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Estimation of a Panel Stochastic Frontier Model

with Unobserved Common Shocks

Abstract

This paper proposes a panel stochastic frontier model with unobserved common

shocks to control cross-sectional dependence among individual firms. The novel fea-

ture is that we separate technical inefficiency (decision-dependent heterogeneity) from

the effects induced by individual heterogeneity (decision-independent) caused by un-

observed common shocks. We propose a feasible maximum likelihood method that

does not require estimating the effects of unobserved common shocks and discuss its

asymptotic properties. Monte Carlo simulations show that the proposed method has

satisfactory finite sample properties when cross-sectional dependence exists. Applica-

tion is illustrated by comparison of the efficiency of savings and commercial banking

industries in the US.

Keywords: fixed effects, common shocks, factor structure, cross-sectional dependence,

stochastic frontier
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1 Introduction

The use of panel data has become increasingly popular in stochastic frontier models, for

analysis of technical or cost inefficiencies of production units and financial institutions.

There are two approaches that have been employed to estimate time-varying technical

inefficiency, assuming the presence of firm heterogeneity (time-invariant(fixed/random ef-

fects) or time-variant). The first considers the linear panel models without imposing

distributional assumptions on technical inefficiency; see Cornwell, Schmidt and Sickles

(1990), Han, Orea and Schmidt (2005), Lee (2006), Ahn, Lee and Schmidt (2001, 2007,

hereafter ALS), Mastromarco, Serlenga and Shin (2012, 2013, 2015, hereafter MSS) and

Filippini and Tosetti (2014), among others. The generalized method of moments (GMM,

including the least squared method) is adapted in these studies to estimate stochastic

frontier models with time-varying technical inefficiency. The second approach assumes

that technical inefficiency is random and specific distributional assumptions are required;

see Greene (2003, 2005a, b) and Wang and Ho (2010), among others. The maximum likeli-

hood (ML) method, based on suitable distributional assumptions, is suggested to estimate

the time-varying technical inefficiency.

However, to the best of our knowledge, except ALS, MSS and Filippini and Tosetti,

who tried to use the factor structure to capture the time-varying technical inefficiency

in the stochastic frontier panel data model based on the first approach, there are no

other related papers taking into account the factor structure, which has been discussed

based on the second approach. It is difficult to take the factor structure into account

in the ML framework not only because these two approaches have different estimation

strategies but also because they have different fundamental philosophies of time-varying

technical inefficiency. More specifically, the former treats time-varying firm heterogeneity

characterized by factor structure as a part of inefficiency, while the latter explicitly views

firm heterogeneity (fixed/random effects, time-invariant) as something different from time-

varying inefficiency, named “true” fixed/random effects. Similarly, the same issue arises

if the assumption of “true” fixed/random effects is relaxed by allowing the time-varying

property, that is, what can be treated as inefficiency and what cannot be. As mentioned

by Koopmans (1951),
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“The “technique” employed in production is itself the result of managerial

choice (going beyond the discarding of unwanted factor quantities). Managers

choose between, or employ efficient combinations of several processes to obtain

in some sense best results” —Koopmans (1951), p.34

inefficiency can be regarded as the situation where managers “do not” choose an efficient

way to generate the expected output from available capital and labour, which includes the

choice of technology as well as managerial behaviour. In sum, efficiency should be related

to the manager’s decision. Therefore, the relatively clear way to distinguish the time-

varying heterogeneity from inefficiency is that the effects of the former are not relevant

to efficiency given that they are attributable to firm characteristics which the manager

“cannot” change by decisions in the long-run (relatively).

The factor structure used in ALS, MSS and Filippini and Tosetti, by definition, consists

of time-varying factors and the corresponding loadings. As mentioned in Bai (2009), these

loadings could be innate ability, perseverance and industriousness or firms’ heterogeneity

mentioned in Greene (2005a, b), among others; and, factors are the prices (losses) caused

by these unmeasured characteristics when facing time-varying economic environment. In

fact, some of these are inborn; for instance, firms’ heterogeneities cannot be changed easily

but still have impacts on time-varying economic events. Therefore, the estimated technical

inefficiency might be distorted when we incorrectly model inefficiency. For example, it is

hard to conclude that local and small banks that suffer less from global financial shocks

are in general more efficient than multinational banks.

Because of these properties, in our model, the error term is split into three components.

