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Abstract 
The desire to know and foresee the future is naturally bound to human nature. Traditional 
forecasting methods have looked after reductionist linear approaches: variables and relationships 
are monitored in order to foresee future outcomes with simplified models and to derive theoretical 
and practical implications. The limitations of this attitude have become apparent in many cases, 
mainly when dealing with dynamic evolving complex systems, that encompass numerous factors 
and activities which are interdependent and whose relationships might be highly nonlinear, 
resulting in an inherent unpredictability of their long-term behavior. Complexity science ideas are 
important interdisciplinary research themes emerged in the last few decades that allow to tackle 
the issue, at least partially. This paper presents a brief overview of the complexity framework as a 
means to understand structures, characteristics, relationships, and explores the most important 
implications and contributions of the literature on the predictability of a complex system. The 
objective is to allow the reader to gain a deeper appreciation of this approach. 
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1. Introduction: the desire to know and foresee 
The desire to know is a specific trait of human beings, well recognized by historians, philosophers 
and many other scholars of any age. It is not by chance that one of the most influential books ever, 
Aristotle’s Metaphysics, starts with the words “All men by nature desire to know”, and Maslow, in 
his renown, and debated, hierarchy of needs assigns it a great importance to the desire to know and 
to understand: “We must guard ourselves against the too easy tendency to separate these desires 
(the desire to know and to understand) from the basic needs we have discussed above (five basic 
needs in vogue hierarchy), i.e., to make sharp dichotomy between cognitive and co-native needs” 
(Maslow, 1970: 50-51). 

Naturally and inseparably coupled with the need to know and to understand how things work, and 
what their functioning mechanisms are, there is a strong wish to figure out, as much as possible, 
their future state. This is true for any object of study we may call a system, that is: a set [even small] 
of elements [of any kind] standing in interrelations (von Bertalanffy, 1968: 55). 

This thrust has been recognized for a long time, as Cicero puts it in his De divinatione, probably the 
first technical book ever written on forecasting: “There is an ancient belief, handed down to us even 



from mythical times and firmly established by the general agreement of the Roman people and of all 
nations, that divination of some kind exists among men; this the Greeks call μαντική—that is, the 
foresight and knowledge of future events”. 

The very basics of what today we identify with ‘science’, and most of the techniques used for the 
description, the analysis and the comprehending of natural and artificial systems, come from this 
ancestral need to uncover the future. Mathematics, the most important tool we have, was born out of 
two needs, counting objects and counting time. After that, roughly five thousand years ago, the first 
written records, Sumerian and Babylonian clay tablets, document an incredibly sophisticated series 
of techniques aimed at solving practical problems tied to human survival: computing areas and 
quantity of goods and, more importantly, guess good times for agricultural activities. Some 
centuries later, the same impulse led Egyptian to forecast harvests from the level the Nile reached in 
the flood season. Then, the natural abstraction of the idea of predicting the future resulted in the 
attempts to foresee personal fates and brought prophetic phenomena such as the Oracle of Delphi, 
Zoroaster or Nostradamus. As McHale states: “The future is an integral aspect of the human 
condition. Man survives, uniquely, by his capacity to act in the present on the basis of past 
experience considered in terms of future consequences” (McHale, 1969: 3). 

The contemporary idea of forecasting, however, is relatively recent and might be reputed to 
originate from the work of the XVII century scholars, that put the bases to what is known today as 
scientific method. Physicists, astronomers, meteorologists, economists or social scientists started in 
that period to consider the systems they were investigating as made of a certain number of parts that 
could be examined individually and studied in order to understand their intrinsic dynamic 
characteristic. From the record of system activities they thought possible the derivation of universal 
laws that govern the evolution of the system and foresee its future behavior. 

This reductionist idea is well expressed by the words of the man who formalized the idea: René 
Descartes. In the Discourse on Method he states that it is necessary “to divide each of the 
difficulties under examination into as many parts as possible, and as might be necessary for its 
adequate solution” (Descartes, 1637: part II). Our approach to the issue of understanding and 
forecasting, which is founded on the pre-Socratic, consists of an attempt to disclose the universal 
principles that would explain nature and was elaborated and rigorously formulated as a method by 
thinkers such as Copernicus, Galileo, Bacon, Kepler.  

