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Li Hua1, Bai Zhidong2, and Wong-Wing Keung3

1Department of Science, Chang Chun University, cculihua@163.com
2School of Mathematics and Statistics, Northeast Normal University, baizd@nenu.edu.cn
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Abstract: This paper proposes the spectral corrected methodology to estimate the Global Minimum
Variance Portfolio (GMVP) for the high dimensional data. In this paper, we analysis the limiting
properties of the spectral corrected GMVP estimator as the dimension and the number of the sample set
increase to infinity proportionally. In addition, we compare the spectral corrected estimation with the
linear shrinkage and nonlinear shrinkage estimations and obtain that the performance of the spectral
corrected methodology is best in the simulation study.
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1 Introduction
Since Markowitz mean-variance (MV) portfolio
has been invented in 1952, it has become a cor-
nerstone of modern finance. This theory incorpo-
rates the investors’ preference and their expecta-
tion of returns and risks. By this theory, investors
could construct the optimal portfolio by minimiz-
ing the portfolio variance for a given level of the
expected return or maximizing the portfolio return
for a given level of the portfolio risk. In MV portfo-
lio theory the global minimum variance portfolio
(GMVP) is a remarkable and mostly useful portfo-
lio. This portfolio has the smallest variance over
all portfolios and do not depend on the expected
return. In fact, much empirical work reports un-
derperformance of market capitalisation-weighted
portfolios relatives to the GMV portfolio (Clarke
et al. [2006], Baker et al. [2011] and so on).

Suppose there are p assets and ri be the ran-
dom return of the ith one (i = 1, ..., p). Denote
w = (ω1, ..., ωp)

′ as an asset allocation. Then the
theoretical GMVP is the unique solution of the fol-
lowing quadratic program:

minimize w′Σpw subject to w′1 = 1. (1)

Here 1 is a vector of which the elements are 1s and
Σp stands for the covariance matrix of the random
return vector r = (r1, ..., rp)

′. Then the theoretical

GMVP

wo =
Σ−1p 1
1′Σ−1p 1 , (2)

the expected GMVP return Ro = µ′Σ−1p 1/1′Σ−1p 1
and the GMVP risk σ2o = 1/1′Σ−1p 1.

There are a great deal of papers to estimate
GMVP (see Kempf and Memmel [2003], Bodnar
and Schmid [2008], Bodnar and Schmid [2007],
Frahm and Memmel [2010], Clarke et al. [2011],
Bodnar and Gupta [2012], Wied et al. [2013],
Green et al. [2013] and so on). GMVP has nice
theoretical properties in many ways, but it is in-
evitable to estimate the population covariance
matrix of the random returns in practice. The
classical estimator is usually constructed by plug-
ging the sample covariance matrix into GMVP ex-
pression (2) instead of the unknown parameter
Σp. When the number of observations n is large
enough compared with the number of assets p, the
sample covariance matrix is not bad choice (see
Okhrin and Schmid [2006], Memmel and Kempf,
Bodnar and Schmid [2009] and so on), but it tends
to be far from the population covariance matrix
(Bai et al. [2004]) when the number of assets p
can not be ignored with respect to the sample size
n and thus it is not a appropriate estimator of Σ.

When p is large compared with the sample size
n, how to estimate a covariance matrix and/or
of its inverse has been a hot issue for recent ten
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or even more years (Bickel and Levina [2008],
Cai and Zhou [2012], Rohde et al. [2011], Khare
et al. [2011], Rajaratnam et al. [2008], Fan et al.
[2008],Ledoit and Wolf [2004a] , Ledoit and Wolf
[2004b], Golosnoy and Okhrin [2007], Frahm and
Memmel [2010] and so on ).

In this paper, we estimate GMVP for the
high dimensional data by the spectral corrected
Methodology. Here we propose the spectral cor-
rected covariance as the population covariance es-
timator and plug it into (2). In this paper, we com-
pare the spectral corrected estimation with the
classic estimation, the linear shrinkage estimation
and the nonlinear shrinkage estimation and find
the performance of the spectral corrected estima-
tion is best in the simulation study.

In Section 2, we will introduce the spectral cor-
rected estimation for GMVP. In Sections 3 and 4,
the Linear shrinkage estimation and the nonlinear
shrinkage estimation are provided. We provide
the simulation study in Section 5 and the conclu-
sion in Section 6.

