mixing condition, the conditional moment conditions and conditions

regarding the conditional densities.
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We begin with the asymptotic normality of ĝ{θ(z)}. The following quantities

are needed to present the asymptotic distribution of ĝ{θ(z)}. Let

G(z) =
u(z)>Au′′(z)

2[1 + θ2(z)]2
σ2
K , ν(z) =

u(z)>Γ(z)u(z)

[1 + θ2(z)]4p(z)
R(K), A =

(
0 −1

1 0

)
, and

Γ(z) = Cov
[
(xt − µ)(xt−1 − µ), (xt − µ)2|zt = z

]
/σ4,

where σ2
K =

∫
u2K(u)du, R(K) =

∫
K2(u)du, u(z) = (1 + θ2(z),−θ(z))>, and

θ′(z) and θ′′(z) are the first and second derivatives of θ(z). Let S = {z|p(z) > 0}.

Theorem 1. Under Assumptions (A1)∼(A6), it holds for z ∈ S that as T →∞,

√
Th(ĝ{θ(z)} − g{θ(z)} −G(z)h2)

d−→ N(0, ν(z)).

Remark 1. Let M = {z : θ(z) = ±1}. Since |θ(z)| ≤ 1 for all z ∈ R, the points

in M are local extremas of θ(z). Thus, θ′(z) = 0 for all z ∈M. It is easily shown

that G(z) = 0, for z ∈M.

The next theorem establishes the asymptotic property of g̃{θ(z)}, the con-

strained estimator of g{θ(z)}.

Theorem 2. Under Assumptions (A1)∼(A6), it holds for z ∈ S that

(i) If |g{θ(z)}| < 1
2 ,√
Th/ν(z)(g̃{θ(z)} − g{θ(z)} −G(z)h2)

d−→ Φ;

(ii) If g{θ(z)} = 1
2 , √

Th/ν(z)(g̃{θ(z)} − g{θ(z)}) d−→ Φ−;

(iii) If g{θ(z)} = −1
2 , √

Th/ν(z)(g̃{θ(z)} − g{θ(z)}) d−→ Φ+,

where Φ is the standard normal distribution function, and

Φ−(x) = Φ(x)I(x < 0) + I(x ≥ 0),Φ+(x) = Φ(x)I(x ≥ 0).
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The above theorem reveals the distribution discontinuity at the bound-

aries of g{θ(z)}. Intuitively, when |g{θ(z)}| < 1/2, the unconstraint estima-

tor ĝ{θ(z)} will be the same as g̃{θ(z)} for sample size large enough. There-

fore, the unconstraint estimator and the constraint estimator are asymptotically

equivalent. However, when |g{θ(z)}| = 1/2, the constraint becomes binding,

i.e. ĝ{θ(z)} 6= g̃{θ(z)}, with positive probability. In this case, the asymptotic

distribution of the constrained estimator will be different from that of the un-

constrained one.

Now we are in a position to state the asymptotic property of θ̂(z) = h(g̃{θ(z)}).
Note that h(x) is differentiable when |x| < 1/2. The delta-method can be applied

to Theorem 2 to obtain the asymptotic distribution of θ̂(z). At |x| = 1/2, the

asymptotic distribution can be derived directly. See the appendix for details.

Theorem 3. Under Assumptions (A1)∼(A6), it holds for z ∈ S that

(i) If |θ(z)| < 1,√
Th/ν(z)g′{θ(z)}(θ̂(z)− θ(z)− g′{θ(z)}−1G(z)h2)

d−→ Φ;

(ii) If θ(z) = 1,
4
√
Th/ν(z)(θ̂(z)− θ(z)) d−→ H−Φ ;

(iii) If θ(z) = −1,
4
√
Th/ν(z)(θ̂(z)− θ(z)) d−→ H+

Φ ,

where H−Φ (x) = Φ(−x2/4)I(x < 0) + I(x ≥ 0) and H+
Φ (x) = Φ(x2/4)I(x ≥ 0).

It is seen that the convergence rate of θ̂(z) depends on whether |θ(z)| < 1.

When θ(z) = ±1, it converges at a slower rate and its asymptotic distribution is

nonstandard.

