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Estimation of a Panel Stochastic Frontier Model
with Unobserved Common Shocks

Abstract

This paper proposes a panel stochastic frontier model with unobserved common
shocks to control cross-sectional dependence among individual firms. The novel fea-
ture is that we separate technical inefficiency (decision-dependent heterogeneity) from
the effects induced by individual heterogeneity (decision-independent) caused by un-
observed common shocks. We propose a feasible maximum likelihood method that
does not require estimating the effects of unobserved common shocks and discuss its
asymptotic properties. Monte Carlo simulations show that the proposed method has
satisfactory finite sample properties when cross-sectional dependence exists. Applica-
tion is illustrated by comparison of the efficiency of savings and commercial banking

industries in the US.

Keywords: fixed effects, common shocks, factor structure, cross-sectional dependence,

stochastic frontier



1 Introduction

The use of panel data has become increasingly popular in stochastic frontier models, for
analysis of technical or cost inefficiencies of production units and financial institutions.
There are two approaches that have been employed to estimate time-varying technical
inefficiency, assuming the presence of firm heterogeneity (time-invariant(fixed/random ef-
fects) or time-variant). The first considers the linear panel models without imposing
distributional assumptions on technical inefficiency; see Cornwell, Schmidt and Sickles
(1990), Han, Orea and Schmidt (2005), Lee (2006), Ahn, Lee and Schmidt (2001, 2007,
hereafter ALS), Mastromarco, Serlenga and Shin (2012, 2013, 2015, hereafter MSS) and
Filippini and Tosetti (2014), among others. The generalized method of moments (GMM,
including the least squared method) is adapted in these studies to estimate stochastic
frontier models with time-varying technical inefficiency. The second approach assumes
that technical inefficiency is random and specific distributional assumptions are required;
see Greene (2003, 2005a, b) and Wang and Ho (2010), among others. The maximum likeli-
hood (ML) method, based on suitable distributional assumptions, is suggested to estimate

the time-varying technical inefficiency.

However, to the best of our knowledge, except ALS, MSS and Filippini and Tosetti,
who tried to use the factor structure to capture the time-varying technical inefficiency
in the stochastic frontier panel data model based on the first approach, there are no
other related papers taking into account the factor structure, which has been discussed
based on the second approach. It is difficult to take the factor structure into account
in the ML framework not only because these two approaches have different estimation
strategies but also because they have different fundamental philosophies of time-varying
technical inefficiency. More specifically, the former treats time-varying firm heterogeneity
characterized by factor structure as a part of inefficiency, while the latter explicitly views
firm heterogeneity (fixed/random effects, time-invariant) as something different from time-
varying inefficiency, named “true” fixed/random effects. Similarly, the same issue arises
if the assumption of “true” fixed/random effects is relaxed by allowing the time-varying
property, that is, what can be treated as inefficiency and what cannot be. As mentioned

by Koopmans (1951),



“The “technique” employed in production is itself the result of managerial
choice (going beyond the discarding of unwanted factor quantities). Managers
choose between, or employ efficient combinations of several processes to obtain

in some sense best results” —Koopmans (1951), p.34

inefficiency can be regarded as the situation where managers “do not” choose an efficient
way to generate the expected output from available capital and labour, which includes the
choice of technology as well as managerial behaviour. In sum, efficiency should be related
to the manager’s decision. Therefore, the relatively clear way to distinguish the time-
varying heterogeneity from inefficiency is that the effects of the former are not relevant
to efficiency given that they are attributable to firm characteristics which the manager

“cannot” change by decisions in the long-run (relatively).

The factor structure used in ALS, MSS and Filippini and Tosetti, by definition, consists
of time-varying factors and the corresponding loadings. As mentioned in Bai (2009), these
loadings could be innate ability, perseverance and industriousness or firms’ heterogeneity
mentioned in Greene (2005a, b), among others; and, factors are the prices (losses) caused
by these unmeasured characteristics when facing time-varying economic environment. In
fact, some of these are inborn; for instance, firms’ heterogeneities cannot be changed easily
but still have impacts on time-varying economic events. Therefore, the estimated technical
inefficiency might be distorted when we incorrectly model inefficiency. For example, it is
hard to conclude that local and small banks that suffer less from global financial shocks
are in general more efficient than multinational banks.

Because of these properties, in our model, the error term is split into three components.

b

The first component is “decision-independent heterogeneity (time-varying),” captured by
the factor structure. The term “decision-independent” is used to emphasize that this
component is irrelevant to efficiency because a manager cannot change it by himself or
herself. Moreover, the “true” fixed effects, as defined in Greene (2003, 2005a, b), Wang
and Ho (2010) and Chen, Wang and Schmidt (2014) can be treated as a special case while
we let the factors (prices) be a constant. The second component captures the “decision-
dependent heterogeneity (time-varying)”, which can be regarded as a measure of “technical

)

inefficiency” similar to most stochastic frontier panel data models. To estimate technical



inefficiency, the scaling function proposed by Wang and Schmidt (2002) is used, that is,
technical (managerial) inefficiency can be explained by some relevant variables according

to the economic theory or organizational behaviour. The last component is a random

shock. !

In addition to the “decision-independent” heterogeneity, factor structure can also spec-
ify the presence of cross-sectional dependence and the correlation between regressors and
factors which are prevalent features in panel data. Ignoring correlation between regressors
and factors induced by these events can be problematic in estimation of panel regressions;

see Andrews (2005), Pesaran (2006), and Bai (2009) for further discussion.?

This paper proposes a panel stochastic frontier model with unobserved factor structure
to capture the unobservable “decision-independent” heterogeneity and accommodate the
possible phenomenon of cross-sectional dependence among individual firms. To overcome
the endogeneity caused by the “decision-independent” heterogeneity, which is irrelevant
to inefficiency and to estimate the time-varying technical inefficiency, we follow Pesaran
(2006) and propose a likelihood-based method.? The transformed model obtained by mul-
tiplying an annihilator matrix consisting of the cross-sectional averages of the dependent
variable and regressors should allow filtering of decision-independent heterogeneity (in-
cluding true fixed /random effects) asymptotically. However, in our setup, the time-varying
technical inefficiency in the right hand side is needed for estimation, which makes the an-
nihilator matrix dependent upon the parameters. To address this issue, we first construct
an open ball in the parameter space around the true value of parameters and show that
the maximizer of the log-likelihood function calculated from the transformed model (fea-
sible approximated log-likelihood function) will occur in this open ball with probability
1. We then show that under some regular conditions, the difference between the feasible

approximated log-likelihood function and the one that treats decision-independent hetero-

IThis specification is also robust to the “omitted variable” problem in the scaling function while the
omitted inefficiency can be decomposed to form a factor structure.

2 Ackerberg, Caves and Frazer (2006) have mentioned that although some shocks(factors) are unobserved
by econometricians, they are potentially predictable by firms when they are making input decisions, such as
expected defect rates, expected down-time due to machine breakdowns, or expected government policies.
This is the classic endogeneity problem whereby the firm’s optimal choice of inputs will generally be
correlated with these unobserved shocks.

3These effects could referred to as common correlated effects (Pesaran, 2006) or interactive effects (Bai,
2009).



—1/2 in this open

geneity as known is negligible and is faster than the usual rate of (NT)
ball. Thus, we can assure that the asymptotic properties of the proposed estimators are
the same as those obtained from the transformed model which treats decision-independent

heterogeneity as known when (7', N) — oo jointly and T/N — 0.

There are a few additional features of the proposed method. First, it possesses the scal-
ing property proposed by Wang and Schmidt (2002) and Wang and Ho (2010). In contrast
to ALS, MSS and Filippini and Tosetti the scaling-property enables investigation of how
firms’ efficiency levels vary with exogenous variables.* Second, our approach can be easily
extended to estimate the cost function and cost inefficiency. We also conduct some Monte
Carlo simulations to investigate the finite sample properties of the proposed method. The
simulation results show that the proposed estimator has significantly smaller biases and
MSEs than the within-transformation estimator when unobservable time-varying decision-

independent heterogeneity exhibits in the data.

To illustrate its relevance, the proposed approach is applied to analyze cost inefficiency
of the savings and commercial banking industry in the U.S. Recent studies on bank ef-
ficiency do not deal with effects of time-varying decision-independent heterogeneity; see,
for example, Lensink et al. (2008) and Sun and Chang (2010). The empirical results show
that bank efficiency improved before 2006 and the estimated inefficiency index might be

biased if we do not take into account the time-varying decision-independent heterogeneity.

The remainder of this paper is organized as follows. Section 2 describes the panel
stochastic frontier model with time-varying decision-independent heterogeneity and dis-
cusses asymptotic properties of the proposed estimation procedure. Section 3 conducts
some Monte Carlo simulations to investigate the small-sample properties of the proposed
estimator. An empirical application is discussed in Section 4. Section 5 concludes this

paper. All mathematical proofs are provided in the Appendix.

“However, we do not compare the proposed model with the one used in Ahn et al. among others because
these two model specifications have different philosophies of time-varying technical inefficiency.



2 Panel Stochastic Frontier Model

2.1 The Model

Consider a panel stochastic frontier model with the following specifications:

Vit = a; + T B+ N fr + v — ui, i=1,...,N, t=1,...,T, (1)
it = A+ T/ i + e (2)
wip = hyul = h(z,0)ul, (3)

where y;; is the logarithm of output of firm ¢ in period ¢, x;; is a kx 1 vector of the logarithm
of inputs in this production system, «; denotes individual fixed effects, and v;; is a zero-
mean idiosyncratic error. Let f; be a 7 x 1 vector of price/cost to unobserved common
economic events, A; be the heterogeneous impact of common shocks on firm 4, and u; is
the term used to measure inefficiency. The regressors are also affected by individual fixed
effects, A;, and common shocks, where A; is a k x 1 vector which is correlated with «;,
and 7; denotes a r x k vector of factor loadings. The specification not only allows for cross-
sectional dependence through three error components but makes for correlation between
time-varying heterogeneity and regressors. The idiosyncratic error e; is independent of
all observations on v;; and ug;. Finally, let h;; be a positive function of firms’ inefficiency
determinants z;;, uf ~ NT(u,02), where the distribution is truncated from below at zero
such that u; > 0. This specification is referred to as the scaling property, which allows
us to estimate coefficients and inefficiency in a one-step procedure.® The scaling property

also allows the inefficiency wu;; to be correlated over time for a given individual.

A number of features in these specifications are of interest. Firstly, in contrast to
the conventional stochastic frontier literature, our model can distinguish the decision-
independent heterogeneity, A. ft, from technical inefficiency, u;. The decision-independent

heterogeneity is used to capture the heterogeneous impacts of unobservable common eco-

5Conditional on z;, the scaling property means that technical inefficiency equals some function of
exogenous variables times a one-sided random varaible distributed independently of z;;; see Wang and
Schmidt (2002).



nomic events, which can not be controlled by managers. Secondly, an endogeneity problem
may arise because unobserved decision-independent heterogeneity may affect both firms’
input decisions, x;;, and their outputs, y;.° Thirdly, the conventional fixed-effect stochas-
tic frontier models proposed by Greene (2005a, b) and Wang and Ho (2010) are special
cases of our specification with f; = 1. Fourthly, compared with Ahn et al. among others,
our specification enables us to directly investigate the effects of observed variables z;; on

inefficiency and then obtains meaningful policy inferences to improve efficiency.”

2.2 Estimation

In this section we propose a transformation to control for the decision-independent hetero-
geneity (referred to as the CCE transformation®), and then apply the maximum likelihood

method to consistently estimate the parameters in the stochastic frontier model (1) — (3).