This work reached its highest point with Isaac Newton and his Philosophiae Naturalis Principia 
Mathematica (1687). Newton’s effort was so successful that specialists of any discipline struggled 
to tackle their own field of enquiry in the same way, especially when no strong empirical tradition 
existed, such as in the study of human societies and actions. Simplicity, coherence and a seeming 
completeness of the proposal, along with a substantial agreement with intuition and common-sense, 
pushed scholars such as Thomas Hobbes, David Hume, Adolphe Quetelet, Auguste Comte (to cite 
only a few), to try to explain aggregate human behaviors by using analogies from the world of 
physics and employing its mechanicistic laws. The same did Vilfredo Pareto or Adam Smith in the 
field of economics. 

The recent history of forecasting mainly revolves around the idea of studying the past behavior of a 
system as observable through the periodic measurements of some of its characterizing parameters. 
The analysis of these time series, started at the beginning of XX century with the works of George 



Yule (Yule, 1921, 1927), and has evolved producing an incredible array of sophisticated methods 
and techniques (Klein, 1997; Mills, 2011). 

These methods are all based on the idea of a deterministic world, as stated by Laplace: “An 
intelligence which, for one given instant, would know all the forces by which nature is animated 
and the respective situation of the entities which compose it, if besides it were sufficiently vast to 
submit all these data to mathematical analysis, would encompass in the same formula the 
movements of the largest bodies in the universe and those of the lightest atom; for it, nothing would 
be uncertain and the future, as the past, would be present to its eyes” (Laplace, 1814: 2). In this 
world phenomena are of a substantial linear nature (or can be easily linearized), and we can 
postulate that the series is the realization of a stochastic process.  

However, when examining a real system such as the economy, the weather, or any other 
phenomena involving a large number of elements whose relationships are not linear or not simply 
foreseeable, all these methods, although partially successful in some cases, show strong limitations, 
mainly in their predictive power which tends to decline very rapidly as the forecast horizon 
increases, revealing a limited maximum interval beyond which forecasts can provide no reliable 
information about the quantities examined (Galbraith & Tkacz, 2007). In other words, complex 
dynamic systems are inherently unpredictable. Nonetheless, the desire to know about the systems 
and their evolution has provided a number of possibilities that give, at least partially, an answer to 
the question. 

In the rest of this paper, after a brief elucidation of what we know about complex systems, we 
concisely describe these methods. 

2. Simple, complicated and complex systems 
The ideal Newtonian world in which one could have examined any system by taking it into smaller 
parts and describe analytically deriving the general laws of its present and future behavior lasted a 
very short time. People started soon realizing that having more than simple individual objects 
introduced a number of additional variables, due to the mutual interactions, that made quite 
difficult, if not impossible, finding a ‘simple’ solution unless by ignoring higher order terms in the 
analytical formulations and restraining the description to a simplified and linearized picture.  

In 1883 Poincaré finally realized that even a small three-body system can be the source of such 
complicated outcomes that the equations describing it become practically unsolvable. In the same 
period Lyapunov (1892) studied the conditions for a stable equilibrium in the motion of a system. 
This work provided the first indication that even minor changes in initial conditions of relatively 
simple systems, when expressed by deterministic relationships, could give rise, in some cases, to 
widely differing trajectories. It is what today we identify with chaos, that is the instability due to a 
heavy sensitivity to initial conditions.  

Large and nonlinear systems (those characterized by nonlinear relationships between components) 
were the subject of an increasing number of studies, that, in the second half of XIX century brought 
to a strong theoretical formalization, mainly due to James Clerk Maxwell, Ludwig Boltzmann and 
Josiah Willard Gibbs (Gibbs, 1902), of what today is known as statistical physics. The idea is that 
ensembles of many objects could not be studied by writing a large number of analytical 
relationships and solve them, but a resort to statistical methods was necessary. This happens, for 



example, if we consider a gas in which a very large number of particles interact (just to give an 
idea, one liter of air contains about 3•1022 molecules).  

In the second half of last century (Solomon & Shir, 2003) we became fully aware that there are at 
least three broad classes of systems: simple, complicated and complex. They can be briefly 
characterized as follows (Amaral & Ottino, 2004; Baggio, 2008; Lewin, 1999; Procaccia, 1988; 
Wolfram, 2002). 