We note that asymptotic variance of the above estimators rely on the un-

known parameter σ2. It could be consistently estimated by the sample average

of the squared innovation residuals ε̂2t , for t = 1, · · · , T under Assumption (A3),

where ε̂t could be obtained in a similar iterative procedure like that in the moving

average models, with θ̂ replaced by the estimated function θ̂(zt).
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2.3 Bandwidth Selection

The theoretical optimal bandwidth for estimating θ(z) minimizing the asymp-

totic mean squared error of θ̂(z) can be shown as

ĥopt = (
ν(z)g′(θ(z))2

4G(z)2T
)
1
5 =

(
cK
u(z)>Γ(z)u(z)g′(θ(z))2

u(z)>Λ(z)u(z)p(z)

) 1
5

T−
1
5 (8)

where cK = R(K)/σ4
K and Λ(z) =

(
0 −1

1 0

)
u′′(z)u′′>(z)

(
0 −1

1 0

)
. This

theoretical optimal bandwidth depends on the unknown elements θ(z), Γ(z),

Λ(z) and p(z). In practice, these terms can be estimated consistently with a

prior bandwidth.

A practical way of bandwidth selection is to adopt the Residual Squares

Criterion (RSC) proposed by Fan and Gijbel (1995), which avoids the above

complication. Let

Γ̂(z, h) =
1

∆

T∑
t=2

(Yt − Ŷt)(Yt − Ŷt)>K(
zt − z
h

)

where ∆ = tr(W −WZ(Z ′WZ)−1Z ′W ), Z = [(1, z2 − z)>, . . . , (1, zT − z)>]>,

W = diag{K( z2−zh ), · · · ,K( zT−zh )}, Yt = ((xt − µ)2, (xt − µ)(xt−1 − µ))> and

Ŷt = (â∗0(zt), â
∗
1(zt))

>, where

(â∗j (z), b̂
∗
j (z)) = argmina,b

T∑
t=1

{(xt − µ)(xt−j − µ)− a− b(zt − z)}2K(
zt − z
h

).

With the similar arguments of Fan and Gijbel (1995), it can be shown that

E(Γ̂(z, h)|z2, · · · , zT ) = Γ(z) + dKΛ(z)h4 + op(h
4) (9)

where dK =
∫
u4K(u)du− σ4

K .

As a result, our criterion for bandwidth choice is defined as

R(z, h) = u(z)>Γ̂(z, h)u(z)(1 + g′(θ(z))2V ), (10)

where V is the first diagonal element of (Z ′WZ)−1(Z ′W 2Z)(Z ′WZ)−1. Denote
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the minimizer of R(z, h) as h̄. Following Fan and Gijbel (1995), one can show

that adjK h̄ offers a reasonable approximation for ĥopt in practice, where

adjK =

(
4cKdK
R(K)

) 1
5

= 4
1
5

( ∫
u4K(u)du(∫
u2K(u)du

)2 − 1

) 1
5

.

To see this, by Fan and Gijbel (1995), we have

V =
R(K)

Thp(z)
(1 + op(1)). (11)

In addition, it follows from (10) and (11) that

E(R(z, h)|z2, · · · , zT ) = u(z)>Γ(z)u(z) + dKu(z)>Λ(z)u(z)h4

+R(K)
u(z)TΓ(z)u(z)g′(θ(z))2

Thp(z)
+ op(h

4 +
1

Th
).

It can be shown that the minimizer of the leading term of the above expression

is

ĥo = ĥopt/adjK .

Note that R(z, h) depends on the unknown θ(z), we can use θ̂(z) with a prior

bandwidth h to replace θ(z). Furthermore, the constant adjK is determined by

the chosen kernel function. For example, adjK = (92/7)
1
5 for the Epanechnikov

kernel.

To obtain a globally optimal bandwidth, one can minimize

IR(h) =

∫
R(z, h)dz

and use adjK ·argminhIR(h) as the bandwidth. For implementation, the integral

can be approximated by a discrete summation over the observed data. Finally,

we note that undersmoothing is often desired as one would like to avoid the bias

estimation in practice.

2.4 Model Specification Test

When the coefficient function θ(z) is a constant, the FMA(1) model is an

MA(1) model, using an FMA model can result in a loss in estimation efficiency.
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On the other hand, when the underlying model is not an MA(1) model but an

FMA model, using a misspecified an MA(1) model can produce erroneous infer-

ence. Therefore, a model specification test is needed to check if the specification

of FMA model is adequate.

Various approaches can be taken to construct such a specification test, for

example, following Fan and Li (1996) or Chen and Gao (2007) among others.