Define
M, = Iy — Ho(H,H,) ' Hj,

where

I:IO = (DaY,BOMJ)a

D = (di,...,dr)" = (1,..,1) is a T x 1 vector of ones, Y = (¥, X) is the cross-sectional
average of (y;,X;), ho denotes the cross-sectional average of h; evaluated at &j, and
,uar denotes the true value of u* = %O‘u, the mean of the truncated normal u; ~
Nt (,u, JZ). ® and ¢ represent the cumuluative density function and probability density
function of a standard normal distribution, respectively. Throughout this paper, we use

the subscript “0” to indicate that the parameter is evaluated at the true value. The rank

of My, which depends on the dimension of Hy = (D, Y, hopy ), is T — dim(Hp) = T — s.

To solve the endogeneity problem, Olley and Pakes (1996) and Levinsohn and Petrin (2003) show that
investment and intermediate goods can be used as the proxies of these unobserved state variables; however,
they may not be valid in the cost function analysis.

"Notice that z;; is allowed to include unobserved common shocks, fi.

8This transformation share the same spirit with Pesaran (2006) to deal with common correlated ef-
fects (CCE).



Transform (1) by multiplying it by My,
Moy; = MoX;3 4+ Moe; + MoFA;, (4)

where Moe; = Mov; — Mou;. In particular, v; = (vi1,...,v7) and w; = (w1, ..., uir),
thus, Mov; ~ N (0,Ip), Iy = 02My, and Mou; = Moh (z/6) u}. Furthermore F =
(f1, f2, -, fr) is a T x r matrix. Since My is an idempotent matrix, we solve the non-
invertible problem of My based on the method of Khatri (1968). In addition, following

Wang and Ho (2010), we obtain the conditional log-likelihood function for each i as
1 9 1 Jo
InLi(0) = =5 (T' = s) (In(27) +Inoy) — 5 (v = XiB) Molly My (v — X;8)

2 2
+ e +1In {0, B<)) — 1 ouP ~ ,
2\o? o2 o Oy

_ /oy — (yi — XiB) Molly Moh;
W MoIL; Moh, + 1/02

(5)

where

1 (6)

1
N P .
h.M,II; Moh; + 1/02

(7)

The model parameters can be estimated numerically by maximizing the objective function,
Qnr(0) = (NT)! Zf\il InL;(6), where & € ® C R? is an unknown parameter vector,

where d is the number of parameters.

Notice that the above estimation procedure is designed for the production system. For

the cost function, the model should be modified as
it = o + @B+ N fr + vie + i, (8)

where y;; denotes the total cost of firm ¢ in period ¢. The individual log-likelihood function

is similar to (5) except that

_ #/og + (yi — XiB) Molly Moh;
h;M()HO_Mth + 1/0’%

*



2.3 The Properties of the Proposed Method

By an analogous argument to Pesaran (2006), we will show that My can filter out the un-
observable time-varying decision-independent heterogeneity in our three error components
stochastic panel data model. To complete the inferences of consistency and the asymptotic

normality of the proposed estimator, the following assumptions are used throughout this

paper.
Assumption 1.

The error structure contains v;, e; and u;, which are distributed independently of each

other and of the regressors x;, z;;, V 7,t. We also assume that

Vit ~~ N(O, 0'12})

u;k ~ N+(M7012L)7

where the variances 02 and o2 are bounded.

Assumption 2. The common factors d; and f; are covariance stationary with absolute

summable autocovariances, distributed independently of v;;, e;; and w, V ¢, t.

Assumption 3. The unobserved factor loadings A; with mean 1 and 7; with mean T,
specifically, A\; = n + n; and 7, = 7 + ¢;. Furthermore, they are mutually independent

and independent of v;, e;, u}, and the common factors d;, fy, V i,t. In particular, |||

7
and ||7;|| are bounded with a finite second moment.

Assumption 4. The function of the determinants h(z],0) should be assumed to have
finite first, second, and fourth moments and to be distributed independently of v;, e;; and
uy YV i,t.

Assumption 1 is a standard distributional assumption for the stochastic frontier model.

Assumptions 2 — 4 are similar to the assumptions used in Pesaran (2006) for the panel

model with multi-factor error structures.



We rewrite the stochastic frontier model (1) — (3) as

yie | _ 1 g a; i+ Iye X Ut N vit + Beq
Tt 0 I A, 0 I ] 0k x1) €t

or

Y =Bid: +Cf: — Uy + €ir;

here d; = 1. After taking the cross-sectional average under the equal weight, we have
Y, =B'd+C'f, — U, +&, (9)

where Uy = (@,0') and @ = N~'3°N . In the light of Pesaran (2006), we obtain

_ _ (14
& L 0and C L C as N — oo, where C = [ A T ] . Under the assumption
B I
Rank(C) = r < k + 1, it can be shown that
fi — (CCHIC(Y, — B'd; + Uy) 25 0. (10)

Thus, the set {D, ¥, X, U} can be regarded as the proxy of the factor structure. Based on

Pesaran (2006), to proxy the common factors in our model, we could use

Notice that u; is not observed in the data. To overcome this problem, we propose using

ﬁo,ug as a proxy for w. Under Assumptions 1 and 4, we have
_ T P
Ut — ht,O,U*(J)r — 0

as N — oo, where hg = (h10, ..., hrp)'. It follows that

FLLOM(J)F E}
0

fi—(ccHtc|Y,—Bd +



By substituting ﬁouf{ in H*, we obtain

Ho=[D y X hou |-

The transformed matrix which consists of Hy could work because we construct this
matrix by using the true value of § and u™. However, it is not reasonable to assume
that we know these values ex ante. Therefore, we shall prove that the deviation of § and
pT should lead to the transformed log-likelihood function not converging to the correctly
specified log-likelihood function and being less than it with probability one when this
deviation does not vanish as the sample size increases. To show this property, we define
two log-likelihood functions after transformation by using the transformed matrixs M,
and M. In contrast to Mg, here, M denotes the transformed matrix which is evaluated at
estimated & and . The first of these two functions is the correctly specified log-likelihood

function considering the time-varying decision-independent heterogeneity,

ARG |
Qnr(0) =(NT)™" {—5 (T —s) (In(27) + Ino?)
i=1

1 .
— =(yi = XiB — FoAi o) MII"M(y; — X;8 — FoXip)

e O R )

p/02+(yi—XiB—FoXi0) MII—Mbh;
h;MII-Mh,;+1/02

where p. = . The second one is the log-likelihood function

ignoring this heterogeneity,

Qnr(8) =(NT)™ Z {—% (T — ) (In(27) + Ino?)

=1

— %(Yi — X;8)'MII"M(y; — X;3).

G5 eo ) o))

The main differences between these two functions can be disclosed as follows. In (12), since
we assume that the factor structure is known ez ante in both factors and corresponding

loadings, the model can be correctly specified without ignoring the effects of the factor

10



structure. Thus, the factor structure appears in the second line of (12) which is the same
as the well-known normal distribution with location (mean) and scale (variance) parts.
On the other hand, the log-likelihood function defined in (13) is more realistic because
we usually cannot observe these factors and their corresponding effects. Thus, the factor
structure does not come out in the location part and p, of (13). We replace . by p.
in the third line to characterize the truncated property. This log-likelihood function is
“feasible” because the difference between (12) and (13) can be ignored under assumptions

1 — 4 and some regular conditions,

Assumption 5. (i) Let Qu(9) = E[Qnr(0)], Qo(8) = E[Qn7(0)], and Qo(6) is uniquely
maximized at 6p; (ii) © is compact; (iii) Qo and Qg are continuous at 8; and (iv) Qn7(6)

and Qn7(8) converge uniformly in probability to Qq(0) and Qo (), respectively.

We state the main properties of these two functions in the following proposition.

Proposition 1. Let B = {6y + byrd : ||d|| < K}, where byt converges to 0 as N, T —
00, along with Assumptions 1-5, the “feasible” log-likelihood function has the following

properties:
1. 1QnT(8) — Onr(8)] 25 0 when 6 € B.
2. P[Qnr(80) — Qnr(0) > 0] = 1, when 6 € B°N O,

as N, T — oo jointly.

The first result of this proposition indicates that if we construct an open ball, B,
with the center 6y and its radius converging to zero, we can show that the “feasible”
log-likelihood function is uniformly close to the correctly specified likelihood function for
all 8 € B. In addition, the second result implies that, with probability one, there is a
positive difference between Qnr(6g) and Qnr(8), and it does not vanish as N, T — oo if
0 € B° N ©. This implies that if we consider a candidate solution of 8 € B¢ N @, named
6', we have Qn1(69) > Qnr(0') in probability one. In other words, 8’ is not the solution

of the “feasible” likelihood function because we can always find another solution 8” € B

11



which is closer to 8y to make Q N7 (0") close to QN (0p). Consequently, these results lead

to the following theorem about the consistency of the “feasible” log-likelihood function.

Theorem 1. Assume that the conditions of Proposition 1 hold. Then 6 r, 609 as N,T —

00 jointly, where 0 is obtained from mazimizing the objective function Q N7(0).

Theorem 1 shows that, instead of maximizing the correctly specified log-likelihood
function, if we maximize the “feasible” log-likelihood function, then we can obtain a
consistent estimator of @y. Although it is expected that /NT (0 — 6y) has asymptotic
normality, derived from maximizing the correctly specified log-likelihood function in (12),
the behavior of @ obtained from Qx7(8) is not trivial. Because the “feasible” function is
an approximate function of the true one, we can not apply the traditional method, such
as the mean value theorem, to obtain the asymptotic behavior of its estimator. Instead,
we apply the framework which is used in Kristensen and Shin (2012). In their paper,
they show that as long as the difference of two objective functions converges to zero faster
than the usual convergence rate of estimators, for example root-NT', the two estimators
obtained from these two functions will share the same asymptotic behavior. Furthermore,
since the property of smoothness in log-likelihood function Q7 (8) is the same as Q n7(0),
both of them have the same rate of convergence, root-NT. Therefore, in the following
proposition, we show that under what conditions, the difference between QN7 (@) and
Q ~7(0), will converge to zero after multiplying by root-NT'. We summarize the result of

the requirement to ensure a stronger convergence of Qn7(0) and Qnr(8) as follows:
Proposition 2. Using the assumptions in Proposition 1 we have the following result:

VNT|QnT(0) — QNT(G)] L0 when 6 € B and byt = op (Cnt), where Cnr =

min{ N~V/2 712 (NT)"'/4}, as N,T — oo jointly and T/N — 0.

This result discloses the required converge rate of by to guarantee the stronger con-
vergence property of Qnr(6) and Qn7(6). This minimum rate of convergence is slower
than the converge rate of estimators 6 and 6 and therefore proves the hold of the property
of Proposition 2 in our “feasible” log-likelihood function. That is, the difference between

Qn7(0) and Qnr(0) after multiplying by root-NT converges to 0 as N,T — oo jointly

12



and T/N — 0. This result is crucial because it can be used to show that the asymptotic
behavior of 0 is asymptotically equivalent to 6 obtained from Qn7(0) by using Lemma 1

in the Appendix. We state the above result as the following theorem.

Theorem 2. Using the assumptions in Theorem 1 and an additional assumption (L1):
Qo(0) is three times continuously differentiable and its derivatives satisfying: (i) vV NTS(60y)
D

=5 N0, {B[-H(80)]}1); (ii) H(8o) — E[H(60)); (iii) max;—1,__4supg || 550900 || =

Op(1), we have the following result:

VNT(6 — 69) 25 N(0, {E[~H(60)]} "), and E[H(60)] — E[H(60)],

as N,T — oo jointly and T/N — 0. Here, S(0y) = anée) lo,, and H(By) is the Hessian

matriz of Qo(0) and H(0y) is the Hessian matriz of Qo(0)at Oy, respectively.