The first component is “decision-independent heterogeneity (time-varying),” captured by

the factor structure. The term “decision-independent” is used to emphasize that this

component is irrelevant to efficiency because a manager cannot change it by himself or

herself. Moreover, the “true” fixed effects, as defined in Greene (2003, 2005a, b), Wang

and Ho (2010) and Chen, Wang and Schmidt (2014) can be treated as a special case while

we let the factors (prices) be a constant. The second component captures the “decision-

dependent heterogeneity (time-varying)”, which can be regarded as a measure of “technical

inefficiency” similar to most stochastic frontier panel data models. To estimate technical
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inefficiency, the scaling function proposed by Wang and Schmidt (2002) is used, that is,

technical (managerial) inefficiency can be explained by some relevant variables according

to the economic theory or organizational behaviour. The last component is a random

shock. 1

In addition to the “decision-independent” heterogeneity, factor structure can also spec-

ify the presence of cross-sectional dependence and the correlation between regressors and

factors which are prevalent features in panel data. Ignoring correlation between regressors

and factors induced by these events can be problematic in estimation of panel regressions;

see Andrews (2005), Pesaran (2006), and Bai (2009) for further discussion.2

This paper proposes a panel stochastic frontier model with unobserved factor structure

to capture the unobservable “decision-independent” heterogeneity and accommodate the

possible phenomenon of cross-sectional dependence among individual firms. To overcome

the endogeneity caused by the “decision-independent” heterogeneity, which is irrelevant

to inefficiency and to estimate the time-varying technical inefficiency, we follow Pesaran

(2006) and propose a likelihood-based method.3 The transformed model obtained by mul-

tiplying an annihilator matrix consisting of the cross-sectional averages of the dependent

variable and regressors should allow filtering of decision-independent heterogeneity (in-

cluding true fixed/random effects) asymptotically. However, in our setup, the time-varying

technical inefficiency in the right hand side is needed for estimation, which makes the an-

nihilator matrix dependent upon the parameters. To address this issue, we first construct

an open ball in the parameter space around the true value of parameters and show that

the maximizer of the log-likelihood function calculated from the transformed model (fea-

sible approximated log-likelihood function) will occur in this open ball with probability

1. We then show that under some regular conditions, the difference between the feasible

approximated log-likelihood function and the one that treats decision-independent hetero-

1This specification is also robust to the “omitted variable” problem in the scaling function while the
omitted inefficiency can be decomposed to form a factor structure.

2Ackerberg, Caves and Frazer (2006) have mentioned that although some shocks(factors) are unobserved
by econometricians, they are potentially predictable by firms when they are making input decisions, such as
expected defect rates, expected down-time due to machine breakdowns, or expected government policies.
This is the classic endogeneity problem whereby the firm’s optimal choice of inputs will generally be
correlated with these unobserved shocks.

3These effects could referred to as common correlated effects (Pesaran, 2006) or interactive effects (Bai,
2009).
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geneity as known is negligible and is faster than the usual rate of (NT )−1/2 in this open

ball. Thus, we can assure that the asymptotic properties of the proposed estimators are

the same as those obtained from the transformed model which treats decision-independent

heterogeneity as known when (T,N) → ∞ jointly and T/N → 0.

There are a few additional features of the proposed method. First, it possesses the scal-

ing property proposed by Wang and Schmidt (2002) and Wang and Ho (2010). In contrast

to ALS, MSS and Filippini and Tosetti the scaling-property enables investigation of how

firms’ efficiency levels vary with exogenous variables.4 Second, our approach can be easily

extended to estimate the cost function and cost inefficiency. We also conduct some Monte

Carlo simulations to investigate the finite sample properties of the proposed method. The

simulation results show that the proposed estimator has significantly smaller biases and

MSEs than the within-transformation estimator when unobservable time-varying decision-

independent heterogeneity exhibits in the data.

To illustrate its relevance, the proposed approach is applied to analyze cost inefficiency

of the savings and commercial banking industry in the U.S. Recent studies on bank ef-

ficiency do not deal with effects of time-varying decision-independent heterogeneity; see,

for example, Lensink et al. (2008) and Sun and Chang (2010). The empirical results show

that bank efficiency improved before 2006 and the estimated inefficiency index might be

biased if we do not take into account the time-varying decision-independent heterogeneity.