We are to adopt the L2 norm based test for regression functions (degenerated

to a parameter in our case) proposed by Härdle and Mammen (1993) for testing

the constancy of θ(z), due to its simple nature in implementation. The null

hypothesis is

H0 : P (θ(z) ≡ θ for some θ ∈ R) = 1,

while the alternative is

H1 : P (θ(z) ≡ θ for some θ ∈ R) < 1.

Similar to Härdle and Mammen’s approach, we consider the following statistic:

DT = Th1/2

∫
R

(θ̂(z)− θ̂)2π(z)dz

where θ̂ is maximum likelihood estimator under H0. Note that our test statistic

does not have a smoothing operator on the parametric part, contrasted to the

original Härdle and Mammen’s (1993) test, as the parametric part is a degener-

ated function (i.e., a constant). To approximate the finite sample distribution of

D under H0, we use the following parametric bootstrap method in the spirit of

Chen and Gao (2007):

Step 1 Apply the MA(1) model to xt and obtain the estimator of the mean µ̂,

the coefficient θ̂ and the variance σ̂2.

Step 2 Generate a bootstrap re-sample according to x∗t = µ̂ + ε∗t + θ̂ε∗t−1 for

t = 1, 2, · · · , T , where {ε∗t }1≤t≤T are independent N(0, σ̂2) variables and

obtain an estimate θ̂(z) based on the resample.

Step 3 Repeat Step 2 B times for a large integer B and obtain {θ̂(i)(z)}Bi=1.
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Step 4 Calculate

D
(i)
T = Th1/2

∫
R

(θ̂(i)(z)− θ̂)2π(z)dz, i = 1, 2, · · · , B

and calculate the (1− α)-th quantile of {D(i)
T }1≤i≤B as the critical value

of the test.

For simplicity, one can set π(z) = 1 and use the discrete sum to approximate

DT . In the next section, we will use numerical simulations to study the size and

the power of this proposed test.

Prof. Chen would add something related to the theoretical properties of the

above test.

3 Finite Sample Investigation

In this section, we generate the state variable zt from ARIMA(1,0,1) process:

(1− 0.5B)zt = (1 + 0.5B)ut,

where {ut} is a Gaussian white noise. The response xt is generated according to

xt = εt + sθ(zt)εt−1

for some s ∈ [0, 1], where {εt} is an Gaussian white noise that is independent of

{ut}. Three functions chosen for θ(·) are

(1) θ1(z) = 2e−z
2 − 1;

(2) θ2(z) = sin(3z);

(3) θ3(z) = (e2z − 1)/(e2z + 1).

These functions are selected to describe three common features: humped, os-

cillated and monotone functional forms. We use these different functions to check

on the sensitivity of our procedures to the pattern of the coefficient functions.
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3.1 Performance of Estimation

It is known from Theorem 3 that our estimator has slower convergence rate

when θ(z) = ±1. Therefore, we only consider the case when θ(z) < 1 for the finite

sample study. To do so, we shrink the chosen functions by setting s = 0.8. For

each choice of θ(z) and each T ∈ {100, 200, 500, 1000}, we generate {(xt, zt)}t≤T
for 1000 times and obtain 1000 estimates of θ(z), the mean value of which is

plotted in solid line in Figure 2 to Figure 4. The dashed line in each figure

represents the true function 0.8 · θ(z) and the dotted lines are the mean value

plus and minus the standard deviation. It is seen that the proposed estimator

provides accurate estimation in all the three specifications.

func1_estim.pdf

Figure 2: Plot of the true function 0.8 · θ1(z) (dashed lines), averaged estimates (solid
lines) and the associated one standard deviation confidence bands (dotted lines)
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func2_estim.pdf

Figure 3: Plot of the true function 0.8 · θ1(z) (dashed lines), averaged estimates (solid
lines) and the associated one standard deviation confidence bands (dotted lines)

3.2 Finite Sample Distribution

Next we approximate the distribution of θ̂(z) by simulations. Theorem 3

indicates that the asymptotic distribution of θ̂(z) is determined by whether

the true value lies on the boundary or not. We treat these two cases sepa-

rately. We set T = 100, 200, 500, 1000. With each T , we generate a sample

{(xt, zt)}t≤T for 1000 times, and obtain 1000 estimates of θ(z), denoted by

θ̂(1)(z), θ̂(2)(z), · · · , θ̂(1000)(z). Their kernel density is calculated and compared

to the asymptotic distribution of θ̂(z).

