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Modified VCG Mechanisms in Combinatorial Auctions with Budget Constraints

Phuong Le1

Stanford University

Abstract

I present two modifications of the Vickrey-Clark-Groves mechanism to accommodate bidders’ budget con-
straints in the combinatorial auction setting and show that they are Pareto-Optimal and (partially) incentive
compatible in certain domains.

Keywords: Vickrey-Clark-Groves, Combinatorial Auctions, Budget Constraints, Pareto-Optimal,
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1. Introduction

Bidders’ budget constraints have been detected in many auctions (Bulow et al., 2009). The implications
of budget constraints in auctions have been examined in various settings. In the single-good setting, Che and
Gale (1996, 2000) show that all-pay auctions result in higher revenues that first-price sealed-bid auctions
and derive an optimal auction (see also Laffront and Robert, 1996). In the multi-unit setting where multiple
copies of the same good are sold, Dobzinski et al. (2008) show that when bidders are budget-constrained
there is no incentive-compatible Pareto-optimal auction. When budgets are public, they propose the adaptive
clinching auction, a modification of the clinching auction in Ausubel (2004), and show that it satisfies
Pareto-optimality, individual rationality and incentive compatibility (see also Borgs et al., 2005). In the
single divisible good setting, Bhattacharya et al. (2010) show that adaptive clinching makes it sub-optimal
to underreport budget, and Hafalir et al. (2011) show that a generalization of the Vickrey auction called the
Vickrey with Budgets yields good revenue, incentive and efficiency properties. In the multiple heterogeneous
goods setting, budget constraints preclude mechanisms that are Pareto Optimal and incentive compatible
(Goel et al., 2012; Dobzinski et al., 2008; Fiat et al., 2011; Lavi and May, 2011). Certain auction designs
such as the simultaneous ascending auction (Milgrom, 2000) and the clock auction (Gul and Stacchetti,
2000) implicitly take into account budget constraints by operating through bidders’ demands, but are not
incentive compatible.

An important question is whether existing mechanisms perform well in the presence of budget con-
straints, either in their current format or with some modification. This paper studies the Vickrey-Clark-
Groves (VCG) mechanism in combinatorial auction setting. A naive application of VCG to the profile of
valuations that disregards budget constraints may lead to the outcome where a winning bidder is unable
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to pay the externality that he imposes on other bidders. I propose two modifications of the VCG mecha-
nism, truncation VCG and budget VCG, that circumvent this issue while attaining desirable incentive and
efficiency properties.

Truncation VCG first truncates each bidder’s valuations at his budget and then applies the VCG mech-
anism to the resulting truncated valuations. Because truncation VCG discards the variation of valuations
above budgets, it is neither Pareto-Optimal nor incentive compatible in general. However, when bidders
are single-minded, this loss of information is minimal and truncation VCG is individually rational, incen-
tive compatible and Pareto-Optimal. Truncation VCG can therefore be suitable for applications where the
single-minded assumption is appropriate, such as auctioning of pollution rights, communication links in a
tree or auto parts to buyers desiring a specific model (see Lehmann et al., 2002, and the references therein).
Other potential applications are spectrum auctions where the auctioneer has sufficient information about a
bidder’s existing technology and wireless infrastructures to be confident that the bidder is only interested in
only one specific spectrum bundle.

Budget VCG uses the idea that a bidder must be able to pay the externality that he imposes on other
bidders, so only allocations that result in affordable externalities can be chosen. This set of allocations
is called the affordable set. Intersecting all affordable sets results in a set of allocations that are jointly
affordable by all bidders. The surplus-maximizing allocation from this set is then chosen, and payments
are the corresponding externalities which are, by construction, affordable to the winners. Budget VCG
induces bidders to reveal their budgets truthfully and, when a non-null outcome is realized, attains Pareto-
Optimality. Because budget VCG may result in large inefficiencies when the null outcome is realized, it is
only appropriate in settings where budget constraints are not too restrictive.

2. Setting

A seller S wants to allocate a set G of indivisible goods to a set I of bidders. Let X be the set of feasible
allocations x, where x = (x1,x2, ...,xI) specifies that bidder i gets bundle xi and must satisfy xi∩ x j = /0 for
all i 6= j. A bidder i’s valuations over the bundles are summarized by a function ui : 2G→R+. The valuation
from the empty bundle is zero. I assume each bidder only cares about his own bundle and write ui(x) to
mean ui(xi). A bidder i is single-minded if there is a bundle x̄i such that for any bundle xi, ui(xi) = ui(x̄i) if
xi ⊇ x̄i and ui(xi) = 0 otherwise. In the single-minded domain, all bidders are single-minded. A bidder i also
has a budget bi ∈ R+ that limits how much he can afford to pay. A bidder’s valuation function and budget
are private information, unknown to other bidders and the seller. A profile (u,b) = (ui,bi)i∈I describes the
characteristics of all bidders. Let U×B denote the set of profiles.