The remainder of this paper is organized as follows. Section 2 describes the panel

stochastic frontier model with time-varying decision-independent heterogeneity and dis-

cusses asymptotic properties of the proposed estimation procedure. Section 3 conducts

some Monte Carlo simulations to investigate the small-sample properties of the proposed

estimator. An empirical application is discussed in Section 4. Section 5 concludes this

paper. All mathematical proofs are provided in the Appendix.

4However, we do not compare the proposed model with the one used in Ahn et al. among others because
these two model specifications have different philosophies of time-varying technical inefficiency.
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2 Panel Stochastic Frontier Model

2.1 The Model

Consider a panel stochastic frontier model with the following specifications:

yit = αi + x
′

itβ + λ′

ift + vit − uit, i = 1, . . . , N, t = 1, . . . , T, (1)

xit = Ai + τ
′

ift + eit (2)

uit = hitu
∗

i = h(z′itδ)u
∗

i , (3)

where yit is the logarithm of output of firm i in period t, xit is a k×1 vector of the logarithm

of inputs in this production system, αi denotes individual fixed effects, and vit is a zero-

mean idiosyncratic error. Let ft be a r × 1 vector of price/cost to unobserved common

economic events, λi be the heterogeneous impact of common shocks on firm i, and uit is

the term used to measure inefficiency. The regressors are also affected by individual fixed

effects, Ai, and common shocks, where Ai is a k × 1 vector which is correlated with αi,

and τi denotes a r×k vector of factor loadings. The specification not only allows for cross-

sectional dependence through three error components but makes for correlation between

time-varying heterogeneity and regressors. The idiosyncratic error eit is independent of

all observations on vit and uit. Finally, let hit be a positive function of firms’ inefficiency

determinants zit, u
∗

i ∼ N+(µ, σ2u), where the distribution is truncated from below at zero

such that u∗i > 0. This specification is referred to as the scaling property, which allows

us to estimate coefficients and inefficiency in a one-step procedure.5 The scaling property

also allows the inefficiency uit to be correlated over time for a given individual.

A number of features in these specifications are of interest. Firstly, in contrast to

the conventional stochastic frontier literature, our model can distinguish the decision-

independent heterogeneity, λ′

ift, from technical inefficiency, uit. The decision-independent

heterogeneity is used to capture the heterogeneous impacts of unobservable common eco-

5Conditional on zit, the scaling property means that technical inefficiency equals some function of
exogenous variables times a one-sided random varaible distributed independently of zit; see Wang and
Schmidt (2002).
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nomic events, which can not be controlled by managers. Secondly, an endogeneity problem

may arise because unobserved decision-independent heterogeneity may affect both firms’

input decisions, xit, and their outputs, yit.
6 Thirdly, the conventional fixed-effect stochas-

tic frontier models proposed by Greene (2005a, b) and Wang and Ho (2010) are special

cases of our specification with ft = 1. Fourthly, compared with Ahn et al. among others,

our specification enables us to directly investigate the effects of observed variables zit on

inefficiency and then obtains meaningful policy inferences to improve efficiency.7

2.2 Estimation

In this section we propose a transformation to control for the decision-independent hetero-

geneity (referred to as the CCE transformation8), and then apply the maximum likelihood

method to consistently estimate the parameters in the stochastic frontier model (1) − (3).

Define

M̄0 = IT − H̄0(H̄
′

0H̄0)
−1H̄′

0,

where

H̄0 = (D, Ȳ, h̄0µ
+
0 ),

D = (d1, ..., dT )
′ = (1, ..., 1)′ is a T × 1 vector of ones, Ȳ = (ȳ, X̄) is the cross-sectional

average of (yi,Xi), h̄0 denotes the cross-sectional average of hi evaluated at δ0, and

µ+0 denotes the true value of µ+ =
φ(−µ

σu
)

1−Φ(−µ
σu

)
σu, the mean of the truncated normal u∗i ∼

N+
(
µ, σ2u

)
. Φ and φ represent the cumulative density function and probability density

function of a standard normal distribution, respectively. Throughout this paper, we use

the subscript “0” to indicate that the parameter is evaluated at the true value. The rank

of M̄0, which depends on the dimension of H̄0 = (D, Ȳ, h̄0µ+), is T − dim(H̄0) = T − s.

6To solve the endogeneity problem, Olley and Pakes (1996) and Levinsohn and Petrin (2003) show that
investment and intermediate goods can be used as the proxies of these unobserved state variables; however,
they may not be valid in the cost function analysis.