Note that when θ(z) = ±1, the asymptotic distribution function of θ̂(z) is

discrete at±1, with the size of the atom being 1/2 respectively at the origin. Even

if |θ(z)| < 1, there are still some estimates concentrating on ±1 when the sample

size is not large enough. Thus, if we use kernel density as the empirical density,

there might be two peaks at −1 and 1, which is not desirable for comparison. To

circumvent this annoying feature, we turn to the asymptotic conditional distribu-

tion of
√
Th/ν(z)(θ̂(z)− θ(z)−G(z)h2) given |θ̂(z)| < 1. When |θ(z)| < 1, this

distribution function will still be Φ(z) since P (|θ̂(z)| < 1) → 1; when θ(z) = 1,
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func3_estim.pdf

Figure 4: Plot of the true function 0.8 · θ1(z) (dashed lines), averaged estimates (solid
lines) and the associated one standard deviation confidence bands (dotted lines)

the conditional distribution will be 2Φ(−z2/4) for z ∈ (−∞, 0); when θ(z) = −1,

the conditional distribution will be 2Φ(−z2/4) for z ∈ (0,∞). We compare the

kernel density of {θ̂(i)(z) : |θ̂(i)(z)| < 1}, to the corresponding asymptotic distri-

bution. In addition, we also compute the fraction that |θ̂(i)(z)| = 1 , as denoted

by P (A). It should be close to 0 when |θ(z)| < 1 and 0.5 when θ(z) = ±1 for

large enough T .

To save space, we set s = 1 and θ(z) = θ1(z) to illustrate the findings. First,

we consider the estimation of θ(z) at z0 =
√

log 2. It is noted that θ(z0) =

0 ∈ (−1, 1). The empirical conditional density of the standardized data are

plotted in Figure 5 and the probability P (A) is reported at the bottom of each

subfigure. The bandwidth of kernel density is selected by cross validation. The

red dashed line is the standard normal density and the black solid line is the

kernel density. Note that two lines are close to each other even for moderate T

and P (A) decreases to 0 when the sample size becomes larger.

To study the boundary issue, we estimate θ(z) at z0 = 0 (θ(z0) = 1). The

conditional kernel density of the standardized data are plotted in Figure 6. Note

that two lines are close to each other even for moderate T and P (A) increases to
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0.5 when the sample size increases.

non-boundary.pdf

Figure 5: The finite sample distribution of θ̂1(z) at z0 =
√

log 2 (solid lines) and the
theoretical asymptotic distribution (dashed lines) together with the probability of A =

{θ̂1(z0) = ±1}

3.3 Size and Power of the Test

In this subsection, we study the size and the power of the model specification

test via simulation. The size is estimated by the proportion of rejection under

the null hypothesis while the power is estimated by that under the alternative.

As for the size, we consider the following DGP:

xt = εt + θεt−1

The coefficient θ is set to be 0.2, 0.4, 0.6, 0.8, 1.0, respectively. For each θ and

each sample size T ∈ {100, 200}, we generate 500 sets of data and calculate the

proportion of rejection when the significance level α is 0.05. The results are

reported in table 1. It can be seen that the test has proper size.

As for the power, we consider the following DGPs.

xt = εt + s · θj(zt)εt−1
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boundary.pdf

Figure 6: The finite sample conditional distribution of θ̂1(z) at z0 = 0 given |θ̂1(z0)| < 1
(solid lines) and the theoretical asymptotic distribution (dashed lines) together with the

probability of A = {θ̂1(z0) = ±1}

Table 1: Rejection Rate Under H0 (α = 0.05)

T s=0.2 0.4 0.6 0.8 1.0

100 0.052 0.040 0.042 0.048 0.050
200 0.048 0.044 0.050 0.050 0.048

where j ∈ {1, 2, 3} and s ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. For each design and sample

size T ∈ {100, 200}, we generate 100 sets of data and calculate the proportion of

rejection when the significance level α is 0.05. The results are reported in table 2

and it is seen that the rejection rate gets larger when s increases. For moderate

value of s, the power is desirable.

