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Abstract 

The purpose of the present paper is to assess the efficacy of confidence intervals for Rosenthal’s 

fail-safe number. Although Rosenthal’s estimator is highly used by researchers, its statistical 

properties are largely unexplored. First of all we developed statistical theory allowing us to 

produce confidence intervals for Rosenthal’s fail-safe number. This was produced by 

discerning whether the number of studies analysed in a meta-analysis is fixed or random. Each 

case produces different variance estimators. For a given number of studies and a given 

distribution, we provided five variance estimators. Confidence intervals are examined with a 

normal approximation and a non-parametric bootstrap. The accuracy of the different 

confidence interval estimates was then tested by methods of simulation under different 

distributional assumptions. The half normal distribution variance estimator has the best 

probability coverage.. Finally, we provide a table of lower confidence intervals for Rosenthal’s 

estimator.  

 

Keywords: Rosenthal’s fail-safe number; publication bias; confidence intervals; distribution; 

meta-analysis 
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Publication bias in meta-analysis: Confidence intervals for 

Rosenthal’s fail-safe number 

 

1 Introduction 

Meta-analysis refers to methods focused on contrasting and combining results from different 

studies, in the hope of identifying patterns among study results, sources of disagreement among 

those results, or other interesting relationships that may come to light in the context of multiple 

studies [1]. In its simplest form, this is normally done by identification of a common measure 

of effect size, of which a weighted average might be the output of a meta-analysis. The 

weighting might be related to sample sizes within the individual studies [2, 3]. More generally 

there are other differences between the studies that need to be allowed for, but the general aim 

of a meta-analysis is to more powerfully estimate the true effect size as opposed to a less precise 

effect size derived in a single study under a given single set of assumptions and conditions [4]. 

For reviews on meta-analysis models, see [2], [5] and [6]. Meta-analysis can be applied to 

various effect sizes collected from individual studies. These include odds ratios and relative 

risks; standardized mean difference, Cohen’s d, Hedges’ g, Glass’s Δ; correlation coefficient 

and relative metrics; sensitivity and specificity from diagnostic accuracy studies; and p-values. 

For more comprehensive reviews see Rosenthal [7], Hedges and Olkin [8] and Cooper et al. 

[9]. 

 

2 Publication bias 

Publication bias is a threat to any research that attempts to use the published literature, and its 

potential presence is perhaps the greatest threat to the validity of a meta-analysis [10]. 

Publication bias exists because research with statistically significant results is more likely to 

be submitted and published than work with null or non-significant results. This very issue was 

memorably termed as the file-drawer problem by Rosenthal [11]; non-significant results are 

stored in file drawers without ever being published. In addition to publication bias, several 

other related biases exist including pipeline bias,  subjective reporting bias, duplicate reporting 

bias or  language bias (see [12-15] for definitions and examples).  

The implication of these various biases is that combining only the identified published studies 

uncritically may lead to an incorrect, usually over optimistic, conclusion  [10, 16]. The ability 

to detect publication bias in a given field is a key strength of meta-analysis, because 

identification of publication bias will challenge the validity of common views in that area, and 
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will spur further investigations [17]. There are two types of statistical procedures for dealing 

with publication bias in meta-analysis: methods for identifying the existence of publication 

bias and methods for assessing the impact of publications bias [16]. The first includes the 

funnel plot (and other visualisation methods such as the normal quantile plot) and 

regression/correlation-based tests; while the second includes the fail-safe (also called file-

drawer) number, the trim and fill method and selection model approaches [10, 14, 18]. Recent 

approaches include the Test for Excess Significance [19] and the p-curve [20]. 

 The most commonly used method is the visual inspection of a funnel plot. This assumes that 

the results from smaller studies will be more widely spread around the mean effect because of 

larger random error. The next most frequent method used to assess publication bias is 

Rosenthal’s fail-safe number[21]. Two recent reviews examining the assessment of publication 

bias in psychology and ecology reported that funnel plots were the most frequently used (24% 

and 40 % respectively), followed by Rosenthal’s fail-safe number (22% and 30% respectively). 

 

Assessing publication bias by computing the number of unpublished studies 

Assessing publication bias can be performed by trying to estimate the number of unpublished 

studies in the given area a meta-analysis is studying. The fail-safe number represents the 

number of studies required to refute significant meta-analytic means. Although apparently 

intuitive, it is in reality difficult to interpret not only because the number of data points (i.e. 

sample size) for each of k studies is not defined, but also because no benchmarks regarding the 

fail-safe number exist, unlike Cohen’s benchmarks for effect size statistics [22]. However, 

these versions have been heavily criticised, mainly because such numbers are often misused 

and misinterpreted [23]. The main reason for the criticism is that depending on which method 

is used to estimate the fail-safe N, the number of studies can greatly vary.  

 

Rosenthal’s fail-safe number 

Although Rosenthal’s fail-safe number  of publication bias was proposed as early as 1979 and 

is frequently cited in the literature [11] (over 2000 citations), little attention has been given to 

the statistical properties of this estimator. This is the aim of the present paper, which is 

discussed in further detail in Section 3. 

Rosenthal [11] introduced what he called the file drawer problem. His concern was that some 

statistically non-significant studies may be missing from an analysis (i.e., placed in a file 

drawer) and that these studies, if included, would nullify the observed effect. By nullify, he 

meant to reduce the effect to a level not statistically significantly different from zero. Rosenthal 

suggested that rather than speculate on whether the file drawer problem existed, the actual 
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number of studies that would be required to nullify the effect could be calculated [24]. This 

method calculates the significance of multiple studies by calculating the significance of the 

mean of the standard normal deviates of each study. Rosenthal’s method calculates the number 

of additional studies RN , with the mean null result necessary to reduce the combined 

significance to a desired α level (usually 0.05).  

The necessary prerequisites is that each study examines a directional null hypothesis such that 

the effect sizes iθ  from each study are examined under 0iθ  or ( 0iθ ). Then the null 

hypothesis of Stouffer’s [25] test is:  

 

010  kθ:θH  . 

The test statistic for this is:   
k

Z

Z

k

i

i

S


 1 ,                                  (1) 

with 
i

i
i

s

θ
z  , where is  are the standard errors of iθ . Under the null hypothesis we have 

 1,0~ NZS [7].  

So we get that the number of additional studies RN , with mean null result necessary to reduce 

the combined significance to a desired α level (usually 0.05 [7, 11]), is found after solving 

 

kN

Z

Z
R

k

i

i

α




1 .    (2) 

 

So, RN  is calculated as  

 

k
Z

Z

N

k

i

i

R 















2

2

1



,      (3) 

 

where k  is the number of studies and Z  is the one-tailed Z  score associated with the desired 

α  level of significance. Rosenthal further suggested that if 105  kNR , the likelihood of 

publication bias would be minimal. 
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Cooper [26, 27] called this number the fail-safe sample size or fail-safe number. If this number 

is relatively small, then there is cause for concern. If this number is large, one might be more 

confident that the effect, although possibly inflated by the exclusion of some studies, is, 

nevertheless, not zero [28]. This approach is limited in two important ways [24, 29]. First, it 

assumes that the association in the hidden studies is zero, rather than considering the possibility 

that some of the studies could have an effect in the reverse direction or an effect that is small 

but not zero. Therefore, the number of studies required to nullify the effect may be different 

than the fail-safe number, either larger or smaller. Second, this approach focuses on statistical 

significance rather than practical or substantive significance (effect sizes). That is, it may allow 

one to assert that the mean correlation is not zero, but it does not provide an estimate of what 

the correlation might be (how it has changed in size) after the missing studies are included [23, 

30-32]. However, for many fields it remains the gold standard to assess publication bias, since 

its presentation is conceptually simple and eloquent. In addition, it is computationally easy to 

perform. 

Iyengar and Greenhouse [12] proposed an alternative formula for Rosenthal’s fail-safe number, 

in which the sum of the unpublished studies’ standard variates is not zero. In this case the 

number of unpublished studies n  is approached through the following equation 

 

 

kn

αMnZ

Z
α

α

k

i

i

α






1 ,     (4) 

 

where  
 
 α

α

zΦ

z
αM


 1 and α is the desired level of significance. This is justified by the author 

that the unpublished studies follow a truncated normal distribution with zx  .2    and    

                                                            
1 This results immediately from the definition of truncated normal distribution.  
2 There are certain other fail-safe numbers which have been described, but their explanation goes beyond the scope 

of the present article [33]. Duval and Tweedie [34, 35] present three different estimators for the number of missing 

studies and the method to calculate this has been named Trim and Fill Method. Orwin’s [36] approach is very 

similar to Rosenthal’s [11] without considering the normal variates but taking Cohen’s d [22] to compute a fail-

safe number. Rosenberg’s fail-safe number is very similar to Rosenthal’s and Orwin fail-safe number [37]. Its 

difference is that it takes into account the meta-analytic estimate under investigation by incorporating individual 

weights per study. Gleser and Olkin [38] proposed a model under which the number of unpublished studies in a 

field where a meta-analysis is undertaken could be estimated. The maximum likelihood estimator of their fail-safe 

number only needs the number of studies and the maximum p value of the studies. Finally, the Eberly-Casella 

fail-safe number assumes a Bayesian methodology which aims to estimate the number of unpublished studies in 

a certain field where a meta-analysis is undertaken [39].  
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denote the cumulative distribution function (CDF) and probability distribution function (PDF) 

respectively of a standard normal distribution. 

