
MPRA
Munich Personal RePEc Archive

Start Me Up: Modeling of Power Plant
Start-Up Conditions and their Impact on
Prices

Jan Abrell and Friedrich Kunz and Hannes Weigt

July 2008

Online at http://mpra.ub.uni-muenchen.de/65661/
MPRA Paper No. 65661, posted 18. July 2015 10:18 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213974591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/65661/


Electricity Markets Working Papers 
 

WP-EM-28 
 
 
 

 
 

Start Me Up 

Modeling of Power Plant Start-Up Conditions and 

their Impact on Prices  

 

Jan Abrell, Friedrich Kunz, Hannes Weigt 
 
 
 
 

July 2008 
 
 
 
 
 

 
 
Dresden University of Technology             Chair for Energy Economics and  
           Public Sector Management 
 



Start Me Up 
Modeling of Power Plant Start-Up Conditions and their Impact 

on Prices1

 
Jan Abrell, Friedrich Kunz, Hannes Weigt 

 

Corresponding author: 

 

Hannes Weigt 

Dresden University of Technology 

Faculty of Business and Economics 

Chair of Energy Economics and Public Sector Management 

01069 Dresden, Germany 

Phone: +49-(0)351-463-39764 

Fax: +49-(0)351-463-39763 

hannes.weigt@tu-dresden.de 

 

Abstract: 

In this paper we compare different approaches to account for start-up costs when modeling electricity 

markets. We restrict the model formulation to either linear or mixed integer problems in order to 

guarantee a robust solution. The results indicate that the choice of the model has a significant impact 

on the resulting market prices and company profit. The models either calculate higher peak prices or 

prices below marginal costs in off-peak periods but not both. Furthermore, the models perform 

differently when we apply a large sample, the number of equations having an important impact. We 

conclude that different model formulations respond particularly to specific modeling questions. 
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1 Introduction 
Electric power industries are experiencing a major restructuring process towards a competitive market 

environment in which power generators face the fundamental task to determine the optimal dispatch of 

their power plants. Due to restrictions regarding the start-up and shut-down process, power plants have 

to be scheduled carefully with respect to the market conditions and the resulting profitability of the 

plant. In contrast to former monopolistic times generators now have to recover their costs solely 

through market based prices. Furthermore, politicians, regulators, and competition authorities keep a 

close eye on the new markets to estimate whether the prices are subject to market power abuse. This 

opens the questions how to model start-up restrictions within a market framework and to which extend 

prices are affected by different approaches. 

In order to derive the optimal dispatch two main issues have to be regarded: the unit commitment 

decision, and the calculation of start-up costs. The first problem regards the question when a plant is 

available for dispatch. As starting up a power plant can take several hours this decision has to be made 

ahead of the actual dispatch. A list of different approaches regarding the unit commitment is presented 

in Sheblé and Fahd (1994). Firstly, the unit commitment can be modeled as a mixed integer problem 

(MIP) using integer variables to determine the status of the power plant. This technique is widely used, 

but solvability is restricted particularly in large systems. Baldick (1995) formulates a generalized 

version of the unit commitment problem that can treat minimum up- and down-time constraints, power 

flow constraints, line flow limits, voltage limits, reserve constraints, ramp limits, and total fuel and 

energy limits on hydro and thermal units. The authors propose an algorithm for this problem, based on 

Lagrangian decomposition, and demonstrate the algorithm with reference to a simple model system. 

Arroyo and Conejo (2000) propose a mixed-integer linear programming approach that allows a 

rigorous modeling of i) non-convex and non-differentiable operating costs, ii) exponential start-up 

costs, iii) available spinning reserve taking into account ramp rate restrictions, and iv) minimum up 

and down time constraints. The problem of solvability can be avoided by using a linear programming 

approach (LP) to solve the unit commitment problem. The linear programming approach neglects 

integer status variables and therefore solvability in large systems can be increased. Kuntz and 

Müsgens (2007) describe the unit commitment problem in terms of a linear program without integer 

variables simultaneously taking into account start-up costs. However, the linearization leads to a more 

unrealistic market modeling: technical characteristics of power plants concerning the start-up process 

are neglected and therefore generation units are assumed as fully dispatchable.  