4 Application to Chinese CPI

In this section, we apply a FMA model to Chinese CPI data and compare

its forecast performance to that of MA model. The year-on-year CPI monthly

growth data ranging from Jan. 1990 to Mar. 2014 is downloaded from Wind



20 SONG XI CHEN, LIHUA LEI AND YUNDONG TU

Table 2: Rejection Rate Under H1 (α = 0.05)

θ(z) T s = 0.2 0.4 0.6 0.8 1.0

θ1(z) 100 0.02 0.06 0.36 0.54 0.66
200 0.10 0.32 0.64 0.84 0.86

θ2(z) 100 0.10 0.02 0.24 0.38 0.48
200 0.06 0.14 0.26 0.60 0.74

θ3(z) 100 0.16 0.42 0.70 0.72 0.78
200 0.26 0.38 0.70 0.92 0.98

database (www.wind.com.cn). The raw data is plotted in panel (a) of Figure 7.

It is clear that the data is nonstationary (the p value of ADF test is less than

0.01). The first order difference of the data is plotted in panel (b) of Figure 7.

rawdata.pdf

Figure 7: The CPI monthly growth rate (panel (a)) and its first order difference (panel
(b))

Our target is to forecast the data ranging from Jan. 2011 - Mar. 2014. If

we use the MA(1) model for the first-order differenced log CPI (or equivalently,

ARIMA(0,1,1) for CPI), the root mean squared forecast error (RMSE) of MA(1)

model is 0.589.

Now we turn to the forecast using FMA(1). The first set of state variables
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we consider are various measures of money supply, including M0, M1, M2, as

the neutrality of money implies that increase in money supply will eventually

convert to the increase in price level. Other economic variables which may affect

the level of price includes export (Ex), import (Im), retail sales (RS) and PPI are

also considered. Since PPI is often presumed to be the leading index of CPI, we

also consider 4 sub-categories of PPI: capital goods (ca), consumer goods (co),

light manufacturing (lm) and heavy manufacturing (hm). Year-on-year growth

rate data for these 11 state variables are obtained from Wind Database. Since

all variables are non-stationary, first-order differenced series are used.

First, we conduct the model specification test to detect the state variables

whose corresponding coefficient functions differ from a constant significantly. For

each variable, we include lagged variables starting from the 2-nd order to the 12-

th order. The 1-st order lagged variables are excluded for identification require-

ments. Among all of 121 state variables (11 variables with 11 lags for each), we

find that 20 of them are significant at α = 0.05. These findings are summarized

in Table 3.

Due to the space limit, we plot the estimate of θ(·) with respect to 6 of

the significant variables, M0t−12, M2t−8, Ext−11, Imt−12, cot−12 and lmt−12, as

illustrations in Figure 8, which displays strong departure from constancy.

Table 3: Significant State Variables

zt−d d zt−d d

M0 12 PPI 4, 11
M1 9 ca 11
M2 8, 9 co 12
Ex 2, 11, 12 lm 7, 8, 9, 12
Im 2, 12 hm 11
RS 11, 12

The forecast RMSE with respect to all variables are summarized in Table

4. Among these 20 variables, over 85% of them outperforms the MA(1) model

in terms of the forecast RMSE. Among all significant variables, we find that the

12-th lag of import leads to the best forecasts. The forecasts RMSE reaches

0.463, which is a 21.4% improvement compared to that of the MA(1) model.
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Table 4: Forecasting RMSE of FMA(1) with Various Variables

zt M0t−12 M1t−9 M2t−8 M2t−9

0.524 0.572 0.638 0.525

zt Ext−2 Ext−11 Ext−12 Imt−2

0.532 0.505 0.563 0.549

zt Imt−12 RSt−11 RSt−12 PPIt−4

0.463 0.521 0.575 0.607

zt PPIt−11 cat−11 cot−12 lmt−7

0.519 0.528 0.494 0.577

zt lmt−8 lmt−9 lmt−12 hmt−11

0.513 0.502 0.508 0.543

5 Conclusion

This paper extends the moving averaging models by allowing the MA coef-

ficients to adapt with a covariate. Under parameter identification, we proposed

to estimate the functional coefficient by a ratio of two conditional moment esti-

mators derived from local linear least squares. The consistency and asymptotic

distribution of the proposed estimators are established. A Härdle and Mammen

type adequacy test of the constancy of the functional coefficient is also proposed.

Both simulation and empirical exercises show that our proposed method perform

well in finite samples.

The FMA(1) framework can be extended to the general ARFMA(p,q).