Let P = {p : p = (pi)i∈I ∈RI} be the set of payments. An outcome is a pair (x, p) ∈ X×P that specifies
that bidder i gets bundle xi and pays pi. Given an outcome (x, p), the payoff for bidder i is given by
vi(x, p) = ui(x)− pi if pi ≤ bi and −∞ otherwise. The seller’s valuation is assumed to be identically zero.
The payoff for the seller is the total payment vS(x, p) = ∑i∈I pi.

A direct mechanism elicits valuations and budgets from the bidders and then maps each profile to an
outcome using a function φ : U×B→ X×P. A mechanism is individually rational if each bidder’s payoff
is non-negative. A mechanism is incentive compatible if it is each bidder’s dominant strategy to report his
valuations and budgets truthfully in the elicitation stage of the mechanism. The outcome (x, p) is Pareto-
Optimal at profile (u,b) if there is no outcome (y,q) such that vi(y,q)≥ vi(x, p) for all i ∈ I +S, with strict
inequality for some i ∈ I + S. Note that in the presence of budget constraints, a Pareto-Optimal outcome
need not involve the surplus-maximizing allocation. A mechanism is Pareto-Optimal if its outcome is
always Pareto-Optimal at the input profile.
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3. Results

3.1. Truncation VCG

Restrict attention to the single-minded domain. A bidder i’s truncated valuation is a function ub
i : 2N →

R+ such that for any bundle xi, ub
i (xi) = min{ui(xi),bi}. Let V b

C (x) = ∑i∈C ub
i (x) denote total truncated

valuation of bidders in group C at allocation x, and let V b
C = maxx∈X V b

C (x) be the maximized truncated val-
uation for the same group. Truncation VCG chooses an allocation that maximizes total truncated valuation,
xVCG(u) = argmaxx∈X V b

I (x), and charges the associated externalities, pVCG
i (u) =V b

I\i−V b
I\i(x

VCG(u)).
A profile is generic if truncation VCG yields an unique allocation.2

Theorem 1. Suppose all bidders are single-minded. Then truncation VCG is individually rational and
Pareto-Optimal. Moreover, at generic profiles, truthful reporting of valuations and budgets is optimal for
each bidder.

Proof. Individual rationality is obvious. For Pareto-Optimality, suppose that there is an outcome (y,q)
that Pareto dominates a truncation VCG outcome (x, p). Let W be the set of bidders winning at both
outcomes, Wx be the set of bidders winning at x but losing at y, and Wy be the set of bidders losing at x but
winning at y. Because truncation VCG maximizes truncated valuation, I have V b

W (x)+V b
Wx
(x)+V b

Wy
(x) ≥

V b
W (y)+V b

Wx
(y)+V b

Wy
(y). By definition and single-mindedness, ub

i (x) = ub
i (y) for all i ∈W , V b

Wx
(y) = 0 and

V b
Wy
(x) = 0, so the previous inequality implies V b

Wx
(x)≥V b

Wy
(y).

For bidders in W , Pareto dominance and single-mindedness imply they must not be paying more at (y,q)
than at (x, p), i.e., qi ≤ pi for all i ∈W , so seller’s revenue from W at (y,q) does not exceed that at (x, p).
At (x, p), bidders in Wx get a total payoff of at least V b

Wx
(x)−∑i∈Wx pi, and the seller gets ∑i∈Wx pi from

them. Since (y,q) Pareto dominates (x, p), the bidders in Wy must pay the bidders in Wx a total of at least
V b

Wx
(x)−∑i∈Wx pi and pay the seller at least ∑i∈Wx pi, for a total payment of V b

Wx
(x). Thus, it must be that

V b
Wy
(y) ≥ V b

Wx
(x). Pareto dominance requires that at least a bidder or the seller is strictly better off, so the

inequality must be strict, i.e., V b
Wy
(y)>V b

Wx
(x), contradicting the last inequality from the previous paragraph.