The aim of the present paper is to study the statistical properties of Rosenthal’s [11] fail-safe 

number. In the next section we introduce the statistical theory for computing confidence 

intervals for Rosenthal’s [11] fail-safe number. We initially compute the probability 

distribution function of RN̂ , which gives formulas for variance and expectation; next we 

suggest distributional assumptions for the standard normal variates used in Rosenthal’s fail-

safe number and finally suggest confidence intervals. 

 

3 Statistical Theory 

The estimator RN̂  of unpublished studies is approached through Rosenthal’s formula  

 

k
Z

Z

N

k

i

i

R 















2

2

1ˆ



.      (5) 

 

Let iZ , kii ,,,,2,1   be i.i.d. random variables with   iZE  and   2σZVar i  . We 

discern two cases: 

a) k  is fixed or, 

b) k  is random, assuming additionally assume that  Poisk ~ . This is reasonable since the 

number of studies included in a meta-analysis is like observing counts.3  

In both cases, estimators of  , 
2σ  and   can be calculated without distributional assumptions 

for the iZ  with the method of moments or with distributional assumptions regarding the iZ .  

 

Probability Distribution Function of RN̂  

Fixed k 

We compute the PDF of RN̂  by following the next steps 

                                                            
3 Other distributions might be assumed, such as the Gamma distribution, but this would require more information 

or assumptions to compute the parameters of the distribution. 
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Step 1.  ki ,Z,,Z,,ZZ 21  in the formula of the estimator RN̂  (5) are i.i.d. distributed 

with   iZE  and   2σZVar i  . Let 



k

i

iZS
1

 and according to the Lindeberg-Lévy Central 

Limit Theorem [40], we have  

 

 







 20,σNμ

k

S
k

d

 

 2,kσkμNS
d

 .     (9) 

 

So the PDF of S  is  

 

 
 








 


2

2

2 2
exp

2

1





 k

ks

k
sf S .    (10) 

 

Step 2. The PDF of Rosenthal’s RN̂  can be retrieved from a truncated version of (10). From 

(2) we get that:  

 

kNZS Rα  ˆ .    (11) 

 

We advocate that Rosenthal’s equation (2) and equation (11) implicitly impose two conditions 

which must be taken into account when we seek to estimate the distribution of RN : 

 

0S  ,     (12) 

0RN̂ .    (13) 

 

Expression (12) is justified by the fact that the right hand side of (11) is positive, so then 0S

. Expression (13) is justified by the fact that RN  expresses the number of studies, so it must be 

at least 0 . Hence, expression (12) and (13) are satisfied when S  is a truncated normal random 

variable, let it be *S , such that kZS α

*  . So the PDF of *S  then becomes: 
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 
 

 












 


2

2

2 2
exp

2

1

kσ

kμs

πkσλΦ
sf

*

*

*

S* , kZs α

*  ,  (14) 

 

where 
σ

Zμk
λ α* 
 .4  

Then, we have: 

 

   
   1411

ˆ

,

R

*
*

SRN dN

dS
sfnf *

R

  

 
   

 












 





2

2

2 2
exp

22
ˆ kσ

kμknZ

knπkσλΦ

Z
nf

Rα

R

*

α
R

RN

, 0Rn . (15) 

 

The characteristic function is: 

 

    
    2122

22

22

1

1

2

2
exp

exp
ˆ

itkσ-Z

kit
itkσ-Z

itμk
Z

λΦ

σ

λμ
Φ

itNEtψ

α

α

α

*

*

R
RN























 

 ,  (16) 

 

where   1i , 
itkσZ

μσitkk
μ

α

221
2

2


 , 

itkσZ

Z
σ

α

α

22

2
2

1
2

 .  

From (16) we get:     εk
Z

kσμk
NE

α

R 



2

222

ˆ ,                          (17) 

where 
 
 

 
2

α

α

*

*

Z

Zμkkσ

λΦ

λ
ε





.  

Also,  

 

                                                            
4 The truncated normal distribution is a probability distribution related to the normal distribution. Given a 

normally distributed random variable X  with mean 
t  and variance 

2

t , let it be that 

   babaX ,, . Then X  conditional on bXa   has a truncated normal distribution with 

PDF:  




































t

t

t

t

t

t

X

σ

a-μ
Φ

σ

b-μ
Φ

σ

x-μ

σ
xf


1

, for bxa   and   0xf X  otherwise [41]. 
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    *

α

R δ
Z

σkμσk
NVar 




4

2222 22ˆ ,   (18) 

 

where  
 
 

   
 

 












 


















4

2

a

223
*

*

*

4

2

a

32

*

*
* 5















Z

Zkk

Z

Zkk
. 

Proofs for expressions (16-18) are given in the Appendix. 

 

Comments: 

1. For a significantly large k  we have that   1*   . So (15) becomes 

 

 
 

 












 





2

2

2
ˆ

2
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22 







k

kknZ

knk

Z
nf

R

R

RNR

, 0Rn . (19) 

 

Also we get:      k
Z

kσμk
NE

α

R 



2

222

ˆ ,               (20) 

       
4

2222 22ˆ





Z

kk
NVar R


 .              (21) 

 

2. A limiting element of this computation is that RN̂  takes discrete values because it describes 

number of studies, but it has been described by a continuous distribution. 

 

Random k 

It is assumed that  λk~Pois . So taking into account the result from the distribution of RN̂  for 

a fixed k  we get that the joint distribution of k  and RN̂  is 

 

      kkpkknfknf RNRnN RR
ˆ,ˆ ,  

 
   

 
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λ
λ
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kμknZ

knπkσλΦ

Z
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k
Rα

R

*

α

R,nNR























2

2

2
ˆ

2
exp

22

, ,,,,   knR 2100   (22) 
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Expectation and Variance for Rosenthal’s estimator RN̂  

a) When k is fixed, expressions (20) and (21) denote the expectation and variance respectively 

for RN̂ . This is derived from the PDF of RN̂ ; an additional proof without reference to the PDF 

is given in the Appendix. 

b) When k is random with  λk~Pois , the expectation and variance of RN̂  are : 

 

   
λ

Z

λ
N̂E R 




2

2222




,  (23) 

         













2

222

4

422223423 2
2

32616464ˆ
ZZ

NVar R
. (24) 

 

Proofs are given in the Appendix. 

 

Estimators for μ, σ2 and λ  

Having now computed a formula for the variance which is necessary for a confidence interval, 

we need to estimate  , 
2σ  and  . In both cases, estimators of  , 

2σ  and   can be calculated 

without distributional assumptions for the iZ  with the method of moments or with 

distributional assumptions regarding the iZ .  

 

Method of moments [42] 

When k is fixed, we have: 

 

k
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μ
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σ

k
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i

k

i

i

.   (25) 

 

When k is random, we have: 

 

kλ ˆ , 
k

Z

μ

k

i

i
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
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.   (26) 
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Distributional assumptions for the iZ  

If we suppose that the iZ  follow a distribution we would replace the values of   and 
2σ  with 

their distributional values. Below we consider special cases.  

 

Standard Normal Distribution 

The iZ  follow a standard normal distribution i.e.  10,~NZ i . This is the original assumption 

for the iZ [11]. In this case we have: 

kλ ˆ , 0 , 12  .    (27) 

 

Although the origin of the iZ  is from the standard normal distribution, the studies in a meta-

analysis are a selected sample of published studies. For this reason, the next distribution is 

suggested as better. 

 

Half Normal Distribution 

Here we propose that the iZ  follow a half normal distribution  0,1HN , which is special case 

of folded normal distribution. Before we explain the rational of this distribution, a definition 

of this type of distribution is provided. A half normal distribution is also a special case of a 

truncated normal distribution.  

 

Definition 1: The folded normal distribution is a probability distribution related to the 

normal distribution. Given a normally distributed random variable X  with mean 
f  

and variance 
2

f , the random variable XY   has a folded normal distribution [41, 43, 

44]. 

Remark 1: The folded normal distribution has the following properties: 

a) Probability density function (PDF): 

 

 
   













 














 


2

2

2

2

2
exp

2

1

2
exp

2

1

f

f

ff

f

f
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yf










, for 0y  . 

 

b)        ffffff σμΦμσμπσYE  212exp2 22 , 

       22222 212exp2 ffffffff σμΦμσμπσσμYVar  . 
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Remark 2: When 0f , the distribution of Y  is a half-normal distribution. This 

distribution is identical to the truncated normal distribution, with left truncation point 0 and no 

right truncation point. For this distribution we have 

a)  















2

2

2
exp

2

f

y
yf

f

Y


, for 0y  . 

b)   πσYE f 2 ,      212  fYVar . 

 

Assumption: The iZ  in Rosenthal’s estimator RN  are derived from a half normal 

distribution, based on a normal distribution  10,N . 