Compared with ALS, MSS, and Filippini and Tosetti, our estimation allows us to focus
on z; that is concerned with measuring inefficiency and to treat time-varying decision-
independent heterogeneity as a part of the factor structure which can be filtered out by our
transformation. According to the above asymptotic properties, our estimation still have
asymptotic normality and is asymptotically equivalent to the function which treats the
factor structure as the observed structure. Furthermore, the GMM-type(including OLS)
method can not distinguish between time-varying decision-independent heterogeneity and

technical inefficiency.

2.4 The Inefficiency Index

It is important to measure the inefficiency index in applications. How, then, can the
inefficiency index be estimated after the proposed transformation? We follow Wang and
Ho (2010), who use the conditional expectation estimator proposed by Jondrow et al.
(1982), namely, E(u;|e;) evaluated at &; = &;, to construct the inefficiency index. In the
same manner, the inefficiency index in our estimation is the conditional expectation of u;;

on the vector of the transformed e; = v; — u;, i.e., Me;. Note that Me; is evaluated at

13



1\_//1-;-, and following Wang and Ho (2010), the conditional inefficiency index is

*

o (%)

E (ui|Me;) = h(z;8) | s + (14)

3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to investigate the finite sample prop-
erties of our proposed estimator. Consider the following stochastic production frontier

model fori=1,...,Nandt=1,...,T:

Yit = i + T8 + N fr + vip — exp(2),0)u; (15)

Ty = A + T fi + e, (16)

where o; ~ U(0,1), x4 is a regressor, fi ~ N(0,0) is a common factor, O'J% = 0.2, factor
loadings A; and 7; follow N(1,0.2), and z;; consists of z; 1 ~ N(0,1) and 22 = t, which
implies that the inefficiency is time-varying, vy ~ N(0,02), uf ~ NT(u,02), vy and u}

are mutually independent, and e;; ~ N(0,1). The parameter values are
(B,01,02,02, 02, 1) = (0.5,0.5,0.1,0.1,0.2,0.5).

N = {50,100,200,400}, T" = {5,10,20}, and the number of replications is 1,000 in all

simulations.

To demonstrate the importance of our transformation in the presence of time-varying
decision-independent heterogeneity, we also compare our method with the estimation
which only takes the fixed effects into account by means of the Within transformation.

Hereafter, we let Within denote the latter method and let CCE denote our estimator.

Our simulation results are reported in Table 1. We find that CCE tends to have a
smaller bias than Within for all parameters over all combinations of (N,T) except for do
when T' = 5. Moreover, CCE uniformly has a smaller RMSE than Within as 7" > 10.
Even when T = 5, the RMSE ratios, vy =RMSE(Within)/RMSE(CCE), increase with

14



the increase in N. For example, the ¢ of § is 0.614 when (N,T) = (50,5) and increases
to 1.036, which indicates that CCE has a smaller RMSE than Within by 3.6%, when
(N,T) = (50,5). It is also worth noting that the bias and the RMSE of CCE decline
as T or N increases for all parameters. By contrast, due to failing to control for the
time-varying decision-independent heterogeneity, the Within estimators of S and § are

still biased and cannot be improved even when T or N is large.

For robustness, we further consider the finite sample performance for different degrees
of cross-sectional correlation by adjusting the magnitude of o;. In particular, we consider
three settings with JJ% = 0.1, 1 and 0, respectively. As we can see from model (1), when
oy is smaller, our model is closer to the model with fixed effects only and the time-varying
decision-independent heterogeneity become less important. The last case implies the model
which has only fixed effects. Furthermore, instead of letting z;; o = ¢ in h(z],6), we consider
group-specific inefficiency by letting z;;2 be a group dummy such that z; 2 = 1 for any
unit in Group 2; otherwise z; 2 = 0. The members in Group 1 are randomly assigned in
each repetition with the number of units Ny = [U(0.3,0.7) x N, regardless of whether
| A] is the integer closest to A. The other group has N — Nj units. The group membership

is known in advance. The parameters in this set of simulations take the following values

(B,01,00,02,02, 1) = (0.5,0.5,0.1,0.1,0.2,0.5).

The results are summarized in Tables 2 and 3 with 7" = {10, 20}, respectively. Since
we have similar patterns to the previous simulation, that is, the bias and the RMSE of
CCE decline as T or N increases, we do not report the case when T" = 5. It will be
clear from these results that the bias for Within seems to be less serious as O'J% = 0.1, and
becomes more significant as 0']2c = 1. More importantly, the performance of our approach
is generally better than that of Within approach even when J]% = 0.1, which demonstrates
that our method is still robust even when the degree of time-varying property to decision-
independent heterogeneity is small in the data. In particular, the estimates of o2 and o2 for
the Within approach seem to be overestimated in the presence of the time-varying decision-

independent heterogeneity. On the contrary, CCE provides less unbiased estimates even
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when a? = 0.1. However, the CCE estimator tends to be less efficient when the model

only contains fixed effects.

We next consider the experiment in which both z; and z; are correlated with an

unobservable common factor. We set u;; = exp(z/,0)u; to ensure that u; is positive. Let

zi =Y ft + €. it (17)

and z; is correlated with f;. We still have two variables 2z ;; and 22 ;; which can affect u;.
In particular, the factor loadings 7; 1 and ~; 2 follow N(1,0.4) and N(1,0.2), respectively,
ft ~ N(0,0.6) to indicate that the factor is important in this model, and each of e, ;; fol-
lows N(0,1). z; is similar to the former setting. The parameters in this set of simulations

take the following values

(B,61,00,02,02, 1) = (0.5,0.2,—0.1,0.1,0.1,0.4).

Table 4 summarizes the simulation results. A general finding is that our proposed
method is relatively much better than Within in all combinations. The bias is almost 0 in
CCE except for 02, whereas the bias of Within is serious not only for 3 but also for the §’s.
Notice that the small bias of o2 in CCE will decrease as N increases. On the contrary, the
bias of ¢2 in Within is enormous, and it is not surprising because Within does not control
the time-varying decision-independent heterogeneity, and the components from the biased

A~

hit will induce large variations in w;.

In general, the simulation shows the clear results that the estimation without control-
ling the time-varying decision-independent heterogeneity will bias the estimates. We also
conduct a similar simulation for the cost frontier model, which is not reported here. Its
pattern again confirms the importance of taking the time-varying decision-independent
heterogeneity into account in a stochastic frontier model and the findings are similar to

the findings summarized in Tables 1 — 4.
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4 Empirical Study

In the years leading up to the 2008 financial crisis, banks in theU.S. suffered from a dif-
ficult environment. Given that this crisis was induced by a rise in subprime mortgage
delinquencies and foreclosures, a key question that arises concerns for the performance
before the said crisis of the banks in the U.S., two basic types of banks co-exist in the
market, namely, savings and commercial banks. These two types are generally character-
ized by their ownership structure and by the services they provide. In the U.S., savings
institutions may be owned by shareholders (stock), or by their depositors and borrow-
ers (mutual). Based on the agency theory and property rights theory addressed by the
seminal works of Jensen and Meckling (1976) and Fama and Jensen (1983), in contrast
to commercial banks which are generally stock corporations, savings banks may not ap-
pear to engage in skimping behavior. Particularly in the period before the crisis, as we
know, savings banks had to hold a certain proportion of their loan portfolio in housing-
related assets to preserve their charter. Therefore, these savings banks faced the problem
of overbuilding during the boom period, which resulted in their increasing loans, as well
as inappropriate government regulation before the financial crisis. In particular, more
and more loans to higher-risk borrowers were offered by the lenders, thus revealing the

inappropriate managerial behavior of savings banks before the crisis.

Another aim of this paper is to examine the change in efficiency that resulted from
the banking consolidation. According to data complied by the Federal Deposit Insurance
Corporation (FDIC), the number of commercial banks had fallen to 6,279 at the end of
2011, a drop about 49.1% since 1990. Similarly, the number of savings institutions fell from
2,815 to 1,067 over the same period. There is still a debate between the issues of efficiency
and the banking consolidation. In general, the consolidation will increase the market
power, and therefore lead to a decline in competition. From the viewpoint of competitive
efficiency, the efficiency of banks should be lower in this scenario. Put differently, an
increase in competition will wear the bank’s pricing power away, and increase the bank’s
risk taking behavior; see Berger et al. (2009b) and Beck, Jonghe and Schepens (2013).
Hence, an increase in competition could lead to lower profit and higher cost under the

same allocation of inputs; in other words, cost inefficiency. To explore the relationship
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between banking consolidation and efficiency, we focus on the banks which have not failed
or have merged with other banks. In other words, we collect data for the banks that have
existed over the whole sample period under consideration. By building on this situation,

we can show, on average, the effects of consolidation without the failed banks .

4.1 Data

We evaluate the cost efficiency of commercial and savings banks in the U.S. by using the
proposed transformation allowing for the time-varying decision-independent heterogeneity
in the stochastic frontier model. The conventional intermediation approach to measuring
the cost faced by a bank is used in this study. Total cost is defined as the sum of interest
expenses and non-interest expense. Following Berger et al. (2009a) and Sun and Chang
(2010), we consider the following output variables in the cost function: total loans (TL),
other earning assets (OEA), total deposits (TD) and liquid assets (LA). We additionally
consider the price of capital (PC) and funds (PF), defined by the ratio of non-interest
expenses to total fixed assets and the ratio of interest expenses to total deposits, respec-
tively, as our input prices. In order to guarantee linear homogeneity in the input prices of

the cost function, we re-scale TC and PC by PF.

The cost function used here is

TC PC
In <ﬁ>n = BpIn <ﬁ>2t + B1InTLj + B2 In OEAy (18)

+ B3InTDy + BaIn LAy + Xi fy + vig + wip.

To allow the inefficiency across banks to be measured by explanatory variables, we use the
scaling function proposed by Wang and Schmidt (2002). The specification of the scaling

function is as follows
h(z;t5) = exp(d1 In TA;; + 62ETA;; + 63ROAA ;. + Type), (19)

where TA denotes the total assets less liquid assests, ETA denotes the equity to assets,

and ROAA denotes the return on average assets. These three variables are commonly
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used to control the efficiency. TA measures the relationship between the efficiency and
the size of the bank. ETA can represent the equity position of a bank and avoid the scale
bias making large banks more efficient (Berger and Mester, 1997). In addition, ETA may
reflect the risk preference of a manager of a bank. ROAA can be regarded as a proxy for
manager ability. A type dummy variable is also included to capture the effect of different

of types of banks.

We consider a balanced panel data set covering 1994-2007 with 223 banks in the U.S.
The data are taken from Bankscope and are inflation-adjusted. Except for ETA and
ROAA, all the other variables are transformed into natural logs. Table 5 presents the

descriptive statistics of these variables.

4.2 Empirical Results

The empirical results obtained by our approaches are summarized in the right panel of
Table 6. We report not only the estimates of the coefficients in the cost function [’s,
but also the estimates of the parameters in the inefficiency equation §’s. For comparison
purposes, we additionally show the results based on the Within approach in the left panel
of Table 6.°

Let us consider the coefficients in the cost function using our approach first. The
coefficient of the input prices (PC/PF) is positive at the 1% significance level, which
indicates that a higher capital cost results in a higher total cost and is similar to the
empirical results of Lensink et al. (2008) and Sun and Chang (2010). As expected, the
output variables, such as TL, TD and LA, also have positive effects on the total cost.
While the estimated coefficient of OEA is negative, it has a rather small effect in contrast
to other variables. The empirical results from the Within approach are qualitatively
similar to those based on our CCE approach. However, the former tends to deliver smaller

estimated coefficients of TL, TD and LA than our approach.