7Notice that zit is allowed to include unobserved common shocks, ft.
8This transformation share the same spirit with Pesaran (2006) to deal with common correlated ef-

fects (CCE).
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Transform (1) by multiplying it by M̄0,

M̄0yi = M̄0Xiβ + M̄0εi + M̄0Fλi, (4)

where M̄0εi = M̄0vi − M̄0ui. In particular, vi = (vi1, ..., viT )
′ and ui = (ui1, ..., uiT )

′,

thus, M̄0vi ∼ N (0,Π0), Π0 = σ2vM̄0, and M̄0ui = M̄0h (z
′

iδ) u
∗

i . Furthermore F =

(f1,f2, ...,fT )
′ is a T × r matrix. Since M̄0 is an idempotent matrix, we solve the non-

invertible problem of M̄0 based on the method of Khatri (1968). In addition, following

Wang and Ho (2010), we obtain the conditional log-likelihood function for each i as

lnLi(θ) = −1

2
(T − s)

(
ln (2π) + lnσ2v

)
− 1

2
(yi −Xiβ)

′
M̄0Π

−

0 M̄0 (yi −Xiβ)

+
1

2

(
µ2
∗

σ2
∗

− µ2

σ2u

)
+ ln

(
σ∗Φ

(
µ∗
σ∗

))
− ln

(
σuΦ

(
µ

σu

))
,

(5)

where

µ∗ =
µ/σ2u − (yi −Xiβ)

′
M̄0Π

−

0 M̄0hi

h′

iM̄0Π
−

0 M̄0hi + 1/σ2u
(6)

σ2
∗
=

1

h′

iM̄0Π
−

0 M̄0hi + 1/σ2u
. (7)

The model parameters can be estimated numerically by maximizing the objective function,

Q̃NT (θ) = (NT )−1
∑N

i=1 lnLi(θ), where θ ∈ Θ ⊆ R
d is an unknown parameter vector,

where d is the number of parameters.

Notice that the above estimation procedure is designed for the production system. For

the cost function, the model should be modified as

yit = αi + x
′

itβ + λ′

ift + vit + uit, (8)

where yit denotes the total cost of firm i in period t. The individual log-likelihood function

is similar to (5) except that

µ∗ =
µ/σ2u + (yi −Xiβ)

′
M̄0Π

−

0 M̄0hi

h′

iM̄0Π
−

0 M̄0hi + 1/σ2u
.
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2.3 The Properties of the Proposed Method

By an analogous argument to Pesaran (2006), we will show that M̄0 can filter out the un-

observable time-varying decision-independent heterogeneity in our three error components

stochastic panel data model. To complete the inferences of consistency and the asymptotic

normality of the proposed estimator, the following assumptions are used throughout this

paper.

Assumption 1.

The error structure contains vit, eit and u
∗

i , which are distributed independently of each

other and of the regressors xit,zit, ∀ i, t. We also assume that

vit ∼ N(0, σ2v)

u∗i ∼ N+(µ, σ2u),

where the variances σ2v and σ2u are bounded.

Assumption 2. The common factors dt and ft are covariance stationary with absolute

summable autocovariances, distributed independently of vit, eit and u
∗

i , ∀ i, t.

Assumption 3. The unobserved factor loadings λi with mean η and τi with mean τ ,

specifically, λi = η + ηi and τi = τ + ϑi. Furthermore, they are mutually independent

and independent of vit, eit, u
∗

i , and the common factors dt, ft, ∀ i, t. In particular, ‖λi‖

and ‖τi‖ are bounded with a finite second moment.

Assumption 4. The function of the determinants h(z′itδ) should be assumed to have

finite first, second, and fourth moments and to be distributed independently of vit, eit and

u∗i ∀ i, t.

Assumption 1 is a standard distributional assumption for the stochastic frontier model.

Assumptions 2 − 4 are similar to the assumptions used in Pesaran (2006) for the panel

model with multi-factor error structures.

