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Abstract 

Solving a classical vehicle routing problem (VRP) by exact methods presents many 

difficulties for large dimension problem. Consequently, in multi-objective 

framework, heuristic or metaheuristic methods are required. Due to particular VRP 

structure, it seems that a dedicated heuristic is more suitable than a metaheuristic. 

The aim of this article is to collapse different heuristics solving classical VRP and 

adapt them for to solve the multi-objective vehicle routing problem (MOVRP). The 

so-called Cobweb Algorithm simulates spider’s behavior when weaving cobweb. 

This paper presents the algorithm, a didactic example, concluding remarks and way 

for further researches.  
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1. Introduction 

The vehicle routing problem (VRP) (Wei Zhou, 2013) is one of the most 
attractive topics in operation research, which is useful for  logistics, and supply 
chain management (see Solomon, 1987 & Thangiah & Al., 1991). Indeed one of 
real-life multi-objective optimization problem applications (Ombuk &Al., 2006). 
VRP deals with minimizing the total cost of logistics systems (Figliozzi, 2010). VRPs 
are well-known combinatorial optimization problems arising in transportation 

logistic that usually involve scheduling in constrained environments (see Pang, 
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2011,  . Ghoseiri & Ghannadpour, 2010 and Tan & Al., 2001). In transportation 

management (Chiang and Russell, 1996), there is a requirement to provide services 

from a supply point (depot) (see Taillard &Al., 1997 ;  Thangiah, 1995)  to various 

geographically dispersed points (customers) with significant economic 

implications, many researchers have developed solution approaches for those 

problems  (see  Jozefowiez & Al., 2007, Alvarenga & Al., 2007,  Jozefowiez & Al. 

2008 and Goldberg, 1989). 

We devote this paper to the hybridization of some heuristics dedicated to 

classical VRP problems for solving the multi-objective Vehicle Routing 

Problem (MOVRP) (see Tan & Al., 2001 and 2006, Thangiah, 1999, Baños & 

Al., 2013). There are : 

i) the economics heuristic of Clarke & Wright (Clarke & Wright, 1964); 

ii) insertion heuristic (see Mole & Jameson, 1976 and Toth &Al., 2002); 

iii) the two phases Heuristic (Gillett and Miller,  1974); 

iv) the heuristics of local research (Teghem, 2012).  

A much more complete description of these classical VRP heuristics, with a 

comparative analysis of their performance, can be found in chapter 5 of Toth et al. 

(Toth &Al., 2002)  and in Brasseur et al. (Basseur & Al., 2002) . All these 

heuristics are hybridized with the preferential reference mark of predominance 

method (see Okitonyumbe, 2012, 2013 and Ulungu & Teghem 1994).  For this 

purpose, our paper is organized as follows: section 2 present the mathematical 

formulation, section 3 presents some incidental definitions, next in section 4 we 

describe the so-called preferential reference mark of dominance method (PRMD), 

section 5 outlines Cobweb Algorithm. A didactic example is provided to validate 

our step. 

2. Mathematical formulation  of multi-objective vehicle routing problem 

 

Let be considered m objectives functions and  v the number of delivery 

vehicles with a maximal capacity  Q  intended to serve all customers 

indicated by the set V from the central deposit during a maximal duration 

time T. The mathematical formulation of this multiobjective problem of 

vehicles routing is the following : 
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Interpretation of different constraints of (P) : 

  (1)   each customer 𝑖 ∈ V∖{0} is visited one and only one time, 

  (2)   each vehicle k arriving at the customer j leaves from there. 

  (3)   and (4) : each vehicle k leaving the depot comes back to it, 

  (5)   respect of the maximal capacity Q of vehicles, 

 (6)    respect of the maximal duration time T of routing, 

  (7)  elimination of the under-tours to guarantee the connection of the different vehicle 

routing, 

 (8)    means that it is a combinatorial optimization. 

Solve problem (P) consists to find the entire set or part of the efficient set noted E(P). 