2 Spectral corrected estima-
tion

In this part we develop the spectral corrected
GMVP by plugging the spectral-corrected covari-
ance as the estimation of Σp into (2). The spec-
tral corrected covariance is constructed by correct-
ing the spectrum of the sample covariance ma-
trix. Suppose that x1, x2, ..., xn are identified in-
dependent distributed (i.i.d.) p dimensional ran-
dom return vectors with the mean µ and the co-
variance matrix Σp. Write the spectral decomposi-
tion of the sample covariance Sn =

∑n
i=1 xix′ −x x′

can as TnΛnT′n where Λn = diag{λn,1, λn,2, ..., λn,p}
(λn,1 ≥ λn,2 ≥ ... ≥ λn,p) and Tn is the matrix with
the corresponding eigenvectors.

For any symmetry matrixAwith the dimension
p, define the empirical spectral distribution (SD)
as following

FA(x) =
1

p

p∑
i=1

1[λi,∞)(x), x ∈ R (3)

in which λ1 ≥ λ2 ≥ ... ≥ λp are the eigenval-
ues of A and 1[λi,∞)(x) equals to 1 for λi ≤ x and
0 otherwise. Then according to the large dimen-
sional random matrix theory, under some reason-

able conditions, FSn weakly converges to a de-
terministic distribution F as p and n increase to
infinity proportionally, which is called limiting
spectral distribution (LSD) (Marčenko and Pastur
[1967], Silverstein [1995] and Silverstein and Bai
[1995]). Denote the stieltjes transform of F as
m(z) =

∫
(x − z)−1dF(x) (z ∈ C and ℑz , 0). Then

m(z) is the unique solution of

z(m) =
1

m(z)
+ y
∫

t
1 + tm

dH(t) (4)

on the upper half complex plane in which H is
the limiting spectral distribution of the population
covariance matrix Σp and m = −(1 − y)/z + ym
(z ∈ C+). (4) provides a chance to recover the
spectral information of the population covariance
Σp. Mestre [2008] and Li and Yao [2013] pro-
vide the spectral estimation based on the contour
integration under eigenvalue splitting condition
and no splitting condition, respectively. Karoui
[2008], Rao et al. [2008] , Chen et al. [2011]
and so on introduce more methods to estimate the
spectral construction of the population Σp.

In this paper, we do not focus on the estima-
tion of FΣp and suppose the spectral construction
of Σp is known or estimated well. We correct the
spectrum of the sample covariance and obtain the
spectral corrected variance S̃n = Tn∆pT′n in which
∆p = diag{τ1, ..., τp} and τ1 ≥ ... ≥ τp are the spec-
tral elements of Σp. Compared with the quartic
form of the sample covariance matrix inverse, that
of the spectral corrected covariance one performs
more stably in the simulation study. We explain
more details in the Theorem 2.1 and 2.2 under
some reasonable assumptions:
Assumption 2.1. Yn = (y1, · · · ,yn) = (yi, j)p,n in
which yi, j (i = 1, · · · , p, j = 1, · · · , n) are i.i.d. ran-
dom variables with Eyi j = 0, E|yi j|2 = 1, E|yi j|4 < ∞,
and xk = Σ

1/2
p yk for each n and for k = 1, 2, · · · , n;

Assumption 2.2. ap,bp ∈ Cp = {x ∈ Cp} are uni-
formly bounded vectors.
Assumption 2.3. Σp = Up∆pU∗p is nonrandom
symmetry and nonnegative definite with its spectral
norm bounded in p where

∆p = diag(τ1I1, τ2I2, ..., τLIL) (5)
τ1 > τ2 > · · · > τL, Up = (Up,1,Up,2, · · · ,Up,L) and Ii
is a pi × pi unit matrix (i = 1, 2, ..., L).
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Theorem 2.1. Under Assumptions from 2.1 to
2.3, as p, n→ ∞, p/n→ y, (0 < y < 1), we have

a′pS−1n bp

ap
′Σ−1p bp

−→ 1

(1 − y)
a.s. (6)