Next, we turn our focus to the coefficients of the inefficiency equation. The coefficient

for TA, equal to -0.202, is negative and significant at the 1% level, which implies that

9We also consider the trend effects while implementing the Within approach by adding ¢ and ¢* along
with intercept to form the idempotent matrix M.
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larger banks are on average more efficient than smaller banks as TA is regarded as a proxy
for bank size. The estimated sign of this coefficient is different from that in Han et al.
(2005) and Sun and Chang (2010). However, Delis and Papanikolaou (2009) pointed out
that the relationship between bank size and efficiency is inverse U-shaped, which implies
that the efficiency increases with size and then decreases thereafter. In our data, almost
90% of banks are small and medium-sized and, therefore, are more likely to have a positive
relationship with efficiency.'® In addition, our results indicate that an increase in ETA
will raise inefficiency, which can be explained in two ways. First, ETA can be regarded
as a proxy for the risk-preference of a manager. A higher equity position reveals that the
manager is risk-averse and might not be good at using financial leverage to increase the size
of a bank, which indicates that the manager may not seek to minimize the cost. Second,
inefficiency will lead to a lower profit and put equity in a high position. Furthermore,
the negative relationship between ROAA and inefficiency is also in line with Lensink et

al. (2008).

Although the ROAA should exhibit a negative relationship with inefficiency as pointed
out by Lensink et al. (2008), we can not find strong evidence to link ROAA with efficiency,

even if the sign is negative and has only a very slight effect.

Furthermore, the type dummy variable for identifing the different performance shows
the positive effects on commercial banks. The effect is not only statistically, but also eco-
nomically large. The result shown in the table is equal to -0.263, which provides strong
evidence to show that savings banks are less efficient than their commercial counterparts.
It supports the view that savings banks had poor managerial behavior before the crisis
when they faced overbuilding during the boom period, increasing loans and inappropri-
ate government regulation and did not tend to minimize their costs. On the contrary,

commercial banks were more efficient.

Comparing the results of different approaches further reflects the importance of control-
ling the time-varying decision-independent heterogeneity in the stochastic frontier model.

The second column of the table from the alternative approach which only takes account

YFollowing Berger et al. (2009a), the classification of bank size is defined as follows. The bank’s size
is considered to be small if its assets are less than or equal to $1 billion, its size is medium if the bank’s
assets are greater than $1 billion but less than $20 billion, and the bank is large if its assets exceed $20
billion.
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of the fixed effects provides different results. It shows that the effects of ETA, ROAA
and the type dummy are completely opposite to our results. Despite the ETA, it is
uncanny to explain the relationship between ROAA and efficiency that is negative. !
Moreover, the result goes against the traditional concept, which implies that the savings
banks are efficient. Notice that our CCE approach is consistent and has satisfactory fi-
nite sample performance even when there do not exist any or only small time-varying
decision-independent heterogeneity as shown in the previous sections. Thus, the differ-

ent estimated value based on the Within approach appears to reflect the fact that the

time-varying decision-independent heterogeneity have been ignored.

Finally, we further compare the pattern of cost efficiency of the savings and commer-
cial banks. Figure 1 plots the average cost efficiency of each group over the 1994-2007
period. Both the Within and CCE approaches exhibit an upward trend for the savings
and commercial banks, which implies that the banking industry operats more efficiently
under consolidation. This result may support the view that most U.S. banks have faced
increasing returns as recently discussed by Wheelock and Wilson (2012). However, the
pattern further shows that the difference between savings and commercial banks is rela-
tively small by using the Within approach rather than the CCE approach. As the figure
illustrates, savings banks are even more efficient than commercial banks based on the
Within estimation. As we discussed before, the efficiency may be affected by ignoring
the time-varying decision-independent heterogeneity, which leads to bias in the estimated

efficiency.

5 Concluding Remarks

Many studies have revealed the importance of distinguishing fixed effects from inefficiency.
However, such research fails to consider the possibility that the specific heterogeneity can
have the time-varying property. In this paper, a stochastic frontier model with factor struc-
ture is developed to capture the time-varying decision-independent heterogeneity which

is irrelevant to inefficiency and explain the cross-sectional dependence among individual

"This result is the same as that of Sun and Chang (2010), while it might arise due to endogeneity.
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firms. The novel feature of our model is that it distinguishes the time-varying “decision-
independent” heterogeneity and “technical inefficiency” according to a more fundamen-
tal definition of inefficiency mentioned by Koopmans (1951). The proposed maximum
likelihood method by model transformation does not require estimating unobserved time-
varying decision-independent heterogeneity. With the CCE transformation, we can control
the time-varying decision-independent heterogeneity and obtain consistent estimates of pa-
rameters for the panel stochastic frontier model. Our Monte Carlo simulations show that
the modified MLE has satisfactory finite sample properties under a significant degree of
cross-sectional dependence for relatively small T'. The desirable results and computational

ease should appeal to empirical researchers.
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Table 1: Simulation results with cross-section dependence

€¢

T=5 T =10 T =20
Within CCE Within CCE Within CCE
N =50 Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P
B 0.125 0.150 -0.002 0.058 2.596  0.146 0.159 0.000 0.021 7.695 0.155 0.162 0.000 0.012 13.170
61 -0.010 0.127 0.008 0.208 0.614  -0.002 0.080  -0.002 0.060 1.335 0.000 0.025 0.000 0.015 1.683

0.002 0.095 0.032 0.122 0.778  -0.002 0.021 0.001 0.013 1.565 0.000 0.005 0.000 0.002 2.729

52 0.166 0.202 -0.013 0.030 6.663  0.191 0.209 0.000 0.009 23.053  0.199 0.209 0.006 0.009 23.839
52 0.049 0.239 0.039 0.279 0.856  0.031 0.159 0.007 0.116 1.372 0.006 0.086  -0.003 0.070 1.232
i 0.068 0.263 0.014 0.285 0.924  0.020 0.208  -0.001 0.154 1.347  -0.007  0.137  -0.002 0.113 1.221
Within CCE Within CCE Within CCE

N =100 Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P

B 0.129 0.155 0.000 0.040 3.921  0.147 0.159 0.000 0.014 11.573  0.154 0.161 0.000 0.008 19.771
b1 -0.027 0.109 -0.005 0.147 0.739  -0.002 0.071 0.001 0.039 1.800 0.001 0.023 0.000 0.010 2.203
o -0.006 0.086 0.020 0.095 0.903 -0.002 0.019 0.000 0.010 1.906 0.000 0.005 0.000 0.001 3.499
52 0.177 0.214 -0.009 0.022 9.859  0.194 0.211 0.000 0.006 33.560  0.201 0.210 0.003 0.005 40.385
52 0.060 0.218 0.059 0.256 0.853  0.019 0.111 0.003 0.073 1.514 0.005 0.069  -0.003 0.051 1.348
L 0.096 0.231 -0.004  0.240 0.963  0.026 0.173 0.004 0.106 1.642  -0.003 0.111 -0.001 0.079 1.412




Ve

(continued)

T=05 T =10 T =20

Within CCE Within CCE Within CCE
N =200 Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P
8 0.131 0.153 0.001 0.028 5.409 0.147 0.159 0.000 0.010 16.189  0.154 0.160 0.000 0.006 28.865
51 -0.026 0.094  -0.007 0.105 0.903 0.004 0.062 0.001 0.030 2.100 0.002 0.023 0.000 0.007 3.260
b2 -0.006 0.078 0.010 0.078 0.998  -0.003 0.018 0.000 0.007 2.478 0.000 0.005 0.000 0.001 4.584
&2 0.179 0.212 -0.005 0.015 13.772  0.195 0.212 0.000 0.004 48.627  0.200 0.209 0.002 0.003 63.266
&2 0.051 0.185 0.061 0.216 0.853 0.015 0.093 0.003 0.055 1.708 0.002 0.056  -0.002 0.036 1.548
m 0.087 0.202 -0.015 0.196 1.027 0.009 0.147  -0.003 0.076 1.944  -0.003 0.093 0.001 0.057 1.630

Within CCE Within CCE Within CCE
N =400 Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P
8 0.126 0.148 0.000 0.019 7.817 0.147 0.158 0.000 0.007 23.143  0.155 0.161 0.000 0.004 40.098
51 -0.026 0.085 -0.003 0.082 1.036 0.000 0.059 0.001 0.021 2.794 0.000 0.022 0.000 0.005 4.404
52 -0.005 0.076 0.010 0.073 1.032  -0.002 0.017 0.000 0.006 3.025 0.000 0.005 0.000 0.001 5.839
52 0.173 0.205 -0.004 0.011 18.678  0.194 0.211 0.000 0.003 67.751  0.202 0.210 0.001 0.002 105.087
62 0.044 0.152 0.043 0.175 0.868 0.011 0.084 0.000 0.036 2.319 0.002 0.050  -0.002 0.026 1.895
m 0.082 0.180  -0.028 0.159 1.131 0.015 0.132 -0.005 0.052 2.521 0.006 0.080 0.002 0.043 1.849

L In brief, we denote Within as the abbreviation of the within-transformation and CCE as the abbreviation for the proposed transformation.
2 4 is the ratio of RMSE(Within)/RMSE(CCE).

3 The true values of the parameter set are 8 = 0.5, §1 = 0.5, 3 = 0.1, 62 = 0.1, 02 = 0.2, and u = 0.5.



Table 2: Simulation results with cross-section dependence under different oy

G¢

(T'=10) o? = O(only fixed effects) UJ% =0.1 o? =1
N =50 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P
B 0.000 0.015 0.000 0.020 0.776  0.087 0.097 -0.001 0.020 4.963 0.433 0.446 -0.000 0.019 24.016
61 0.001 0.031 0.004 0.066 0.478  0.001 0.075 0.006 0.077 0.971 0.014 0.126 0.002 0.074 1.694
b2 0.000 0.007 0.000 0.016 0.446  0.001 0.200 -0.003 0.232 0.862 0.015 0.280 0.004 0.216 1.299
52 0.000 0.007 -0.002 0.009 0.763  0.109 0.119 -0.001 0.009 13.655  0.592 0.604 -0.001 0.009 67.373
52 0.012 0.103 0.012 0.129 0.801  0.017 0.152 0.009 0.151 1.008 0.077 0.258 0.017 0.158 1.629
i -0.020 0.150 -0.009 0.172 0.870  0.007 0.182 0.010 0.181 1.006  -0.038 0.226 -0.003 0.177 1.272
N =100 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P
B 0.000 0.011 0.000 0.014 0.781  0.089 0.098 -0.000 0.014 7.041 0.427 0.439 -0.001 0.014 31.009
b1 -0.001 0.022 0.005 0.049 0.458  0.001 0.052 0.001 0.050 1.037 0.002 0.096 -0.001 0.051 1.871
o 0.000 0.005 -0.001 0.012 0.420  0.009 0.130 0.001 0.162 0.805 0.002 0.182 0.004 0.162 1.125
52 0.000 0.005 -0.001 0.006 0.816  0.112 0.123 -0.000 0.006 19.624  0.596 0.607 -0.000 0.006 98.686
52 0.003 0.064 0.000 0.081 0.786  0.009 0.103 0.009 0.105 0.982 0.082 0.229 0.011 0.107 2.143

" 0.001 0.092 0.001 0.111 0.833  -0.009 0.128  -0.001 0.125 1.026  -0.040 0.192 -0.004 0.136 1.412




(continued)

9¢

(T'=10) UJ% = O(only fixed effects) UJ% =0.1 o? =1
N = 200 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P
B 0.000 0.008 0.000 0.010 0.789  0.089 0.096 -0.000 0.009 10.234  0.430 0.441 0.000 0.010 45.506
51 0.000 0.015 -0.001 0.035 0.430  0.002 0.037 0.001 0.037 0.995 0.001 0.068 -0.002 0.037 1.845
b2 0.000 0.003 0.001 0.010 0.353  0.003 0.094 0.008 0.114 0.824  -0.007 0.133 -0.003 0.115 1.154
52 0.000 0.004 -0.001 0.005 0.765  0.111 0.121 0.000 0.004 28.167  0.597 0.608 -0.000 0.004 135.998
52 0.002 0.043 0.004 0.059 0.736  0.005 0.068 0.002 0.070 0.978 0.083 0.195 0.009 0.076 2.560
i -0.001 0.064 0.001 0.081 0.801  -0.008 0.088 -0.003 0.089 0.987  -0.060 0.152 0.003 0.087 1.754
N =400 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P
3 0.000 0.006 0.000 0.007 0.803  0.088 0.094 -0.000 0.007 13.411  0.426 0.438 0.000 0.007 65.428
b1 -0.001 0.011 0.001 0.026 0.416  0.003 0.026 0.001 0.024 1.068  -0.003 0.049 0.002 0.025 1.980
b2 0.000 0.002 0.000 0.009 0.283  0.002 0.067 -0.000 0.079 0.843  -0.007 0.094 0.004 0.077 1.229
&2 0.000 0.003 0.000 0.003 0.808  0.109 0.119 -0.000 0.003 38.680  0.594 0.606 -0.000 0.003 193.373
52 0.001 0.032 -0.001 0.042 0.755  0.002 0.049 0.000 0.043 1.124 0.086 0.178 0.003 0.046 3.831

[ 0.001 0.043 0.000 0.056 0.761  -0.009 0.062 -0.002 0.063 0.986  -0.060 0.119  -0.008 0.060 1.963

L 4 is the ratio of RMSE(Within)/RMSE(CCE).
2 The true values of the parameter set are 8 = 0.5, §1 = 0.5, d2 = 0.5, 02 = 0.1, 02 = 0.2, and pu = 0.5.



