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Abstract 

Confronted by increasingly tight budgets and a broad range of alternative options, policy 
makers need empirical methods to evaluate the effectiveness of policies aimed at supporting the 
diffusion of renewable energy sources (RES). Rigorous empirical studies of renewable energy 
policy effectiveness have typically relied on panel data models to identify the most effective 
mechanisms. A common characteristic of some of these studies, which has important 
econometric implications, is that they assume that the contribution of RES to total electricity 
generation will be stationary around a mean. This paper reviews such assumptions and 
rigorously tests the time series properties of the contribution of RES in the energy mix for the 
presence of a unit root. To that end, we use both individual and panel unit root tests to 
determine whether the series exhibit non-stationary behavior at the country level as well as for 
the panel as a whole. The analysis, applied to a panel of 19 OECD countries over the period 
1990–2012, provides strong evidence that the time series of the renewable share of electricity 
output are not stationary in 17 of the 19 countries examined. This finding has important 
implications for energy policy assessment and energy policy making, which are discussed in the 
paper. 
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1. Introduction 

Renewable energy sources (RES) are considered with growing interest due to their 

multiple expected contributions to global energy, economic and social systems:  

reduction of (local) environmental impacts, energy security enhancement, poverty 

reduction and economic development through technological innovation and 

employment creation (Edenhofer et al. 2013).  Driven by these potential environmental 

and social benefits, and by generous public support, RES are playing an increasingly 

important role in the global energy mix, particularly in the electricity sector. Even the 

resource-rich GCC6 countries are considering RES as a viable alternative to fossil fuels 

to meet their growing domestic demand (Ferroukhi et al. 2013). By the end of 2012, RES 

supplied an estimated 21.7% of global electricity, with 16.5% of electricity being 

provided by hydropower (REN21 2013).  

However, despite recent progress and the potential benefits, the share of RES in 

the global energy mix remains below the level deemed necessary to curb or even 

stabilize CO2 emissions (IEA 2009). To increase penetration, improved policy 

frameworks for RES have been advocated and deployed to correct externalities, ensure 

a more level playing field and attract investments (Masini and Menichetti 2012)7. 

Several policies have been tested in various countries, including feed-in tariffs (FIT), 

quantity-based systems (quotas), grants or tradable green certificates (TGC).  

The mixed results of these policies, the heterogeneity of the support mechanisms 

underlying them, the amount of capital needed to sustain their long-term deployment 

and the progressive tightening of government budgets naturally raises the question of 

how to identify optimal instruments and of how to assess their deployment (IEA 2008, 

2011; IRENA 2012; Ragwitz et al. 2011). Not surprisingly, over the past decade, the 

literature on economics and energy policy has dedicated a significant amount of 

                                                             
6 Gulf Cooperation Council, which includes Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United 
Arab Emirates. 
7 Ironically and contrary to common wisdom, RES have not received disproportionate amounts of public 

subsidies compared to fossil fuels. In 2011, financial support for renewable energy amounted to $88 
billion. By comparison, in the same year, fossil fuel consumption subsidies worldwide were estimated to 
be $523 billion (IEA 2012). 
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attention to addressing these questions.8 International organizations such as the 

International Energy Agency (IEA) have also devised policy effectiveness indicators 

and used them to measure the impact of policies for promoting RES (IEA 2008)9.  

Rigorous empirical studies of renewable energy policy effectiveness have relied 

on panel data models applied to state-level policies in the United States (US) or national 

level policies across European countries, typically using the percentage share of total 

electricity generation from RES as the dependent variable. The panel data framework 

fits naturally in these studies due to policy correlations as well as common regulatory or 

incentive frameworks promoting RES (e.g., the federal policies of production and 

investment tax credit in the US and the so-called renewables directive within the 

European Union (EU)). Furthermore, the panel approach has better power properties 

than univariate methods in finite samples.10 This power gain is a crucial feature of the 

existing empirical studies, given the difficulty of constructing a balanced panel across N 

countries/states over T periods.  

Despite these efforts, the empirical literature on renewable energy policies has 

generated mixed findings (see Section 2 and Table 1 for an overview), suggesting that 

the results are context-dependent and are heavily influenced by model specification 

choices. A common feature of these studies is associated with the choice of the share of 

renewable energy in total electricity generation as the dependent variable and its 

econometric treatment. This selection arises naturally, as in both the EU and the US, 

renewable energy policies are designed to encourage electricity producers within a 

given jurisdiction to supply a minimum or targeted share of their electricity using 

                                                             
8 See Tables 1a-b of this paper and table 2 in Mezher et al. (2012) for a summary of relevant renewable 
energy policy studies. 
9 Applying these indicators, IEA (2008) found that the EU member states in the Organisation for 
Economic Co-operation and Development (OECD) exhibit the highest policy effectiveness for all new 
renewable electricity generation technologies. 
10 The oft-touted power of panel data comes from cross-section. The addition of the cross-section 
dimension, under certain assumptions, acts like repeated draws from the same distribution. As a result, 

as the time (T) and cross-section (N) dimension increase, panel test statistics can be shown to converge in 
distribution to normally distributed random variables (Phillips and Moon (1999) demonstrate this result 
using sequential and joint limit theory). 
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designated RES11. However, most existing work overlooks possible unit roots in the 

contribution of RES to total electricity generation. In other words, the dependent 

variable in the majority of these studies is assumed to be stationary around a mean.12 As 

western countries are continuously striving to increase the share of RES in the energy 

supply, common sense suggests that the share would exhibit a trending or non-mean 

reverting process. This assertion seems to be consistent with the evidence shown in 

Figures 1a–b, which plot the share of non-hydro renewables in electricity output for 19 

OECD countries over the period 1990–2012.  

These observations have important methodological and policy making 

implications. Ignoring the presence of a common root or neglecting serial correlation 

would lead to the use of econometric models that overstate the impact of the 

independent variables on the dependent variable, suggesting a significant relationship 

between a renewable energy policy and the share of renewable energy even if there is 

none (the so-called spurious regression problem; see Granger and Newbold (1974)). 

Second, if the RES time series process were truly non-stationary, any shock to it, such as 

the implementation of a dedicated policy, would have permanent effects. Clearly, this 

would limit the possibility of experimenting with alternative support mechanisms 

because policies with unexpected undesirable effects would have irreversible impacts.   

A second limitation of the extant literature is that it has not investigated the 

question of timing, i.e., it has not examined whether the non-stationary behavior of the 

RES share data began or significantly changed at a specific point in time. Global 

exogenous events such as the ratification of the Kyoto protocol in 1997 or the 2008 

financial crisis may have triggered or hampered RES adoption in certain countries, 

regardless of the specific policies implemented at the national level. Detecting the 

                                                             
11 For example, in California, a renewable portfolio standard (RPS) of 20% of retail sales was originally 
enacted in 2002, with plans to increase it to 33% by the end of 2020.  Similar mandatory standards or 
voluntary goals are in effect in other jurisdictions in the US. Likewise, the Renewables Directive requires 

that 20% of the energy consumed within the EU is produced from RES. 
12 One notable exception is Aguirre and Ibikunle (2014) who test for unit roots in their dependent variable 
(renewable growth).  
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timing of non-stationarity is therefore a question of great policy interest which requires 

appropriate methodological treatment. 