The second problem is the question how start-up costs can be implemented within the unit 

commitment formulations. Flexibility of power plants is restricted by generation technology, fuel type, 

and external conditions. According to Dillon et al. (1978), detailed start-up costs of a thermal power 

plant can be modeled by an exponential function depending on the cooling time of the boiler and the 

costs of starting the boiler and/or the turbine. To achieve a linear mixed integer programming 

approach different transformation techniques (e.g. due to the exponential start-up function) are 
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described by Sheblé and Fahd (1994) and applied to the unit commitment problem by e.g. Baldick 

(1995) and Doorman and Nygreen (2003). However, a linear unit commitment model can also be 

modeled without an exponential start-up function and further mathematical transformations (e.g. 

Kuntz and Müsgens, 2007). Start-up costs can be modeled either as fixed cost within a mixed integer 

unit commitment formulation or related to output within a linear approach. However, one has to 

consider that the implementation of start-up costs within a unit commitment process results in non-

convexities of the marginal costs curve and therefore the resulting market prices can be inconsistent.  

An additional problem is the question whether the actual dispatch and the resulting market prices 

support a decentralized solution in which each generator has at least zero profit. Gribik et al. (2007) 

illustrate different ways to define and calculate consistent market prices and side payments given the 

dispatch. As we focus on the actual dispatching process this problem is not addressed in this paper.  

In our paper we compare different approaches regarding the implementation of unit commitment and 

start-up costs into a market framework. We restrict our analysis to linear and mixed integer approaches 

based on cost minimization. Thus decentralized equilibrium approaches and more complex 

mathematical algorithms are not taken into account. We apply four different model types to account 

for start-up costs: first a two stage approach building on a marginal cost based unit commitment 

(Hirschhausen and Weigt, 2007); second the approach of Kuntz and Müsgens (2007) using a 

linearized model formulation; the third approach takes up the linearized model and introduces binary 

choice variables; fourth several pure mixed integer solution are calculated with additional binary 

variables stating if a plant is started as in Arroyo and Conejo (2000). All models are tested against a 

simple marginal cost based unit commitment approach. Our results indicate that depending on the 

chosen model obtained market prices and thus company profits can vary significantly. Furthermore, 

we test the performance of the models when applied to a large sample set like the German electricity 

market. The remainder of our paper is structured as follows: Section 2 presents the model formulations 

and the data used to derive our results. Section 3 presents the results by comparing the different model 

formulations. Section 4 gives the conclusions. 

 

2 Model formulations and data 
The basic objective of our paper is to compare different model approaches with respect to start-up 

restrictions. The main premise is that the model is either a linear problem (LP) or a mixed integer 

problem (MIP) in order to obtain a robust solvability when applying the approaches to large markets. 

All models are coded and solved in GAMS. 

2.1 Basic model formulation: Benchmark (MIP approach) 

All start-up models are based on basic market characteristics with the same market clearing 

mechanism. The objective is cost minimization under a given external demand level d subject to the 

energy balance constraint and capacity restrictions of the power plants: 
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We assume a perfect competitive market; thus generators s bid their true marginal costs mcs. In order 

to determine the condition of a power plant the binary variable ons,t is introduced into the model which 

takes the value of 1 in case the plant s is dispatched in hour t and 0 otherwise. The generation g must 

remain within the minimum (gmin) and maximum capacity (gmax) constraints in case the plant is 

operating. The possibility to start a plant is subject to the status of the plant in the previous periopds. 

In case a plant goes offline in hour t it is not able to start right again for the next τ hours defined by the 

start-up time of the plant (ls) (see Takriti et al., 1998). 

The actual dispatch gs,t is determined by a market clearing process equaling demand dt with the total 

amount of generation in each hour t minimizing the sum of generation expenses and start-up costs 

startup. How these start-up costs are determined differs for the considered models. The dual variable 

on the energy balance constraint is considered to represent the hourly market price. The benchmark 

model assumes that start-up cost are neglected (startup is fixed to 0), thus the market is solely driven 

by short run marginal generation costs. This problem is solved as MIP. 

2.2 Adjustments for different start-up approaches 

2.2.1 Two stage approach (MIP and LP approach) 

The first model to take account of start-up costs is a two stage approach with the unit commitment 

determined in the first stage and the final dispatch in the second stage.2 The benchmark model acts as 

first stage; in the second stage start-up costs are determined according to the plant status: 

∑ −−=
ts

tststss onongscstartup
,

1,,, )(   start-up costs   (6) 

with scs the fuel costs per heated up MW. In case a plant goes online in period t, the condition 

difference (ons,t – ons,t-1) will be 1, output gs,t will be positive and thus start-up costs will be added. In 

all other cases start-up costs will be 0 as either the condition difference or the actual output will be 0. 