Table 3: Simulation results with cross-section dependence under different oy

LC

(T'=20) UJ% = O(only fixed effects) UJ% =0.1 o? =1
N =50 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P
B 0.000 0.011 0.001 0.012 0.912  0.089 0.094 0.000 0.011 8.272 0.447 0.453 0.000 0.012 38.062
61 0.000 0.007 0.000 0.014 0.466  -0.002 0.044 -0.003 0.035 1.257  -0.000 0.089 -0.002 0.038 2.332
b2 0.000 0.001 0.000 0.002 0.759  0.000 0.171 -0.002 0.194 0.885 0.002 0.209 -0.006 0.193 1.084
52 0.000 0.005 -0.001 0.005 0.923  0.110 0.116 -0.000 0.005 22.063  0.626 0.631 -0.000 0.005 122.391
52 0.006 0.079 0.004 0.080 0.988  0.010 0.110 -0.001 0.101 1.096 0.054 0.207 -0.000 0.102 2.030
n -0.015 0.122 -0.014 0.124 0.988 0.001 0.141 0.015 0.130 1.080 -0.013 0.171 0.011 0.131 1.310
N =100 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE ¥ Bias RMSE Bias RMSE ¥ Bias RMSE Bias RMSE P
B 0.000 0.008 0.000 0.009 0.909  0.089 0.093 0.000 0.008 11.114  0.443 0.448 0.000 0.008 53.979
6 0.000 0.004 0.000 0.010 0.437  0.000 0.033 0.000 0.025 1.299 0.000 0.062 0.001 0.025 2.512

>

02 0.000 0.001 0.000 0.001 0.778  0.002 0.118  -0.003 0.135 0.875  -0.008 0.140  -0.006 0.133 1.055
52 0.000 0.003 0.000 0.004 0.908  0.110 0.116  -0.000 0.004 31.880  0.629 0.635 -0.000 0.004 169.412
52 0.003 0.053 0.003 0.054 0.973  0.003 0.078  -0.002 0.069 1.127 0.041 0.148  -0.002 0.069 2.133
[ -0.009 0.082 -0.008 0.085 0.974 -0.004  0.094 0.003 0.091 1.037  -0.018 0.125 0.004 0.087 1.428




(continued)

8¢

(T=20) 0']% = O(only fixed effects) 0']% =0.1 O’? =1
N = 200 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE ¥ Bias RMSE Bias RMSE ¥ Bias RMSE Bias RMSE P
B 0.000 0.005 0.000 0.006 0.906  0.088 0.092 -0.000 0.006 16.425  0.442 0.447 -0.000 0.006 77.077
b1 0.000 0.003 0.000 0.007 0.437  -0.000 0.023 -0.000 0.017 1.314  -0.001 0.044 -0.000 0.017 2.558
b2 0.000 0.001 0.000 0.001 0.681  0.003 0.085 0.004 0.090 0.940  -0.003 0.101 -0.001 0.094 1.081
52 0.000 0.002 0.000 0.003 0.902  0.110 0.115 -0.000 0.003 44.603  0.631 0.636 0.000 0.003 244.367
52 0.000 0.035 0.000 0.037 0.966  0.005 0.052 -0.001 0.045 1.165 0.040 0.116 0.000 0.049 2.383
I -0.003 0.053 -0.003 0.054 0.977  -0.008 0.057 -0.001 0.053 1.067  -0.028 0.087 0.002 0.053 1.644
N = 400 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P Bias RMSE Bias RMSE P
B 0.000 0.004 0.000 0.004 0.906  0.088 0.091 -0.000 0.004 22.551  0.444 0.449 -0.000 0.004 107.029
61 0.000 0.002 0.000 0.005 0.441  0.001 0.015 -0.000 0.012 1.291 0.001 0.030 0.000 0.013 2.374
b2 0.000 0.001 0.000 0.001 0.593  0.007 0.059 0.004 0.065 0.919  -0.003 0.075 -0.002 0.066 1.126
52 0.000 0.002 0.000 0.002 0.911  0.109 0.114 -0.000 0.002 62.508  0.635 0.639 0.000 0.002 354.291
52 0.001 0.025 0.001 0.026 0.956  0.002 0.035 0.001 0.032 1.097 0.031 0.082 0.001 0.033 2.524
i -0.002 0.040 -0.002 0.040 0.978 -0.010 0.040 -0.002 0.035 1.140  -0.031 0.067 -0.002 0.037 1.815

L 4 is the ratio of RMSE(Within)/RMSE(CCE).
2 The true values of the parameter set are 8 = 0.5, §1 = 0.5, d2 = 0.5, 02 = 0.1, 02 = 0.2, and pu = 0.5.
3 The bias is defined by (Estimated value — True Value).



Table 4: Simulation results: = and z are affected by an

unobservable common shock (7'=20).

Within CCE
N =50 Bias RMSE Bias RMSE P
8 0.292 0.534 0.000 0.012 45.393
51 -0.139 0.431 0.001 0.066 6.514
b2 0.102 0.373 0.001 0.037 10.198
&2 1.507 9.953 -0.001 0.005 1837.170
52 34721.845  68882.385  1.412 13.975 4928.831
it 0.038 0.225 0.036 0.234 0.959
Within CCE
N =100 Bias RMSE Bias RMSE P
B 0.272 0.446 0.000 0.008 54.281
51 -0.140 0.342 0.001 0.054 6.370
52 0.089 0.304 0.000 0.028 10.693
&2 0.917 3.523 -0.001 0.004 968.563
G2 39725.677  76044.209  0.180 0.866 87785.493
it 0.054 0.214 0.008 0.174 1.227
Within CCE
N =200 Bias RMSE Bias RMSE P
B 0.287 0.486 -0.000 0.006 85.221
b1 -0.124 0.372 0.003 0.039 9.653
b2 0.093 0.288 -0.001 0.020 14.582
52 1.135 5.096 -0.000 0.003 2004.083
o5 32871.244  65416.402  0.078 0.444 147318.408
I 0.039 0.213 -0.011 0.106 2.004
Within CCE
N =400 Bias RMSE Bias RMSE P
B 0.249 0.390 -0.000 0.004 95.194
51 -0.136 0.349 -0.000 0.027 12.743
b2 0.098 0.230 0.000 0.014 16.608
52 0.856 2.493 -0.000 0.002 1348.341
52 40286.341  76224.203  0.050 0.319 238843.857
it 0.048 0.213 -0.007  0.050 4.282

L 4y is the ratio of RMSE(Within) /RMSE(CCE).
2 The true values of the parameter set are § = 0.5, 6; = 0.2, §o =

—0.1, 02 = 0.1, 02 = 0.4, and p = 0.5.
3 The bias is defined by (Estimated value — True Value).
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Table 5: Statistics of variables used in the cost function

Variables Mean Std. Dev. Min Max

Total Cost 1.11x10%  4.60x103 4.10 8.08x10%
Output quantities

Total loans 1.06x10*  4.29x10% 42.60 6.77x10°

Other earning assets 5.77x10%  3.30x10% 0.50 6.92x10°

Total deposits 1.20x10*  5.21x10% 1.80 7.94x10°

Liquid assets 3.28x10%  2.59x10* 0.10 6.48 106
Input prices

Price of capital 0.04 0.05 1.99x10-3 1.24

Price of funds 5.29 1.48x103 0.34 7.56x10%
Other variables’ quantity and ratios

Total assets 1.86x10*  8.31x10% 62.00 1.32x108

Return on average assets 1.32 1.20 -3.18 24.04

Equity to assets 9.77 5.39 4 82.36

1 The variables in total cost and output quantities are measured in U.S. $ millions.
2 There are a total of 3,122 bank-year observations.
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Table 6: Estimation results of the cost frontier

Within CCE
Exp. Sign 0 Std. Dev. 0 Std. Dev.

Effects on cost function

In(PC/PF) (+) 0.371 *** 0.018 0.184 *** 0.006

In(TL) (+) 0.033 * 0.019 0.216 *** 0.015

In(OEA) (+) 0.002 0.018 -0.012 ** 0.005

In(TD) (+) 0.696 *** 0.020 0.861 *** 0.014

In(LA) (+) 0.048 *** 0.018 0.027 *** 0.003
Effects on inefficiency

In(TA) (7) -0.347 ***  0.022 -0.202 ***  0.018

ETA (+) -0.166 ** 0.018 0.068 *** 0.010

ROAA (-) 0.470 *** 0.024 -0.005 ***  0.002

TYPE -) 0.117 *** 0.018 -0.263 ***  0.085

o2 0.153 0.004

o2 518.796 38.127

1 * Significant at the 10% level, ** Significant at the 5% level and *** Significant at the 1%

level.

2 Exp. Sign explains the expected relationship between inefficiency and variables.
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Figure 1: Average Cost Efficiency in All Banks
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Appendix A-Useful Lemmas

Below we introduce some useful lemmas for proving the main results in our paper. The proof
can be founded in the Supplementary Material.

Assumption for Lemma 1:

(L1) Qo(0) is three times continuously differentiable with its derivatives satisfying

VNTS(80) 25 N(0, {E[-H(60)]} 1),

H(60) = E[H(60),
0Q0(0)

where S§(0y) = %0(6”90 and H(0p) = %%%(90,) o, -

Lemma 1. As assumption (L1) holds with © which is compact, and v/ NT supg |Qn7(0)—Qn7(0)| =
0p(1) as N, T — co. Then v NT(0—8y) EEN N(0, {E[-H(00)]} 1), where 8 is obtained from maz-

imizing the objective function Qnr(0).

Throughout the following lemmas, we use the following notations: € = (£1,....&r), & = (&1, ..., &),
i =T 'S wie, hi = TV hyy and

FLQ/LJF — U
G=[D F @] Recall that Hy = [D,y,x,ﬁouﬂ, together with equation (9), Hy can be

V; = (’Uily---;viT)/, u = (’&/17...7@,'1")/7 E = 0 ﬁ,

rewritten as Hy = |GP + ¢ + E*}, where

1 B 0
P=|0 € 0. G:{D F a}
e/(k+1)1

and

£ = [ Orx1) € Orxi }, Y= [ Orx1) Orxt1) € },
and e(j1), denotes a k -+ 1 vector where the first element is -1/1 for production/cost function and

the others are zero.
Lemma 2. As assumptions 1—4 hold, we have
(B1) T-€€ = O,(N1);

(B2) T7'€€ = Op(N71) + O (NT)~1/?);
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(B3) T~'D'& = O,((NT)~1/?);
(B4) T7'F'§ = O,(NT)~1/?);
(B5) T™'D'v; = 0, (T~'/?);

(B6) T~'F'v; = O,(T~1/?).