Support:  When a researcher begins to perform a meta-analysis, the sample of studies is 

drawn from those studies that are already published. So his sample is most likely biased by 

some sort of selection bias, produced via a specific selection process [45]. Thus, although when 

we study Rosenthal’s RN  assuming that all iZ  are drawn from the normal distribution, they 

are in essence drawn from a truncated normal distribution. This has been commented on by 

Iyengar and Greenhouse [12] and Schonemann and Scargle [46]. But at which point is this 

distribution truncated? We would like to advocate that the half normal distribution, based on a 

normal distribution  10,N , is the one best representing the iZ  Rosenthal uses to compute his 

fail-safe RN . The reasons for this are: 

1.  Firstly, to assume that all iZ  are of the same sign does not impede the significance of 

the results from each study. That is the test is significant when either 2/ZZi   or 2/1  ZZi  

occurs.  

2. However, when a researcher begins to perform a meta-analysis of studies, many times iZ  

can be either positive or negative. Although this is true, when the researcher is interested in 

doing a meta-analysis, usually the iZ  that have been published are indicative of a significant 

effect of the same direction (thus iZ  have the same sign) or are at least indicative of such an 

association without being statistically significant; hence, producing iZ  of the same sign but not 

producing significance (e.g. the confidence interval of the effect might include the null value).  

3. There will definitely be studies that produce a totally opposite effect, thus producing an 

effect of opposite direction; but these will definitely be a minority of the studies. Also there is 

the case that these other signed iZ  are not significant.  
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Hence, in this case 

 

kλ ˆ ,  2 ,  212  .   (28) 

 

Skew Normal Distribution 

Here we propose that the iZ  follow a skew normal distribution i.e.  ξ,ω,α~SNZ i : 

Definition 3: The skew normal distribution is a continuous probability distribution that 

generalises the normal distribution to allow for non-zero skewness. A random variable 

X  follows a univariate skew normal distribution with location parameter R , scale 

parameter 
R  and skewness parameter R [47], if it has the density 

 

  

















ω

ξ-x

ω

ξ-x
xf X 



2
 Rx . 

 

Note that if 0 , the density of X  reduces to the  2ωξ,N  

Remark 1: The expectation and variance of X  are [47]: 

 

 



2

XE , where 
21 





 ,   















2
2 2

1XVar . 

 

Remark 2: The method of moments estimators for  ,,  are [48, 49]: 
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where /a 21  ,   11 14 a/b   , 



n

i

iXnm
1

1

1 ,  


 
n

i

i mXnm
1

2

1

1

2 , 

 


 
n

i

i mXnm
1

3

1

1

3 . The sign of 
~

is taken to be the sign of 3m . 

 

Explanation: The skew normal distribution allows for a dynamic way to fit the available Z-

scores. The fact that there is ambiguity on the derivation of the standard deviates from each 

study from a normal or a truncated normal distribution, creates the possibility that the 
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distribution could be a skew-normal, with the skewness being attributed that we are including 

only the published Z-scores in the estimation of Rosenthal’s [11] estimator. 

Hence, in this case and taking the method of moments estimators of  ,, , we get: 

 

nˆ  , 



2~~~

ˆ  , 




















2
22 2

1

~
~ˆ ,   (29) 

 

where /a 21  ,   11 14 a/b   , 



n

i

iZnm
1

1

1 ,  


 
n

i

i mZnm
1

2

1

1

2 , 

 


 
n

i

i mZnm
1

3

1

1

3 . 

 

Methods for confidence intervals 

Normal Approximation 

In the previous section formulas for computing the variance of RN̂  were derived. We compute 

asymptotic  %/ 21   confidence intervals for RN  as: 

 

     




   Rα/RRα/RupR lowR NrVaΖN,NrVaΖNN,N ˆˆˆˆˆˆˆˆ

2121 ,   (33) 

 

where 21 /Z   is the  21 / th quantile of the standard normal distribution. 

The variance of RN̂  for a given set of values Zi depends firstly on whether the number of 

studies k is fixed or random and secondly whether the estimators of μ, σ2 and λ are derived from 

the method of moments or from the distributional assumptions.  

 

 

Nonparametric Bootstrap 

Bootstrap is a well-known resampling methodology for obtaining nonparametric confidence 

intervals of a parameter [50, 51]. In most statistical problems one needs an estimator of a 

parameter of interest as well as some assessment of its variability. In many such problems the 

estimators are complicated functionals of the empirical distribution function and it is difficult 

to derive trustworthy analytical variance estimates for them. The primary objective of this 

technique is to estimate the sampling distribution of a statistic. Essentially, bootstrap is a 

method that mimics the process of sampling from a population, like one does in Monte Carlo 
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simulations, but instead drawing samples from the observed sampling data. The tool of this 

mimic process is the Monte Carlo algorithm of Efron [52]. This process is explained properly 

by Efron and Tibshirani [53] and Davison and Hinkley [54], who also noted that bootstrap 

confidence intervals are approximate, yet better than the standard ones. Nevertheless, they do 

not try to replace the theoretical ones and neither is bootstrap a substitute for precise parametric 

results, but rather a way to reasonably proceed when such results are unavailable. 

Non-parametric resampling makes no assumptions concerning the distribution of, or model for, 

the data [55]. Our data is assumed to be a vector obsZ  of k independent observations, and we 

are interested in a confidence interval for  obs
ˆ Z . The general algorithm for a non-parametric 

bootstrap is as follows: 

1. Sample k observations randomly with replacement from obsZ to obtain a bootstrap data set, 

denoted *
Z . 

2. Calculate the bootstrap version of the statistic of interest  ** ˆˆ Z  . 

3. Repeat steps 1 and 2 a large number of times, say B, to obtain an estimate of the bootstrap 

distribution. 

In our case: 

1. Compute a random sample from the initial sample of iZ , size k. 

2. Compute NR
* from this sample. 

3. Repeat these process b times. 

 

Then the bootstrap estimator of NR is: 

 

b

N
N

*

R

bootstrap_R


 . 

 

From this we can compute also confidence intervals for NR_bootstrap. 

 

In the next section, we investigate these theoretical aspects with simulations and examples. 

 

4 Simulations and Results 

The method for simulations is as follows: 

1. Initially we draw random numbers from the following distributions 

a. Standard Normal Distribution 
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b. Half Normal Distribution (0,1) 

c. Skew Normal Distribution with negative skewness SN(δ = -0.5, ξ = 0, ω = 1) 

d. Skew Normal Distribution with positive skewness SN(δ = 0.5, ξ = 0, ω = 1) 

2. The numbers we draw from each distribution represent the number of studies in a meta-

analysis and we have chosen k = 5, 15, 30, and 50. When k is assumed to be random, 

then the parameter λ is equal to the values chosen for the simulation, i.e. 5, 15, 30, and 

50 respectively. 

3. We compute the normal approximation confidence interval with the formulas described 

in Section 3 and the bootstrap confidence interval. We also discern whether the number 

of studies is fixed or random. For the computation of the bootstrap confidence interval, 

we generate 1,000 bootstrap samples each time. We also study the performance of the 

different distributional estimators in cases where the distributional assumption is not 

met, hence comparing each of the six confidence interval estimators under all four 

distributions. 

4. We compute the coverage probability comparing with the true value of Rosenthal’s fail-

safe number. When the number of studies is fixed the true value of Rosenthal’s number 

is: 

 

  k
Z

kk
NE R 




2

222

ˆ




. 

 

When the number of studies is random [from a Poisson(λ) distribution] the true value 

of Rosenthal’s number is: 

 

   
λ

Z

λ
N̂E R 




2

2222




. 

 

We execute the above procedure 10,000 times each time. Our alpha-level is considered 

5%. 

This process is shown schematically in Table 1. All simulations were performed in R and the 

code is shown in the Supplementary Materials. 

We observe from Table 2 and Figure 1 that the bootstrap confidence intervals perform the 

poorest both when the number of studies are considered fixed or random. The only case in 

which they perform acceptably is when the distribution is half normal and the number of studies 

is fixed. The moment estimators of variance either perform poorly or too efficiently in all cases, 
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with coverages being under 90% or near 100%. The most acceptable confidence intervals for 

Rosenthal’s estimator appear to be in the distribution based method, and much better for a fixed 

number of studies than for random number of studies. We also observe that for the distribution 

based confidence intervals in the fixed category, the half normal distribution HN(0,1) produces 

coverages which are all 95%. This is also stable for all number of studies in a meta-analysis. 

When the distributional assumption is not met the coverage is poor except for the cases of the 

positive and negative skewness skew normal distributions which perform similarly, possibly 

due to symmetry. 

In the next sections we give certain examples and we present the lower limits of confidence 

intervals for testing whether 105  kNR , according to the suggested rule of thumb by [11]. 

We choose only the variance from a fixed number of studies when the Zi are drawn from a half 

normal distribution HN(0,1). 

 

(Tables 1 and 2 and Figure 1 here) 

 

5 Examples 

In this section we present two examples of meta-analyses from the literature. The first study is 

a meta-analysis of the effect of probiotics for preventing antibiotic associated diarrhoea and 

included 63 studies [56]. The second meta-analysis comes from the psychological literature 

and is a meta-analysis examining reward, cooperation and punishment, including analysis of 

148 effect sizes [57]. For each meta-analysis we computed Rosenthal’s fail-safe number and 

the respective confidence interval with the methods described above. 