Drawing upon the above observations, this paper aims to investigate the time 

series properties of the contribution of RES in the energy mix, a commonly used 

dependent variable in the RE policy literature, for the presence of a unit root. It also 

aims to determine whether the posited non-stationary behavior becomes detectable at 

some specific point in time and whether it is observable for all the different RES 

examined in the study. To that end, we apply both individual and panel unit root tests 

to determine whether the series exhibit a non-stationary process at the country level as 

well as for the panel as a whole. The tests, applied to a panel of 19 OECD countries over 

the period 1990–2012, provide strong evidence that the time series of the renewable 

share of electricity output are not stationary in 17 of the 19 countries examined. The 

results are robust across different test specifications and different measures of share of 

RES (with or without hydropower). 

The paper makes several contributions. First, it presents a systematic analysis of 

the time series properties of the share of RES in the energy mix at the country level, 

using both individual and panel unit root tests, and also accounting for cross-sectional 

dependence (CSD).  Second, it discusses the econometric implications of such properties 

with respect to energy policy assessment, suggesting that the results of existing 

empirical studies should be revisited in light of our findings. Finally, it also discusses 

the implications of non-stationarity from a policy making perspective, pointing out that 

energy policies may have a long-lasting impact even if applied for a limited amount of 

time.  

The rest of the paper is organized as follows. Section 2 reviews the empirical 

literature on the effectiveness of renewable energy policies. Section 3 briefly discusses 

the individual and panel unit root tests used in the empirical analysis. Section 4 

discusses the data and some preliminary results. Section 5 presents the findings of the 

unit root tests. Section 6 discusses some implications of our findings for modeling and 

policy. Section 7 concludes the paper. 
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2. Literature Review 

Over the last decade, an emerging body of empirical literature has started investigating 

the effectiveness of renewable energy policies as well as how policies should be 

designed to further increase the penetration of RES globally. Table 1 provides an 

overview of the most relevant studies in this area.  

 From a methodological standpoint, these studies can be classified into two 

groups as a function of the variable employed to measure RE penetration: share of 

electricity generation from RES versus annual or cumulative renewable energy capacity. 

Among the papers that adopt the former measure of RES penetration, Carley (2009) 

employed the logged13 share of renewable energy electricity from all sources as the 

dependent variable for 48 US states over the period 1998–2006. Using a fixed effects 

vector decomposition (FEVD) model, she found that renewable portfolio standard (RPS) 

implementation has an insignificant impact on the percentage of renewable energy 

generation within the total generation mix. Yin and Powers (2010) considered the 

percentage of generating capacity contributed by non-hydro RES in a state for 50 US 

states over the 1993–2006 period. Applying a fixed effects model, their results indicated 

that RPS policies do have a significant and positive effect on in-state renewable energy 

development. A likely reason for the difference in results between Carley (2009) and Yin 

and Powers (2010) is that the latter account for policy design heterogeneity in state-level 

RPS policies in the US. Marques et al. (2010) used the logged share of contribution of 

renewable to energy supply for 24 European countries over the 1990–2006 period. 

Applying standard panel data models, namely the FEVD, the authors found that both 

the lobby supporting the traditional energy sources (oil, coal and natural gas) and those 

concerned about CO2 emissions influence RES deployment. In a sequel paper, Marques 

et al. (2011) applied the quantile technique to investigate the factors promoting 

renewable energy in European countries. Their panel quantile regression produced 

                                                             
13 Several authors (e.g., Carley 2009; Marques et al. 2010, 2011; Jenner et al. 2013) performed functional 
form tests to determine whether the dependent variable must be logged to avoid specification errors. 
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broadly similar results to those reported in Marques et al. (2010), but also provided 

some interesting details. For example, the impact of gross domestic product (GDP) on 

RES deployment is positive for a smaller share of renewable energy, but the effect 

becomes negative for a higher renewable energy share. This asymmetric effect of GDP 

highlights both the positive and negative sides of the GDP–renewable energy 

relationship: while higher income induces countries to emphasize greater 

environmental quality through higher renewable energy generation, higher income 

could also lead to increased consumption of fossil fuels. Shrimali and Kniefel (2011) 

used disaggregated ratios of non-hydro renewable capacity by fuel type to the total net 

generation for 50 US states over the period 1991–2007.  To remove the effect of serial 

correlation from the data, they applied the panel corrected standard errors and found 

that RPS, with either capacity or sales requirements, has a significant impact on the 

penetration of all types of RES, but the impact is mainly positive for solar and 

geothermal and negative for wind and biomass. Marques and Fuinhas (2012) selected 

the contribution of renewables to total energy supply as their dependent variable in a 

study of 23 European countries over the 1990–2007 period. Using the panel corrected 

standard errors estimator to control for possible cross-sectional dependency in the data, 

they found that among the various public policy measures, the use of FIT has been 

effective in fostering RES, whereas measures such as quota obligations have not 

delivered the desired effect of increasing the share of RES. 

Some studies use the level of renewable energy (instead of its share in the energy 

mix) as the dependent variable. For example, Menz and Vachon (2006), Delmas and 

Montes-Sancho (2011) and Dong (2012) considered cumulative capacity as their 

dependent variable, while Jenner et al. (2013) used added capacity as a dependent 

variable for their study. The main difference between added capacity and cumulative 

capacity is that the former refers to the flows of RES, while the latter refers to the 

physical stock of RES. From the investors’ perspective, added capacity is more relevant 

(than stocks) as they make their decision on the basis of current and future FIT levels 
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and costs – see Jenner et al. (2013) for further details and a discussion of the choice of 

dependent variable selection in the renewable energy policy literature. 

Though distinguished, this literature has largely overlooked possible integration 

or co-integration problems, and it assumes the dependent variable to be generated by a 

stationary process. As noted, neglecting the presence of a unit root may lead to incorrect 

model specification and, in turn, produce biased estimates. The question of the possible 

presence of a unit root in the renewable energy diffusion process has recently started 

attracting the attention of energy scholars, at least in the specific context of the United 

States. Apergis and Tsoumas (2011) find that the laws of motion for different types of 

energy consumption (i.e., solar, geothermal and biofuels) across different sectors (e.g., 

commercial, residential, transportation) do not contain a unit root. Barros et al. (2012) 

apply various fractional integration techniques to total renewable energy consumption 

and find that the process exhibits a long memory and mean-reverting behavior. Lean 

and Symth (2013) find that total renewable energy production has a unit root. See 

Symth (2013) for a survey of the empirical literature on the integration properties of 

energy consumption and production.  

Although these papers examine a narrow region and provide mixed findings, 

they seem to indicate that the presence of a unit root cannot be neglected. 

Unfortunately, to the best of our knowledge, a systematic analysis of this problem in the 

context of renewable energy diffusion outside of the United States is still lacking. To 

address this research gap, in the remainder of this paper, we formally test for a unit root 

in the time series for the share renewable energy in 19 OECD countries, both at the 

country level and in the panel as a whole. Thus, our paper complements and extends 

the literature on the time series properties of renewable energy diffusion. 

 

3. Methodology 

This section provides a brief discussion of the various unit root tests (individual and 

panel) applied to the data. The individual unit root tests include the augmented 

Dickey–Fuller (ADF) test of Dickey and Fuller (1979), the Phillips and Perron (1988) 
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semiparametric test (PP) and the Dickey–Fuller generalized least squares (DF-GLS) test 

of Elliot et al. (1996). The panel unit root tests include the CIPS test of Pesaran (2007) 

and the robust t-test of Breitung and Das (2005). In addition, to test the presence of 

cross-section dependence in the data, we apply a number of competing tests such as the 

CD test of Pesaran (2004) and the test statistics proposed by Friedman (1937) and Frees 

(1995). A short description of each of the tests is provided below.14 

 

3.1 Individual unit root tests 

The ADF test is based on estimating the following test regression: 

    
             

 
           ,   (1) 

where    is a vector of the deterministic terms (constant, trend) and   represents the 

lagged difference terms. Under the null hypothesis,    has an integration of order 1, i.e., 

I(1), implying that    . The ADF t-statistic is based on the least squares estimates of 

equation (1) and is given by 

          
    

     
. 