Thus start-up costs will be added in relation to the generation. This allows the model to have a minor 

 4



influence on the actual dispatch in the second stage.3 The first stage is solved as a MIP and the second 

stage as an LP, as the binary variables are fixed. 

2.2.2 Ramping approach (LP approach) 

The second approach to take account of start-up costs is based on Kuntz and Müsgens (2007) and 

corresponds to a ramping cost approach: generation increase is associated with additional costs beyond 

pure fuel costs. Kuntz and Müsgens extend the choice variables of generation by adding newly started 

generation g+
s,t and the amount shut down g-

s,t. On the other hand they neglect the conditional variables 

ons,t and thus also the start-up constraints (equation 5).4  

The actual generation output in this model is determined by a dynamic equation: 

−+
− −+=

tsts
gggg tsts ,,1,,     generation balance  (7) 

Start-up costs are then obtained by taking into account the newly started generation. It is assumed that 

shutting down a plant does not imply additional costs: 

∑ +=
ts

s ts
gscstartup

,
,      start-up costs   (8) 

The model consists of equations (1), (2), (3), (7), and (8) without the conditional variable ons,t and is 

solved as a LP in GAMS. 

2.2.3 Extended ramping approach (MIP approach) 

The third start-up approach extends the model of Kuntz and Müsgens (2007) by including the binary 

condition variables ons,t and making a differentiation between started capacity and increased 

generation output g

start
ts

g
,

+
s,t. The dynamic generation balance is adjusted accordingly: 

−+
− −++=

tststs
ggggg start

tsts ,,,1,,    generation balance  (9) 

To allow for a differentiation between and gstart
ts

g
,

+
s,t. a link to the plant condition is established: 

max
,, sts

start
ts gong ≤     start-up capacity constraint (10) 

( )minmax
1,, sststs ggong −≤ −

+
   ramping capacity constraint (11) 

Equation (11) ensures that the increased generation output does not exceed the available plant capacity 

and is only available in case that plant was online in the previous period.5 Similarly, equation (10) 

restricts the quantity started in period t to fulfill the upper capacity restriction. Therefore the only 

                                                                                                                                                                      
2 Hirschhausen and Weigt (2007) apply this approach in an analysis of the German wholesale electricity market. 
3 One could also use a fixed quantity (e.g. gmin) for the calculation of start-up costs or distribute the occurring cost equally 
over all periods in which the plant is running. However, in those cases the market prices will remain on fuel costs level, as the 
start-up block is independent from the dispatch choice in the second stage. 
4 Kuntz and Müsgens (2007) also include minimum generation constraints in their general model formulation. However, they 
do not allow for a shut-down of a plant in case the minimum constraint can not be fulfilled. 
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possibility to start-up an offline plant in period t is to use , as the ramping quantity gstart
ts

g
,

+
s,t is 

restricted by equation (11). The start-up costs are then obtained by summing the started capacities:6

∑=
ts

start
s ts
gscstartup

, ,     start-up costs   (12) 

This approach allows to keep the basic model formulation with plant condition variables and start-up 

restrictions and simultaneously to account for start-up costs. The model consists of equations (1) to 

(5), and (9) to (12) and is solved as a MIP in GAMS.  

2.2.4 Additional choice variables (MIP approach) 

The following approaches all introduce additional binary variables compared to the benchmark model 

thus keeping a MIP approach following Arroyo and Conejo (2000). The approaches have in common 

that start-up costs are considered as a fixed cost block correlated to the minimum output capacity in 

the hour of start-up. Thus they differ from the previous approaches where start-up costs depend on the 

actual plant output. Due to this similarity they are supposed to produce a similar output. However, due 

to varying equations and binary variables they differ significantly in their computational performance. 

The binary plant condition variables cover the start-up (ups,t) and shut-down (downs,t) of the plant as 

well as the actual plant condition ons,t. Figure 1 provides an overview how the variables are connected: 

if the plant is started in period t ups,t takes the value of 1; when the plant is shut down again in t+n 

downs,t becomes 1; the conditional variable ons,t remains 1 from the starting period t until the period 

before shutdown t+n-1. The actual output in each period in which the plant is running has to remain 

within the minimum and maximum capacity constraints. 