We observe that both fail-safe numbers exceed Rosenthal’s rule of thumb, but some lower 

confidence intervals, especially in the first example go as low as 369 which only slightly 

surpasses the rule of thumb (5*63 + 10 = 325 in this case). This is not the case with the second 

example. Hence the confidence interval and especially the lower confidence interval value is 

important to establish whether the fail-safe number surpasses the rule of thumb.  

In the next section we present a table with values according to which future researchers can get 

advice on whether their value truly supersedes the rule of thumb. 

  

(Table 3 here) 
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6 Suggested Confidence Limits for NR 

We wish to answer the question whether 105  kNR  for a given level of significance and the 

estimate RN̂ , which is the rule of thumb suggested by Rosenthal. We formulate a hypothesis 

test according to which 

 

105:0  kNH R  

105:1  kNH R  

 

An asymptotic test statistic for this is: 

 
 1,0

ˆ

105ˆ
N

NVar

kN
T

d

R

R 


 , under the null hypothesis 

So we reject the null hypothesis if 
 

  105ˆˆ
ˆ

105ˆ



kNVarZNZ

NVar

kN
RR

R

R
 . 

In Table 3.7 we give the limits of RN  above which we are 95% confident that 105  kNR . 

For example if a researcher performs a meta-analysis of 25 studies, the rule of thumb suggests 

that over 13510255   studies there is no publication bias. The present approach and the 

values of Table 7 suggest that we are 95% confident for this when NR exceeds 209 studies. So 

this approach allows for inferences about Rosenthal’s RN̂  and is also slightly more 

conservative especially when Rosenthal’s fail-safe number is characterised from 

overestimating the number of published studies. 

 

(Table 4 here) 

 

7 Discussion and Conclusion 

The purpose of the present paper was to assess the efficacy of confidence intervals for 

Rosenthal’s fail-safe number. We initially defined publication bias and described an overview 

of the available literature on fail-safe calculations in meta-analysis. Although Rosenthal’s 

estimator is highly used by researchers, its properties and usefulness have been questioned [46, 

58]. 

The original contributions of the present paper are its theoretical and empirical results. First, 

we developed statistical theory allowing us to produce confidence intervals for Rosenthal’s 

fail-safe number. This was produced by discerning whether the number of studies analysed in 
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a meta-analysis is fixed or random. Each case produces different variance estimators. For a 

given number of studies and a given distribution, we provided five variance estimators: 

moment and distribution based estimators based on whether the number of studies is fixed or 

random and bootstrap confidence intervals. Secondly, we examined four distributions by which 

we can simulate and test our hypotheses of variance, namely standard normal distribution, half 

normal distribution a positive skew normal distribution and a negative skew normal 

distribution. These four distributions were chosen as closest to the nature of the Zis. The half 

normal distribution variance estimator appears to present the best coverage for the confidence 

intervals. Hence this might support the hypothesis that the Zis are derived from a half normal 

distribution. Thirdly, we provide a table of lower confidence intervals for Rosenthal’s 

estimator.  

The limitations of the study initially stem from the flaws associated with Rosenthal’s estimator. 

This usually means that the number of negative studies needed to disprove the result is highly 

overestimated. However its magnitude can give an indication for no publication bias. Another 

possible flaw could come from the simulation planning. We could try more values for the skew 

normal distribution, for which we tried only two values in present paper. 

The implications of this research for applied researchers in psychology, medicine and social 

sciences, which are the fields that predominantly use Rosenthal’s fail-safe number, are 

immediate. Table 4 provides an accessible reference for researchers to consult and apply this 

more conservative rule for Rosenthal’s number. Secondly, the formulas for the variance 

estimator are all available to researchers so they can compute normal approximation confidence 

intervals on their own. The future step that needs to be attempted is to develop an R-package 

program or a Stata program to execute this quickly and efficiently and make it available to the 

public domain. This will allow widespread use of these techniques. 

In conclusion, the present study is the first in the literature to study the statistical properties of 

Rosenthal’s fail-safe number. Statistical theory and simulations were presented and tables for 

applied researchers were also provided. Despite the limitations of Rosenthal’s fail-safe number, 

it can be a trustworthy way to assess publication bias, especially under the more conservative 

nature of the present paper. 
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Appendix 

Proofs for expressions (20, 21, 23, 24) 

a) Fixed k 

ki Z,,Z,,Z,Z 21   in the formula of the estimator RN̂  (11) are i.i.d. distributed with 

  iZE  and   2

iZ Var . Let 



k

i

iZS
1

; then, according to the Lindeberg-Lévy Central 

Limit Theorem [40], we have  

 

 







 20,σNμ

k

S
k

d

  2,kσkNS
d

  

 

So we have  

 

  kE S  

  2S kVar   

       22222 S  kkVarSESE   

 

Then, from (5) we get: 

 

   
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kσμk
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Z

SE
NE

αα

R 

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2

222

2
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ˆ  

        
4

224

4

2

ˆ

 Z

SESE

Z

SVar
NVar R


  

 

Now we seek to compute    24 , SESE . For this we need the moments of the normal 

distribution, which are given below [59]: 

 

Order Non-central moment Central moment 

1 μ 0 

2 μ2 + σ2 σ 2 

3 μ3 + 3μσ2 0 

4 μ4 + 6μ2σ2 + 3σ4 3σ 4 

5 μ5 + 10μ3σ2 + 15μσ4 0 

 

So:   
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   








4

42223

4

22224222344 2436ˆ
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   
4

2222 22ˆ





Z

kk
NVar R


  

 

b) Random k 

In this approach we additionally assume that  Poisk ~ . So then S is a Compound Poisson 

distributed variable [60]. Hence, from the law of total expectation and the law of total variance 

[42], we get: 

 

      λμZEkESE i   

       222 σμλZEkESVar i   

 

Thus, from (5) we get: 
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and  

   
 

 
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Z
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Z

SVar
NVar









 

 

To compute the final variance, it is more convenient to compute each component separately. 

We will need the moments of a Poisson distribution [60], which are given below: 

 

Order Non-central moment Central moment 

1 λ λ 

2 λ+λ2 λ 

3 λ+3λ2+λ3 λ 

4 λ+7λ2+6λ3+λ4 λ+3λ2 

5 λ+15λ2+25λ3+10λ4+λ5 λ+10λ2 
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We then have: 

 

      
     

        42222342344

2432244
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           222222222 λσμλλσμλμλSVarSESE   

 

       422223423422 22 σλσμλλμλλλSE   

 

So:  

 

           422223423224 32616464 σλλσμλλλμλλλSESE   

 

Also: 
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Hence we finally have: 
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Proof of expression (16): the characteristic function 

 

From (15) we have that  
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Proof of expressions (17) and (18) 

The cumulant generating function is  
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Tables 

Table 1 Schematic table for simulation plan 
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Table 2. Probability coverage of the different methods for confidence intervals (CI) according to the number of studies k. The figure is organised as 

follows: the Zi are drawn from four different distributions (Standard Normal Distribution, Half normal Distribution, Skew normal with negative skewness, 

and Skew normal with positive skewness). 

 
   values of μ and σ2 from the Standard 

Normal Distribution 

values of μ and σ2 from the Half Normal 

Distribution HN(0,1) 

values of μ and σ2 from the Skew normal 

Distribution with negative skewness  

SN(δ = -0.5, ξ = 0, ω = 1) 

values of μ and σ2 from the Skew normal 

Distribution with positive skewness  

SN(δ = 0.5, ξ = 0, ω = 1) 
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Moments Based 

CI 
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Bootstrap CI 0.929 0.996 1.000 1.000 0.429 0.074 0.004 0.000 0.804 0.649 0.322 0.115 0.804 0.649 0.322 0.115 

Half Normal 

Distribution HN(0,1) 

F
ix

ed
 k

 

Distribution 

Based CI 

0.635 0.021 0.000 0.000 0.945 0.952 0.951 0.948 0.864 0.624 0.279 0.053 0.841 0.483 0.142 0.014 

Moments Based 

CI 

0.861 0.187 0.000 0.000 0.771 0.880 0.911 0.927 0.885 0.657 0.126 0.003 0.885 0.657 0.126 0.003 

Bootstrap CI 0.858 0.217 0.000 0.000 0.775 0.884 0.913 0.929 0.887 0.672 0.138 0.003 0.887 0.672 0.138 0.003 

R
a

n
d

o
m

 k
 Distribution 

Based CI 

0.720 0.027 0.000 0.000 0.989 0.995 0.996 0.997 0.966 0.915 0.762 0.459 0.901 0.578 0.198 0.027 

Moments Based 

CI 

1.000 1.000 0.130 0.000 0.806 0.937 0.971 0.984 1.000 1.000 0.995 0.358 1.000 1.000 0.995 0.358 

Bootstrap CI 0.858 0.217 0.000 0.000 0.715 0.859 0.899 0.920 0.885 0.698 0.152 0.004 0.885 0.698 0.152 0.004 

Skew normal 

Distribution with 

negative skewness  

SN(δ = -0.5, ξ = 0, ω = 

1) 

F
ix

ed
 k

 

Distribution 

Based CI 

0.872 0.666 0.399 0.174 0.980 0.472 0.184 0.048 0.953 0.970 0.977 0.981 0.944 0.948 0.949 0.957 