The ADF test regression is estimated with        lagged differences and by using the 

Schwarz Bayesian criterion to determine the optimal lag order. 

The PP unit root test differs from the ADF test mainly in how it deals with serial 

correlation and heteroskedasticity in the errors. The PP method estimates the non-

augmented Dickey–Fuller test equation (1) and modifies the t-ratio so that serial 

correlation does not affect the asymptotic distribution of the test statistic. The modified 

statistic, denoted   , is given by: 

      
   

   
         

       

   
   

        

   
  

where the terms     and     are consistent estimates of the variance parameter. Under the 

null hypothesis that    , the PP    test has the same asymptotic distributions as the 

ADF t-statistic. However, the PP test has the advantage that it is robust to general forms 

                                                             
14 The discussion in this section has benefitted from the findings of De Hoyos and Sarafidis (2006), 
Gengenbach et al. (2010) and Zivot (2006). 
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of heteroskedasticity and one does not have to specify a lag length for the test 

regression (Zivot, 2005). 

 However, size distortions and low power are common features of ADF and PP 

unit root tests. For example, Schwert (1989) complained about the size distortions of 

ADF and PP tests when the data have a large and negative MA component, while 

DeJong et al. (1992) argued that ADF and PP tests have low power against plausible 

trend-stationary alternatives. See Maddala and Kim (1998) for a review of studies using 

Monte Carlo simulations to analyze the size and power properties of ADF and PP tests. 

To overcome the low power problem of the ADF and PP unit root tests, we apply 

the more powerful DF-GLS unit root test proposed by Elliot et al. (1996). The DF-GLS 

method involves a simple modification of the ADF test in which the data are detrended 

so that the explanatory variables are taken out of the data prior to running the test 

regression. To construct the DF-GLS first define the detrended data as: 

  
         

   , 

where     
  is the trend parameter. This detrending procedure is called GLS detrending. 

Second, the DF-GLS test is performed by estimating the standard ADF test regression, 

after substituting the GLS detrended   
  for the original    in equation (1): 

   
       

     
 
       

    . 

Next, compute the t-statistic for testing    . When     , the asymptotic distribution 

of the DF-GLS test is the same as that of the ADF t-test but has high asymptotic power 

(against local alternatives) than the Dickey–Fuller t-test. Ng and Perron (2001) showed 

that the size and power of the DF-GLS test may be improved when the truncation lag is 

appropriately selected, with their specific modified AIC p-selection rule. 

 

3.2 Panel unit root tests 

Consider the reduced form panel data model: 

                                (2) 
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where    is a common factor such as an oil price shock. The null hypothesis of a unit 

root being present (    ) is tested against the possibly heterogeneous alternative 

     for               for           . Pesaran (2007) assumes that 
  

 
, the 

fraction of the individual processes that is stationary, is non-zero and tends to some 

fixed value   such that       as    . 

 To account for the CSD induced by common factor, Pesaran (2007) suggests 

augmenting the test equation (2) with cross-sectional averages of the first differences 

and the lagged levels. The cross-sectionally augmented Dickey–Fuller (CADF) 

regression is then given by: 

                                  , (3) 

where     
 

 
    
 
         

 

 
     
 
    and     is the regression error. The cross-

sectional averages       and      serve as proxies for the unobserved common factor   . In 

line with Im, Pesaran and Shin (2003), Pesaran (2007) proposes a cross-sectional 

augmented version of the IPS-test: 

     
 

 
      

 

   

 

where       is the CADF statistic for the ith cross-sectional unit given by the t-ratio in 

the CADF regression (3). 

 The robust t-statistic of Breitung and Das (2005) tests for the unit root null 

hypothesis against the homogenous alternative. The robust t-statistic is given by: 

     
     

  
      

      
        

 
   

, 

where                                
  

   . To adjust for short-run serial 

correlation of the errors, Breitung and Das (2005) used a pre-whitening procedure.    

 

3.3 Tests for cross-sectional dependence 

Accounting for CSD in panel data has now become a rule rather than the exception 

among practitioners. CSD may arise due to the presence of unobserved common factors 
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and/or as a result of interactions within socioeconomic networks. Hence, panel data 

methods (e.g., the standard fixed effects and random effects methods) that are not 

robust to the presence of CSD can have substantial size distortions (Banerjee et al. 2004). 

The problem of testing for the extent of CSD is therefore important in estimating panel 

data models. To this end, we employ three statistical procedures designed to test for 

CSD in panels, namely Pesaran’s (2004) test, Friedman’s (1937) statistic and the test 

statistic proposed by Frees (1995). 

 Pesaran (2004) designed a test statistic based on the average of the pair-wise 

Pearson’s correlation coefficients      of the residual obtained from the panel data model. 

The CD statistic in Pesaran (2004) is given by: 

    
  

      
       

 

     

   

   

  

under the null hypothesis of no CSD (i.e.,                                  ). The test 

has a mean exactly at zero for fixed values of T and N under a wide range of panel data 

models, including non-stationary models. 

 Friedman’s (1937) statistic is based on the average Spearman’s correlation and is 

given by: 

     
 

      
       

 

     

   

   

  

where      is the sample estimate of the rank correlation coefficient of the residuals. 

Friedman’s test was originally devised for determining the equality of treatment in a 

two-way analysis of variance and large values of      indicate the presence of CSD. 

 However, as pointed out by De Hoyos and Sarafidis (2006), both the CD and 

     tests share a common weakness in that they miss out cases of CSD where the sign 

of the correlations varies. This limitation is easily avoided by using the sum of the 

squared rank correlation coefficients, as done in Frees (1995): 

    
  

 

      
       

  
     

   
    . 

All three test statistics have the same null hypothesis of no CSD. 
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4. Data 

This paper uses data collected from the IEA’s World Energy Balance dataset. Our main 

variable is the contribution of RES to electricity output (GWh). The RES include hydro, 

geothermal, solar photovoltaics, solar thermal, tidal/ocean/wave energy, wind power, 

municipal waste, primary solid biofuels, biogases, biogasoline, biodiesels, other liquid 

biofuels, non-specified primary biofuels and waste, and charcoal. We chose RES to 

electricity production instead of RES to energy consumption for three main reasons.15 

Firstly, one of the primary motivations for adopting renewable energy sources is the 

need to reduce CO2 emissions. However, CO2 emissions originate from electricity 

production, not consumption. Thus, although production and consumption are 

obviously correlated, it is more accurate to measure the contribution of renewables to a 

country energy mix through RES to electricity production. Second, most of the 

empirical literature on the impact of RE policies used RES to electricity production as a 

dependent variable (see Table 1). Since our goal is to assess the robustness of the results 

to the statistical properties of the data, for consistency purposes we had to focus on the 

same variable. Third, from policy perspectives, the contribution to RES to total 

electricity generation is more appealing as it would allow energy policy makers to find 

out whether shocks (e.g., oil price shocks, changes in regulations including RE policies) 

have transitory or permanent effects on production.16  

Our data include 19 OECD countries over the period 1990–2012. The 19 countries 

comprise the EU-15 countries plus Australia, Canada, Japan and the US. The EU-15 

countries include Austria, Belgium, Denmark, Finland, France, Germany, Greece, 

Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden and the United 

Kingdom (UK). The start date was chosen to reflect the rapid deployment of RES after 

1990 as a result of the energy policies adopted by the EU, while the endpoint was 

                                                             
15 We thank an anonymous reviewer for encouraging us to motivate the choice of our main variable. 
16 That said, since production and consumption are often highly correlated, one would also expect 
nonstationarity in energy consumption. Indeed, Smyth (2013) offers an extensive survey of the literature 
that examines the integration properties of energy consumption as well as energy production. 
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chosen based on the availability of data when we started this research. In 2012, the 19 

countries in our sample account for over 67% of global renewable power generation 

(700.2 TWh vs. 1035.8 TWh of renewable electricity production worldwide, excluding 

hydropower). 