Figure 1: Binary plant variables and output  
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Source: Based on Arroyo and Conejo (2004) 

 

                                                      
6 The model can easily be extended by adding a further costs parameter for ramped generation. 
 6



2.2.4.1 Start-ups as additional choice (MIP-Up) 

Considering start-up costs to be fixed, they can be introduced in the benchmark model by adding a 

new binary choice variable and an additional constraint. Let ups,t be 1 if plant s is started in period t 

and 0 else. Fixed start-up cost follow as: 

min
,

,
s s s

s t
tstartup sc g up=∑     start-up costs   (13)  

In order to ensure consistency with the variable for the plant status, ons,t, we introduce the following 

constraint, which ensures that ups,t becomes 1 if and only if the status of the plant switches from 

offline to online. 

, , , 1s t s t sup on on t−≥ −      choice restriction   (14)  

The model (MIP-Up) consists of equations (1)-(5), (13), and (14), and is solved as MIP in GAMS. 

2.2.4.2 Two Binary Choices: start-up and shut-down (MIP-Up-Down) 

In this approach we replace the binary choice variable ons,t  in the benchmark model by two binary 

choices, ups,t and downs,t: ups,t is 1 if plant s is started in period t and 0 else; downs,t, is 1 if plant s is 

shut down in period t and 0 else.7 Again, these choice variables allow to model start-up costs as pure 

fixed costs. Thus starting costs are defined as in the previous model (equation (13)). The objective 

function (1) and the energy balance constraint (2) remain unchanged. Previous minimum and 

maximum capacity constraints (3) and (4) become: 

(max
, ,

0

t

s t s s sg g up down ),τ τ
τ =

≤ −∑   upper capacity constraint (15) 

(min
, ,

0

t

s t s s sg g up down ),τ τ
τ =

≥ −∑   lower capacity constraint (16) 

The sum of the difference of the binary choices from period 0 up to period t expresses the status of 

plant s in period t.8 It becomes 1 if the plant is online and 0 if the plant is offline in period t. This sum 

is restricted by the requirement that it is lower or equal to 1 since plant s can only go online if it is 

offline. If such a restriction is missing, there is an incentive to choose ups,t equal to 1 in consecutive 

periods which would lead to a higher upper capacity bound in equation (15).  

( ,
0

1
t

sup down ),sτ τ
τ =

≥ −∑     up-down restriction  (17) 

The constraint on the required offline time (5) can be rewritten to: 

, 1
sl

,s t
t

down up
τ

τ

+

=

≤ −∑ s t

                                                     

    adjusted start-up constraint (18) 

The model (MIP-Up-Down) consists of equation 1, 2, and 15 to 18 and is solved as MIP in GAMS. 

 
7 This formulation of the choice variables is somehow similar to Arroyo and Conejo (2000). 
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2.2.4.3 Three Binary Choice Variables: start-up, shut-down and status (MIP-Up-Down-On) 

In this model we use all three of the above binary choice variables, ons,t, ups,t, and downs,t. The 

formulation of the start-up costs and restriction on binary variables to ensure consistency is the same 

as in the MIP-Up model. However, using the downs,t binary variable allows to incorporate the adjusted 

start-up constraint (18) instead of the original start-up constraint (5). Put differently, by increasing the 

number of binary choice variables, we can decrease the number of equations. The (MIP-Up-Down-

On) model consists of equations (1)-(4), (13), (14), and (18).  

2.3 Data 

All models use the same dataset of a hypothetical electricity market without an underlying network 

(Table 1). We assume 40 plants of four different plant types: base load plants with large capacities, 

low marginal and high start-up costs (e.g. nuclear plants), medium load plants with medium capacities, 

relatively low marginal and intermediate start-up restrictions (e.g. coal plants), medium load plants 

with medium capacities, relatively high marginal costs and low start-up restrictions (e.g. CCGT-

plants), and peak plants that have small capacities, high marginal costs and no start-up restrictions 

(e.g. gas turbines). The cost and restriction data is based on Dena (2005) and Schröter (2004). Table 1 

gives a summary of the underlying plant characteristics. For simplicity reasons we assume that there 

are 10 plants of each type in the market.  