Moments Based 

CI 

0.917 0.979 0.944 0.858 0.597 0.375 0.200 0.074 0.845 0.860 0.882 0.895 0.845 0.860 0.882 0.895 

Bootstrap CI 0.912 0.978 0.945 0.857 0.586 0.377 0.199 0.074 0.840 0.857 0.881 0.894 0.840 0.857 0.881 0.894 

R
a

n
d

o
m

 k
 Distribution 

Based CI 

0.903 0.688 0.409 0.178 0.996 1.000 0.687 0.306 0.987 0.997 0.998 0.999 0.965 0.964 0.965 0.968 

Moments Based 

CI 

1.000 1.000 0.999 0.968 0.609 0.399 0.237 0.103 1.000 0.872 0.886 0.902 1.000 0.872 0.886 0.902 

Bootstrap CI 0.912 0.978 0.945 0.857 0.514 0.342 0.181 0.066 0.818 0.845 0.874 0.889 0.818 0.845 0.874 0.889 

Skew normal 

Distribution with 

positive skewness  

SN(δ = 0.5, ξ = 0, ω = 

1) 

F
ix

ed
 k

 

Distribution 

Based CI 

0.880 0.673 0.402 0.164 0.982 0.471 0.186 0.050 0.956 0.972 0.976 0.979 0.948 0.952 0.951 0.955 

Moments Based 

CI 

0.923 0.980 0.947 0.852 0.596 0.372 0.201 0.076 0.850 0.865 0.874 0.896 0.850 0.865 0.874 0.896 

Bootstrap CI 0.918 0.978 0.946 0.846 0.583 0.372 0.200 0.077 0.841 0.862 0.873 0.896 0.841 0.862 0.873 0.896 

R
a

n
d

o
m

 k
 Distribution 

Based CI 

0.911 0.696 0.415 0.169 0.996 1.000 0.683 0.314 0.989 0.996 0.998 0.999 0.967 0.967 0.964 0.966 

Moments Based 

CI 

1.000 1.000 0.999 0.964 0.606 0.399 0.236 0.105 1.000 0.875 0.880 0.905 1.000 0.875 0.880 0.905 

Bootstrap CI 0.918 0.978 0.946 0.846 0.514 0.335 0.180 0.068 0.819 0.850 0.868 0.893 0.819 0.850 0.868 0.893 

 



31 
 

Table 3 Confidence intervals for example meta-analyses. 
 Fixed number of studies Random number of studies Bootstrap based CI 

 Distribution based 

CI  

Moment 

based CI  

Distribution based 

CI 

Moment based 

CI 

Study 1 [56] 

Rosenthal’s NR = 

2124 

(2060, 2188) (788, 3460) (2059, 2189) (369, 3879) (740, 3508) 

Study 2 [57] 

Rosenthal’s NR = 

73860 

(73709, 74012) (51618, 

96102) 

(73707, 74013) (40976, 

106745) 

(51662, 96059) 

 

Table 4. 95% one-sided confidence limits above which the estimated NR is significantly higher than 105 k , 

which is the rule of thumb suggested by Rosenthal [11]. k represents the number of studies included in a meta-

analysis. We choose the variance from a fixed number of studies when the Zi are drawn from a half normal 

distribution HN(0,1), as these performed the best the simulations 
k Cut offpoint  k Cut off point k Cut off point k Cut off point 

1 17 41 369 81 842 121 1394 

2 26 42 380 82 855 122 1409 

3 35 43 390 83 868 123 1424 

4 45 44 401 84 881 124 1438 

5 54 45 412 85 894 125 1453 

6 63 46 423 86 907 126 1468 

7 71 47 434 87 920 127 1483 

8 79 48 445 88 934 128 1498 

9 86 49 456 89 947 129 1513 

10 93 50 467 90 960 130 1528 

11 99 51 479 91 973 131 1543 

12 106 52 490 92 987 132 1558 

13 112 53 501 93 1000 133 1573 

14 118 54 513 94 1014 134 1588 

15 125 55 524 95 1027 135 1603 

16 132 56 536 96 1041 136 1619 

17 140 57 547 97 1055 137 1634 

18 147 58 559 98 1068 138 1649 

19 155 59 571 99 1082 139 1664 

20 164 60 582 100 1096 140 1680 

21 172 61 594 101 1109 141 1695 

22 181 62 606 102 1123 142 1711 

23 190 63 618 103 1137 143 1726 

24 199 64 630 104 1151 144 1742 

25 209 65 642 105 1165 145 1757 

26 218 66 654 106 1179 146 1773 

27 228 67 666 107 1193 147 1788 

28 237 68 679 108 1207 148 1804 

29 247 69 691 109 1221 149 1820 

30 257 70 703 110 1236 150 1835 

31 266 71 716 111 1250 151 1851 

32 276 72 728 112 1264 152 1867 

33 286 73 740 113 1278 153 1883 

34 296 74 753 114 1293 154 1899 

35 307 75 766 115 1307 155 1915 

36 317 76 778 116 1322 156 1931 

37 327 77 791 117 1336 157 1947 

38 338 78 804 118 1351 158 1963 

39 348 79 816 119 1365 159 1979 

40 358 80 829 120 1380 160 1995 
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Figures 

Figure 1. This figures shows the probability coverage of the different methods for confidence intervals 

(CI) according to the number of studies k. The figure is organised as follows: the Zi are drawn from four 

different distributions (Standard Normal Distribution, Half normal Distribution, Skew normal with 

negative skewness, and Skew normal with positive skewness) which are depicted in each row 

respectively (a-d, e-h, i-l, m-p). Each column shows the different values of μ and σ2 for the variance 

according to the Standard Normal Distribution (a, e, i, m), Half normal Distribution (b, f, j, n), Skew 

normal with negative skewness (c, g, k, o), and Skew normal with positive skewness (d, h, l, p). 
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Appendix  

Codes for Simulations in R 

### Examining the Standard Normal distribution mu and sigma-square values 

and drawing Zi from all four distributions### 

####################### 

 

 

R  =  10000 ; B  =  1000  

## R is the number of simulations, B is the number of bootstrap resamples 

 

rosent1 = matrix(nrow = R,ncol = 4)  

## here we will store the Rosenthal's values for the 4 sample sizes 

 

v1 = array(dim = c(R,5,4))  

## the variances will be stored here 

 

mat1 = mat2 = mat3 = mat4 = mat5 = array(dim = c(R,2,4))  

## the confidence intervals will be stored here 

 

za = qnorm(0.95) ; n = lam = c(5, 15, 30, 50) ; f = (n-1)/n  

## f is used to get the unbiased variance estimator 

 

m = 0 ; s = 1  

## parameters of the normal distribution 

 

fixed1 = ( n^2 * m^2 + n * s )/za^2-n  

## real values of Rosenthal's as fixed 

 

random1 = ( lam^2 * m^2 + lam * (m^2 + s) )/za^2-lam  

## real values of Rosenthal's as random 

 

coverage1 = matrix(nrow = 4,ncol = 6)  

## the coverages will be stored here 

 

set.seed(123456)  

 

## seed number 

for (k in 1:4) { 

for (i in 1:R) { 

 

z = rnorm(n[k])  

## random values of z-statistics are generated 

## When we draw from the half normal we use z = abs(rnorm(n[k],0,1)); when 

we draw from the skew normal distribution we use z = rsn(n[k],xi = 0,omega = 

1,alpha = -0.5773503) or z = rsn(n[k],xi = 0,omega = 1,alpha = 0.5773503) 

for negative and positive skewness respectively ### 

############### 

 

rosent1[i, k] = ( sum(z)/za )^2 - n[k]  

## Rosenthal's value 

 

m1 = 0 ; s1 = 1 

v1[i, 1, k] = 2 * n[k]^2 * s1 * ( 2*n[k] * m1^2 + s1 )/za^4  

## distributional variance of the fixed studies 

 

m2 = mean(z) ; s2 = f[k] * var(z) 

v1[i, 2, k] = 2 * n[k]^2 * s2 * ( 2 * n[k] * m2^2 + s2 )/za^4  

## moments variance of the fixed studies 

 

v1[i, 3, k] = ( (4 * lam[k]^3 + 6 * lam[k]^2 + lam[k]) * m1^4 + (4 * 

lam[k]^3 + 16 * lam[k]^2 + 6 * lam[k]) * m1^2 * s1 +  

( 2 * lam[k]^2 + 3 * lam[k] ) * s1^2 )/za^4 – 2 *( (2 * lam[k]^2 + lam[k]) * 

m1^2 + lam[k] * s1 )/za^2 + lam[k] 
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## distributional variance of the random studies 

 

v1[i, 4, k] = ( (4 * lam[k]^3 + 6 * lam[k]^2 + lam[k]) * m2^4 + (4 * 

lam[k]^3 + 16 * lam[k]^2 + 6 * lam[k]) * m2^2 * s2 + 

(2 * lam[k]^2 + 3 * lam[k]) * s2^2 )/za^4 – 2 * ( (2 * lam[k]^2 + lam[k]) * 

m2^2 + lam[k] * s2 )/za^2 + lam[k] 

## moments variance of the random studies 

 