According to Theorem 2.1, a′pS−1n bp is asymp-
totically (1−y)−1 time of a′pΣ−1p bp and when y→ 1,
a′pS−1n bp is close to infinity. This is because the
minimum eigenvalue of the sample covariance is
very close to zero as y → 1 and thus its inverse
goes to infinity which mainly decides the value of
a′pS−1n bp. Then it is a natural idea of correcting
eigenvalues of Sn to be the spectral corrected co-
variance S̃n. The following theorem explains the
limiting behavior about the quartic form a′pS̃−1n bp

under general conditions.
Theorem 2.2. Suppose the limiting spectral
distribution of Sn is spectral separated and
a′pUp,iUT

p,ibp = fi (i = 1, 2, · · · , L). Under Assump-
tions 2.1 to 2.3, we have

a′pS̃−1n bp −→
L∑

k=1

fkdk a.s. (7)

as p, n → ∞ and p/n → y. Here dk =
∑L

j=1
(u j−τ j)

τ j(u j−τk)
and u j is the solution of 1+y

∫
t

u−t dH(t) = 0 for any
j = 1, · · · , L with τ1 > u1 > τ2 > · · · > τL > uL > 0.
Note: in (7), it is difficult to explain the rela-
tionship between the limiting behaves of a′pS−1n bp

and a′S̃−1n bp theoretically. In this paper, we pro-
vide some Monte-Carlo experiments to describe
the performance of a′pS̃−1n bp and the conclusion of
Theorem 2.1 and 2.2.

For the population covariance Σp, select series{
ap

}
and

{
bp

}
such that a′pΣ−1p bp is a constant for

any dimension p. Generate the sample set X1, ...Xn

from the population with a non zero mean µ and
the covariance matrix Σp and compute a′pS−1n bp

and a′pS̃−1n bp. Here we use τ = [τ1, τ2, ..., τk] and
w = [w1,w2, ...,wp] (wi = pi/p, i = 1, 2, ..., p) to
denote the different eigenvalues of Σp and the
corresponding weights on the whole p dimension.
Repeat this process for N times and report their
means and the standard deviations in Table 1.

From Table 1, we can find some better perfor-
mances of the spectral corrected covariance than
that of the sample covariance in the estimation of
the quartic form a′pΣ−1p bp. First, the estimate of

a′pS̃−1n bp is more accurate than that of a′pS−1n bp. In
Table 1, for a given a′pΣ−1P bp, the average error
of a′pS̃−1n bp is very small as y = 0.1 and increases
slowly with the increasing of y from 0.1 to 0.9 but
still is bounded by 0.5 in all three Panels. For the
sample covariance, the average error of a′pS−1n bp

is smallest when y = 0.1 and still is about 0.2 in
Panel A, B and C. It increases with increasing of y
from 0.1 to 0.9 rapidly. When y = 0.9, a′pS−1n bp is
asymptotically ten times of a′pΣ−1p bp. In addition,
the estimate of a′pS−1n bp is much unstabler com-
pared with that of a′pS̃−1n bp according to their stan-
dard deviation reports. Though both of the stan-
dard deviations associated with S̃n and Sn increase
as the increasing of y, the largest one of a′pS̃−1n bp is
still not more than 0.4while that of a′pSnbp already
reaches 16.

From above analysis and the simulation study,
it is natural to plug S̃n into (2) and have the spec-
tral corrected global minimum variance portfolio
(SCGMVP) as follows:

w̃sc =
S̃−1n 1
1′S̃−1n 1 . (8)

Then the expected return of SCGMVP Rsc = µ
′w̃sc

and the corresponding risk σ2sc = w̃′scΣpw̃sc. In the
structure of w̃sc, the eigenvector matrix Tn is the
main random part and determines the final perfor-
mance of SCGMV.
Corollary 2.1. Under the conditions of Theorem
2.2,

Rsc

Ro
→
∑L

i, j=1 fr,i f1, jdiτ j∑L
i, j=1 fr,i f1, jd jτi

a.s.

as p, n → ∞ and p/n → y. Here di (i = 1, ..., L) are
defined in Theorem 2.2.

The proof of Corollary 2.1 can be deduced by
Theorem 2.1 and 2.2 directly.

By the spectral corrected methodology, we can
not obtain a portfolio estimator with a consistent
expected return as Ro, but SCGMVP has higher
expected return and lower risk than the classical
GMVP estimator with the sample covariance does.
And compared with the Linear shrinkage and non-
linear shrinkage methodologies, the performance
of our SCGMVP is still better. Now we review
some contents about these two methodologies.
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3 Linear shrinkage Estimation
Ledoit and Wolf [2004b] propose a well condi-
tioned estimator for large dimensional covariance
matrices. In this paper, they focus on the optimal
linear combination Σ∗ = ρ1I+ ρ2Sn of the identity
matrix I and the sample covariance matrix who
minimizes the expected quadratic loss E∥Σ∗ − Σ∥2
for all ρ1, ρ2 ∈ R. That is

min
ρ1,ρ2

E∥Σ∗ − Σ∥2 s.t. Σ∗ = ρ1I+ ρ2Sn. (9)