Table 2 presents selected descriptive statistics of the percentage of renewable 

energy generation (with and without hydropower) by country. In the case that includes 

hydropower, Austria, Canada and Sweden stand as the three countries with the largest 

share of RES in total electricity generation, which is a reflection of the very high share of 

hydropower (above 90%) within RES in these countries. In Canada, hydropower 

accounted for over 97% of RES over the sample period. Despite its sharp increase in the 

penetration of green energy and the way it is often touted as a success story, the 

average share of RES in Germany has remained below 10% over the 1990–2012 period. 

This reflects Germany’s over-dependence17 on coal, which, ironically, has risen to its 

highest level in recent years since 1990 (Wagstyl 2014). In contrast, the comparatively 

high shares of renewable energy in Italy, Portugal and Spain can be explained by what 

the IEA (2011) has called “PV bubbles.”For example, by 2008, total PV installed capacity 

in Spain reached 4 GW, nearly ten times more than the official target at that time (IEA, 

2011, p. 128). Eight out of 19 countries in our sample exhibit renewable energy shares 

≤10%, while only five EU countries have already fulfilled the EU’s mandate of 20% 

renewable energy as a target by 2020. The picture is less rosy when the hydropower is 

excluded from the share of renewable energy. As can be seen, only Denmark18 and 

Finland exhibit an average renewable energy share exceeding 10% over the 1990–2012 

period. However, if we focus on the post 2000-period, when most EU countries enacted 

both policies to promote renewable energy, the average share of renewable energy in 

total electricity output looks more promising. For example, in Germany, the 

Netherlands, Portugal and Spain, the penetration of RES to the output system expanded 

at an average rate of 10% or more over the 2001–2012 period.  
                                                             
17 Over the 1990–2012 period, coal accounted for a little over 50% of electricity generation in Germany. 
18 In contrast to other EU countries, Denmark has nearly zero hydroelectric resources. Renewable energy 
in Denmark is due solely to wind energy and biomass.  
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The standard deviations are generally lower, suggesting small variance in the 

share of renewable energy across our sample of countries. This may also suggest no 

sign of drift in the data. The heterogeneity between countries both in the level and 

dispersion of the  share of renewable energy becomes clearer with the help of box plots. 

In Figure 2, we plot the distribution of the renewable energy share across countries in 

descending order based on the median. The median share, as represented by a line 

subdividing the box, is highly asymmetric between countries when the RES include 

hydropower. It is also apparent from Figure 2 that the contribution from hydro is more 

variable across countries than that from non-hydro RES. While wind and solar 

resources are often criticized for their variability, the data clearly point to the variability 

of other sources of electricity, such as large hydropower schemes.  

 

5. Empirical results 

5.1 Individual unit root tests 

Table 3 presents the ADF and the PP unit root tests for each country. These tests are 

implemented with both the constant and trend as deterministic components in the test 

regression. Hence, the alternative hypotheses of these tests are that the variables are 

trend stationary against the null hypotheses that the series are difference stationary. For 

the ADF test, the number of lags is chosen using the Schwarz Bayesian criterion based 

on a maximum lag of 4; for the PP test, the lag length is selected using the Newey–West 

automatic bandwidth. 

The results indicate that in 17 out of 19 cases both the ADF and PP tests do not 

reject the null hypothesis that the log of the share of renewable energy in electricity 

output is I(1) at the 5% significance level. Moreover, the results remain robust if we 

exclude hydropower from the renewable sources. In all but one case, the ADF and PP 

tests are in agreement about the non-stationarity of the data. 

 Since a time trend is an extraneous regressor, its inclusion diminishes the power 

of the test. In other words, unit root tests with a constant exhibit more power than unit 

root tests with a constant and a trend in the test regression. However, if the true data 
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generating process (DGP) is trend stationary, failing to include a time trend would 

otherwise led to a reduction in the power of the test (Lopez et al. 2005). To find out 

whether our results are affected by the inclusion of a time trend or not, we re-estimated 

the ADF and PP tests with a constant only in the test regression. The results show no 

noticeable difference from those reported in Table 3. The ADF test for the log of the 

renewable energy share (with hydro) report an additional 5% rejection of the unit root 

null, while the results of the PP test are not different from those reported in Table 3. In a 

few cases, both the ADF and PP tests statistics appear positive, providing the false 

impression that the series are explosive, which is not unusual for short series, as the 

statistical power is generally lower for I(1) DGP. These unreported results are available 

from the authors on request. 

 Another well-known limitation of the ADF and PP tests is that they have low 

power against I(0) alternatives that are close to being I(1) (Zivot 2006). To check whether 

our results are sensitive to very persistent alternatives, we applied the DF-GLS unit root 

test of Elliot et al. (1996), which generally has higher power than the standard ADF unit 

root test. Following Ng and Perron (2001), we used the modified Akaike criterion to 

select the lag length from the maximum number of lags as 4. The DF-GLS method 

applies the ADF test to locally detrended data, so it is unnecessary to include a time 

trend in the test regression. The results of the DF-GLS test with a constant are presented 

in Table 4.19 Using the more powerful unit root test produces only two rejections of the 

unit root null for the log of the share of renewable energy (with hydro), and no rejection 

for the same without hydro. The two countries exhibiting stationarity for the RE process 

including hydropower are Austria and Finland. We suggest three reasons to account for 

their differences with respect to the other 17 countries.20 First, as can be seen from Table 

2, both countries have a comparatively high RE share in the final energy production, 

which implies that further increase in the RE share become increasingly more difficult 

(and therefore less likely to happen). Moreover, after Sweden, both Austria and Finland 
                                                             
19 There are no substantive differences in the rejection frequencies of the unit root null if a time trend is 
included in the test regression.  
20 We thank an anonymous reviewer for raising this point. 
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had by far in 2013 the highest share of energy from renewable sources in their gross 

final consumption of energy (The Guardian, 2012). If we consider the rate of change in 

RE generation capacity from 1990 from 2012, both Austria and Finland experienced a 

very meager growth (10% and 35%, respectively), compared to the growth observed in, 

say, Greece (204%), with a much lower income per person than Austria and Finland. 

Second, in terms of technology mix, both Austria and Finland rely heavily on biomass 

and (especially Austria) hydropower for RE electricity. However, the growth of 

hydropower is inherently constrained by the availability of resources and the nature of 

the territory. In Austria, most of the sources suitable for hydropower generation had 

been fully exploited before the beginning of our observation window. Thus, further 

capacity increases where more difficult to be realized. Finally, while both the level and 

the effectiveness of RE policies in Austria are on a par with other EU countries, it has 

been observed in Finland that public support only works in relation to forest biomass 

projects, whereas RE project developers face long permitting processes for hydropower 

and even longer, complicated procedures for offshore wind, solar and non-forest 

biomass investments (Ragwitz et al., 2007, pp. 214-15). Although subject to caveats, we 

believe that these explanations fit with the stationarity observed for Austria and 

Finland.  