8



We rewrite the stochastic frontier model (1) − (3) as


 yit

xit


 =


 1 β′

0 Ik




 αi

Ai


 dt +


 1 β′

0 Ik




 λ

′

i

τ ′

i


ft −


 uit

0(k×1)


+


 vit + β

′eit

eit




or

Yit = B′

idt +C′

ift −Uit + ξit;

here dt = 1. After taking the cross-sectional average under the equal weight, we have

Ȳt = B̄′dt + C̄′ft − Ūt + ξ̄t, (9)

where Ūt = (ūt,0
′)′ and ūt = N−1

∑N
i=1 uit. In the light of Pesaran (2006), we obtain

ξ̄t
IP−→ 0 and C̄

IP−→ C as N → ∞, whereC =
[
λ τ

]

 1 0′

β Ik


. Under the assumption

Rank(C̄) = r ≤ k + 1, it can be shown that

ft − (CC′)−1C(Ȳt − B̄′dt + Ūt)
IP−→ 0. (10)

Thus, the set {D, ȳ, X̄, Ū} can be regarded as the proxy of the factor structure. Based on

Pesaran (2006), to proxy the common factors in our model, we could use

H̄∗ = [ D ȳ X̄ ū ].

Notice that u∗i is not observed in the data. To overcome this problem, we propose using

h̄0µ
+
0 as a proxy for ū. Under Assumptions 1 and 4, we have

ūt − h̄t,0µ
+
0

IP−→ 0

as N → ∞, where h̄0 = (h̄1,0, ..., h̄T,0)
′. It follows that

ft − (CC′)−1C


Ȳt − B̄′dt +


 h̄t,0µ

+
0

0




 IP−→ 0. (11)
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By substituting h̄0µ
+
0 in H̄∗, we obtain

H̄0 = [ D ȳ X̄ h̄0µ
+
0

].

The transformed matrix which consists of H̄0 could work because we construct this

matrix by using the true value of δ and µ+. However, it is not reasonable to assume

that we know these values ex ante. Therefore, we shall prove that the deviation of δ and

µ+ should lead to the transformed log-likelihood function not converging to the correctly

specified log-likelihood function and being less than it with probability one when this

deviation does not vanish as the sample size increases. To show this property, we define

two log-likelihood functions after transformation by using the transformed matrixs M̄0

and M̄. In contrast to M̄0, here, M̄ denotes the transformed matrix which is evaluated at

estimated δ and µ+. The first of these two functions is the correctly specified log-likelihood

function considering the time-varying decision-independent heterogeneity,

QNT (θ) =(NT )−1
N∑

i=1

{
−1

2
(T − s)

(
ln (2π) + lnσ2v

)

− 1

2
(yi −Xiβ − F0λi,0)

′M̄Π−M̄(yi −Xiβ − F0λi,0)

+
1

2

(
µ2c
σ2
∗

− µ2

σ2u

)
+ ln

(
σ∗Φ

(
µc
σ∗

))
− ln

(
σuΦ

(
µ

σu

))}
, (12)

where µc =
µ/σ2u+(yi−Xiβ−F0λi,0)′M̄Π−M̄hi

h′

iM̄Π−M̄hi+1/σ2u
. The second one is the log-likelihood function

ignoring this heterogeneity,

Q̃NT (θ) =(NT )−1
N∑

i=1

{
−1

2
(T − s)

(
ln (2π) + lnσ2v

)

− 1

2
(yi −Xiβ)

′M̄Π−M̄(yi −Xiβ).

+
1

2

(
µ2
∗

σ2
∗

− µ2

σ2u

)
+ ln

(
σ∗Φ

(
µ∗
σ∗

))
− ln

(
σuΦ

(
µ

σu

))}
. (13)

The main differences between these two functions can be disclosed as follows. In (12), since

we assume that the factor structure is known ex ante in both factors and corresponding

loadings, the model can be correctly specified without ignoring the effects of the factor
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structure. Thus, the factor structure appears in the second line of (12) which is the same

as the well-known normal distribution with location (mean) and scale (variance) parts.

On the other hand, the log-likelihood function defined in (13) is more realistic because

we usually cannot observe these factors and their corresponding effects. Thus, the factor

structure does not come out in the location part and µ∗ of (13). We replace µ∗ by µc

in the third line to characterize the truncated property. This log-likelihood function is

“feasible” because the difference between (12) and (13) can be ignored under assumptions

1− 4 and some regular conditions,

Assumption 5. (i) Let Q0(θ) = E[QNT (θ)], Q̃0(θ) = E[Q̃NT (θ)], and Q0(θ) is uniquely

maximized at θ0; (ii) Θ is compact; (iii) Q0 and Q̃0 are continuous at θ; and (iv) QNT (θ)

and Q̃NT (θ) converge uniformly in probability to Q0(θ) and Q̃0(θ), respectively.

We state the main properties of these two functions in the following proposition.