Here ∥ · ∥ is the Frobenius norm: ∥M∥ =√Tr(MM′)/r for any r × m matrix M. By the com-
putation, the solution of the optimization problem
is

Σ∗ =
β2

δ2
µI+ α

2

δ2
Sn (10)

Here µ = tr(Σ)/p, α2 = ∥Σ − µI∥2, β2 = E∥Sn −Σ∥2
and δ2 = E∥Sn−µI∥2. By the large dimensional ran-
dom theory, the consistent estimations for these
parameters is µ̂ = tr(Sn)/p, δ̂2 = ∥Sn − µ̂I∥2,
β̂2 = min(b2n , δ̂2n) and α̂2n = δ̂2n − β̂2n where b

2

n =
1
n2
∑n

k=1 ∥y·ky′·k − Sn∥2 and y·k is the k-th column of
the data matrix Yn. Then the corresponding linear
shrinkage estimator is given as

Σn =
β̂2

δ̂2
µ̂I+ α̂

2

δ̂2
Sn.

4 Nonlinear shrinkage Estima-
tion

Nonlinear shrinkage estimation of the covariance
matrix was introduced by Ledoit et al. [2012].
Now I will introduce this methodology shortly.
Suppose Σ̂ ≡ Σ̂(Yn) be an estimator of Σ under
the data matrix Yn. Then for any arbitrary orthog-
onal matrix A, if Σ̂(AYn) = AΣ̂(Yn)A, the estima-
tion Σ̂ is said to be rotation-equivariant. With the
rotation equivariant property, the estimator of Σ
can be written as the form VnDnV′n where Dn is a
diagonal matrix with elements d1, ..., dp and Vn is
the sample eigenvectors matrix of the data set. In
the rotation-equivariant estimator set, Ledoit et al.
[2012] consider the optimal estimator under the
following loss function∥∥∥VnDnV′n − Σ

∥∥∥ (11)

where ∥ · ∥ is the Frobenius norm defined as ∥M∥ =√Tr(MM′)/r for any r × m matrix M. Minimize
the loss function (11) and get the solution is
D∗n ≡ Diag(d∗1, ..., d∗p) where d∗i = v′iΣvi and vi is
i-th column of V for i = 1, ..., p. Then the opti-
mal rotation-equivariant estimator of Σ is S∗n =
VnD∗nV′n.

In fact, the structures of the optimal rotation-
equivariant estimator S∗n = VnD∗nV′n and the
spectral-corrected estimator S̃n = Tn∆pT′n are
same. They all keep the eigenvector matrix of
sample covariance and change it’s spectral ele-
ments and S∗n has smaller loss than S̃n. But the
problem is d∗i (i = 1, ..., p) are unknown even as
the spectral element of Σp is given. It not only
increases the difficulty of estimations but also re-
duces the accuracy.

For the estimation of d∗i (i = 1, ..., p), Ledoit and
Péché [2011] show that they can be approximated
by

dor
i ≡

λi∣∣∣1 − c − cλim̌F(λi)
∣∣∣2 . (12)

Here λi is the ith eigenvectvalue of sample covari-
ance, m̌F(λi) =

1−c
cλi
− 1

czλi
and zλi is the solution of

the following equation

z − cz
∫ +∞

−∞

τ

τ − z
dH(τ) = λi for i = 1, ...p and z ∈ C+.

According to (12), the oracle estimator is given as
Sor

n = VnDor
n V′n where Dor

n ≡ Diag(dor
1 , ..., d

or
p ).

By the same way, among the class of rotation-
equivant estimators, the optimal estimator of
Σ−1p is given by P∗n ≡ VnA∗nV′n where A∗n ≡
Diag(a∗1, ..., a∗p). Here a∗i ≡ v′iΣ

−1vi and can be ap-
proximated by aor

i ≡ λ−1i (1− c− 2cλiRe[m̌F(λi)]) for
i = 1, ..., p. Then the corresponding oracle esti-
mator of Σ−1 is given as Por

n ≡ VnAor
n Vn in which

Aor
n = Diag(aor

1 , ..., a
or
p ).