## then is the bootstrap case 

t = rep(0, B)  

for (j in 1:B) { 

nu = sample(1:n[k], n[k], replace = T) 

t[j] = (sum(z[nu])/za)^2-n[k] } 

v1[i, 5, k] = var(t)  

mat1[i, , k] = c(rosent1[i, k] - 1.96 * sqrt(v1[i, 1, k]), rosent1[i, k] + 

1.96 * sqrt(v1[i, 1, k])) 

mat2[i, , k] = c(rosent1[i, k] - 1.96 * sqrt(v1[i, 2, k]), rosent1[i, k] + 

1.96 * sqrt(v1[i, 2, k])) 

mat3[i, , k] = c(rosent1[i, k] - 1.96 * sqrt(v1[i, 3, k]), rosent1[i, k] + 

1.96 * sqrt(v1[i, 3, k])) 

mat4[i, , k] = c(rosent1[i, k] - 1.96 * sqrt(v1[i, 4, k]), rosent1[i, k] + 

1.96 * sqrt(v1[i, 4, k])) 

mat5[i, , k] = c(rosent1[i, k] - 1.96 * sqrt(v1[i, 5, k]), rosent1[i, k] + 

1.96 * sqrt(v1[i, 5, k])) } } 

for (l in 1:4) coverage1[l, 1] = 1 - (sum(mat1[, 1, l]>fixed1[l])/R + 

sum(mat1[, 2, l]<fixed1[l])/R) 

for (l in 1:4) coverage1[l, 2] = 1 -(sum(mat2[, 1, l]>fixed1[l])/R + 

sum(mat2[,2,l]<fixed1[l])/R) 

for (l in 1:4) coverage1[l, 3] = 1 - (sum(mat3[, 1, l]>random1[l])/R + 

sum(mat3[, 2, l]<random1[l])/R) 

for (l in 1:4) coverage1[l, 4] = 1 - (sum(mat4[, 1, l]>random1[l])/R + 

sum(mat4[, 2, l]<random1[l])/R) 

for (l in 1:4) coverage1[l, 5] = 1 - (sum(mat5[, 1, l]>fixed1[l])/R + 

sum(mat5[, 2, l]<fixed1[l])/R) 

for (l in 1:4) coverage1[l, 6] = 1 - (sum(mat5[, 1, l]>random1[l])/R + 

sum(mat5[, 2, l]<random1[l])/R) 

colnames(coverage1) = c('Dist_fixed', 'Mom_fixed', 'Dist_random', 

'Mom_random', 'Boot_fixed', 'Boot_random') 

rownames(coverage1) = c('n = 5', 'n = 15', 'n = 30', 'n = 50') 
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### Examining the Half Normal distribution mu and sigma-square values and 

drawing Zi from all four distributions### 

##################### 

 

R = 10000 ; B = 1000  

## R is the number of simulations, B is the number of bootstrap resamples 

 

rosent2 = matrix(nrow = R,ncol = 4)  

## here we will store the Rosenthal's values for the 4 sample sizes 

 

v2 = array(dim = c(R, 5, 4))  

## the variances will be stored here 

 

mat6 = mat7 = mat8 = mat9 = mat10 = array( dim = c(R, 2, 4) )   

## the confidence intervals will be stored here 

za = qnorm(0.95) ; n = lam = c(5, 15, 30, 50) ; f = (n - 1)/n 

## f is used to get the unbiased variance estimator 

 

m = sqrt(2/pi) ; s = 1 - 2/pi  

## parameters of the half normal distribution 

 

fixed2 = (n^2 * m^2 + n * s)/za^2 - n  

## real values of Rosenthal's as fixed 

 

random2 = (lam^2 * m^2 + lam * (m^2 + s))/za^2 - lam  

## real values of Rosenthal's as random 

 

coverage2 = matrix(nrow = 4,ncol = 6)  

## the coverages will be stored here 

 

set.seed(123456)  

## seed number 

 

for (k in 1:4) { 

for (i in 1:R) { 

 

z = rnorm(n[k])  

## random values of z-statistics are generated 

## When we draw from the half normal we use z = abs(rnorm(n[k],0,1)); when 

we draw from the skew normal distribution we use z = rsn(n[k],xi = 0,omega = 

1,alpha = -0.5773503) or z = rsn(n[k],xi = 0,omega = 1,alpha = 0.5773503) 

for negative and positive skewness respectively ### 

############### 

 

rosent2[i, k] = (sum(z)/za)^2 - n[k]  

## Rosenthal's value 

 

m1 = sqrt(2/pi) ; s1 = 1 - 2/pi 

v2[i, 1, k] = 2 * n[k]^2 * s1 *( 2 * n[k] * m1^2 + s1 )/za^4  

## distributional variance of the fixed studies 

 

m2 = mean(z) ; s2 = f[k] * var(z) 

v2[i, 2, k] = 2 * n[k]^2 * s2 * (2 * n[k] * m2^2 + s2)/za^4  

## moments variance of the fixed studies 

 

v2[i, 3, k] = ( (4 * lam[k]^3 + 6 * lam[k]^2 + lam[k]) * m1^4 + (4 * 

lam[k]^3 + 16 * lam[k]^2 + 6 * lam[k]) * m1^2 * s1 + 

(2 * lam[k]^2 + 3 * lam[k]) * s1^2 )/za^4 – 2 * ( (2 * lam[k]^2 + lam[k]) * 

m1^2 + lam[k] * s1 )/za^2 + lam[k] 

## distributional variance of the random studies 

 

v2[i, 4, k] = ( (4 * lam[k]^3 + 6 * lam[k]^2 + lam[k]) * m2^4 + (4 * 

lam[k]^3 + 16 * lam[k]^2 + 6 * lam[k]) * m2^2 * s2 + 

(2 * lam[k]^2 + 3 * lam[k]) * s2^2 )/za^4 – 2 * ( (2 * lam[k]^2 + lam[k]) * 

m2^2 + lam[k] * s2 )/za^2 + lam[k] 

## moments variance of the random studies 

 

## then is the bootstrap case 



36 
 

t = rep(0, B)  

for (j in 1:B) { 

nu = sample(1:n[k], n[k], replace = T) 

t[j] = (sum(z[nu])/za)^2 - n[k] } 

v2[i, 5, k] = var(t)  

mat6[i, , k] = c(rosent2[i, k] - 1.96 * sqrt(v2[i, 1, k]), rosent2[i, k] + 

1.96 * sqrt(v2[i,1,k])) 

mat7[i, , k] = c(rosent2[i, k]- 1.96 * sqrt(v2[i, 2, k]), rosent2[i, k] + 

1.96 * sqrt(v2[i, 2, k])) 

mat8[i, , k] = c(rosent2[i, k] - 1.96 * sqrt(v2[i, 3, k]), rosent2[i, k] + 

1.96 * sqrt(v2[i, 3, k])) 

mat9[i, , k] = c(rosent2[i, k] - 1.96 * sqrt(v2[i, 4, k]), rosent2[i, k] + 

1.96 * sqrt(v2[i, 4, k])) 

mat10[i, , k] = c(rosent2[i, k] - 1.96 * sqrt(v2[i, 5, k]), rosent2[i, k] + 

1.96 * sqrt(v2[i, 5, k])) } } 

for (l in 1:4) coverage2[l, 1] = 1 - (sum(mat6[, 1, l]>fixed2[l])/R + 

sum(mat6[, 2, l]<fixed2[l])/R) 

for (l in 1:4) coverage2[l, 2] = 1 - (sum(mat7[, 1, l]>fixed2[l])/R + 

sum(mat7[, 2, l]<fixed2[l])/R) 

for (l in 1:4) coverage2[l, 3] = 1 - (sum(mat8[, 1, l]>random2[l])/R + 

sum(mat8[, 2, l]<random2[l])/R) 

for (l in 1:4) coverage2[l, 4] = 1 - (sum(mat9[, 1, l]>random2[l])/R + 

sum(mat9[, 2, l]<random2[l])/R) 

for (l in 1:4) coverage2[l, 5] = 1 - (sum(mat10[, 1, l]>fixed2[l])/R + 

sum(mat10[, 2, l]<fixed2[l])/R) 

for (l in 1:4) coverage2[l, 6] = 1 - (sum(mat10[, 1, l]>random2[l])/R + 

sum(mat10[, 2, l]<random2[l])/R) 

colnames(coverage2) = c('Dist_fixed', 'Mom_fixed', 'Dist_random', 

'Mom_random', 'Boot_fixed', 'Boot_random') 

rownames(coverage2) = c('n = 5', 'n = 15', 'n = 30', 'n = 50') 
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### Examining the Skew Normal distribution (negative skewness) mu and sigma-

square values and drawing Zi from all four distributions### 

########################  

 

R = 10000 ; B = 1000 

## R is the number of simulations, B is the number of bootstrap resamples 

 

rosent3 = matrix(nrow = R,ncol = 4)  

## here we will store the Rosenthal's values for the 4 sample sizes 

 

v3 = array(dim = c(R, 5, 4))  

## the variances will be stored here 

 

mat11 = mat12 = mat13 = mat14 = mat15 = array(dim = c(R, 2, 4))  