Lemma 3. As assumptions 1-4 hold, we have

(C1) T~ (w€) =0, (NT)~"1/?);

(C2) T7'(€¢) = Op(N~'T-1/?);

(C3) T~ (G'C) = Op(N~1/2);

(C4) T7H(¢'C) = Op(N7Y);

(C5) T (&) = Op(NT)~'/?);

(C6) T~ (&]G) = O,(T'/?);

(C7) T ((ui — w)'€) = Op(NT)71/2);

(C8) T~ ((wi —u:)'¢) = Op(N~1) + Op(NT)~1/?);
(C9) T~ ((wi — w)'G) = Op(N 1) + Op(T~1/?);

(C10) T~ (h; — h;)) N~* Zjvzl hjut = Op(N~1) + O, (T~1/3).
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Appendix B-Proof of Main Propositions and Theorems

Recall the transformed log-likelihood functions of (12) and (13),

Qnr(0) = (NT)™! XN: {—% (T —s) (In(27) + Ino?) — %(yi —X;8—FoXipg) x
i=1 (12)
MIT~M(y; — X;8 — FoAi ) +% (Z—z - Z—;) +ln (a*(l) (5—)) “In (au@ (Uﬁu)) } ,
and ] _ N ) : I
Qne(0) = (V7)™ 30 {5 (7 ) (2 + o?) - G- XiB)
=1 (13)

s 135 5) (o (5) = 0 (2))}

Proof of Proposition 1. To complete the proof of Proposition 1, we separate (13) into five parts:

N

Pl1=(NT)™! Z {_% (T —s) (In(27) + 1na§)} ,

i=1

N

P2 = (NT)™* Z —=(y; — Xi8)MII M(y; — Xzﬂ)} :
=1
N 1 2 2

P3=(NT)™' Y45 <% - %)}

N
P5=(NT)"' "

Since P1 and P5 are the same as part of (12), we only need to investigate the differences of P2,
P3 and P4 between (12) and (13).
Consider P2. By the facts that y; = Da; + X;8+FX\; +¢€;, MDq; = 0 and MII-M = o, 2M,
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P2 can be rewritten as,

N

) 3 - J - Xy s My - x|
—2 -1 al 1
()Y { - S - Xy MOy - Xi8) |

5
:wfwn*i{%wﬁwmﬁxwwﬁWMQMMﬂ+&%—mﬁ
5

) Y {5 (i - 8 M0 - )}
=0 M(INT) T Y {(Xa(Bo = B) MFoXio} — o 2(NT) ™' 3 {(Xi(Bo — B)) e}

N N N
_ _ - _ _ 1 . _ _ 1,
—a,2(NT) 15.:1 e MFoXio — 0, 2(NT)™" > 5)\;.OFgl\/IFO)\iO—af(NT) 5y 55;1\/151.

—: A1 (6) + As(0) + As(0) + A4(0) + As5(0) + Ag(6).

Particularly, A1(0), A3(0) and Ag(0) do not affected by the factor structure, therefore we will

focus on the properties of A2(0), A4(0) and As(0) respectively. For A5(8),

A2(0) = =0, 2(NT)™' ) (Xi(Bo — B)) MFoAip
i=1
N o N
==, 2(NT)™" Y (Xi(Bo — B) MFo(A — 1) — 0, *(NT) ™" Y (Xi(Bo — B)) MFomso
=1 i=1
— N —
== 0,277 (Bo — BYX'MFo(A = 1) — 0, *(NT)"* Y (Xi(Bo — B)) MFons
i=1
N . N
=0 -0, 2(NT)™" Y (Xi(Bo — B)) MoFomig — 0, 2(NT) ™" (Xs(80 — 8)) Fomiornr
i=1 =1

= A2,1(0) + AQ,Q(G).

Since Ajp = 1 + Mo, after taking cross-sectional average of A;o, we have A = 17 + 1. The second
equality holds by replacing Ajo by A — 17 + 1;0. The fourth equality holds because MX = 0 and
M = M + k7, where kyr = O(byt) by @ € B. Note that for easy to state, we use As.1(0) and
A2.2(0) to denote the rest of terms we need to discuss.

Consider Ay 1(0), because of the fact that Fy = — (€ + U)C’(CC’)~! from equation (10) and
U = (Uy,...,Ur), we have
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N
_2 NT -1 Z /30 — MOGC/(CC/)_lniO.

The property of the first term can be obtained from the fact that C’(CC’)~! is bounded and
(Bo—B)' X MoV NE
VT

the result that = Op(1) proved by Pesaran (2006). Therefore, with n;o which is

distributed independently of X;, € and elements in My, we have

C'(CC')'mig = O,(N71/2),

N —
N-1 Z (Bo — B)' X MoV NE
: VT
that is o 2(NT)"' oV, (Xi(Bo — B)) Me€C/(CC') 'm0 = O,(N~'T~1/2). We can prove the
second term in As 1(@) in the similar way because MoU = M(U — [hopg, 0]) = [Mo(, 0], and

e i (Bo — B) X[ Mov/N¢

C/(CC') 'nip = O,(N~1/2).
. (€C) i = O,(N )

Thus, we have A3 1(0) = Op(Nflel/Z)_

Next, consider Az 2(0). We have

Mz

As2(0) = =0, 2(NT)™' ) (Bo — B) X[Fomiokn

1

.
Il

N

=~ }(NT)™! Z(ﬁo — B) (FoTio + e;) FonioknT
=1
N N

=—0,2(NT)™" > (8o — B)'/oFoFomiokint — 0 )1 (Bo — B)'ejFomiorin,
i=1 =1

where the first equality comes from facts that X; = DA!, + Fr; + e; and DA/ has been re-

moved by M. The first term of the last equation can be rearranged as —o 2(N)~! Zfil(ﬂo -

FFU

B8)' T FE’TF“ NiokNT. Since = Op(1) and mjp is distributed independently of 7,0 and Fy,

we have —o, 2(NT)~! Zfil(ﬁo — B) 1) )FiFonioknt = Op(N~Y2byx7). Further, according to

the result of & F° = 0,(T7/?) and the property of m;y we used before. We can show that
o 2(NT)" 2N (Bo — B) e Fomioknt = Op(NT)~/2by7). Combining these results, we have
Az 2(0) = Op(N~2byr). Therefore, A2(0) = Op(N~'T~Y/2) + O,(N~2by7).
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For A4(0), using the same fact that Ao = A — 1 + Mo, we have

N
A4(0) = —U;Q(NT)_l ZEQMFOAiO

=1
N B N
= =0, (NT)™" > eiMFo(X — 7)) — 0, >(NT)™" Y e/MFon;o
=1 1=1
N
= —0,?T '&MFo(A — 1) — 0,2 (NT)"" Y e/MFqng
=1

In particular,
A41(0) = =0, 2T '@ MoFo(X — ) — 0, 2T &' Fo(X — Q)knr
= —0, 2T (0 + (@ — hopg ) MoFo(A —0) — 0, *T (v + @) Fo(A — )N
We can rewrite the first term of the above equation as
— 0, T (0 + (u— hopg ) MoFo(X — 1)
= —0, T '9'MFo(A — 1) — 0, 2T (@ — hopud ) MoFo(X — 7).

Using the fact %ﬁ'l\_/IOFO = %B’FO — TﬁI:IO(I:IOI:I{))_lljl{)FO and the results from lemmas (B1),

(B3), (B4), (C1)-(C4) and the fact © = O,(N~1/2), we have

1 oy o oy 1o v Hy HOH’ 1 HF,
—o'Ho(HoH}) 'H)F
7 ¥ Ho(HoHo)™ 0= Ty T
—1

~/ * 1(E* A ¢ * A - * I\ (& A

_| YSp (& +¢ GGP+P/G(£ +¢)+(£ +¢)Gl5+(£ + ) (& + )
T T T
N—— —,_/
Op(N=1/2)  Op(N~—1) Op(N=1/2) Op(N—1)

P’ G'Fo (E* + "/’),FO
T
Op((NT)~ 1/2)

G'F
S0+ 0p(NTY).

G - _
-=" P(P’ P e
T

Notice that we keep the first term of the above equation to illustrate the fact that %T)’ Fo —

FTGI_’ (f”%f’)71 f”% = %'{;’MC;,FO = 0 because Fy € G. Combining these results, we
have %ﬁ’MOFO = 0,(N71). In the same manner, we have %(’[L — hopd ) MoFy = O,(N~1h).
Yo + @)Fo(X — 7)knr is needed to investigate. The property of
this term can be obtained by using £9'Fo = O,((NT)~/2) and +u'Fy = O,(T~'/?). Thus,
~1/2pn7). These give Ay 1(0) = Op(N~Y) + 0, (T~ ?byr).

In addition, the term, o, 2T~

0‘;2T_1(’l_) +’l_l,)/F0(X—’f])/€NT = OP(T
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Next, consider Ay 2(0),

N N
A412(0) = 70';2(NT)71 2(61 — éi)/MOFOTHO — O',;Q(NT)71 2(61 — gi)/FO”?iO’iNT-

i=1 =1

The first term of A4 2(0) can be decomposed into %(ez — &) MoFy = &(g; — &)'Fo — %(61 -
£;)'Ho(HoH{}) 'H{F, and using lemmas (B2), (C5) and (C7)-(C8), with £ (e;—&;)'G = Op(N 1)+

O,(T~'/2) by lemmas (C6) and (C9), we have

1 _ _ _
?(ai —&)'Ho(HoH)) " TH,Fo

=) =\ (E* 7y _ / _ _ 1(E*x 7y &k AV _ & TN\ (% 7,
_ (g4 EZ)GP i (i —&)'(&" + ) P,GGP+P,G(€ +¢)+(£ +¢)GP+(€ + ) (&" + )
T T T T T T
N—_—— —_— —
Op(N=1)+0,(T~1/2)  Op(N=1)+0,((NT)~1/2) Op(N—1/2) Op(N~—1)

P G'Fy n (€& +)'Fo
T T
—_——

Op((NT)~1/2)

_ (e -&)G 5 (5 GGy -t 5 G'Fo
T T

T2 0,V + O (NT) V).

Similarly, we keep the first interaction term, together with %(sz — &;)'Fo, then we have %(sz —
5)E) — E2ISP (PIESP) T PIGE = L(e, - £)McF, = 0. Thus, &(e; — &) MyF, =
Op(N™1) 4+ O, ((NT)~/2). Since n;o is distributed independently of Fy, v; and u;, we can con-
clude that —o; 2(NT)"' 2N (e — &) MoFonio = Op(N~3/2) + O,(N~'T~1/2). Finally, since
Lv/F = A (u; — @) Fo = O,(T~1/?), we therefore have —a 2(NT) "' SN | (; — &) Fonioknt =
O,((NT)~'/2byr). Taking these results from Ay 1(6) and Ay (), we have A4(8) = O,(N~1) +
Oy (N-T=Y/2) + O(NT)~byr).

Now, consider A5(0). By using the following inequality
T

1 : 1 - 1 .
17X o FoMFoXio|| = [IzXi0FoMMFoXio| < = > IMFoXio 1%,

t=1
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where 1\_/IF0/\i0(t) denotes the t—th element of MFo\;. Since

NoFoM = NjgFornt + NjgFg — N Fo Ho (HoHp) ™ Hj,

= XoFornT + XjoFh — A T P+

_,G'G

P/

T

FyG  F(E + )
N

Op((NT)=1/2)

-1

P+P

GE +9)  E+B)/Cp € +9)E +P)

+ x | P'G' + (£ + )
T T T NI

0p(N-1/2) Op(N-1) Or(NT%)

F/G_ /-, GG-\'_ B
= XNjoFornt + NjgFh — X OT P(P’ P) P'G’' + O, (N~1/?)