5 Simulation study
In this part, we compare the behaviors of four esti-
mators of Σp—the spectral-corrected estimator S̃n,
the sample covariance Sn, the linear shrinkage es-
timator Σn and the nonlinear shrinkage estimators
Sor

n and Por
n in GMV model. In particular, note that

Por
n is the estimator of Σ−1 and not equal to (Sor

n )−1.
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Plug the estimators ofΣp orΣ−1p into Ro and σ2o and
compare their behaviors in the portfolio expected
return and risk.

Suppose there are p assets with a random
return vector r = (r1, r2, ..., rp)

′ with nonzero
mean µ = (µ1, · · · , µp)

′ and the covariance ma-
trix Σp. Here we use τ = [τ1, τ2, ..., τk] and w =
[w1,w2, ...,wp] (wi = pi/p) to denote the different
eigenvalues of Σp and the corresponding weights
on the whole p dimension. The simulation is de-
signed in the following steps:

(i) Generate n i.i.d. p dimensional sample vec-
tors r1, r2, ..., rn with the mean µ and the co-
variance matrix Σp.

(ii) Compute the covariance matrix estimators—
the sample covariance Sn, the spectral-
corrected sample covariance S̃n, the lin-
ear shrinkage covariance Σn, the nonlinear
shrinkage covariance Sor

n and the nonlinear
shrinkage inverse covariance Por

n .
(iii) Plug the covariance estimators into

ŵGMV =
Σ̂−1p 1
1′Σ̂−1p 1 , RŵGMV =

µ′Σ̂−1p 1
1′Σ̂−1p 1

in which Σ̂p = Sn, S̃n, Σn and Sor
n . Plug the

inverse estimation Por
n into

ŵGMV∗ =
Por

n 1
1′Por

n 1 , RŵGMV∗ =
µ′Por

n 1
1′Por

n 1 .

(iv) Repeat steps from (i) to (ii) for N times.

Figures 1 and 2 report the expected returns and
risks of the GMV portfolio estimates associated
with different covariance estimators—the spectral
corrected covariance, the sample covariance, the
linear shrinkage covariance, the nonlinear shrink-
age covariance. In these two figures, we pro-
vide 8 pairs of the expected return and risk box
plots for two population covariance structures as
y = 0.1, 0.2, ..., 0.8, respectively. The numbers from
1 to 5 on the x-axes record the expected return
and risk of the theoretical GMVP and that of the
GMVP estimator associated with the covariance
estimators—S̃n, Sn, Σn, Sor

n and Por
n . In these two

figures, the repeating time is 10000 and thus the
computation scientific precision is asymptotically
down to the second decimal point.

For the expected returns of the GMVP esti-
mates, the performance of SCGMVP is not signif-
icantly better than the others. The medias of the
expected returns of the every estimation almost
are located between Ro±0.01 and the interquartile
ranges are smaller than 0.005 which means these
portfolio estimations perform well without signif-
icant differences in the expected return.

For the risks of the GMVP estimates, the perfor-
mance of the spectral corrected GMV portfolio is
not significant different from the other as y = 0.1
and is significantly better than the others. For all
ys from 0.2 to 0.8, the media and the correspond-
ing interquartile range of the risks associated with
the spectral corrected portfolio is smallest com-
pared with that of the other estimations. The me-
dias of the expected returns of SCGMVP are larger
than the theoretical risk of GMVP at least 0.02 and
smaller than the others at least 0.01. According
to the interquartile ranges of the risks associated
with the GMVP estimators, SCGMVP’s risks are
stablest since the difference between the range of
SCGMVP’s risks and the others is at least 0.02 as
y ≥ 0.2. Thus, from Figures 1 and 2, it is reason-
able to use the spectral corrected methodology to
estimate the global minimum variance portfolio.

6 Conclusion
In this paper, we introduce the spectral corrected
methodology to correct the eigenvalues of the
sample covariance matrix and construct the spec-
tral corrected global minimum variance portfolio.
This methodology overcomes the serious distur-
bance deduced by the departure of the spectrum
of the sample covariance from that of the popu-
lation covariance matrix in the estimation of the
global minimum variance portfolio. In addition,
compared with the linear shrinkage and nonlin-
ear shrinkage estimations, SCGMVP has more ex-
pected return and Lower average risk. Therefore,
we have enough reason to consider the spectral
corrected methodology to construct GMVP estima-
tor.
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Table 1: Comparison of a′pΣ−1p bp, lim apS̃−1n bp, a′pS̃−1n bp, a′pS−1n bp and a′pΣ−1bp