Proposition 1. Let B = {θ0 + bNTd : ‖d‖ ≤ K}, where bNT converges to 0 as N,T →

∞, along with Assumptions 1-5, the “ feasible” log-likelihood function has the following

properties:

1. |QNT (θ)− Q̃NT (θ)| IP−→ 0 when θ ∈ B.

2. P[QNT (θ0)− Q̃NT (θ) > 0] = 1, when θ ∈ B
c ∩Θ,

as N,T → ∞ jointly.

The first result of this proposition indicates that if we construct an open ball, B,

with the center θ0 and its radius converging to zero, we can show that the “feasible”

log-likelihood function is uniformly close to the correctly specified likelihood function for

all θ ∈ B. In addition, the second result implies that, with probability one, there is a

positive difference between QNT (θ0) and Q̃NT (θ), and it does not vanish as N,T → ∞ if

θ ∈ B
c ∩Θ. This implies that if we consider a candidate solution of θ ∈ B

c ∩Θ, named

θ′, we have QNT (θ0) > Q̃NT (θ
′) in probability one. In other words, θ′ is not the solution

of the “feasible” likelihood function because we can always find another solution θ′′ ∈ B

11



which is closer to θ0 to make Q̃NT (θ
′′) close to QNT (θ0). Consequently, these results lead

to the following theorem about the consistency of the “feasible” log-likelihood function.

Theorem 1. Assume that the conditions of Proposition 1 hold. Then θ̃
IP−→ θ0 as N,T →

∞ jointly, where θ̃ is obtained from maximizing the objective function Q̃NT (θ).

Theorem 1 shows that, instead of maximizing the correctly specified log-likelihood

function, if we maximize the “feasible” log-likelihood function, then we can obtain a

consistent estimator of θ0. Although it is expected that
√
NT (θ̂ − θ0) has asymptotic

normality, derived from maximizing the correctly specified log-likelihood function in (12),

the behavior of θ̃ obtained from Q̃NT (θ) is not trivial. Because the “feasible” function is

an approximate function of the true one, we can not apply the traditional method, such

as the mean value theorem, to obtain the asymptotic behavior of its estimator. Instead,

we apply the framework which is used in Kristensen and Shin (2012). In their paper,

they show that as long as the difference of two objective functions converges to zero faster

than the usual convergence rate of estimators, for example root-NT , the two estimators

obtained from these two functions will share the same asymptotic behavior. Furthermore,

since the property of smoothness in log-likelihood function Q̃NT (θ) is the same as QNT (θ),

both of them have the same rate of convergence, root-NT . Therefore, in the following

proposition, we show that under what conditions, the difference between QNT (θ) and

Q̃NT (θ), will converge to zero after multiplying by root-NT . We summarize the result of

the requirement to ensure a stronger convergence of QNT (θ) and Q̃NT (θ) as follows:

Proposition 2. Using the assumptions in Proposition 1 we have the following result:

√
NT |QNT (θ) − Q̃NT (θ)| IP−→ 0 when θ ∈ B and bNT = op (CNT ), where CNT =

min{N−1/2, T−1/2, (NT )−1/4}, as N,T → ∞ jointly and T/N → 0.

This result discloses the required converge rate of bNT to guarantee the stronger con-

vergence property of QNT (θ) and Q̃NT (θ). This minimum rate of convergence is slower

than the converge rate of estimators θ̂ and θ̃ and therefore proves the hold of the property

of Proposition 2 in our “feasible” log-likelihood function. That is, the difference between

QNT (θ) and Q̃NT (θ) after multiplying by root-NT converges to 0 as N,T → ∞ jointly
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and T/N → 0. This result is crucial because it can be used to show that the asymptotic

behavior of θ̃ is asymptotically equivalent to θ̂ obtained from QNT (θ) by using Lemma 1

in the Appendix. We state the above result as the following theorem.

Theorem 2. Using the assumptions in Theorem 1 and an additional assumption (L1):

Q0(θ) is three times continuously differentiable and its derivatives satisfying: (i)
√
NTS(θ0)

D−→ N(0, {E[−H(θ0)]}−1); (ii) H(θ0)
IP−→ E[H(θ0)]; (iii) maxj=1,...,d supθ || ∂Q0(θ)

∂θ∂θ′∂θj
|| =

Op(1), we have the following result:

√
NT (θ̃ − θ0) D−→ N(0, {E[−H̃(θ0)]}−1), and E[H̃(θ0)]

IP−→ E[H(θ0)],

as N,T → ∞ jointly and T/N → 0. Here, S(θ0) = ∂Q0(θ)
∂θ |θ0 , and H̃(θ0) is the Hessian

matrix of Q̃0(θ) and H(θ0) is the Hessian matrix of Q0(θ)at θ0, respectively.