3. Definitions (Okitonyumbe & Ulungu 2013)       

1. Reference mark of dominance of a railable solution a is often referred to 

an orthonormal reference mark of origin a, dividing the space in four areas 

of preference in accordance to the diagram of figure 1 below. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Let us now consider the objectives space O of a multi-objective 

combinatorial optimization problem, 𝑧1, 𝑧2  ∈ 𝑂 and V(𝑧1) a neighborhood 

of 𝑧1. It is said that the solution 𝑧2 ∈ 𝑉(𝑧1) certainly improves 𝑧1 if 𝑧2 is 

situated in the non-dominated solutions area of the preferential reference 

mark of 𝑧1. In this case, the acceptance probability of 𝑧2 equals 1. It 

improves 𝑧1 with an acceptance probability  𝜌, 0 <  𝜌 < 1 when it is situated 

in an indifference area of the   𝑧1 preferential reference mark, and with a nil 

acceptance probability in the dominated solutions area. In other words, if 

ρ ≡ ℙ(acceptance of neighborhoods 𝑧2 of 𝑧1)  then :  

{

𝜌 = 1               if        𝑧2 ∈ 𝐼𝐼𝐼        
0 < 𝜌 < 1       if       𝑧2 ∈ 𝐼𝐼 ∪ 𝐼𝑉
𝜌 = 0               if        𝑧2 ∈ 𝐼           
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Figure 1. Preferences zones in the dominance relation 



4. Description stages of preferential reference mark of dominance method 

(Okitonyumbe & Ulungu 2013) 

Input: 

          D : Set of admissible solutions 

          O = F(D) = (𝒇𝒊(𝒂))𝒊=𝟏,…,𝒎, 𝒂 ∈ 𝑫. 
Output:  E(P) :  Set of efficient solutions. 

Start 

E(P)← ∅ 

Represent graphically O 

Do while O≠ ∅ do 

        Choose z in O 

        Draw the preferential reference mark of dominance of z 

        For 𝒛′ in O ∖ {z} do 

             If 𝐳′ is situated in the non-dominated solutions area then 

                 𝑬(𝑷)  ← E(P)∪ {𝒛′}  
                 𝑶 ← O ∖ {𝒛′} 

            End if 

            If 𝒛′ is situated in the dominated solutions area then 

                 𝑶 ← O ∖ {𝒛′} 

            End if 

            If the non-dominated solutions area is empty then 

                  𝑬(𝑷)  ← E(P)∪ {𝒛′}  
                 𝑶 ← O ∖ {𝒛′} 

            End if  

       Next   

            If 𝒛′ is situated in indifference area then 

                  𝒛 ← 𝒛′ 
                  𝑬(𝑷)  ← E(P)∪ {𝒛′}  
                 𝑶 ← O ∖ {𝒛′} 

           End if 

Loop 

Choose z in E(P) 

Draw the preferential reference mark of dominance of z 

      For 𝒛′ in E(P) ∖ {z} do 

              If 𝐳′ is situated in the non-dominated solutions area then 

                 𝑬(𝑷)  ← E(P∖ {z} 

             End if 

            If 𝒛′ is situated in the dominated solutions area then 

                𝑬(𝑷)  ← E(P ∖ {𝒛′} 

            End if 

       Next 

Display E(P) 

End 

 

 



5. Description stages of Cobweb algorithm   

Following functions are used in the algorithm: 

 RePref(A,B) return the efficient solutions set of the saving distance matrix 

A and the saving priority matrix B obtain by preferential reference mark of 

dominance method 

 Card(A) return the number of element of A 

 Insert (x,y) return road z in which y is inserted in road x based on the 

insertion heuristic  

 Capacity(r) return the sum of customers’ request 

 RechLoc(P) return a fleet P ameliorated by  local research heuristic  

 Len(t) return road length t 

 Priority(t) return the sum of road t visited-customers’ priorities 
 

 

Input: 

             A the set of n customers 

             (𝑑𝑖𝑗) the matrix of distances between customers (i=0, …, n; j=o, …, n) 

             (𝑝0𝑗) the matrix of customers’ priorities (i=1, …, n) 

              C the vehicles’ capacity 

             (𝑑𝑖) the requests’ vector of customers, (i=1, …, n)     

Output:  

             P : Set of compromises’ road 

             Triplets (length, prior, size) corresponding to fleets’ length, the sum of 

customers’ priorities and  its’ size 

  

 

 

 

 

 

 



Start 

For i =1 to n do 

       For j=1 to n do 

            𝛿𝑖𝑗 ← 𝑑𝑖0+𝑑0𝑗 − 𝑑𝑖𝑗   

            𝑝𝑖𝑗 ← 𝑝0𝐼+𝑝0𝑗  

       Next j  

Next i 

𝐸 ← RePref ((𝛿𝑖𝑗), (𝑝𝑖𝑗))  

𝐵 ← {𝑥 𝑥⁄  is a customer visited by a road 𝑡 ∈ 𝐸}  

Part ← {𝑃 𝑃  is a partiion of 𝐵⁄ }  

A ← A ∖ B   

Choose  𝑃 𝜖 Part  

taille← Card (𝑃) 