The demand curve of the market is constructed to represent a typical day with a noon and an evening 

peak and the lowest demand in the early morning hours. The values have been chosen to have at least 

one demand level in each capacity range (Figure 2). The model period is a 24 hour run. As the model 

formulation needs the previous period for start-up calculations a period 0 has been added to the dataset 

with the same demand level as in hour 1. Thus the model consists of 25 hours. However, the cost 

values obtained for period 0 are not accounted in the objective function (equation (1)). 

In order to test the performance of the models a second dataset based on the German market in 2006 is 

used (Hirschhausen and Weigt, 2007). We conduct model tests consisting of one full week (168 hours) 

for each month of the year. 

Table 1: Plant characteristics  

Plant type 
Maximum 
Capacity 

[gmax] 

Minimum 
Capacity 

[gmin] 

Marginal 
Costs  
[mc] 

Start-up Costs 
[sc] 

Start-up Time 
[l] 

Base Load 800 MW 320 MW 12.5 €/MWh 66.8 €/MW 8 
Medium Load I 400 MW 152 MW 20.0 €/MWh 47.1 €/MW 4 
Medium Load II 250 MW 83 MW 30.0 €/MWh 57.8 €/MW 2 
Peak Load 100 MW 20 MW 60.0 €/MWh 23.1 €/MW 0 

Source: Own estimations based on Dena (2005) and Schröter (2004) 
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Figure 2: Model load curve and plant capacities 
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3 Model Results and Discussion 

3.1 Model Results 

First the models are all tested using the same hypothetical dataset of plants and demand. Thus 

differences are solely contributed to the model formulation. As we assume a fixed demand level the 

market price is derived as the dual variable on the energy balance constraint representing the change of 

the overall costs in case of a marginal demand increase. As can be shown subsequently, the results 

differ due to specific assumptions of each model approach. 

Figure 2 shows the obtained market prices for each hour and each approach. The benchmark case 

represents the pure marginal generation cost approach. Thus, in each hour the market price equals the 

fuel costs of the last running unit. The two stage model takes up this solution, fixes the plant 

conditions and calculates the start-up costs ex-post. Therefore the results indicate when addition units 

have been started, as the market prices exceed the fuel costs in those hours.  

The ramping approach shows price spikes in few hours, negative prices in hour 4 and 15, and price 

levels equal to fuel costs in the remaining hours. The negative prices signal that plants should be kept 

online in order to avoid a re-start-up (e.g. base load plants during night times). Surprisingly, price 

spikes are observed shortly before load and prices go down again. One would assume that start-up 

costs lead to higher prices in situations where load increases. This is due to the model assumption that 

each additional MWh of generation is accounted for with fuel and start-up costs whereas stable 

generation is only accounted with fuel costs. Thus a marginal load increase will only lead to prices 

above fuel costs if the load will not be started up later anyway which is the case in hour 12 and 19. 

 9



The same mechanism holds for negative prices as a marginal load increase will reduce the need for re-

startups.9  

The extended ramping approach shows prices below benchmark fuel prices but no price spikes in 

hours of load increases.10 The prices below marginal costs are due to the fact that keeping plants 

running at minimum output for few hours instead of shutting them down and starting them up again 

results in lower costs if the start-up costs are significantly high. This can be observed during the night 

hours where medium load plants are kept at minimum output to avoid the start-up costs in the 

morning. Therefore the base load plants are not running at full capacity. Thus an additional demand 

could be satisfied with base load plants keeping the price low. The same holds true in the afternoon 

where the second medium load plants are kept online at minimum output. 

The MIP approaches taking into account start-up with a separate binary variable and with the 

minimum capacity as cost determiner produces similar market prices, independently from the concrete 

model formulation. Due to the sunk cost character of start-up cost we do not observe any price spikes. 

However, we observe prices below marginal fuel costs for some night hours and one afternoon hour 

due to the same reasons as for the extended ramping approach. 

The actual power plant dispatch differs according to the model approach (Figure 4). The benchmark 

case and the two stage approach have the same generation pattern which represents the least fuel cost 

solution given the start-up restrictions. The ramping approach shows a slightly altered dispatch in hour 

12 and 15. As the peak units have lower total costs (fuel plus start-up) than the medium load II plants 

the demand peak at 12 is satisfied with peak units whereas the medium load II plants are kept at 

constant output from hours 11 to 13. In hour 15 the medium load II plants are kept online with 

constant output whereas the output of the medium load I plants decreases as the total costs of re-

starting a medium load I plant are lower.  