Simple systems: composed of a limited (often one) number of elements, and in which we can easily 
identify cause and effect due to the linearity of the relationships that bind the parts. Examples are a 
billiard ball and the stick that strikes it, a body sliding down an inclined plane, or a simple 
pendulum (provided oscillations are small). On the other hand, a simple object made of only two 
elements, a double pendulum, a pendulum hanging from another pendulum, is well known to any 
physics student for its chaotic and totally unpredictable behavior. 

Complicated system: collections of a number, often very high, of elements systems, whose 
collective behavior is the cumulative sum of the individual ones. This system can be decomposed in 
different parts and understood by analyzing each of them. There are clear cause-effect relationship, 
but it may be difficult to detect them. These are usually static systems or systems that are not really 
vulnerable to changes (if there is a change, it can be easily predicted and analyzed). Examples of 
such systems are a watch, a car, an airplane or a house. 

Complex systems: while practically no common definition exists for such systems, we can 
characterize them as entities made of a large number of elements that have well defined, and often 
very simple relationships and interactions at a local level whose nature is typically nonlinear. This 
causes a dynamic generation of behaviors and structures that is unpredictable by a simple 
composition. These systems, moreover, continually interact with the external environment, 
tweaking both their structure and their behaviors. The visible effects can be seen in the ability to 
sometimes resist large shocks without apparent large modifications, while, in other circumstances, 
seemingly irrelevant events can produce dramatic transitions and disruptions. During its life a 
complex system may form several intermediate structures that appear spontaneously. This self-
organization aims at optimizing available resources and rendering the system more capable to face 
external or internal problems. Also, when surveyed at different (time or spatial) scales the system 
appears to have similar structure and characteristics: it is self-similar. Most natural and artificial 
systems can be labeled as complex: the weather, an economy, tourism destinations, a biological 
organism. 

The dynamic behavior of a system is usually described by observing its trajectory in a phase space 
(or state space), the multidimensional space of all the possible states. The parameters (degrees of 
freedom) of the system are the axes and each state of the system (a set of parameters’ values) is a 
point in the n-dimensional space. Over time, a system can assume many different configurations 
(states); the succession of points corresponding to this evolution is a trajectory in the phase space.  

Depending on some parameters (order parameters) a system may pass from a completely ordered 
phase to one in which it is so strongly dependent on very small variations of the initial conditions 
that it appears completely unpredictable: a ‘chaotic’ phase. In this, which is still governed by 
deterministic laws, the system may tend to follow certain specific patterns. These are termed 
attractors and the regions close to them their basins of attraction. An attractor can be a fixed 



equilibrium point, or a closed path or have more complicated patterns. It is also possible to have a 
system that never returns to the same state (strange attractors). The region at the boundary of these 
phases (between stable and chaotic behaviors) is known as the ‘edge of chaos’, a region of 
complexity (Lewin, 1999; Waldrop, 1992). 

For what interests us here, the most striking characteristics of these systems, composed of hundreds 
of interdependent elements (organizations, people, objects etc.), frequently ‘intruded’ by new 
entrants or affected by external or internal shocks, is the impossibility to forecast accurately any 
long-term future development. This is mainly true when the system settles on an ‘edge of chaos’ 
region or travels through different phases (Linstone, 1999).  

However, some behaviors at system level might still be predictable when an attractor and its basin 
can be identified. In these conditions the system may follow a relatively stable path, showing some 
kind of inertial motion that allows limited (in time) forecasts (Andersen & Sornette, 2005; Boffetta 
et al., 2002). This justifies the many traditional forecasting methods and their (at times) relatively 
successful outcomes. 

One important point, for the success of forecasting activities, is the necessity to assess the general 
conditions of the system in a certain time frame or spatial scale in order to guess what are the 
possible windows of predictability and to choose the best prediction method. This is a crucial 
activity that any forecaster should embrace, and that can rely on well-established techniques, 
developed and tuned by a large array of scholars in many different disciplines. The importance is 
not only a theoretical one, but, as easily comprehensible, also a practical one, for virtually any 
management decision (both strategic and tactical) expects as input a reliable assessment of the 
future behaviors of the system of interest. 

3. Assessing system characteristics 
The most commonly used object for the analysis of a system (i.e. assessment of its complexity or 
chaoticity levels) that can affect the possibility of a trustworthy forecast is a time series of some 
observable quantity related to the system. As said, the inherently complex nature of many artificial 
and natural systems make impossible (mostly theoretically, but often practically) to have analytical 
representations (Lansing, 2003). The only possibility is to record, along a certain time interval, a 
number of observable quantities that can provide a depiction of the system’s behavior and derive 
from these insights into the structural and dynamic features (Kurtz & Snowden, 2003). Examples 
are time series of GDPs, prices, demand, tourist arrivals, temperatures, water levels.  