Compared with ALS, MSS, and Filippini and Tosetti, our estimation allows us to focus

on zit that is concerned with measuring inefficiency and to treat time-varying decision-

independent heterogeneity as a part of the factor structure which can be filtered out by our

transformation. According to the above asymptotic properties, our estimation still have

asymptotic normality and is asymptotically equivalent to the function which treats the

factor structure as the observed structure. Furthermore, the GMM-type(including OLS)

method can not distinguish between time-varying decision-independent heterogeneity and

technical inefficiency.

2.4 The Inefficiency Index

It is important to measure the inefficiency index in applications. How, then, can the

inefficiency index be estimated after the proposed transformation? We follow Wang and

Ho (2010), who use the conditional expectation estimator proposed by Jondrow et al.

(1982), namely, E(ui|εi) evaluated at εi = ε̂i, to construct the inefficiency index. In the

same manner, the inefficiency index in our estimation is the conditional expectation of uit

on the vector of the transformed εi = vi − ui, i.e., M̄εi. Note that M̄εi is evaluated at
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̂̄Mεi, and following Wang and Ho (2010), the conditional inefficiency index is

E
(
ui|M̄εi

)
= h(z′iδ)


µ∗ +

φ
(
µ∗
σ∗

)
σ∗

Φ
(
µ∗
σ∗

)


 (14)

3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to investigate the finite sample prop-

erties of our proposed estimator. Consider the following stochastic production frontier

model for i = 1, . . . , N and t = 1, . . . , T :

yit = αi + xitβ + λ′

ift + vit − exp(z′itδ)u
∗

i (15)

xit = Ai + τ
′

ift + eit, (16)

where αi ∼ U(0, 1), xit is a regressor, ft ∼ N(0, σf ) is a common factor, σ2f = 0.2, factor

loadings λi and τi follow N(1, 0.2), and zit consists of zit,1 ∼ N(0, 1) and zit,2 = t, which

implies that the inefficiency is time-varying, vit ∼ N(0, σ2v), u
∗

i ∼ N+(µ, σ2u), vit and u
∗

i

are mutually independent, and eit ∼ N(0, 1). The parameter values are

(β, δ1, δ2, σ
2
v , σ

2
u, µ) = (0.5, 0.5, 0.1, 0.1, 0.2, 0.5).

N = {50, 100, 200, 400}, T = {5, 10, 20}, and the number of replications is 1,000 in all

simulations.

To demonstrate the importance of our transformation in the presence of time-varying

decision-independent heterogeneity, we also compare our method with the estimation

which only takes the fixed effects into account by means of the Within transformation.

Hereafter, we let Within denote the latter method and let CCE denote our estimator.

Our simulation results are reported in Table 1. We find that CCE tends to have a

smaller bias than Within for all parameters over all combinations of (N,T ) except for δ2

when T = 5. Moreover, CCE uniformly has a smaller RMSE than Within as T ≥ 10.

Even when T = 5, the RMSE ratios, ψ =RMSE(Within)/RMSE(CCE), increase with
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the increase in N . For example, the ψ of δ̂ is 0.614 when (N,T ) = (50, 5) and increases

to 1.036, which indicates that CCE has a smaller RMSE than Within by 3.6%, when

(N,T ) = (50, 5). It is also worth noting that the bias and the RMSE of CCE decline

as T or N increases for all parameters. By contrast, due to failing to control for the

time-varying decision-independent heterogeneity, the Within estimators of β and δ are

still biased and cannot be improved even when T or N is large.

For robustness, we further consider the finite sample performance for different degrees

of cross-sectional correlation by adjusting the magnitude of σf . In particular, we consider

three settings with σ2f = 0.1, 1 and 0, respectively. As we can see from model (1), when

σf is smaller, our model is closer to the model with fixed effects only and the time-varying

decision-independent heterogeneity become less important. The last case implies the model

which has only fixed effects. Furthermore, instead of letting zit,2 = t in h(z′itδ), we consider

group-specific inefficiency by letting zit,2 be a group dummy such that zit,2 = 1 for any

unit in Group 2; otherwise zit,2 = 0. The members in Group 1 are randomly assigned in

each repetition with the number of units N1 = ⌊U(0.3, 0.7) × N⌋, regardless of whether

⌊A⌋ is the integer closest to A. The other group has N−N1 units. The group membership

is known in advance. The parameters in this set of simulations take the following values

(β, δ1, δ2, σ
2
v , σ

2
u, µ) = (0.5, 0.5, 0.1, 0.1, 0.2, 0.5).