The three MIP approaches as well as the extended ramping approach all show nearly the same power 

plant dispatch. In order to avoid the re-startup of the medium load plants I they are kept online at 

minimum capacity during the night times and the same holds for medium load II plants during 

hour 15. A small divergence between the ramping and the other MIP approaches can be observed in 

hours 9 and 17. In hour 9 a small fraction of load is satisfied with medium load II plants and in hour 

17 the same holds for peak plants. This is a result of the start-up cost approach that is based on the 

actual output during the hour of start-up. In order to keep the costs low plants are started an hour 

before they are actually needed if otherwise they would have to produce significantly above the 

minimum capacity limit.  

                                                      
9 Numerical example for hour 4: The demand level is below the maximum capacity of all base load plant. Thus an additional 
MW of demand will need 12.5 €/MWh fuel costs. However, the additional demand would reduce the need for a re-start-up of 
the base load unit in the next hour saving 66.8 €/MW. The resulting market price therefore is -54.3 €/MWh. 
10 For this model approach we assume an optimality gap of 1% and the obtained results depend on this gap restriction. In case 
of a higher gap price spikes will occur and prices below marginal costs can vanish. All other MIP approaches have an 
optimality gap below 0.1%. 
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Figure 3: Market Prices  
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Figure 4: Dispatch 
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3.2 Discussion 

When comparing the overall results we can classify the approaches in two groups (Table 2): The first 

group results in relatively low total fuel but high start-up expenses and includes the two stage and the 

ramping approach. The second group leads to low start-up costs but higher total fuel costs and 

includes the extended ramping and the MIP approaches with start-up choice variables.  

The two stage approach takes the unit commitment of the benchmark model and calculates the start-up 

costs ex-post which does not allow keeping plants running to avoid re-startup. Furthermore the plant 

output in the hour of start-up is fully accounted with start-up costs. Thus, the resulting market prices 

are the highest of all approaches and consequently the company profit is the highest as well.  

In the ramping approach each additional unit is accounted with fuel and start-up costs leading to the 

highest overall costs. This is mainly due to the impact of re-starting the base load plants in the 

morning hours. As all other approaches have an integer consideration of plant condition the base load 

plants remain online in all hours and no start-up costs occur. However, the linear approach does not 

take into account plant conditions and obtains costs solely on a dispatch basis. Thus, a part time 

decrease of output will result in start-up costs if the output increases again even if the plant 

theoretically has not been shut down. The resulting average market price is the lowest of all 

approaches. This is due to the high negative prices in cases where a plant should be kept online to 

avoid a re-startup (e.g. during night times). 

Contrary to the first group, the MIP approaches and the extended ramping approach have in common 

that start-up costs are significantly smaller whereas fuel expenses are higher. This is due to the trade 

off conducted to keep plants running as long as the increased fuel consumption is offset by the savings 

of start-up costs. The resulting market prices are either equal to marginal fuel costs of the last running 

unit or lower in case plants are kept at minimum output to avoid re-startup. Thus the average market 

price is slightly lower than the benchmark case.  

A further important question is whether or not the market prices will allow generators to recover their 

start-up costs. Given that the 2-stage approach accounts for start-up costs in the hour a plant is going 

online with the correlating output this approach allows each generator to recover its start-up expenses. 

Consequently the obtained profit of generators is the highest of all approaches. All other approaches 

have prices close to marginal fuel cost level which will allow generators to only recover their costs in 

case more expensive plants are setting the market price. For a more detailed discussion about the 

relation between unit commitment and company profits see Gribik et al. (2007).  

Table 2: Model comparison 

Model Fuel Cost 
[T €] 

Start-up Costs 
[T €] 

Profit 
[T €] 

Average Market 
Price 

Benchmark 4,085.5 - 3,391.3 25.8 €/MWh 
2 Stage 4,085.6 377.9 8,259.2 43.5 €/MWh 
Ramping 4,103.0 463.6 2,858.8 24.0 €/MWh 
Extended Ramping 4,143.0 50.1 2,827.5 24.1 €/MWh 
MIP-approaches 4,137.8 49.9 2,956.7 24.5 €/MWh 
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In order to compare the performance of the models for large markets, we run them for a sample set of 

the German electricity market in 2006. As the resulting computation time depends on the underlying 

parameter values we conduct a series of test runs, one for the second week (168 hours) of each month 

in 2006. All models are run on a standard PC with an Intel Pentium 4, 3 GHz processor, 1 GB RAM, 

programmed in GAMS, and solved using the CPLEX 10.2 solver. We used CPLEX standard options. 