1−y .

y f (Σp) lim f (̃Sn) f
(̃
Sn

)
f (Sn)

f (Σp)

1−y
A: τ = (25, 10, 5, 1), w = 1

4 (1, 1, 1, 1).
0.1 1.86 1.8857 1.8832(0.0938) 2.0667(0.1308) 2.066
0.2 1.86 1.9153 1.9175(0.1330) 2.3315(0.2095) 2.325
0.3 1.86 1.9497 1.9482(0.1644) 2.6678(0.3085) 2.657
0.4 1.86 1.9896 1.9840(0.2065) 3.1142(0.4673) 3.1
0.5 1.86 2.0370 2.0253(0.2459) 3.7495(0.7119) 3.72
0.6 1.86 2.0953 2.0822(0.2783) 4.7594(1.0897) 4.65
0.7 1.86 2.1661 2.1402(0.3138) 6.4346(1.8411) 6.2
0.8 1.86 2.2479 2.2027(0.3458) 9.6998(3.7428) 9.3
0.9 1.86 2.3540 2.2479(0.4005) 20.638(14.465) 18.6

B: τ = (10, 5, 1), w = 1
10 (4, 3, 3).

0.1 1.7 1.7161 1.7159(0.0783) 1.8914(0.1124) 1.888
0.2 1.7 1.7348 1.7348(0.1149) 2.1294(0.1921) 2.125
0.3 1.7 1.7567 1.7574(0.1527) 2.4432(0.3064) 2.428
0.4 1.7 1.7823 1.7829(0.1719) 2.8605(0.4222) 2.833
0.5 1.7 1.8126 1.8105(0.1938) 3.4308(0.5982) 3.4
0.6 1.7 1.8498 1.8452(0.2431) 4.3315(1.0416) 4.25
0.7 1.7 1.8943 1.8846(0.2519) 5.9039(1.6676) 5.666
0.8 1.7 1.9444 1.9236(0.2736) 8.9074(3.4104) 8.5
0.9 1.7 2.0066 1.9514(0.2913) 19.060(11.968) 17

C: τ = (5, 3, 1), w = 1
10 (4, 3, 3).

0.1 2.2666 2.3016 2.3017(0.1102) 2.5216(0.1528) 2.5185
0.2 2.2666 2.3421 2.3396(0.1563) 2.8384(0.2550) 2.8333
0.3 2.2666 2.3892 2.3862(0.2061) 3.2562(0.4079) 3.2380
0.4 2.2666 2.4435 2.4343(0.2265) 3.8107(0.5633) 3.7777
0.5 2.2666 2.5066 2.4757(0.2483) 4.5773(0.8110) 4.5333
0.6 2.2666 2.5809 2.5069(0.2810) 5.7787(1.3933) 5.6666
0.7 2.2666 2.6643 2.5382(0.2793) 7.8695(2.2318) 7.5555
0.8 2.2666 2.7502 2.5699(0.2882) 11.881(4.5272) 11.333
0.9 2.2666 2.8458 2.5890(0.2989) 25.446(16.054) 22.666

Note: here f (A) = a′pA−1bp, n = 100, y = p/n and N = 10000
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Figure 1: Comparetion of the GMV portfolio estimators associated with the spectral-corrected covari-
ance, sample covariance, linear shrinkage covariance and non-linear shrinkage covariance.

Note: we provide 8 pairs of the expected return and risk box plots for y = 0.1, 0.2, ..., 0.8. Here the different eigenvalue and
the corresponding weight vectors are (1, 5, 10) and (0.3, 0.4, 0.3), respectively. We use the number in the x-axes to denote the
population result and the different estimations in which 1 is the population result and the numbers from 2 to 6 represent the
estimations associated with S̃n, S, Σn, Sor

n and Por
n , respectively.
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Figure 2: Comparetion of the GMV portfolio estimators associated with the spectral-corrected covari-
ance, sample covariance, linear shrinkage covariance and non-linear shrinkage covariance.

Note: we provide 8 pairs of the expected return and risk box plots for y = 0.1, 0.2, ..., 0.8. Here the different eigenvalue and
the corresponding weight vectors are (1, 3, 5) and (0.3, 0.4, 0.3), respectively. We use the number in the x-axes to denote the
population result and the different estimations in which 1 is the population result and the numbers from 2 to 6 represent the
estimations associated with S̃n, S, Σn, Sor

n and Por
n , respectively.
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