In all cases it is advisable to choose quantities that in some way consider endogenous elements and 
not only external features. For example, let us consider a tourism destination, the goal of a trip, as a 
system whose components (organizations, environmental resources, and people) are linked by 
different business (institutional, commercial, ownership) and personal relationships (family, 
friendship, trust) (Baggio, 2008). When dealing with such an ‘object’ the number of tourist arrivals, 
the nights they spend at destination or their expenditures are common quantities used for planning 
and forecasting purposes (Frechtling, 1996). Among these, the number of nights spent in a 
destination by tourists is an interesting candidate for investigating the general dynamics of the 
destination system (Barros & Machado, 2010). In fact, overnight stays, besides being obviously 
related to the demand side, are influenced by the perceived image of the destination and strongly 



related to tourists’ expenditures (Sainaghi, 2012). Similarly when studying a socio-economic 
system, such as a whole country or an industrial sector, its overall production expressed by the GDP 
is an ideal aggregate measure. 

3.1. Nonlinear analysis of time series 

Clearly, no full comprehension of the laws governing the system can be attained by only examining 
a time series (Sprott, 2003), but the analysis can reveal a number of properties and allow inferring 
the type of dynamics that generates the observable behavior. as a consequence, such an analysis 
can, at least in principle, provide insights into the possibility to control the system and highlight the 
effects that small perturbations may have in changing its behavior (Sainaghi, 2006). 

Many techniques have been proposed for this task, and a common feature is that most of the 
methods are data hungry, i.e. they give meaningful results only with relatively long-term series 
(typically more than some thousand values). Another sensitive issue regards the frequency with 
which data are collected. If it is too high, the number of values risks to overly increase the 
computational time needed, but if it is too low dynamic patterns may be lost.  

Finally, we want to make sure to have values clearly representing the internal dynamics of the 
system under study. These values should be not excessively disturbed by mechanisms such as trend 
or seasonality that may disguise the properties we are looking for. Unless we are sure that these are 
important features of the system, trend and seasonality components may corrupt the outcomes of the 
measurements by adding too strong effects on the recording of the internal dynamics (Clegg, 2006).  

In any case, experience will guide the researcher towards the best set to study: “this is more an art 
than a science, and there are few sure-fire methods. You need a battery of tests, and conclusions 
are seldom definitive” (Sprott, 2003: 211). As much literature shows, many of the techniques 
available have shown the capacity to provide interesting insights into the structural and dynamic 
patterns of complex and chaotic systems (Baggio, 2008; Baggio & Sainaghi, 2011; Schreiber, 1999; 
Small, 2005). 

The rest of this section will describe some of the most used and important methods that can help 
identifying the dynamics of a system and therefore giving a better idea of its predictability. The 
items discussed are: stationarity, Hurst and Lyapunov exponents, and the visibility graph 
algorithms1. 

3.1.1. Series filtering 

A preliminary step, when needed, to any analysis is the filtering of unwanted components, typically 
trend and seasonality that can, as said, confuse the visibility of important features. The time series 
analysis literature is quite vast on this topic, as it is the most common procedure for any analysis. 
Here we note that most of the known and used methods have ‘linear’ assumptions at the basis and 
do not seem quite appropriate here. A better idea is to use some method that filters the data without 
the need of exogenous hypotheses (such as, for example, the decision on the length of a season). 

                                                 
1 All the methods described in this section can be exploited by using scripts available in many of the most known 
programming environments: Matlab, R, Stata, Python etc. A Google search will allow locating the scripts for the 
environment of interest. 



The Hodrick-Prescott filter is one such possible choice (Hodrick & Prescott, 1997). It is a 
nonparametric, nonlinear algorithm that functions as a tunable bandpass filter. It aims at identifying 
a smooth long-term trend component without affecting too much the short term fluctuations. The 
algorithm is controlled by a parameter λ. In short, the series is split into a stationary and a 
nonstationary component (the trend) so as to minimize the squared deviations from the trend subject 
to a smoothness constraint weighted by λ. High values for λ lead to smoother long-term components 
(λ = ∞ produces a line, λ = 0 leaves intact the observed values). The literature provides a number of 
suggestions for optimally selecting λ (Baggio & Klobas, 2011; Ravn & Uhlig, 2002). Even if 
criticized, the filter is widely used in the economics literature and has received some attention in the 
tourism literature (Guizzardi & Mazzocchi, 2010).  