Let us outline how the extension can be made via ARFMA(1,2)

xt − αxt−1 = εt + θ1(zt, zt−1)εt−1 + θ2(zt, zt−1)εt−2 (12)

where α is the AR coefficient, and θ1(·) and θ2(·) are two MA nonpara-

metric coefficient functions which depends on (zt, zt−1) as suggested by

a referee. We have assume in (12) the mean of xt is zero to simplify

the notation. After algebraic manipulation similar to those exhibated

in (3)-(4), it can be shown that

V ar(xt|zt, zt−1)− 2αCov(xt, xt−1|zt, zt−1) + α2V ar(xt−1|zt, zt−1)

= σ2{1 + θ2
1(zt, zt−1) + θ2

2(zt, zt−1)}, (13)
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Cov(xt, xt−1|zt, zt−1, zt−2)− αV ar(xt−1|zt, zt−1, zt−2)

= σ2{θ(
1zt, zt−1) + θ1(zt−1, zt−2)θ2(zt, zt−1)}, (14)

Cov(xt, xt−2|zt, zt−1)− αCov(xt−1, xt−2|zt, zt−1) = σ2θ2(zt, zt−1) and(15)

Cov(xt, xt−3|zt, zt−1)− αCov(xt−1, xt−3|zt, zt−1) = 0. (16)

Let gj(z1, z2) = Cov(xt, xt−j |zt = z1, zt−1 = z2) for j = 0, 1, 2, 3, g3+j(z1, z2) =

Cov(xt−1, xt−j |zt = z1, zt−1 = z2) for j = 1, 2, 3, and g7+j(z1, z2, z3) = Cov(xt−j , xt−1|zt =

z1, zt−1 = z2, zt−2 = z3). Carrying out the local linear estimation to these

functions, and denote the estimator as ĝk(z1, z2) for k = 0, 1, · · · and 8.

Then, estimators for α is

α̂ = n−1
∑n

t=1 ĝ3(zt, zt−1)

ĝ6(zt, zt−1),

which should be more efficient than having the estimation based on

a single or a few (zt, zt−1). The estimators for θ1(z1, z2) and θ2(z1, z2)

can be obtained by solving the estimating equations based on (13)

to (16). The conditions assumed for FMA(1) given in Assumptions

A.2-A.5 Section 2.2 need to be updated by replacing zt by the pair

(zt, zt−1, zt−2).

We can see that as the order of the ARFMA increases, the estima-

tion procedure involves more functions. Hence, ARFMA(p,q) models

with shorter order are more useful. Indeed, one criteron one should

adapt in choosing the co-state covariable zt is that it would allows

shorter orders in the ARFMA(p,q). There are certainly more to re-

serach on in future on this topics.
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Appendix: Lemmas and Proofs

Lemma 1 (Fan and Yao, 2006). Suppose that

1. {Xt, Yt} are strictly stationary and α-mixing with
∑

l≥1 l
λ[α(l)]1−

2
δ ≤ ∞

and E{|Yt|δ|Xt = x} <∞ for some δ > 2 and λ > 1− 2/δ.

2. The conditional density fX0,Xl|Y0,Yl(x0, xl|y0, yl) ≤ A < ∞ for some A > 0

and all l > 0.

3. The conditional distribution of Yt given Xt = u, denoted by G(y|u) is

continuous at the point u = x.

4. As T →∞, h→ 0 and there exists a sequence of positive integers sT →∞
and sT = o((Th)1/2) such that (T/h)1/2α(sT )→ 0 as T →∞.

5. K(·) is a symetric and bounded kernel with a bounded support [−1, 1] such

that
∫
K(u)du = 1.

6. σ2(·) = V ar(Yt|Xt = ·) and the density function f(·) of Xt are continuous

at the point x.

Let m̂(x) be the local linear estimator of the conditional mean m(x) = E(Yt|Xt =

x), then

√
Th(m̂(x)−m(x)− 1

2

∫
u2K(u)du m′′(x)h2)

d−→ N(0,
σ2(x)

f(x)

∫
K2(u)du)

Lemma 2. Suppose xt ∼ FMA(1). For j = 0, 1, Let

(â∗j (z), b̂
∗
j (z)) = argmin(a,b)

T∑
t=1

{(xt − µ)(xt−j − µ)− a− b(zt − z)}2K(
zt − z
h

),
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then under the assumptions (A1)∼(A6), it holds that

√
Th

(
â∗1(z)− (1 + θ2(z))σ2 − 1

2σ
2
Kθ
′′(z)σ2h2

â∗0(z)− θ(z)σ2 − σ2
K(θ(z)θ′′(z) + θ′2(z))σ2h2

)
d−→ N(0,

Γ(z)

p(z)
σ4R(K)).