= XNFornT + AjgFiMg + Op(N~1/2)

= Op(bnT) + Op(N™

1/2)

we have L 327 [IMFoXio(||? = Op (b)) + Op(N~1) + Oy (N~ 2by7) and A5(8) = O, (b37) +

Op(N~

1) + Op(N
P2=0,(N~

71/2bNT)'

Y+ Op(N

Combining the above results of A2(6), A4(6) and A5(0), we have

“2bn7) + Op (7).

So far, we still need to examine P3 and P4. First, we define

(NT)~ Zlnfb (Z) - (NT)_lzN:f (M_) ,

O

i=1 i=1

and by the first order of Taylor expansion at ﬁ—:, we have

V]_ij () = ovmy- fj[f(%)u'(j—:)(<hi"“"MFAi/"3 ]

i=1 *

WMh; /02 +1/02) "

where h; = T71 ZtTZI hit. Rewrite the second term in the brackets of right hand side as

Here,

The first term can be decomposed into = (h;—h;)'MoF; /o2

(NT) 12[ < >(

(h; — hy)'MFA; /o

WMh; /o2 +1/02)""?

e 1/22 < ><h’MhZ/0 +1/02 )1/2<(hil_zi)’MF)\i/of)

(hi —

T

0, (1)

T

T

= T T X KNT.

L (hi—h:) Fo— X (hi—h:) Ho (FoH}
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We use the results similar to Lemmas (C7)-(C8) and obtain

%(hl — ) Ho (HoH))~'H,F
| mimhyey i-RyE+d) || p GG, pCE D) E DG, E D) E +D)
T T T T T T
| S —
Op(N=1)+0,((NT)~1/2) Op(N—1/2) Op(N—1)
| GFo (€ +9)Fy
T T
——

Op((NT)=1/2)

Notice that & (h; —h;)'G = Op(N~1)+0,(T~'/?) because of lemma (C10) and a similar argument
of (C9), thus

1 o _ Y _ [
T(hi — hi)'HO(HOHB)_ngFO ZMP (P'

G’GP) -t 5 G'Fo

+ O0,(N7YH) + 0,((NT)"V/?).

.77. ’ . 2
Further, together with a similar argument of (C9), the second term % X KNT =

Op(T71/2bNT). Thus

(hi — BZ)/MF)\l/O'g

T = Op(N™1) + Op(NT) ™) + O (T~ *byr).

MR, —1/2 ) MEFA,
Using this result, the term f’ (U&) (MW) (%) should be O, (N 1)+

O,((NT)™'/2) + O,(T~'/?byr). Tt implies that the difference between (NT)~* vazl f (f;—:) and
(NT)L SN f (/;—) is O,(N=1T=1/2) + 0, (N~V/2T~1) + O,(T~"/2by7). The results of P3 and

P4 are readily obtained.

Taking results from P2, P3 and P4, we have
P2+ P34+ P4 =0,(N"Y)+O0,(N V2T + O, (T~ ?bnr) + Op (N 2bx7) 4+ O, (b3r7). (M.1)

The first result of Proposition 1 can be proved because when by — 0, P2 + P3 + P4 L. 0. The
second result about 8 € BN O can be proved by assuming by does not converge to zero. In this
case, it implies that the difference of P2+ P3 + P4 will be dominated by the term O, (b%,) which
comes from the quadratic term of A4(#). Thus the difference between Qnr(60p) and Q NT(0) is

greater than zero in probability one when 8 € B¢ N ©. O

Proof of Theorem 1. For any ¢ > 0, we have (a) Qnr(0) > Qnr(60) — £ (b) Qn7(80) >
Qo(80) — 5 and (c) Qo(0) > Qnr(0) — £. (a) holds because 6 maximizes Qyr, (b) holds because
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the result 1 from Proposition 1 by letting 8 = 6y, and (c) holds because Assumption 5 (iv).

Therefore, we have

Qo(6) > Qur(8) — § > Qwr(60) — 5 > Qul60) — .

Using the same definitions of byr and B, we have Qn71(0o) — Q ~7(0) > 0 with probability 1 for
all @ € B¢ N O from the first result of Proposition 1. Taking this result with conditions (iii) and

(iv) of Assumption 5, for any given € > 0, there is a constant K > 0 such that
P[|Qo(80) — Qo(8) > K] > 1 —¢,

for all @ € B° N O. Also Qo(6y) = QO(HO) if and only if Qo = Qo and Qo(6y) > QQ(B) for
all @ € B° N O. Therefore, by B° N O is compact, 6y maximizes Qp(0) and (i) of Assumption
5, SUPgenene Qo(0) = Qu(0*) < Qo(Bo) for some 8* € BN @. Thus, choosing € = Qu(hy) —
SUPgepene Qo(8), it follows that

Qo(0) > sup Qo(6).

0cBeN®

with probability one, and hence 0 € B. O

Proof of Proposition 2. It can be proved immediately by multiplying v NT and equation (M.1)

from Proposition 1. O

Proof of Theorem 2. Since the result from Proposition 2 satisfies the requirement of Lemma 1,

we can prove the asymptotic normality of our proposed estimator immediately. |
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Supplementary Material

Proof of Lemma 1. See Theorem A.5 of Kristensen and Shin (2012). O

Proof of Lemma 2. It can be shown based on Lemma 2 of Pesaran (2006). O

Through out these proofs, we use K to denote a positive number which is bounded and subscript

“0” to denote the parameter which is evaluated at the true value.

Proof of Lemma (C1). Let & = (£11,&24,...,&r,) denotes the [-th element of €. Since h.o,

uf, vy and e; are mutually independent and note that E(h;o) < K and E(u}) < K, Vi,j. We
have
( 1Zh ol gl> = (S.1)
and
N 2
B = B <N—1 zhit,ouz)
i=1
=N— 2E tht OU*Q +Ztht Oh]t Ouzu]
i=1 j#i
N
=N E(hi0)BE(u;®)+ N~ QZZE it,0) E(hjr0) E(ui ) E(uy) = O(1).
i=1 i=1 j#i
Thus,

N T T
ar <N‘1 Z h;ﬂoufﬁz> = Var (Z utft,l> = ZVar (@)
i=1 t=1 t=1

T
=Y E@)EE)=0(TN), (8:2)

t=1

the second equality comes from the fact,

Cov (et ,1, sés,1) = B (€ 11sEs1) — B (1) E (1s€s1)
=k (gt,l) E (gs,l) E (ﬁtﬂs) - F (gt,l) E (ﬁt) E (gs,l) E (ﬁs) = 07

where the last equality holds by E(viv;s) = 0 and E(e;el,) = 0 for all i, 7, and the last equality
of (S.2) holds by E(Efl) = O(N~1). Together with (S.1) and (S.2), we obtain

Var (Tﬁlﬂ’@ =0 ((NT)fl) ;
hence, T~'a'€ = O, (NT)~Y/?). O
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Proof of Lemma (C2). Recall that ¢ = houg — 4, the mean of &, is equal to O for all ¢ by

the fact that hj o, v, vir and e;; are mutually independent. Furthermore,

in particular, the second and third equalities hold by E(§,£.) = 0 Vt # s and E[(ud — u})(ug —
(o

u3)] = 0 Vi # j, respectively. Moreover, E(h?, ;) < K, E | 1)?] < K and (§:£]) = O,(N71),

thus,
T N
Var Z Z ztO :O(N_QT_l)-

We therefore have (NT')~ Zt 1 & E ~ hit olud —u) = Op(N_lT_l/Q)_ O

Proof of Lemma (C3). Recal G=[ D F @ |, we prove (C3) for each element of G, first,
we turn our focus on (NT')~! Zthl D, Zf;l hito(pg — ul). Notice that the mean is equal to 0 by

uj and hj0 are mutually independent, and
N
(VT z S ]
=1 i=1
T N 2
S0 ]

Var

=O((NT)™), (S.3)

where the second equality comes from the fact that E[(ud — ul)(ug — ui)] =0 Vi # j, and uj
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is independent of hj o for all 4, j. The last equality holds by E(h3 ) < K, E [(uf —u})?] < K.
The second term,

N N
(VD)3 3 Dy, (Zhno —u:>> D hisolig — )
j=1

t=1 s#t

Z ZDtD Z E zt ths 0 ( - ’U:)2 = O(Nil)a (84)

t=1 s#t
the second equality holds for the same reason that E[(ug — uf)(ug — u})] = 0, and the desired
result can be obtained with the assumption of finite first moment of h; 0. To sum up (S.3) and

(S.4), we obtain

T N
Var ((NT)—1 > D, Z hito(ud — u;)> =O(N™Y),

and which implies (NT')~ Zt 1 Dy Z “ hiro(pg —ul) = O,(N~1/2),
Next, consider the I-th row of T~! [F'N_1 SN hio(ud — u;*)}, which can be written as
_1[2321 fuN—! Zfil hit,o(ug —u})]. Notice that its mean is equal to 0 by the similar argument

in the previous case, and the variance,

T N
Var |71 (Z thNfl Z hit,O(MéF - uf)>‘|
t=1 =1
T N 2
=(NT)2E | fu Y hirolug — UI)]
t=1 i=1

T N 2
:(NT)%E Z f12t <Z hu,o(uf{ - uf))
t=1 =1
N
+ Z > fuehis (Z hato(pg — u:f)> 3 hjsolud —uf)
j=1

t=1 s#t

T N
ZE(flt ZE h?tO —u:-‘)Q
t=1 i=1

T N
+ZZE(fltfls <ZE ﬂfohzso (H(J)ru;k)2> ’
=1

t=1 s#t

-2

the third equality holds by E[(ug — u})(ud — u?)] = 0. Furthermore, because F is covariance sta-

J

tionary process distributed independently of u, the autocovariance function decays exponentially
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in |t — s|. By these assumptions,

T N
Var |71 (Z fuN"1 Z hit,O(,uar - U:))]
t_lT z:]\l[
=(NT) > E(f) Y B o) E(ud —uy)?
t=1 i=1

T N
+ Z Zrﬂ(“ —s|) (Z E(hit,ohis,0)E(ug — uf)2> =O((NT™YY),

t=1 st
where T'y; is the autocovariance function of fi, and the last equality holds by E(f7) < K,
E(h%,) < K, E(uf —u?)? < K and E(hiohis o) < K, which establishes T~ [F’N*l SN hao(ud - u;‘)} -
Op((NT)~1/2).

Finally, we analyze the last term. Notice that

T N N
FE T71 Z <N1 Z hit,O(/L(-)’_ — U:)) N71 Z h]‘tﬁou;
t=1 i=1 Jj=1

T N
—N2T ST ST B, ) Bl — uf)ul

t=1 i=1

—O(NY), (S.5)

the first equality holds by the assumption that E[(ud — uf)ui] =0, Vi # j, and the last equality
is true by E(hZ, ) < K, and E(u;?) < K. The variance,

T N N
Var T'_1 Z <N_1 Z hit,O(/Lg - ’U:)) ]V_1 Z hjtﬁo’u;
t=1 i=1 Jj=1

2
T

N N
=F T71 Z <N1 Z hit,O(M(—),— — uf)) N71 Z hj,g,ou,;f
t=1 i=1 Jj=1

t=1 =1

N N
| E T_l Z <N_1 Z hit,O(Mg - ’U:)) N_l Z hjt,ou; )
j=1
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where the first term can be rearranged as

2
T

N 2 N
T72E Z (Nl Zhit,O(M(J)r — U:)) Nil Zhjtyou;
i=1 Jj=1

t=1

T N N
+T7°E Z Z <N_1 Z hito(pg — Uf)) N~ Z hijt,ouj
i=1 Jj=1

t=1 s#t

N N
N7 T hjso(ud =) | [ NT1D 0 hjeous
j=1 j=1
:ZA1 + AQ.