3.1.2. Stationarity 

The ability of a system to adapt its configuration to events or shocks of internal or external origins 
is an important feature of a complex system. This resilience (Holling, 1973), and the connected 
capacity to independently reorganize can be evaluated by examining the stationarity of the time 
series (Baggio, 2008; Olmedo & Mateos, 2015). That is: if the time series exhibit a substantial 
stationarity, at least in some time periods of reasonable length, it is possible to argue that the system 
is able to recover relatively well from the effects of external or internal shocks.  

Standard procedures can be used to assess this characteristic (Box & Jenkins, 1976; Hamilton, 
1994). However, one warning is in order. There may be sizeable changes in the trend or the level of 
the series exist, these structural breaks must be scrutinized to see whether they can affect, more or 
less heavily, the stationarity, or they have only small influence.  

A number of different tests (with many variations) have been proposed in the econometric literature 
for this purpose, they test the presence of a so-called unit root which signals the non-stationarity of 
the series . The most frequently used are those due to Dickey and Fuller (Dickey & Fuller, 1979), 
both in the simple and the augmented version, to Phillips and Perron (Phillips & Perron, 1988), 
Zivot and Andrews (Zivot & Andrews, 1992), Kwiatkowski et al. (Kwiatkowski et al., 1992) or Lee 
and Strazicich (Lee & Strazicich, 2003). Along with the significance of the hypothesized 
stationarity, some of these tests can provide an estimate of the period where a major structural break 
(if present) occurs. The unit root tests, as happens for many other statistical tests, have different 
applicability, limitations and power. It is therefore advisable to run more than one test and compare 
their results in order to obtain a reliable outcome (Glynn et al., 2007; Metes, 2005). 

3.1.3. Hurst exponent 

Great sensitivity to the initial conditions, one of the features of complex and chaotic systems means 
long-term memory. This aspect can be assessed by adopting the approach originally proposed by 
Harold Edwin Hurst. Work as a hydrologist in Egypt Hurst studied the behavior of the River Nile’s 
rain and drought conditions with the objective to optimally size a dam (Hurst, 1951). He found that 
when a long memory is present, the autocorrelation function p(k) of the time series (k is the lag) 

decays following a power law: p(k)k-α. He was also able to use the exponent α to characterize the 
process generating the time series. We can define H = 1-α/2 (called the Hurst exponent), whose 
values lie in the range 0<H<1. For H=0.5, the behavior of the time series is similar to a random 
walk; when H<0.5, the time series is antipersistent (i.e., if the time series increases, it is more 
probable that it will decrease in subsequent periods, and vice versa); if H>0.5, the time series is 



persistent (if the time series increases, it is more probable that it will continue to increase). 
Therefore, when H>0.5 the ‘memory’ of the system is long and we have a tendency to be chaotic. 
This allowed Mandelbrot (Mandelbrot & Hudson, 2004) to tie the Hurst exponent to the fractal 
dimension D of the series: H = 2 – D (for a univariate series), which is a statistical index of 
complexity that comparing how details in a pattern (a fractal pattern) change with the scale used for 
the measurements. Other authors have used Hurst exponent as a measure of complexity, with the 
indication that the lower its value, the higher the complexity of the system (Giuliani et al., 2001). 

Different methods have been employed to calculate the Hurst exponent, all having their 
specificities, power and reliability in different conditions (Clegg, 2006; Mielniczuk & Wojdyłło, 
2007). Here too, employing different methods and comparing the results is advisable. 

3.1.4. Lyapunov stability 

Aleksandr Mikhailovich Lyapunov (1892) proposed a method to assess the rate of convergence 
between two orbits when one of them had been subject to some kind of perturbation. This can be 
found by calculating a series of quantities, called Lyapunov exponents, that depend on the equations 
of the orbits and on the dimension of the space in which the system is embedded. The largest one 
(LCE: Lyapunov characteristic exponent) gives an important information: when LCE<0, orbits 
converge in time and the system is insensitive to initial conditions; when LCE>0, the distance 
grows exponentially in time. If we use this idea to assess the difference between the system’s 
trajectory in the phase space and a stable attractor, we find a way to measure the sensitivity on 
initial conditions, and hence the complexity or the chaoticity of the system under study. A time 
series of observables can be used, as proposed by a number of authors, to perform this task 
(Rosenstein et al., 1993; Wolf, 1986; Wolf et al., 1985). 