Proof. For any v = (v0, v1)T ∈ R2, let yt(v) = v0(xt−µ)2 + v1(xt−µ)(xt−1−µ).

Denote â∗(z; v) by the local linear estimator of E(yt(v)|zt = z) = v0(1+θ2(z))σ2+

v1θ(z)σ
2, i.e.

(â∗(z; v), b̂∗(z; v)) = argmina(z),b(z)

T∑
t=2

(yt(v)− a− b(zt − z))2K(
zt − z
h

)

Then it is easy to show that â∗(z; v) = v0â
∗
0(z) + v1â

∗
1(z). If we proved that

√
Th(â∗(z; v)− E(yt(v)|zt = z)− 1

2
σ2h2σ2

K vT

(
θ′′(z)

2(θ(z)θ′′(z) + θ′2(z))

)
)

d−→ N(0,
vTΓ(z)v

p(z)
σ4R(K)).

(17)

Then Lemma 2 will be proved by Cramér Device. Now we prove (17).

First, by Assumptions (A2) and (A3), {yt(v), zt} is strictly stationary and α-

mixing such that

E(|yt(v)|δ|zt = z) < C||v||2E(|εt|2δ + |εt−1|2δ + |εt−2|2δ|zt = z) <∞

and α(m) ≤ Am−β. Let λ = β
2 −

1
δ , then λ > 1 since β > (2δ − 2)/(δ − 2) and∑

l≥1

lλ(α(l))1− 2
δ ≤ A1− 2

δ

∑
l≥1

l−(1− 2
δ

)(β
2

+ 1
δ−2

) <∞.

Thus, the condition 1 of Lemma 1 is satisfied.

By Assumption (A1), it holds that h = O(T−(1−ε0)). Let sT = [(Th)1/2/ log T ],
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then sT = o((Th)1/2) and

(T/h)1/2α(sT ) = O(T 1− 1+β
2
ε0(log T )−β) = o(1).

Thus, the condition 4 of Lemma 1 is satisfied.

Further, it follows Assumptions (A4), (A5) and (A6) that the conditions 2,3,5,6

of Lemma 1 hold. Therefore, (17) is proved by Lemma 1 and hence the lemma

is proved by Cramér Device.

Lemma 3. Suppose that Assumptions (A1)∼(A6) holds. Then

|âj(z)− â∗j (z)| = Op(
1√
T

) (18)

Proof. First, we show that x̄ = Op(T
−1/2).

TV ar(x̄) =
∑
|j|<T

(1− |j|
T

)γ(j) ≤
∞∑
−∞

(1− |j|
T

)γ(j) <∞.

Thus limT→∞ TV ar(x̄) =
∑∞
−∞ γ(h) and then x̄ = Op(T

−1/2). Let wt(z) =

K( zt−zh )(sn,2 − (zt − z)sn,1), where sn,j =
∑T

t=1K( zt−zh )(zt − z)j , then

âj(z) =

∑T
t=j+1wt(z)(xt − x̄)(xt−j − x̄)∑T

t=j+1wt(z)
, â∗j (z) =

∑T
t=j+1wt(z)(xt − µ)(xt−j − µ)∑T

t=j+1wt(z)
.

Notice that

|âj(z)− â∗j (z)| ≤ |µ2 − x̄2|+ |µ− x̄|
∣∣∣∣
∑T

t=j+1wt(z)(xt + xt−j)∑T
t=j+1wt(z)

∣∣∣∣.
On the one hand,

µ2 − x̄2 = (µ− x̄)(µ+ x̄) = Op(
1√
T

).

On the other hand,
∑T
t=j+1 wt(z)(xt+xt−j)∑T

t=j+1 wt(z)
is the local linear estimator of E(xt +
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xt−j |zt = z). Let Then by Lemma 1, it is easy to prove that∣∣∣∣
∑T

t=j+1wt(z)(xt + xt−j)∑T
t=j+1wt(z)

∣∣∣∣ = Op(1)

and hence

|âj(z)− â∗j (z)| = Op(
1√
T

).