## the confidence intervals will be stored here 

 

za = qnorm(0.95) ; n = lam = c(5, 15, 30, 50) ; f = (n - 1)/n 

## f is used to get the unbiased variance estimator 

m = - sqrt( 1/(2 * pi) ) ; s = 1 - 1/(2 * pi) 

 

fixed3 = (n^2 * m^2 + n * s)/za^2 - n  

## real values of Rosenthal's as fixed 

 

random3 = (lam^2 * m^2 + lam * (m^2 + s))/za^2 - lam 

## real values of Rosenthal's as random 

 

coverage3 = matrix(nrow = 4, ncol = 6) 

 

set.seed(123456)  

## seed number 

for (k in 1:4) { 

for (i in 1:R) { 

 

z = rnorm(n[k])  

## random values of z-statistics are generated 

## When we draw from the half normal we use z = abs(rnorm(n[k],0,1)); when 

we draw from the skew normal distribution we use z = rsn(n[k],xi = 0,omega = 

1,alpha = -0.5773503) or z = rsn(n[k],xi = 0,omega = 1,alpha = 0.5773503) 

for negative and positive skewness respectively ### 

############### 

 

rosent3[i, k] = (sum(z)/za)^2 - n[k]  

## Rosenthal's value 

 

m1 = - sqrt(2/pi) ; s1 = 1 - 2/pi 

 

v3[i, 1, k] = 2 * n[k]^2 * s1 * ( 2 * n[k] * m1^2 + s1 )/za^4  

## distributional variance of the fixed studies 

 

m2 = mean(z) ; s2 = f[k] * var(z) 

v3[i, 2, k] = 2 * n[k]^2 * s2 * ( 2 * n[k] * m2^2 + s2 )/za^4  

## distributional variance of the random studies 

v3[i, 3, k] = ( (4 * lam[k]^3 + 6 * lam[k]^2 + lam[k]) * m1^4 + (4 * 

lam[k]^3 + 16 * lam[k]^2 + 6 * lam[k]) * m1^2 * s1 + 

(2 * lam[k]^2 + 3 * lam[k]) * s1^2 )/za^4 – 2 *( (2 * lam[k]^2 + lam[k]) * 

m1^2 + lam[k] * s1 )/za^2 + lam[k] 

## moments variance of the fixed studies 

 

v3[i, 4, k] = ( (4 * lam[k]^3 + 6 * lam[k]^2 + lam[k]) * m2^4 + (4 * 

lam[k]^3 + 16 * lam[k]^2 + 6 * lam[k]) * m2^2 * s2 + 

(2 * lam[k]^2 + 3 * lam[k]) * s2^2 )/za^4 – 2 * ( (2 * lam[k]^2 + lam[k]) * 

m2^2 + lam[k] * s2 )/za^2 + lam[k] 

## moments variance of the random studies 

 

## then is the bootstrap case 

t = rep(0, B)  

for (j in 1:B) { 

nu = sample(1:n[k], n[k], replace = T) 



38 
 

t[j] = (sum(z[nu])/za)^2 - n[k] } 

v3[i, 5, k] = var(t)  

mat11[i, , k] = c(rosent3[i, k] - 1.96 * sqrt(v3[i, 1, k]), rosent3[i, k] + 

1.96 * sqrt(v3[i, 1, k])) 

mat12[i, , k] = c(rosent3[i, k] - 1.96 * sqrt(v3[i, 2, k]), rosent3[i, k] + 

1.96 * sqrt(v3[i, 2, k])) 

mat13[i, , k] = c(rosent3[i, k] - 1.96 * sqrt(v3[i, 3, k]), rosent3[i, k] + 

1.96 * sqrt(v3[i, 3, k])) 

mat14[i, ,k] = c(rosent3[i, k] - 1.96 * sqrt(v3[i, 4, k]), rosent3[i, k] + 

1.96 * sqrt(v3[i, 4, k])) 

mat15[i, , k] = c(rosent3[i, k] - 1.96 * sqrt(v3[i, 5, k]), rosent3[i,k] + 

1.96 * sqrt(v3[i, 5, k])) } } 

for (l in 1:4) coverage3[l,1] = 1 -(sum(mat11[, 1, 

l]>fixed3[l])/R+sum(mat11[, 2, l]<fixed3[l])/R) 

for (l in 1:4) coverage3[l, 2] = 1 - (sum(mat12[, 1, 

l]>fixed3[l])/R+sum(mat12[, 2, l]<fixed3[l])/R) 

for (l in 1:4) coverage3[l, 3] = 1- (sum(mat13[, 1, l]>random3[l])/R + 

sum(mat13[, 2, l]<random3[l])/R) 

for (l in 1:4) coverage3[l, 4] = 1-(sum(mat14[, 1, l]>random3[l])/R + 

sum(mat14[, 2, l]<random3[l])/R) 

for (l in 1:4) coverage3[l, 5] = 1 - (sum(mat15[, 1, l]>fixed3[l])/R + 

sum(mat15[, 2, l]<fixed3[l])/R) 

for (l in 1:4) coverage3[l, 6] = 1 - (sum(mat15[, 1, l]>random3[l])/R + 

sum(mat15[, 2, l]<random3[l])/R) 

colnames(coverage3) = c('Dist_fixed', 'Mom_fixed', 'Dist_random', 

'Mom_random', 'Boot_fixed', 'Boot_random') 

rownames(coverage3) = c('n = 5', 'n = 15', 'n = 30', 'n = 50') 
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### Examining the Skew Normal distribution (positive skewness) mu and sigma-

square values and drawing Zi from all four distributions### 

####################### 

 

R = 10000 ; B = 1000 

## R is the number of simulations, B is the number of bootstrap resamples 

 

rosent4 = matrix(nrow = R, ncol = 4)  

## here we will store the Rosenthal's values for the 4 sample sizes 

 

v4 = array(dim = c(R, 5, 4)) 

## the variances will be stored here 

 

mat16 = mat17 = mat18 = mat19 = mat20 = array(dim = c(R, 2, 4))  

## the confidence intervals will be stored here 

 

za = qnorm(0.95) ; n = lam = c(5, 15, 30, 50) ; f = (n - 1)/n 

## f is used to get the unbiased variance estimator 

 

m = sqrt( 1/(2 * pi) ) ; s = 1 - 1/( 2 * pi ) 

 

fixed4 = ( n^2 * m^2 + n * s )/za^2 - n  

## real values of Rosenthal's as fixed 

 

random4 = ( lam^2 * m^2 + lam * (m^2 + s) )/za^2 - lam  

## real values of Rosenthal's as random 

 

coverage4 = matrix(nrow = 4,ncol = 6) 

 

set.seed(123456) 

## seed number 

 

for (k in 1:4) { 

for (i in 1:R) { 

 

z = rnorm(n[k])  

## random values of z-statistics are generated 

## When we draw from the half normal we use z = abs(rnorm(n[k],0,1)); when 

we draw from the skew normal distribution we use z = rsn(n[k],xi = 0,omega = 

1,alpha = -0.5773503) or z = rsn(n[k],xi = 0,omega = 1,alpha = 0.5773503) 

for negative and positive skewness resepctively ### 

############### 

 

rosent4[i, k] = (sum(z)/za)^2-n[k]  

## Rosenthal's value 

 

m1 = sqrt(1/(2 * pi)) ; s1 = 1 - 1/(2 * pi) 

v4[i, 1, k] = 2 * n[k]^2 * s1 * (2 * n[k] * m1^2 + s1)/za^4  

## distributional variance of the fixed studies 

 

m2 = mean(z) ; s2 = f[k] * var(z) 

 

v4[i, 2, k] = 2 * n[k]^2 * s2 * (2 * n[k] * m2^2 + s2)/za^4  

## distributional variance of the random studies 

V 

4[i,3,k] = ( (4 * lam[k]^3 + 6 * lam[k]^2 + lam[k]) * m1^4 + (4 * lam[k]^3 + 

16 * lam[k]^2 + 6 * lam[k]) * m1^2 * s1 + 

(2 * lam[k]^2 + 3 * lam[k]) * s1^2 )/za^4 - 2 * ( (2 * lam[k]^2 + lam[k]) * 

m1^2 + lam[k] * s1 )/za^2 + lam[k] 

## moments variance of the fixed studies 

 

v4[i, 4, k] = ( (4 * lam[k]^3 + 6 * lam[k]^2 + lam[k]) * m2^4 + (4 * 

lam[k]^3 + 16 * lam[k]^2 + 6 * lam[k]) * m2^2 * s2 + 

(2 * lam[k]^2 + 3 * lam[k]) * s2^2 )/za^4 – 2 * ( (2 * lam[k]^2 + lam[k]) * 

m2^2 + lam[k] * s2 )/za^2 + lam[k] 

## moments variance of the random studies 

 