3.1.5. Visibility graph algorithms 

As stated above, the methods of nonlinear analysis of time series require large sets of observations 
that, in usual cases, are not so common. One recent proposal allows, at least partially, to overcome 
this issue. The idea is to transform the time series into a different mathematical object: a network 
(graph). Then, when it is possible to show that the network structure inherits the most important 
characteristics of the series, we can use the powerful techniques of network analysis to assess the 
complexity of the system. There are different proposals for accomplishing this task, that satisfy the 
requirement stated (Campanharo et al., 2011; Strozzi et al., 2009; Yang & Yang, 2008). One 
relatively simple, conceptually and computationally series of methods, termed visibility graph 
algorithms, have been proposed by Lacasa (Lacasa et al., 2008) (Nuñez et al., 2012). The main 
features of a time series (periodicity, fractality or chaoticity) are captured by the algorithms and 
translated into different topologies of the associated network. One of the algorithms, the horizontal 
visibility graph is of particular interest. In fact, Lacasa and Toral (2010) derive analytically the 
shape of the degree distribution of the network obtained that allows distinguishing between a 
stochastic (correlated or uncorrelated) and a chaotic time series and specify the threshold value of 
the exponent of the distribution that separates systems having a chaotic behavior from those whose 
dynamics is a correlated stochastic process. Moreover, it can be shown that the size of the series 
used does not affect heavily the reliability of the outcomes, making it possible the use of relatively 
short series (some hundreds of points) that are common in many environments such as regional 
economies or tourism destinations (Baggio, 2013, 2014). 



4. Complex systems and predictability 
All the different methods described so far are classifiable as diagnostic methods. They provide the 
researcher with a way to assess, at least qualitatively, the degree of complexity of a system and to 
infer the possibility to predict its behavior. The higher the complexity, or even the chaoticity, the 
smaller the predictability window. Qualitatively, as it is extremely difficult, if not impossible, to 
give a ‘measure of complexity’, given the substantial disagreement among scientists on a formal 
definition of a complex system (Bar-Yam, 1997; Lewin, 1999; Wolfram, 2002). For a reasonably 
understandable assessment, the absence of absolute metrics compels to run (a number of) the tests 
described above and to compare their outcomes with some known chaotic or complex system. One 
such example is the one studied by Edward Lorenz (Lorenz, 1963), whose equations can be solved 
numerically to provide a time series representing his famous butterfly chaotic attractor. 

The ‘complexity’ diagnosis is extremely important when dealing with social and economic systems, 
where the capability to forecast accurately is closely connected to the capacity to put in place 
adequate styles for their governance, and steer the system along an evolutionary path able to 
guarantee the achievement of the strategic objectives set. (Folke et al., 2005; Gharajedaghi, 2006; 
Kopel, 1997). When in presence of stable dynamics, traditional management styles can be 
successfully employed. However, when long-term planning is almost impossible, good outcomes 
may stem only from being part of a self-adapting process, and radical or incremental changes 
should be enforced only after careful consideration of their possible effects which can be guessed 
by building and evaluating different scenarios (Lindgren & Bandhold, 2003). Governing a complex 
system requires, in fact, an adaptive attitude, more than a rigid deterministic, authoritarian style. A 
an experimental path is needed, where exploring alternative possibilities, implementing one or more 
of them, monitoring the outcomes, testing the predictions and learning which one most effectively 
allows to meet the objectives is the strong suggestion coming from the studies in complexity 
science (Baggio et al., 2010; Folke et al., 2005; Holling, 1978; Voß & Bornemann, 2011). 

4.1. Empirical applications: tourism system 

Before closing this paper it may be worth mentioning some of the most interesting applications of 
the methods and the techniques discussed in this contribution. To do that, given the wide variety of 
environments in which they have been used, let us consider a single field of research: tourism. 

The choice is justified by the fact that tourism is one of the most important economic activities in 
the world, whose revenue has become a very important resource and a key factor in the balance of 
payment for many countries and regions and is a major contributor to their economic growth. 
Tourism is an archetypal complex system sharing many of the characteristics previously mentioned.  