For optimality of truthful reporting, consider any generic profile (u,b) and any bidder i at allocation
xVCG(ub). Suppose i is losing, then his payoff must then be zero, and V b

I = V b
I−i. By genericity, for any

alternative allocation y, V b
I (y) < V b

I = V b
I−i, which implies V b

I−i−V b
I\i(y) > ub

i (y). This means that any
misreport that attains y is not profitable for i because he would have to pay V b

I−i−V b
I\i(y)> ub

i (y).
Now suppose i is winning his bundle of interest x̄i at the truncation VCG allocation xVCG. Any allocation

y with yi 6⊇ x̄i gives i valuation of zero, so i has no incentive to try to realize it. Consider any allocation y with
yi ⊇ x̄i. By genericity and the fact that xVCG maximizes truncated valuation, V b

I\i(x
VCG)+ub

i (x
VCG) =V b

I >

V b
I (y) = V b

I\i(y)+ub
i (y). Noting that ub

i (x
VCG) = ub

i (y) yields V b
I\i(x

VCG) > V b
I\i(y). Hence, VI\i−V b

I\i(y) >
VI\i−V b

I\i(x
VCG). Therefore, bidder i will pay more for yi than for x̄i if he misreports to realize allocation y.

Since both yi and x̄i yield the same valuation, such a misreport is unprofitable.

3.2. Budget VCG

Let VC(x) = ∑i∈C ui(x) denote the total valuation of bidders in C at allocation x. Let VC = maxx∈X VC(x)
denote the maximized total valuation of coalition C. Let Fi(u,b) = {x : VI\i−VI\i(x) ≤ bi} be the set of
allocations affordable by bidder i. Let F(u,b) = ∩i∈IFi(u,b) be the set of allocations affordable by all

2Genericity can be relaxed to require only that truncation VCG yields an unique payoff profile and theorem 1 will still hold.
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bidders. If F(u,b) is non-empty, budget VCG chooses the valuation-maximizing allocation from F(u,b),
x∗ = argmaxx∈F(u,b)VI(x). Payments are externalities: p∗i =VI\i−VI\i(x∗). If F(u,b) is empty, budget VCG
sets x∗i = and p∗i = 0 for all i.

Theorem 2. Budget VCG is individually rational, and, when it implements a non-null allocation, Pareto-
Optimal. Furthermore, it is a dominant strategy for the bidders to report their budgets truthfully.

Proof. Individual rationality is obvious. For Pareto-Optimality, suppose a non-null outcome (x∗, p∗) is
chosen. Note that at x∗, total payoff is VI(x∗), bidder i gets payoff VI(x∗)−VI\i, so the total payoff of bidders
in (I\i) together with the seller is VI\i. Suppose that another outcome (y,q) Pareto dominates (x∗, p∗). Then
it must be that VI(y) > VI(x∗). This implies that y /∈ F(u,b), so y /∈ Fi(u,b) for some i. By definition, this
means that VI\i−VI\i(y) > bi. Rearranging yields VI\i > VI\i(y)+bi. The right hand side of the inequality
is the maximum total payoff that bidders I− i and the seller can get at allocation y: it is the sum of the total
valuation of coalition I\i at y and the maximum payment from i. The left hand side is the total payoff that
the same bidders and seller get at outcome (x∗, p∗). Therefore at least one agent must be strictly worse off
at (y,q), contradicting Pareto dominance.

For optimality of truthful reporting of budget, when a non-null outcome is chosen, payoff for bidder i is
vi =VI(x∗)−VI\i = maxx∈F(u,b)VI(x)−VI\i. The second term is independent of bidder i’s report so any prof-
itable budget misreport must raise the first term. Suppose that such a profitable misreport b̂i exists and results
in the allocation x̂, then it must be that x̂ ∈ F(u, b̂i,b−i) but x̂ /∈ F(u,b) because VI(x̂)> maxx∈F(u,b)VI(x).

Recall that Fi(u,b) = {x : VI\i−VI\i(x)≤ bi} and F(u,b) =∩i∈IFi(u,b). So x̂∈ F(u, b̂i,b−i) implies that
x̂ ∈ Fj(u, b̂i,b−i) for all j. Because j’ affordable set does not depend on i’s budget, Fj(u, b̂i,b−i) = Fj(u,b)
for all j 6= i. Hence, x̂ ∈ Fj(u,b) for all j 6= i. Because x̂ /∈ F(u,b), it must be that x̂ /∈ Fi(u,b). Therefore,
i’s payment at x̂ exceeds his true budget bi, so x̂ cannot yield a higher payoff for i. A similar logic works for
the case where a null outcome is chosen.
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