It is interesting to note that for the series including hydro, the number of 

rejections at the 5% level is the same for the ADF and the DF-GLS test – use of the more 

powerful DF-GLS test did not make any difference in this case. To summarize, the 

results of the different time series unit root tests indicate that the log of the share of 

renewable energy (with and without hydropower) in the countries of our sample are 

clearly non-stationary.  

 

5.2 Panel unit root tests 

Let us now analyze the results obtained from the panel unit root tests which provide 

additional gains in of statistical power than their univariate counterparts (i.e., ADF, PP). 

First, we discuss the results of the extent of CSD in the panel data, which is relevant in 
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the present context due to the implementation of common renewable energy policies 

across the EU countries (i.e., the EU directive). Table 5 reports the results of several test 

statistics under the null hypothesis that there is no CSD in the panel. As can be seen, the 

null of no CSD is strongly rejected at the 1% level of significance by all three test 

statistics. However, as discussed in Section 2, both the CD and       tests share a 

common weakness in that they miss out cases of CSD where the sign of the correlations 

varies (De Hoyos and Sarafidis 2006). The test statistic      
   by Frees (1995) is, 

however, not subject to this drawback and it also strongly rejects the null hypothesis of 

cross-sectional independence in the data. Moreover, the average absolute values of the 

off-diagonal elements of the cross-sectional correlation matrix of the residuals are 0.37 

and 0.87, respectively, for the series with and without hydropower. The higher absolute 

value for the series without hydropower is a reflection of strong policy coordination in 

the deployment of RES in the EU. Overall, the results indicate that there is enough 

evidence to suggest the presence of CSD in the data. 

 The panel unit root tests based on the CIPS test statistic of Pesaran (2007) and the 

robust t-statistic of Breitung and Das (2005) are shown in Table 6. The CIPS statistic is 

based on the cross-section average of the individual ADF t-statistics of each unit in the 

panel, while the robust t-statistic is obtained by transforming the data (i.e., pre-

whitening to adjust for short-run serial correlations of the error) before computing the 

regression so that the standard t-statistics can be used. The null hypotheses of both tests 

assume that all series are non-stationary. Besides, both tests are robust to cross-sectional 

correlation of the error terms: the Breitung and Das (2005) test is designed for weak 

CSD while the Pesaran (2007) tests allows for strong CSD. Both tests consider a constant 

and a time trend in the test regression and allow for a maximum of 2 lags. At the 5% 

significance level, the critical value of the CIPS statistic for N=20 and T in the range of 

20–30 is around -2.72. Therefore, according to the CIPS statistic, the null hypothesis of a 

unit root cannot be rejected at the 5% level. Similar results are obtained when using the 

robust t-statistic of Breitung and Das (2005), as the null hypothesis of a unit root cannot 

be rejected at the 5% significance level. However, for the series without hydro power, 
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the robust t-statistic exhibits some size distortion due to the small sample size.21 As the 

CIPS test has better finite sample coverage than the competing panel unit root tests 

(Gengenbach et al. 2010), we base our conclusion on Pesaran’s test and consider that the 

panel data contain a unit root. 

  

5.3 Extensions: timing of non-stationarity and technology-specific analysis 

The preceding analysis provides strong evidence of non-stationarity at the aggregate 

level but it does not tell us when such behavior became particularly evident in the data. 

Nor does it tell us whether non-stationarity is more pronounced for certain specific 

renewable energy technologies. Detecting the timing of the non-stationarity in the 

renewable energy generation process is a matter of great policy interest; exogenous 

events such as the ratification of the Kyoto protocol in 1997 may have indeed triggered 

massive renewable energy adoptions in developed countries regardless of the specific 

policies implemented at the national level. Likewise, the 2007–2008 global financial 

crisis may have significantly slowed down adoption rates, at least for certain 

technologies (notably solar photovoltaic energy).  

To detect time discontinuities in the series, we adopt a forward recursive test 

procedure, where the panel CIPS test is implemented repeatedly.22 Although such 

forward recursive tests were originally devised to detect the existence of bubbles in 

financial markets (see, e.g., Phillips et al. 2011), the same insight can be effectively used 

here to estimate the origin of the non-stationarity in the renewable energy share series. 

Moreover, the recursive approach is robust to possible nonlinearities (i.e., structural 

breaks) in the time series. Starting from a small sample size, we add one observation in 

each subsequence regression until it covers the whole sample period. The initial sample 

is restricted to the first ten years of data (i.e., 1990–1999), as critical values for the CIPS 

are only available for T=10 and above. Formally, suppose    is the fraction of total 

observations included in the first regression, such that the sample size in the first 

                                                             
21 The critical values of the robust t-statistic are based on various N and T=500, and hence may suffer 
from size distortions in small and moderate sample sizes. 
22 Due to a small sample size, we restrict the analysis to panel data only.   
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regression is         , where     refers to the integer part of the argument. The 

subsequence sample size for the regression is          , where             .    

 The results are shown in Figure 3. The CIPS test statistics for the log of the 

renewable energy share in electricity output (with and without hydropower) are almost 

always under the 5% critical values, suggesting that the series have exhibited non-

stationary behavior since the start of 2000. These results have been obtained using a 

constant and trend as deterministic components in the test regressions with a lag length 

of 1. Changing the lag length to 2 does not affect the general conclusion of non-

stationarity, though the evidence of a unit root process becomes apparent after 2002. 

Overall, the results based on forward recursive tests confirm our earlier findings of non-

stationarity and also suggest that our results are not sensitive to the choice of time 

period. Rather, they point to the fact that the share of renewable electricity generation in 

electricity output has not displayed mean-reverting behavior since the start of this 

millennium and that such behavior was not affected by the 2008 global financial crisis. 

The final step of our empirical analysis to investigate the presence of a unit root 

in specific renewable energy technologies such as wind, biofuels and solar power. 

Several studies23 have assessed the effectiveness of renewable energy policies in 

promoting renewable electricity capacity at the disaggregated level alongside the focus 

on the aggregated level. As disaggregated data generally exhibit lower persistence than 

the aggregated series, it is also helpful to determine the time series properties of the 

disaggregated renewable energy technologies using the framework discussed above. 

The IEA dataset provides country-specific observations for the following two 

categories: ‘ solar/wind/other’ and ‘biofuels and waste.’ The latter category also 

includes biomass. To this end, we apply Pesaran’s (2007) panel unit root test to the 

logged transformation of these two disaggregated RE series to test for the presence of a 

unit root. However, due to missing observations, the CIPS test is no longer suitable to 

use. Therefore, we apply the standardized        statistics of Pesaran (2007) parallel to 

                                                             
23 These include Shrimali and Kniefel (2011), Shrimali et al. (2012), Jenner et al. (2013) and Zhao et al. 
(2013). 
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the        test of Im et al. (2003) which is suitable for an unbalanced panel. The results, 

not reported here for brevity, suggest that similar to the aggregate data, the 

disaggregated renewable energy technologies also display unit root behavior. In the 

case of the log of the solar/wind/other share in total electricity generation, the results 

of the unit root tests are sensitive to the choice of lag length. The series exhibits 

stationary with a lag length of 1, but appears non-stationary when the lag length is set 

at 2. In contrast, the unit root test for the log of the biofuels and waste share in 

electricity generation provides a more conclusive answer suggesting that the series is 

non-stationary. Furthermore, these results are not influenced by the choice of 

deterministic components in the test regression. Overall, the unit root results of the 

disaggregated renewable energy technologies complement the findings of the aggregate 

analysis, as reported in Table 6.                  