It is difficult to measure and analyze since it is an ‘industry’ with no traditional production 
functions, no consistently measurable outputs and no common structure or organization across 
countries or even within the same country (OECD, 2000). Tourism activities traverse a number of 
traditional economic sectors and are generally not considered, as a whole, in national accounts. The 
tourism system has also a marked hierarchical and modular structure, with many ensembles of 
actors, typically, but not always necessarily, organized into geographically delimited settings. 

A tourism destination, the unit of analysis for tourism studies, is a spatially localized system made 
of many different companies, associations, and organizations having mutual relationships that are 



typically dynamic and nonlinear (Framke, 2002; Michael, 2003) that renders the response of 
individual stakeholders to inputs from the external world or from within the destination largely 
unpredictable (Faulkner & Russell, 2001).  

One important stream of research concerns the forecast of the demand side. This stream has 
recognized the complexity of tourism systems in several ways, typically by trying to combine 
different qualitative and quantitative methods for the formulation of realistic predictions or 
scenarios (Baggio & Antonioli Corigliano, 2008; Faulkner & Valerio, 1995; Michailidis & 
Chatzitheodoridis, 2006).  

A more direct analysis of the nonlinear complex nature of tourism destinations has been the 
objective of a number of authors (Abraham et al., 2011; Baggio, 2008; Baggio & Sainaghi, 2011; 
Cole, 2009; Olmedo & Mateos, 2015; Sriboonchitta et al., 2011). By using one or more of the 
methods described above and by applying them to different cases they have been able to perform a 
diagnosis of the dynamics of the systems examined so as to highlight the different degrees of 
complexity and chaoticity present in the destinations studied or in some of their subsystems. 

Finally, some initial attempts to use the visibility graph algorithms (Baggio, 2013, 2014) using the 
same data of other studies have confirmed both the previous conclusions and the easier and more 
effective possibilities that this method offers. 

5. Concluding remarks: future developments 
Forecasting is a difficult art, that can rely on an incredibly vast number of methods that have shown 
different levels of success. However, most of them have considered, so far, no more than a 
simplified view of the phenomena and the systems studied. The complexity, or even the chaotic 
characteristics, that make phenomena and systems so difficult to foresee, are almost disregarded in 
the normal practice, with the exception of some primarily qualitative reference to their importance 
and their effects on good and reliable predictions. 

As shown in this paper, however, many techniques exist that take into account the nonlinearities 
responsible for these issues that can be used to arrive to a good diagnosis of the object of study and 
set reasonable limits for the effectiveness of those traditional methods (Boffetta et al., 2002; 
DelSole & Tippett, 2009a, 2009b; Galbraith & Tkacz, 2007). 

From a certain point of view we might say that complexity may also depend on our knowledge and 
our capabilities to understand, and on the sophistication and accuracy of the methods we employ. 
Actually the refinement of these methods and the collection of a wider number of cases is the 
challenging task in which many researchers are heavily involved.  

This effort begins to provide some interesting results. For example, a very recent strand of literature 
has started to examine a partial problem, that of predicting not the full behavior of a system but 
those extreme or critical events that may have a big impact on the smooth functioning of the system, 
or create dangerous critical unexpected transitions (Sornette & Ouillon, 2012; Taleb, 2007), above 
all in areas where this can be of high interest for obvious reasons. From these studies it seems that 
even if not fully predictable, it may be possible to detect some early warning signals for the 
increased probability of black swans (rare, unforeseen and extremely large events) and dragon kings 
(meaningful outliers), so that these symptoms can be helpfully diagnosed (Scheffer et al., 2009). 
Scholars have worked on stock markets and financial bubbles (Sornette, 2003), brain diseases 



(Sornette & Osorio, 2010), tornados (Schielicke & Nevir, 2013), earthquakes or other catastrophic 
events (Sornette, 2002). 

Although still with many uncertainties, forecasting is entering a new era and we should sincerely 
hope that this art transforms into a well-grounded science, since, as Galileo would have said (Letter 
to Orso d’Elci, Florence, 25 December 1617): “this is a complete art, although just born, based on 
principles and means that are new, but noble and commendable, and needs to be embraced, 
cultivated and promoted, so that with exercise and time it will be possible to benefit from the fruits 
of which it has in itself the seeds and the roots.” 
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