Do while A≠  ∅ do 

       Choose a in A 

       testinsert ← false 

      Foreach r in P do 

              If Capacity (Insert (r,a))<= 𝐶 

                  𝑟 ← Insert (𝑟, 𝑎) 

                  testinsert ← true 

             End if 

      Next 

      If  testinsert = false  then 

               𝑟′ ← Insert (depart, a) 

              P ← P ∪ {r′} 

             Size ← Size + 1  

      End if    

    𝐴 ← 𝐴 ∖  {𝑎} 

Loop 

𝑃 ← RechLoc (𝑃)  

Length← 0 

Prior ← 0  

Foreach r in P do 

       Length← Length + Len(𝑟) 

      Prior← Prior + Priority(𝑟) 

Next r 

Display (Length, Prior, Size)                                                                                                                        

End                                                                                                                                    

6. Didactic example 

6.1. Facts of the case  

A pharmaceutical industry having a warehouse (0) launches a new product on the 

market; it lays out of an offer of delivery vehicles of eight tons maximum capacity. 

The requests  𝑑𝑖 (𝑖 =1,2…,15) of the customers arise in the following table, the 



distances being symmetrical and checking the triangular inequality. The customers’ 

priorities are quantified from 1 to 15 and are allotted according to descending order 

of the requests arrivals.  

Table 1. Stamp distances (km) and demands (ton) : 𝐶1𝑖𝑗 

N° 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 - 15 28 30 22 27 21 22 20 36 63 120 22 63 12 27 

1  - 21 32 32 41 35 32 22 48 25 37 18 25 22 22 

2   - 18 30 46 47 50 42 45 54 40 45 54 18 20 

3    - 18 36 43 52 50 24 42 56 49 42 40 36 

4     - 18 27 40 40 21 12 43 38 12 30 45 

5      - 16 33 42 15 51 72 45 51 38 37 

6       - 18 30 32 23 65 40 23 58 40 

7        - 15 35 53 37 39 53 30 46 

8         - 28 52 38 40 52 32 43 

9          - 43 25 42 43 39 61 

10           - 40 53 35 64 65 

11            - 62 26 42 37 

12             - 33 33 38 

13              - 62 25 

14               - 36 

𝐝𝐢 - 3 3 4 2 4 2 3 4 5 3 4 2 5 4 3 

 

Table 2. Customer priorities: C2ij 

Customer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Priority 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
 

6.2. Concerns of the decision maker  

Organize roads of distribution which    

- minimize the distances covered;   

- minimize height of the fleet;   

- maximize the customers priorities.  

So this is a multiple objective vehicle routing problem with three criteria. Solving 

this problem consist to find all non-dominated solutions.  



5.3  Solving problem   

To find the set of efficient solutions we proceed  sequentially. We considers 

initially the distance and  priority to illuminate some solutions with superfluous 

components to remain only solutions with components significant. To solve this 

problem we use Cobweb algorithm (see §4). Following table 3 summarize values  

𝛿𝑘𝑖𝑗 =𝐶
𝑘
𝑖𝑜 + 𝐶

𝑘
𝑜𝑗 − 𝐶

𝑘
𝑖𝑗   in distance and priority. 

Table 3. Saving in distance and priorities : (𝛿1𝑖𝑗, 𝛿
2
𝑖𝑗) 

 2 3 4 5 6 7 8 9  10  11  12  13  14  15 

1 (22,29)  (13,28) (5,27) (1,26) (1,25) (5,24) (13,23) (3,22) (53,21) (98,20) (19,19) (53,18) (5,17) (20,16) 

2   - (40,27) (20,26) (9,25) (2,24) (0,23) (6,22) (14,21) (47,20) (108,19) (5,18) (47,17) (22,16) (35,15) 

3   -   - (34,25) (21,24) (8,23) (0,22) (0,21) (42,20) (51,19) (94,18) (3 ,17) (51,16) (2,15) (21,14) 

4  -   -   - (31,23) (16,22) (4,21) (2,20) (37,19) (73,18) (99,17) (6,16) (73,15) (4,14) (4,13) 

5   -   -   -   - (32,21) (16,20) (5,19) (48,18) (39,17) (75,16) (4,15) (39,14) (1,13) (17,12) 

6   -   -   -   -   - (25,19) (11,18) (25,17) (61,16) (76,15) (3,14) (61,13) (25,12) (8,11) 

7   -   -   -   -   -   - (27,17) (23,16) (32,15) (105,14) (5,13) (32,12) (4,11) (3,10) 