 

6. Discussion 

The results of our study indicate that the log of the share of renewable energy 

(with and without hydropower) in the countries examined is clearly non-stationary. 

There are various explanations for the laws of motions for RE diffusion to behave as a 

random walk process.24 First, notice that since we are measuring RE share to total 

electricity generation, not absolute RE capacity, our results do not just imply that RE 

capacity increases, but that it increases faster than non-renewable capacity. One reason 

for this higher growth rate owes to the fact that RE plants are scalable and allow for 

more progressive capacity increases compared to fossil fuel or nuclear plants. In a 

situation of high demand uncertainty, when power generation companies need to plan 

for capacity expansion, they may be reluctant to undertake irreversible investments in 

large scale plants with long pay-back times and prefer, instead, smaller and more 

flexible renewable energy systems are preferred.    

Second, given the relatively short time span of the RE diffusion, it is not 

surprising that RE generation (as a share of total electricity production) exhibits 

                                                             
24 We thank an anonymous reviewer for bringing this issue to our attention. 
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trending behavior or non-stationarity in the mean.25 This appears consistent with EU’s 

mandate to foster RE development over time. Third, and more fundamentally, the 

production of RE is increasing over time as a result of income growth, population 

growth and urbanization. In a companion paper (Aflaki et al., 2014), we show 

empirically that economic growth as a major catalyst of innovation and diffusion in the 

RE industry. This is to be expected since sustained income growth, for example, induces 

the population to demand environmental quality as a luxury good due to its effect on 

quality of life and wellbeing. As a result, cities, towns and urban neighborhoods all over 

the world, and particularly in the OECD countries, are pledging to reduce their carbon 

footprint by increasing their commitments and initiatives to renewable energy in 

various ways (IEA, 2009). Moreover, especially for the EU countries, the key to true 

energy security lies in RE produced at home. We think that these fundamental factor 

underlie the non-stationary behavior observed in the RE time series. 

The evidence of unit roots in the share of renewable energy of electricity 

generation in industrialized countries has important implications for applied work as 

well as for renewable energy policies. From the perspective of modeling, it is well-

known that when all of the series in a regression are I(0) or stationary, one can simply 

model the data at each level using the ordinary least squares (OLS) technique. In 

contrast, when all of the series have an integration of order 1 (i.e., I(1) or non-stationary) 

but are not cointegrated, one can still estimate the regression model using OLS after 

subtracting a trend or possibly by taking one or more difference for each series. For any 

series under investigation that is clearly not showing a mean-reverting process, the 

standard reaction to this problem is to pre-test for a unit root in the variable and, 

depending on whether a unit root is rejected or not, select the appropriate technique to 

estimate the regression model. The econometric literature does not yet provide a clear 

                                                             
25 One could argue that, since the observation window (23 years) is somewhat shorter than the lifetime of 
most RE plants, the observed increase in RE share could be due to the fact that most of the earliest RE 
plants have not yet reached the end of their operational lives. However, such argument could justify why 
RE capacity increased, but not why it increased faster than non RE capacity. Furthermore, note that the 
life time of a non RE plant is typically even longer than that of an RE plant (some of the earliest nuclear 
plants are still in operation today). Thus, the two effects would cancel out. 
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guide as to when the order or integration is mixed in a regression model. This point is 

likely to be more relevant for the literature on the role of policy in the development of 

renewable energy, where continuous policy variables such as FIT and TGC levels are 

clearly stationary (due to their slower digression rate), while the targeted variables such 

as the share of RES in the energy mix is clearly non-stationary, according to the 

evidence presented in this paper. In such a situation, one can consider the 

autoregressive distributive lag model and bounds testing approach of Pesaran and Shin 

(1999) and Pesaran et al. (2001), respectively, which permit the mixture of I(0) and I(1) 

data. Moreover, the bounds approach does not require the data to be pre-tested for their 

order of integration as long as they are not an I(2) or explosive process. However, in 

practice, the implementation of the bounds technique involves some difficulties, as 

exact critical values for the F-test related to the test are not available for an arbitrary mix 

of I(0) and I(1) variables, and they must be computed on a case-by-case basis. Moreover, 

one has to ensure that the model is dynamically stable (i.e., characteristic roots must be 

strictly inside the unit circle). 

Hence, the conclusions of the existing studies that overlook the unit root issue on  

the effectiveness of renewable energy policies should be interpreted with care. As the 

share of renewable energy in advanced countries is better characterized as non-

stationary process that has no tendency to return to a long-run deterministic path (i.e., 

not a mean-reverting process), they also display time-dependent variance. This makes 

forecasting the future path of the contribution of RES in the energy mix a challenging 

exercise, as current shocks have permanent effects on their levels. Hence, any future 

mandates levels of renewable energy such as those of EU’s Renewables Directive must 

bear in mind the non-stationary nature of the series. Why should the policy makers care 

about unit roots in the share of renewable energy? In the words of Cribari-Neto (1996, p. 

38), “To a policymaker the answer could be: Because the policy implications are 

different.”   

 

6. Concluding remarks 
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This paper examined the time series properties of renewable electricity generation data 

in 19 OECD countries, and it discussed the implications of our findings for econometric 

model specification and for energy policy assessment. 

Increasing environmental concerns, energy diversification requirements, tighter 

budget constraints and the availability of several alternatives to support the diffusion of 

RES induce energy policy makers to rely on empirical studies to assess the effectiveness 

of existing policies and to identify the most efficient incentive mechanisms. 

Unfortunately, although vast, the existing empirical literature on the subject offers 

conflicting recommendations, which is symptomatic of econometric model 

specifications issues. The typical methodological paradigm in this literature involves the 

application of panel data models to national level or state level policies, using either the 

share of electricity generation from RES or the cumulative renewable energy capacity as 

the dependent variable. A common feature of most of these studies is that they overlook 

the possibility of a unit root in the time series data (i.e., they assume that the stochastic 

DGP is stationary with mean-reverting behavior). Such an assumption leads to the use 

of econometric models that may overstate the impact of RES policies on the share of 

renewable energy. It also understates the long-term impact of exogenous shocks on the 

process. For what it is worth, the issue of non-stationarity and its timing has not yet 

been rigorously addressed in the literature,  

This paper aimed to shed light on this question. To that end, we applied unit root 

tests to the time series of the share of RES over total electricity output in 19 OECD 

countries from 1990 to 2012. The analysis was conducted at the country level as well as 

for the panel as a whole using both individual and panel unit root tests. The tests 

provided strong evidence that the contribution of RES to total electricity generation 

exhibited non-stationary behavior in 17 of the 19 countries examined, with Finland and 

the UK representing the sole exceptions. The results also suggested that this non-

stationary behavior was consistent across different technologies, that it became evident 

at the beginning of the new millennium and that it was persistent event after the 2008 

global financial crisis. 
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Such findings have both methodological and managerial implications. First, they 

imply that the conclusions of the empirical studies on the impact of renewable energy 

policies  that overlook the unit root issue should be interpreted with some care. Unless 

appropriate adjustments such as detrending the series can be made, the results of these 

analyses are prone to overinflate the significance of the posited relationships between 

policies and RES diffusion. Implications for policy makers are also worth considering. 