Proof of Theorem 1.

Without loss of generality, we assume µ = 0. Let MT = T−1
∑T

t=1Kh(zt − z),

ĝ{θ(z)} − g{θ(z)} =
â1(z)

â0(z)
− θ(z)

1 + θ2(z)
=
â∗1(z) +Op(T

− 1
2 )

â∗0(z) +Op(T
− 1

2 )
− θ(z)

1 + θ2(z)

=
θ(z)σ2 + 1

2σ
2
Kθ
′′(z)σ2h2 + (Th)−

1
2A1 +Op(T

− 1
2 )

(1 + θ2(z))σ2 + σ2
K(θ(z)θ′′(z) + θ′2(z))σ2h2 + (Th)−

1
2A0 +Op(T

− 1
2 )
− θ(z)

1 + θ2(z)

= G(z)h2 + (Th)−
1
2

(1 + θ2(z))A1 − θ(z)A0 +Op(1)

(1 + θ2(z))2 + op(1)

where the second equality follows from Lemma 3, the third quality follows from

Lemma 2 and (
A0

A1

)
∼ N(0,

Γ(z)

p(z)
σ4R(K))

Then it follows from Slusky Theorem that

√
Th(ĝ{θ(z)} − g{θ(z)} −G(z)h2)

d−→ N(0, ν(z)).

Proof of Theorem 2. For (i), by Theorem 1, it suffices to prove√
Th/ν(z)(g̃{θ(z)} − ĝ{θ(z)}) d−→ 0.

For arbitrary ε > 0,

P (
√
Th/ν(z)(g̃{θ(z)} − ĝ{θ(z)}) > ε) ≤ P (g̃{θ(z)} 6= ĝ{θ(z)})
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=P (|ĝ{θ(z)}| > 1

2
) ≤ P (|ĝ{θ(z)} − g{θ(z)}| > 1

2
− |g{θ(z)}|)→ 0.

Thus, (i) is proved. Now turn to (ii). Notice that G = 0 when g{θ(z)} = 1
2 , thus

by Theorem 1, we know that√
Th/ν(z)(ĝ{θ(z)} − 1

2
)
d−→ Z

where Z ∼ N(0, 1). Let f(x) = min{x, 0}, then√
Th/ν(z)(g̃{θ(z)} − 1

2
) = f [

√
Th/ν(ĝ{θ(z)} − 1

2
)].

Since f is continuous, by continuous mapping theorem, we have√
Th/ν(z)(g̃{θ(z)} − 1

2
)
d−→ f(Z),

where f(Z) ∼ Φ−. Therefore, (ii) is proved and similarly (iii) is proved.

Proof of Theorem 3. (i) is directly followed from Lemma 2 and Delta Method.

Now we prove (ii) while (iii) can be dealt with in similar way. It follows Remark

1 that G(z) = 0 when θ(z) = 1, by Theorem 1, we know that√
Th/ν(z)(ĝ{θ(z)} − 1

2
)
d−→ N(0, 1),

where Z ∼ N(0, 1). For any positive d, we have

P

{
4

√
Th

ν(z)
(θ̂(z)− 1) ≤ −r

}
= P

{
θ̂(z) ≤ 1−

r 4
√
ν(z)

4
√
Th

}
= P

{
g(θ̂(z)) ≤ g(1−

r 4
√
ν(z)

4
√
Th

)

}

=P

{
√
Th[g(θ̂(z))− 1

2
] ≤
√
Th[g(1−

r 4
√
ν(z)

4
√
Th

)− g(1)]

}

=P

{
√
Th[g(θ̂(z))− 1

2
] ≤
√
Th[−

r2
√
ν(z)

4
√
Th

+ o(
1√
Th

)]

}

=P

{√
Th/ν(z)(g(θ̂(z))− 1

2
) ≤ −r

2

4
+ o(1)

}
→Φ(−r

2

4
).
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Also, since θ̂(z) ≤ 1, we have

4
√
Th/ν(z)(θ̂(z)− θ(z)) d−→ H−Φ .
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Figure 8: Estimates of θ(zt) where (a) zt=∆M0t−12; (b) zt=∆M2t−8; (c) zt=Ext−11;
(d) zt=Imt−12; (e) zt=cot−12; (f) zt=lmt−12