Consider A,
T [N N N N
A = N74T— QEZ Zzzzhzt ohjt.ohieohio(pug — up)(pg — ui)upuy |,
t=1 | i=1 j=1 k=1 1=1

in which expectation is non-zero only in the following three cases: (i) i =j =k =1, (ii) i = j and

j =1, and (iii) ¢ = and j = k by assuming that the forth moment of h;. o exists. It follows that

Ay =N~ QEZ Zhno )2 ﬂ-ﬁ-zzzhztohktohlto( —u) upuy

i=1 k#i 1F#i

+Zzhzt0hgt0 ui)(ng — uj)ujuy| = O((NT)™).
i=1 j#i

Furthermore, A, has the similar result except that we have to sum up the terms for all ¢ # s,

t,s =1,...,T. Thus, we have Ay = O((N)~!). Taking A;,A5 and (S.5) together, we have
T N N
Var [T71) (N‘l > hivolps - u;)> N hjeous | | =0,
t=1 i=1 j=1
which implies 77 371, (N_1 SN hieo(ud — u;‘)) (N_1 Zjvzl hjtjou;f) = O(N~1/2). Therefore

N
G'N™'> hio(ug —up)| = Op(N~1/?)

i=1

as required. O
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Proof of Lemma (C4). Write

T N 2
E T_lz (N‘lzhn,o(ué uf))

t=1

NS B0 ) B —ui)? = O(NTY), (S.6)

t=1i=1
which holds by the assumption that E [(ud — u})(ug —u})] =0, E(h} o) < K and E(uf —uj)? <

K. Furthermore,

N N
+T72E Y <N1 > hivolug — ui-‘)) NS hyeolud — )
: p

Consider A;, in which expectation is non-zero only in the following case

T
AN z(zhno >)]
t=1 \i=1
T
+N 4T QEZ Zzh’ztoh]to ) (M(—)’_iu;)z :O(NizTil)a
t=1 | t=1 j#:

where the result comes from assuming h;; o and u; are independently distributed with finite fourth

moment, and the fact that u}’s are cross-sectional independent. Now consider As,

T N N
Ay =NT*T2ED S I hivohkeo(pd — uf)(ug — ui)

t=1 s#t Li=1 k=1

N N
X ZZ jSOh’lSO 7“;)(“?‘7#3) )

j=11=1
in which expectation is non-zero only in the following cases: (i) i =j =k =1, (ii) i =k, j = [ (iii)

1=7j, k=1, it follows that

Ay =N~4T~ QEZZ thtohwo +Zzhno ss0(ig —ui)*(ng —uj)?

t=1 s#t | i=1 i=1 j#i

N
+ Z Z hitohis,ohieohiso(pg — uf)?(ud —up)®| = O(N?).
im1 kti
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Taking A;, A2 and (S.6) together, we have

T N 2
Var |77 (N—l > hiro(ud — @)) =O(N7?),
t=1 1=1

2
which implies 7-1 $°7 (N*l SN hiro(d — u;)) = 0, (N1, O
vie +B'eir | .. ) )
Proof of Lemma (C5). Recall that &;; = , it is easy to show that its expectation
€t

is 0 by the fact that v;, e, hit 0 and v are distributed independently. So we can write the variance

as
T N
Var |71 Z EaNt Z hit,o(ﬂa_ - uz‘)]
=1 i=1
T N 2
=(NT)*E Z Eit Z hito (g — Uf)]
=1 =1
T N 2
=(NT)™? Z E(&u&)E (Z hito(ug — Uf))
=1 i=1
N
=(NT)™* | Y E(&i€l)E (Z hdo(ug — U?)Qﬂ : (S.7)
=1 i=1

the second equality holds by the fact that v;; and e;; are serially uncorrelated, and the third equal-
ity holds by u} are cross-sectionally independent. Furthermore, the term E||&;:€L]| < K by vy
and e;; have finite variance, together with E(h?tjo) < K and E(ud — u})? < K, we can obtain
Var [T_l Yy &NV hano(pg — u)| = O((NT)™Y). Therefore T~ Yo, &N 71300, hiro(pd —
uf) = Op((NT)~1/2). O

Proof of Lemma (C6). Given Lemmas (B5) and (B6), we already discussed two of three ele-
ments in G. It remains to show the rate of 77! Zthl & N1 sz\; hit ouf. Consider its mean.

Again, given the fact that v, €, hi o and u; are distributed independently, it can be shown that
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the mean is 0. The variance,

T N
Var T71 Z 5#]\[71 Z hit’ouf]
t=1 i=1
T N 2
:(NT)iQE Z £it Z hit’ouf‘|
t=1 i=1

T 2
=(NT)™* | Y E(€uti)E (Z hit,ot; )
t=1

M7 N N
=(NT)~2 Z E(&4&)) Z Z E(hitohjeo)E(ujui) | |
=1

i=1 j=1
where the second equality holds as the same as preceding discuss that v;; and e;; are serially
uncorrelated. However, by expanding (sz\; hityouf)Q, it is O,(N?) by the assumptions that
E(hit,ohji0) < K and E(ujuj) < K for all i, j. Together with E||£;:&,[| < K, we get

T N
Var [T €N ™"Y  hirous | = O(T™),
t=1 1=1
which implies 77220 €N~ SN | higout = Op(T1/2). .

Proof of Lemma (C7). Consider the mean. Because v, €, hito and u} are mutually inde-

pendent, we can obtain the mean is 0 easily. Next, the variance,

T
§ Uit — Uz

Var =T Z E (uf(hit,o — hi,O))2 E(&:&;)

=72 Z E(U:Q)E(hit,o - Bi,O)2E(€t££)-

Notice that the above holds by the fact v;; and e;; are serially uncorrelated and assumptions
we used in the mean. Because we have E(u}?) < K, E(hyo — hip)? < K and the order of
E(&:€)) is O(N~'). Thus, we have Var |71 thl(uit - ai)ét} = O((NT)™1), and it follows that

T-1 ZtT:1(Uit - ﬂz)ét = Op((NT)—l/Q)_ _

Proof of Lemma (C8). We first consider its mean. Write,

T N
E|T7! Z(’uit — ’CLZ')N71 Z hjt,o(,ug_ — u;‘)
=1 =1
T

T
EY (ui — @i)hao(ud —ui) + B (wiy — @ Zhgto 0o )|
t=1

t=1 Ve
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where the second term inside the square brackets is 0 by the assumption that «; is cross-sectional
independent. Further, since w;; = hi ou; and using the assumptions that h; 0 and u; are mutually

independent with finite mean and variance, we get

T N
-t Z(uzt — )N~ Z hijtolpg —u})
t=1 =1

12 ztO hit,0hi0) B (u; i u:/fr)] =O(NTH). (5.8)

t=1
Consider the variance, we first evaluate the term

2
T N

(NT)2E | “(uie — 1) Y hjrolpg —u})

t=1 j=1

=(NT)*E Z(hzt 0 — hio)?u;? (Z hito(ko — “;)> (Z o (g — “’t)>
=1 k=1
+ Z Z it,0 — hiso — hio)u;? (Z hito(ug — U;)) (Z his,0(kg — U}Z))
=1 k=1

t=1 s#t
Note that the expected value of above equation is non-zero only in the case that j = k, so we can

rewrite them as

T N
Z(Uz‘t — ;) Z hieo(ug —uj)
t=1 j=1

2

T
=(NT)"?E | > (hito — hio)? *QZhﬁO ul)?
t=1

T N
+ Z Z(hz‘t,o — hio)(hiso — hio)u;? (Z hiohgs,o(ug — u;)2>
j=1

t=1 s#t

T T
=(NT)"?E | > (b3, o — hit.ohio)?(ufpd —ui®)? + > (hiro — hio)u;® Z ho(g —uj)?
t=1 t=1 JFi

T
+ 3> (B0 — hirohio) (Bl o — hisohio)(uf . — ui?)?

t=1 s#t
T ) ) N

+ Z Z(hit,o — hi0)(hiso — hio)u;? <Z hijtohis.o(pg — “;)2> : (S.9)
t=1 sAt i

Given the assumptions that h;;o and u; are mutually independent with finite fourth moment, the
first term inside square brackets divided by (NT)? is O(N ~2T~1). Using the similar argument, the
third term divided by (NT)? is O(N~2). Further, since u is cross-sectional independent and h;; o is
covariance stationary process, the second and fourth terms divided by (NT)? are (NT)~!. Thus,

by summarizing (S.8) and (S.9), we have Var |T~! ZtT:l(uit — ;) N1 Zjvzl hjto(pg —ul)| =
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O(N~2) + O((NT)~'). Therefore, we obtain 7= 37 (ui; — ;)N ™! Z;il hjeo(pg — uf) =
Op(N71) + Op((NT)~1/2). O

Proof of Lemma (C9). Since h; o, D¢ and f; are independent stationary process, it is easy to
obtain T7((u; — @;)' D) = Op(T~?) and T~ ((u; — @;)'F) = O,(T~/?). The remains can be
denoted as T~ 327 (u;y — @) )N~ Zjvzl hjt,ou}, and using the similar arguments in Lemma (C8),

the mean,

T N
E T ! Z U4t — uz 71 Z h]—tﬁou;
j=1
T T
EZ ztO_hztthO)u +EZ it,0 — Zh]tou*

t=1 t=1 VE)

T —
IS E(h o — hirohio)E(uf?)| = O(N 7). (S.10)
t=1

The second equality holds by the fact that h;; o is cross-sectional independent with £ [ZtT:l(hit,o —
ﬁi70)] = 0. The result holds by h; ¢ and u] are mutually independent with finite mean and variance.

Next, we consider

2
T
(NT)?E | > (hiro — Z hjt 0w
t=1
T ) N N
=(NT)"?E | > (hito — hio)*u;” (Z hjtyou;-> <Z hkt,ou,’;>
t=1 j=1 k=1
T T ) ) N N
+ Z Z(hit,o = hio)(hiso — hio)u;? (Z hjt,O”;) (Z hks,(ﬂﬁi)
t=1 st j=1 k=1
T ) T ) N N
:(NT)QE Z(h?t,o - hit,th 0 2uf4 + Z it,0 — 2uf2 Z Z hjt,ohkt,ou;uz
t=1 t=1 i ki
T —
+ Z Z(hft,o — hit,ohio)(hiso — his,ohio)u;®
t=1 s#t
T —
+ZZ(hit,O — hio)(hiso — Zzhjt ohksoujuy | | - (S.11)
t=1 s#t JF£i k#i

The above expressions are quite similar with (C8), the assumptions that h; o and u} are mu-
tually independent with finite fourth moment imply the first and third terms divided by (NT')?
are O(N72T~1) and O(N~2). The difference is that the case j # k is non-zero here, thus the
second and forth terms divided by (NT)? are O(T'). Taking (S.10) and(S.11) together, we
have Var |72 Y° (hiro — hio)uf N™U Y000 hyeo(ufs — pd)| = O(N=2)+ O(T~1), which implies
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T~ S0 (hino = RioJui N7 S50 hjeo(us — i) = Op(N7) + 0p(T71/2). 0

Proof of Lemma (C10). The proof of (C10) is quite similar to the last part of (C9) except we
drop u} from (u; — ;) and do not evaluate at true value of 8. We still have the same result that

is T713 00 (hie — ha) N~V 300 hyrous = Op(N71) + O, (T~1/2). O
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