First, if the renewable energy DGPs are not mean-reverting (i.e., if they have no 

tendency to return to a long-run deterministic path), policies designed to induce 

permanent changes in RE such as FIT or TGC will be more effective than policies such 

as tax incentives designed to induce temporary changes.26 This explains also why in 

some countries the RE industry has proven resilient to the removal (or partial 

reduction) of policy support. Policies that facilitated a structural transformation of the 

RE industry (e.g., by promoting supply chain integration, consolidation and efficiency 

improvements in the manufacturing process) were much more likely to produce a 

permanent effect on RE diffusion. Also, our results imply that postponing actions 

aiming to support renewables so as to reach CO2 abatement targets implies that in the 

future, it will be increasingly more difficult to make up for lost time.  

Second, non-stationarity in RE production implies that the same non-stationarity 

will be transmitted to other macroeconomic variables such as employment and output, 

assuming that RE is well integrated into the real economy (Hendry and Juselius, 2000). 

This, in turn, makes it difficult for energy policymakers to properly gauge the effects of 

RE development in creating green jobs and the resulting contribution to economic 

growth. There are also potential implications of our results for investors in the RE 

industry. As in the oil and gas market, the long-run trend also dictates demand and 

supply response in the RE market. Evidence of long-run trend therefore imply 

opportunity for making profits from investing in the RE industry. Germany, which was 

one of the first European countries to implement a systematic FIT program, is a case in 

point. The program produced permanent structural changes in the energy industry and 

                                                             
26 See also Smyth (2013) and Smyth and Narayan (2014) for related arguments. 
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made the RE industry relatively unaffected by recent changes in feed-in-tariff levels. By 

the same token, the relatively slower growth rate of renewables observed in Finland, 

can also be explained by the reliance of this country on short-term support measures, 

which were primarily based on tax incentives.   

Our study is not exempt from some limitations, which indicate avenues for 

future research. First, although our results are robust to different assumptions and 

different test specifications, the analysis was conducted on a relatively small sample 

that only included OECD countries. Compared to some emerging economies, the 

countries in our sample have a higher awareness of environmental problems and a 

higher willingness to pay for tackling them, which may amplify the non-stationary 

patterns we observed.  Second, we tested for the presence of unit roots primarily at the 

aggregate level (i.e., we examined the combined contribution of all renewable energy 

technologies to total electricity generation). Although we did conduct disaggregated 

tests, the level of disaggregation in our data did not allow for a technology-specific 

analysis.  We could only conduct tests on two subgroups:  ‘solar/wind/other’ and 

‘biofuels and waste’.  Clearly, such semi-aggregated analysis cannot completely rule out 

the possibility that the non- stationary trend is not homogeneous across different 

renewable energy technologies.  
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TABLE 1a. Empirical papers examining the impact of energy policies of the diffusion of renewable energies 
 

Authors Scope Time 
Dependent 
variable(s) 

Policy variables(s) Technology 
Model 
Specification 

Overall 
impact 

Menz and 
Vachon (2006) 

39 US 
states 

1998–
2003 

(i) Capacity (2003); 
(ii) Growth (2000–
20003 and 1999–
2003); (iii) # of large 
projects 

Binary values of RPS, fuel 
generation disclosure requirement, 
MGPO, public benefits funds, retail 
choice 

Wind 
Cross-section, 
OLS 

+ 

Carley (2009) 
48 US 
states 

1998–
2006 

(i) Log of the RES 
share of electricity 
generation; (ii) total 
amount of annual 
RES generation 

RPS 
All RES (excl. 
hydropower) 

FE, FEVD – 

Yin and 

Powers (2010) 

50 US 

states 

1993–

2006 

% of RES electricity 

generation 

RPS, MGPO, PBF, net meeting, 
interconnection standards. Takes 

into account heterogeneity in RPS 
across states. 

All RES (excl. 

hydropower) 
FE + 

Marques, 
Fuinhas and 
Manso (2010) 

 NA 
1990–
2006 

% of RES to total 
primary energy 
supply 

None 
All RES (excl. 
hydropower) 

OLS, FE, RE, 
FEVD 

NA 

Marques, 
Fuinhas and 
Manso (2011) 

25 
European 
countries 

1990–
2006 

% of RES to total 
primary energy 
supply 

None 
All RES (excl. 
hydropower) 

Quantile NA 

Marques and 
Fuinhas (2012) 

23 
European 
countries 

1990–
2007 

% of RES to total 
primary energy 
supply 

Total aggregate public policies 
supporting RES, education and 
outreach, incentives and subsidies, 
regulatory dummy, financial 
incentive, public investment, 
research and development, tradable 
permits, voluntary agreements 

All RES 
Panel corrected 
standard errors 
with CSD 

Mixed 

RES = renewable energy source(s); RPS = renewable portfolio standard; MGPO = mandatory green power option; OLS = ordinary least squares; 
FE = fixed effects; FEVD = fixed effects vector decomposition; RE = random effects; CSD = cross-sectional dependence. 
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TABLE 1b. Empirical papers examining the impact of energy policies of the diffusion of renewable energies (cont.) 
 

Authors Scope Time 
Dependent 
variable(s) 

Policy variables(s) Technology 
Model 
Specification  

Overall 
impact 

Jenner, Groba 
and Indvik 
(2013) 

26 EU 
countries 

1992–
2008 

Added capacity 

FIT, RPS, an indicator of ROI to 
capture the differences in design 
policy, incremental % requirement 
from Yin-Powers (2010) 

Onshore 
wind, solar 
PV 

FE, RE 
PV (+)  

Wind (–) 

Dong (2012) 
53 

countries 

2005–

2009 

(i) Cumulative wind 
capacity installed; 

(ii) annual wind 
capacity 

FIT and RPS using binary 

dummies, interaction of FIT and 
RPS 

Wind FE, RE 
FIT (+)  

RPS (–) 

Shrimali and 
Kneifel (2011) 

50 US 
states 

1991–
2007 

% of RES electricity 
generation 

RPS with capacity, sales and sales 
goals requirements, MGPO, clean 
energy fund 

All, biomass, 
geothermal, 
solar, wind 

FE 
Weakly 
positive 

Shrimali, 
Jenner, Groba, 
Chan and 
Indvik (2012) 

50 US 
states 

1990–
2010 

Capacity ratio 
Incremental share indicator, public 
benefit funds, net metering, MGPO 

All, biomass, 
geothermal, 
solar, wind 

FE 
Weak or 

insignificant 

Zhang (2013) 
35 EU 
countries 

1991–
2010 

(i) Annual wind 
capacity additions; 
(ii) total amount of 
wind electricity 
generation 

FIT rate, TGC price, FIT contract 
length, grid access 

Wind OLS, FE, GMM Weak 

Zhao, Tang 
and Wang 
(2013) 

122 
countries 

1980–
2010 

% of RES electricity 
generation 

Three measures of aggregate 
renewable energy policy were 
constructed using investment 
incentive, tax incentive, FIT, 
voluntary programs, quotas and 
tradable certificates. Binary. 