8   -   -   -   -   -   -   - (28,15) (31,14) (102,13) (2,12) (31,11) (2,10) (4,9) 

9   -   -   -   -   -   -   -   - (56,13) (131,12) (16,11) (56,10) (9,9) (2,8) 

10   -   -   -   -   -   -   -   -   - (143,11) (32,10) (91,9) (11,8) (25,7) 

11   -   -   -   -   -   -   -   -   -   - (80,9) (157,8) (90,7) (110,6) 

12   -   -   -   -   -   -   -   -   -   -   - (52,7) (1,6) (11,5) 

13   -   -   -   -   -   -   -   -   -   -   -   - (13,5) (65,4) 

14   -   -   -   -   -   -   -   -   -   -   -   -   - (3,3) 

 

 

For example couple (22,29) intersection of line 1 and column 2 is obtained by : 

𝛿112 = 𝐶110 + 𝐶
1
02 − 𝐶

1
12 = 15 + 28 − 21 = 22  

              𝛿212 = 𝐶210 + 𝐶
2
02 − 𝐶

2
12 = 15 + 14 − 0 = 29  

 



5.3.1 Sequentially efficient solutions 

The set of sequentially efficient solutions is in conformity with the table 3:  

E(P)  = {(22,29), (40,27), (53,21), (98,20), (108,19), (143,11)}. 

Corresponding roads are respectively (0-1-2-0), (0-2-3-0), (0-1-10-0), (0-1-11-0), 

(0-2-11-0) and (0-10-11-0) of respective capacities 6, 7, 6, 7, 7, 7, these roads 

are incompatible because only customer 3 is visited once.  

5.3.2 Roads building under capacity constraint  

 

The set of customers corresponding to     𝐸1(𝑃) is B = {1, 2, 3, 10, 11}. A partition 

of these customers is formed of the sets  {1, 2}, {3}, {10, 11} corresponding to 

roads (0-1-2-0), (0-3-0), (0-10-11-0). Taking a non-affected customer randomly, 5 

for example, single possible insertion is (0-3-5-0) of a total request for 8 tons. 

Taking another customer randomly, for example 12, a good possible insertion is (0-

12-1-2-0) of a 8-tons capacity. Following the same step, one finally obtains (0-6-4-

14-0), (0-7-8-0), (0-13-15-0) and (0-9-0) corresponding respectively to the requests 

of 8, 7, 8 and 5 tons each one. An improvement of this solution is the permutation 

and reintegration of the customers 3 and 14. The final result is (0-12-1-2-0),                        

(0-5-14), (0-10-11-0), (0-3-4-6-0), (0-7-8-0), (0-13-15-0) and (0-9-0). 

 

Table 4. Recapitulation of rounds with capacity, length, priority and size of the fleet 

N° Roads Length in Km Capacity in Ton Priority fleet height 

1 (0-12-1-2-0) 89 8 41 1 

2 (0-5-14-0) 77 8 24 1 

3 (0-10-11-0) 223 7 11 1 

4 (0-3-4-6-0) 96 8 16 1 

5 (0-7-8-0) 57 7 17 1 

6 (0-13-15-0) 115 8 4 1 

7 (0-9-0) 72 5 7 1 

8 TOTAL 729 51 120 7 

 



5.3.3 Obtaining efficient solutions set 

With a similar reasoning applied on the partition {1, 2}, {3, 10}, {11}, we have two 

solutions which are: (862,120,7) and (887,120,7). With the partition {1}, {2,3},

{10,11} we have the solution: (782,120,7); with  {1,3}, {2,10}, {11} we obtain two 

additional solutions: (800,120,7) and (792,120,7); with {1,3}, {2,11}, {10}, the 

solution found is (759,120,7); for {1,10}, {2,11}, {3}, one has (723,120,7) and 

finally, for  {2,10}, {1,11}, {3} we have (750,120,7).  

The decision maker must choose between the following nine solutions:   

(729,120,7), (862,120,7), (887,120,7), (782,120,7), (800,120,7), (792,120,7), 

(759,120,7), (723,120,7) and (750,120,7). 

6 Conclusion   

The originality of this method lies in the fact that it always keeps on the multi-

objective aspect of the studied problem and that it has never dealt with any classical 

optimization problem. Yet, the majority of results found in the literature incorporate 

various objectives in a single objective thanks to an aggregation function and to the 

weights provided by the decision maker; nevertheless the subjectivity of situations 

weight interpretation still problematic in any. A trail of research opened here is the 

implementation of this algorithm in a suitable computer programming language.  
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