## then is the bootstrap case 
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t = rep(0, B)  

for (j in 1:B) { 

nu = sample(1:n[k], n[k], replace = T) 

t[j] = (sum(z[nu])/za)^2 - n[k] } 

v4[i, 5, k] = var(t)  

mat16[i, , k] = c(rosent4[i, k] - 1.96 * sqrt(v4[i, 1, k]), rosent4[i, k] + 

1.96 * sqrt(v4[i, 1, k])) 

mat17[i, , k] = c(rosent4[i, k] - 1.96 * sqrt(v4[i, 2, k]), rosent4[i, k] + 

1.96 * sqrt(v4[i, 2, k])) 

mat18[i, , k] = c(rosent4[i, k] - 1.96 * sqrt(v4[i, 3, k]), rosent4[i, k] + 

1.96 * sqrt(v4[i, 3, k])) 

mat19[i, , k] = c(rosent4[i, k] - 1.96 * sqrt(v4[i, 4, k]), rosent4[i, k] + 

1.96 * sqrt(v4[i, 4, k])) 

mat20[i, , k] = c(rosent4[i, k] - 1.96 * sqrt(v4[i, 5, k]), rosent4[i, k] + 

1.96 * sqrt(v4[i, 5, k])) } } 

for (l in 1:4) coverage4[l, 1] = 1-(sum(mat16[, 1, l]>fixed4[l])/R + 

sum(mat16[, 2, l]<fixed4[l])/R) 

for (l in 1:4) coverage4[l, 2] = 1-(sum(mat17[, 1, l]>fixed4[l])/R + 

sum(mat17[, 2, l]<fixed4[l])/R) 

for (l in 1:4) coverage4[l, 3] = 1-(sum(mat18[, 1, l]>random4[l])/R + 

sum(mat18[, 2, l]<random4[l])/R) 

for (l in 1:4) coverage4[l, 4] = 1-(sum(mat19[, 1, l]>random4[l])/R + 

sum(mat19[, 2, l]<random4[l])/R) 

for (l in 1:4) coverage4[l, 5] = 1-(sum(mat20[, 1, l]>fixed4[l])/R + 

sum(mat20[, 2, l]<fixed4[l])/R) 

for (l in 1:4) coverage4[l, 6] = 1 - (sum(mat20[, 1, l]>random4[l])/R + 

sum(mat20[, 2, l]<random4[l])/R) 

colnames(coverage4) = c('Dist_fixed', 'Mom_fixed', 'Dist_random', 

'Mom_random',  

'Boot_fixed', 'Boot_random') 

rownames(coverage4) = c('n = 5', 'n = 15', 'n = 30', 'n = 50') 
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Meta-analyses Example Data 

Meta-analysis study by [1] 

 

Authors Year z values 

Ligny 1976 2.962859 

Adam 1977 3.757467 

Gotz 1979 1.650607 

Monteiro 1981 2.166813 

Borgia 1982 1.581611 

Frigerio 1986 4.059215 

Surawicz 1989 2.27334 

Wunderlich 1989 1.487448 

Tankanow 1990 0.17785 

Reid 1992 -0.0474 

McFarland 1995 1.627997 

Lewis 1998 -0.79902 

Arvola 1999 1.891838 

Benhamou 1999 -1.44082 

Vanderhoof 1999 3.074713 

Felley 2001 -0.70246 

Thomas 2001 0.210804 

Jirapinyo 2002 1.553301 

Sheu 2002 2.199867 

La Rosa 2003 3.024602 

Sullivan 2003 -0.68994 

Erdeve 2004 1.620978 

Erdeve 2004 3.755796 

Lighthouse 2004 -0.70038 

Plummer 2004 0 

Schrezenmeir 2004 -0.94973 

Tursi 2004 1.864488 

Corrêa 2005 2.198868 

Duman 2005 2.608535 

Kotowska 2005 3.186323 

Myllyluoma 2005 -0.90258 

Can 2006 1.812663 

Beausoleil 2007 1.969595 

Cindoruk 2007 2.071372 

Conway 2007 1.778388 

De Bortoli 2007 2.914381 

Hickson 2007 2.597848 

Park 2007 2.95422 

Stein 2007 -0.98815 

Authors Year z values 

Bravo 2008 0.598887 

Kim 2008 -0.56565 

Koning 2008 2.171299 

Ruszczynski 2008 -2.10516 

Safdar 2008 1.256991 

Szymanski 2008 0.595156 

Wenus 2008 1.987948 

Engelbrektson 2009 -0.98909 

Merenstein 2009 0.553913 

Szajewska 2009 1.505209 

Gao 2010 3.849341 

Koning 2010 -0.4195 

Li 2010 2.816526 

Lönnermark 2010 -0.35165 

Sampalis 2010 1.776439 

Song 2010 0.426735 

Song 2010 1.63705 

Yasar 2010 0.249171 

Cimperman 2011 1.533658 

de Vrese 2011 -0.35655 

Saneeyan 2011 2.486708 

Selinger 2011 1.630008 

Yoon 2011 -1.19603 
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Meta-analysis study by [2] 

 

Authors Year Z 

Bell 1989 0.829231 

Bochet 2006 3.330265 

Bornstein 2010a 4.24916 

Sample b  2.08 

Bornstein 2010b 4.55493 

Sample b  2.702136 

Caldwell 1976 2.688 

Camera 2009 1.855267 

Carpenter 2007b 2.59759 

Sample b  2.078072 

Sample c  0.860488 

Carpenter 2009 2.891 

Carpenter 2004 3.72202 

Casari 2009 6.465979 

Chen (Study 2) 2009 1.803894 

Cinyabuguma 2005 2.24 

Dickinson 2001 5.145 

Sample b  5.2675 

Dreber 2008 4.131892 

Sample b  0.824091 

Eek 2002 7.115294 

Egas 2008 0.696889 

Sample b  4.355556 

Sample c  1.829333 

Sample d  -0.80182 

Etran 2009 3.223111 

Fehr 2000 2.989831 

Sample b  6.40396 

Fehr 2002 14.7 

Fuster 2010 3.477419 

Sample b  3.411852 

Gachter 2009 3.574118 

Sample b  3.015385 

Sample c  -0.67586 

Sample d  -1.08138 

Gachter 2011 -0.98 

Sample b  0.70359 

Sample c  2.016 

Sample d  -2.0825 

Gachter 2008 3.479 

Sample b  8.131915 

Authors Year Z 

Gachter 2005 5.535878 

Sample a  1.104225 

Sample b  2.229725 

Herrmann 2008 7.404444 

Study 2  7.410411 

Study 3  7.197377 

Study 4  8.563692 

Study 5  7.798298 

Study 6  8.949434 

Study 7  4.227451 

Study 8  0.522667 

Study 9  4.632727 

Study 10  -1.04533 

Study 11  2.5872 

Study 12  -1.03158 

Study 13  -0.07127 

Study 14  9.740606 

Study 15  9.097358 

Study 16  7.423717 

Hopfensitz 2009 3.441951 

Kieruj 2008 7.466667 

Kocher 2008 2.330811 

Komorita 1985 -0.70966 

Kroll 2007 4.422564 

Martichuski 1991 2.230345 

McCusker 1995 4.174545 

Study 2  2.103415 

Mulder 2005 3.5525 

Mulder 2008 2.024615 

Mulder 2001 2.232911 

Sample b  2.184427 

Mulder 2002 2.698182 

Mulder 2003 1.905556 

Mulder 2006a 4.581818 

Study 2  3.705205 

Sample b  1.737273 

Study 3  2.597 

Mulder 2005 0.276056 

Mulder 2006 2.94 

Myers 2009 4.434747 

Nelissen 2010 7.466667 
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Authors Year Z 

Nikiforakis 2008 5.530959 

Sample b  7.888395 

Sample c  1.176 

Sample d  6.055724 

Nikiforakis 2010 3.364409 

Sample b  3.82439 

Sample c  5.115461 

Sample d  5.371852 

O'Gorman 2008 2.24918 

Sample b  -0.392 

O'Gorman 2010 4.611765 

Sample b  2.441967 

Page 2005 6.653684 

Patel 2010 0.658824 

Sample b  0.897349 

Sample c  0.722105 

Sample d  -1.68304 

Rand 2009 3.486851 

Rapoport 2001 1.448153 

Reuben 2009 7.459578 

Sample b  2.672727 

Sample c  5.90481 

Sample d  4.505455 

Riedl 2009 1.26359 

Sample b  1.180372 

Sample c  1.801081 

Sample d  0.969309 

Sato 1987 4.856855 

Sefton 2007 1.334468 

Sell 1999 4.157576 

Shaw 1976 2.655484 

Shinada 2007 4.459 

Sample b  2.512821 

Study 2  3.250732 

Sample b  1.666 

Sutter 2010 6.135652 

Sample b  2.94 

Sutter 2009 2.189091 

Tan 2008 4.17088 

Tenbrunsel 1999 -1.93747 

Study 2  -2.43185 

Study 3  1.583077 

Sample b  -0.96946 

Authors Year Z 

Tyran 2004 0 

van Prooijen 2008 -0.89091 

Sample b  -3.8357 

Study 2  0.598473 

Sample b  -2.24824 

Van Vugt 1999 3.464186 

Walker 2004 -0.27509 

Sample b  0.756491 

Wit 1990 1.905047 

Study 2  0.368941 

Study 3  0 

Study 4  2.255849 

Xiao 2010 1.2152 

Sample b  3.01 

Sample c  1.588276 

Sample d  4.957647 

Sample e  1.8424 

Sample f  4.971707 

Sample g  1.158957 

Sample h  4.878222 

Yamagishi 1986 3.275616 

Yamagishi 1988 7.454426 

Yamagishi 1992 5.377436 
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