All, biomass, 
geothermal, 
solar, wind 

OLS and 
Poisson pseudo-
maximum 
likelihood 

+ 

Flora, 
Marques and 
Fuinhas (2014) 

18 
European 
countries 

1998–
2011 

Ratio of unused 
output to the 
maximum possible 
output over a year 

Total accumulated # of renewable 
energy policies and measures; 
yearly growth rate of wind 
installed capacity 

Wind 
OLS, FE, RE, 
Panel AR(1) 

– 

RES = renewable energy source(s); RPS = renewable portfolio standard; ROI = return on investments; MGPO= mandatory green power option; 
TGC = tradable green certificates; PV = photovoltaic; FIT = feed-in tariff; OLS = ordinary least squares; FE = fixed effects; RE = random effects; 

GMM = generalized method of moments; AR(1) = auto regressive model of order 1. 
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TABLE 2. Contribution of renewable energy to the electricity generation mix by country (1990–2012): 
descriptive statistics 
 

 Renewable share 
(with hydro) 

Renewable share 
(without hydro) 

Countries Mean Std. Dev. Mean Std. Dev. 

Australia 0.09 0.01 0.01 0.01 
Austria 0.68 0.03 0.05 0.03 
Belgium 0.03 0.03 0.02 0.03 
Canada 0.61 0.01 0.02 0.01 
Denmark 0.17 0.13 0.17 0.13 
Finland 0.31 0.04 0.12 0.02 
France 0.13 0.02 0.01 0.01 
Germany 0.09 0.06 0.05 0.06 
Greece 0.10 0.03 0.02 0.02 
Ireland 0.08 0.05 0.04 0.05 
Italy 0.20 0.04 0.04 0.04 
Japan 0.11 0.01 0.02 0.01 
Luxembourg 0.15 0.11 0.05 0.03 
Netherlands 0.05 0.04 0.05 0.04 
Portugal 0.34 0.09 0.09 0.08 
Spain 0.20 0.05 0.06 0.07 
Sweden 0.50 0.05 0.05 0.04 
United Kingdom 0.04 0.03 0.03 0.03 
United States 0.10 0.01 0.03 0.01 

Figures are rounded to the the nearest whole number (the maximum 
number is 1). The sample period is 1990–2012. Renewable sources include 
hydro, geothermal, solar photovoltaics, solar thermal, tidal/ocean/wave 
energy, wind power, municipal waste, primary solid biofuels, biogases, 
biogasoline, biodiesels, other liquid biofuels, non-specified primary 
biofuels and waste, and charcoal. Source: World Energy Balance, IEA 
(2013). 
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TABLE 3. Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root tests 
 

 Log of the renewable 
energy share 
(with hydro) 

Log of the renewable energy 
share 

 (without hydro) 
Countries/tests ADF PP ADF PP 

Australia -1.75 -1.85 -2.31 -2.31 
Austria -2.71 -2.73 -1.52 -1.64 
Belgium -1.00 -0.90 -1.85 -1.98 
Canada -2.01 -1.82 -1.52 -1.74 
Denmark -2.46 -2.48 -2.42 -2.44 
Finland -2.98 -2.89 -3.73** -3.72** 
France -2.35 -2.43 0.37 0.36 
Germany -2.10 -2.12 -0.58 -1.33 
Greece -3.33 -3.34 -0.44 -2.02 
Ireland -1.44 -1.24 -1.45 -2.20 
Italy -0.85 -1.03 1.02 0.68 
Japan -3.09 -3.04 -1.19 -1.15 
Luxembourg -2.42 -1.91 -2.82 -2.03 
Netherlands -2.84 -2.79 -2.74 -2.71 
Portugal -3.77** -3.75** -0.63 -0.80 
Spain -3.41 -3.40 -1.30 -1.61 
Sweden -3.73** -3.74** -2.84 -2.78 
United Kingdom -1.46 -1.14 -5.81** -2.52 
United States -1.34 -1.30 -1.61 -1.60 

The dependent variable is the logarithm of the share of renewable energy in 
electricity output (GWh). ADF and PP refer to the augmented Dickey–Fuller and 
Phillips–Perron      unit root tests, respectively. The regressions include both the 
constant and trend as deterministic components. For the ADF test, the number of 
lags is chosen using the Schwarz Bayesian criterion based on a maximum lag of 4. 
For the PP test, the lag length is chosen using the Newey–West automatic 
bandwidth. Both tests have the same asymptotic distribution with the 5% critical 
value equal to -3.63. ** indicates statistical significance at the 5% level. The sample 
period is 1990–2012. 
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TABLE 4. Dickey-Fuller Generalized Least Squares (DF-GLS) unit root test 

 Log of the renewable energy share 
Countries/tests With hydro Without hydro 

Australia -1.81 -0.48 
Austria -2.78*** 0.23 
Belgium -0.41 -0.92 
Canada -1.00 -0.11 
Denmark -0.03 -0.03 
Finland -3.12*** -1.10 
France -1.43 -0.47 
Germany 0.16 -0.27 
Greece -1.91 -1.07 
Ireland 0.22 -0.08 
Italy -0.71 0.40 
Japan -0.95 0.12 
Luxembourg -1.43 -1.49 
Netherlands -0.36 -0.40 
Portugal -1.46 -0.19 
Spain -0.77 -0.90 
Sweden -1.80 -0.89 
United Kingdom 1.09 -0.01 
United States -1.59 -0.55 

The dependent variable is the logarithm of the share of renewable energy in electricity output (GWh). DF-

GLS refers to the Dickey–Fuller Generalized Least Squares unit root test. *** indicates statistical 
significance at the 1% level. The sample period is 1990–2012. 
 
TABLE 5. Tests of cross-sectional dependence 

 Log of the renewable energy 
share 

(with hydro) 

Log of the renewable energy 
share 

(without hydro) 

Pesaran’s CD statistic 15.11*** 52.83*** 
Friedman’s      statistic 100.33*** 329.41*** 
Frees’s     

  statistic 2.812*** 13.89*** 
Avg. absolute value 0.37 0.87 

The null hypothesis of the three tests statistics is that there is no cross-sectional dependence. The 
average absolute value computes the value of the off-diagonal elements of the cross-sectional 
correlation matrix of the residuals. *** indicates statistical significance at the 1% level. 
 

TABLE 6. Panel unit root tests 

 Log of the renewable energy 
share 

(with hydro) 

Log of the renewable energy 
share 

(without hydro) 

Pesaran’s CIPS test -2.42 -1.20 
Breitung robust t-test -0.26 0.15 

The null hypothesis of the three tests statistics is that there is no cross-sectional dependence. The 
average absolute value computes the value of the off-diagonal elements of the cross-sectional 
correlation matrix of the residuals.  
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FIGURE 1a. Contribution of non-hydro renewable energy in electricity output, 1990–2012 
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FIGURE 1b. Contribution of non-hydro renewable energy in electricity output, 1990–2012
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FIGURE 2. Box plot of contribution of renewable energy in electricity output (%) AT, Austria; CA, Canada; SE, Sweden; FI, Finland; IT, Italy; ES, 
Spain; DK, Denmark; FR, France; LU, Luxembourg; JP, Japan; US, United States; CR, Greece; AU, Australia; DE, Germany; IE, Ireland; NL, the 

Netherlands; UK, United Kingdom; BE, Belgium 
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FIGURE 3. CIPS test statistics for renewable energy in electricity output (%). Each dot represents the CIPS test statistic of Pesaran (2007) for the 

sample ending in a particular year. The horizontal line in the graph represents the 5% finite sample critical value (around -2.75 and above). A test 
statistic above the horizontal line suggests that the null hypothesis of a unit root in the panel cannot be rejected at the 5% level of significance. 
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