Table 3 shows the performance in terms of computation time, the optimality gap for integer problems, 

and the number of equations and variables for each model. The benchmark MIP shows an average 

performance of 20 seconds and is close to the optimal solution. As the two stage model is based on the 

benchmark approach the number of equations and variables is equal and only the computation time 

increases as the linear problem of the second stage adds to the MIP computation.  

The ramping approach has the best performance in terms of computation time and guarantees an 

optimal solution due to its linear character. This makes the approach a valid option for large scale 

analyses and extensions of the model regarding network implementation. The extended ramping has 

the highest computation time of all models and also the highest optimality gap. This is due to the large 

model size in terms of equations and variables. Nevertheless, the easy implementation of start-up and 

ramping costs may still make this approach a valid option for smaller problem sets. 

The three MIP approaches show a quite different performance. The MIP-Up-Down approach which 

replaces the condition variables by a start-up and shut-down variable shows computation problems due 

to workspace limitations. The size of the model becomes to large due to the summation over all 

periods within equations (15), (16), and (17) leading to memory problems. Thus the relative small 

number of variables and equations is offset by the equation formulation. The remaining two MIP 

approaches both produce close to optimal outcomes but differ in their performance. The MIP-Up-

Down approach has a higher computation time due to the larger number of equations. Although the 

MIP-Up-Down-On approach has the largest number of binary variables the general size of the model 

remains small leading to a fast computation which is comparable to the benchmark case. The results 

indicate that particularly the number of equations as well as inter-temporal components in equations 

can lead to problems in performance whereas the number of binary variables does not harm the model 

performance. 

Table 3: Performance comparison 

Model 

Average 
Solve 
Time 
[sec] 

Standard 
Deviation 
of Solve 

Time 

Average 
Relative 

Gap  

Number of 
Equations 

Number of 
Total 

Variables 

Number of 
Binary 

Variables 

Benchmark  19.77 11.49 0.01% 278,025 102,146 51,072 
2 Stage 22,79 32.07 0.01% 278,025 102,146 51,072 
Ramping  3.56 1.00 -- 102,314 153,218 -- 
Extended Ramping 56.70 72.81 0.88% 431,241 255,362 51,072 
MIP-Up 30.78 13.40 0.01% 329,097 153,218 102,144 
MIP-Up-Down -- -- -- 204,458 153,218 102,144 
MIP-Up-Down-On 18.28 8.64 0,01% 204,458 204,290 153,216 
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4 Conclusion 
In this paper we compare different approaches regarding the implementation of start-up costs using 

either linear or mixed integer formulations. According to the considered start-up costs calculation the 

results differ significantly: When only start-up restrictions are taken into account, but the dispatch is 

still solely fuel cost driven the resulting market prices are well above marginal generation costs. When 

a linearized approach is taken that accounts for start-up costs but neglects start-up restrictions the 

calculated market prices show price spikes and negative prices. The negative prices correspond to the 

willingness to keep certain plants running during the night in order to avoid a re-start-up in the 

morning. 

The mixed integer approaches show somehow similar market results. Particularly, we can observe 

prices below marginal costs of generation as the models make trade-offs between keeping plants 

online even if the demand level is low and shutting them down and start them up again after few 

hours. If start-up costs are linked to the output in the hour of start-up we observe price spikes. If these 

costs are added as a fixed block e.g. related to the minimum output no price spikes will occur. 

Comparing the performance of the models under realistic market conditions we observe that the 

“simple” approaches are faster to solve and can handle large datasets. The more complex mixed 

integer approaches show limitations regarding dataset size and solving time. However, when keeping 

the sample small they solve quickly and reliably. Particularly, the number of equations and inter-

temporal restrictions drive the solvability. 

The results of our paper indicate that none of the applied approaches is capable to obtain price spikes 

in hours of start-up and simultaneously prices below marginal costs when plants are kept online. Only 

the linear approach shows spikes and dumps but the low prices are negative. Thus, when the research 

focus is on obtaining cost minimal dispatch under technical restrictions the MIP approaches are 

preferable because they allow for the choice between keeping plants running or re-start them. When 

the research focus is more on competiveness of market prices and thus generally on the peak load 

situations the two-stage and linear approach tend to produce higher prices and thus can represent an 

upper boundary. Furthermore, they allow an easy handling of large datasets. 
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