The results are summarized in Tables 2 and 3 with T = {10, 20}, respectively. Since

we have similar patterns to the previous simulation, that is, the bias and the RMSE of

CCE decline as T or N increases, we do not report the case when T = 5. It will be

clear from these results that the bias for Within seems to be less serious as σ2f = 0.1, and

becomes more significant as σ2f = 1. More importantly, the performance of our approach

is generally better than that of Within approach even when σ2f = 0.1, which demonstrates

that our method is still robust even when the degree of time-varying property to decision-

independent heterogeneity is small in the data. In particular, the estimates of σ2v and σ
2
u for

the Within approach seem to be overestimated in the presence of the time-varying decision-

independent heterogeneity. On the contrary, CCE provides less unbiased estimates even
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when σ2f = 0.1. However, the CCE estimator tends to be less efficient when the model

only contains fixed effects.

We next consider the experiment in which both xit and zit are correlated with an

unobservable common factor. We set uit = exp(z′itδ)u
∗

i to ensure that uit is positive. Let

zit = γ
′

ift + ez,it, (17)

and zit is correlated with ft. We still have two variables z1,it and z2,it which can affect uit.

In particular, the factor loadings γi,1 and γi,2 follow N(1, 0.4) and N(1, 0.2), respectively,

ft ∼ N(0, 0.6) to indicate that the factor is important in this model, and each of ez,it fol-

lows N(0, 1). xit is similar to the former setting. The parameters in this set of simulations

take the following values

(β, δ1, δ2, σ
2
v , σ

2
u, µ) = (0.5, 0.2,−0.1, 0.1, 0.1, 0.4).

Table 4 summarizes the simulation results. A general finding is that our proposed

method is relatively much better than Within in all combinations. The bias is almost 0 in

CCE except for σ2u, whereas the bias of Within is serious not only for β but also for the δ’s.

Notice that the small bias of σ2u in CCE will decrease as N increases. On the contrary, the

bias of σ2u in Within is enormous, and it is not surprising because Within does not control

the time-varying decision-independent heterogeneity, and the components from the biased

ĥit will induce large variations in u∗i .

In general, the simulation shows the clear results that the estimation without control-

ling the time-varying decision-independent heterogeneity will bias the estimates. We also

conduct a similar simulation for the cost frontier model, which is not reported here. Its

pattern again confirms the importance of taking the time-varying decision-independent

heterogeneity into account in a stochastic frontier model and the findings are similar to

the findings summarized in Tables 1 − 4.
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4 Empirical Study

In the years leading up to the 2008 financial crisis, banks in theU.S. suffered from a dif-

ficult environment. Given that this crisis was induced by a rise in subprime mortgage

delinquencies and foreclosures, a key question that arises concerns for the performance

before the said crisis of the banks in the U.S., two basic types of banks co-exist in the

market, namely, savings and commercial banks. These two types are generally character-

ized by their ownership structure and by the services they provide. In the U.S., savings

institutions may be owned by shareholders (stock), or by their depositors and borrow-

ers (mutual). Based on the agency theory and property rights theory addressed by the

seminal works of Jensen and Meckling (1976) and Fama and Jensen (1983), in contrast

to commercial banks which are generally stock corporations, savings banks may not ap-

pear to engage in skimping behavior. Particularly in the period before the crisis, as we

know, savings banks had to hold a certain proportion of their loan portfolio in housing-

related assets to preserve their charter. Therefore, these savings banks faced the problem

of overbuilding during the boom period, which resulted in their increasing loans, as well

as inappropriate government regulation before the financial crisis. In particular, more

and more loans to higher-risk borrowers were offered by the lenders, thus revealing the

inappropriate managerial behavior of savings banks before the crisis.

Another aim of this paper is to examine the change in efficiency that resulted from

the banking consolidation. According to data complied by the Federal Deposit Insurance

Corporation (FDIC), the number of commercial banks had fallen to 6,279 at the end of

2011, a drop about 49.1% since 1990. Similarly, the number of savings institutions fell from

2,815 to 1,067 over the same period. There is still a debate between the issues of efficiency

and the banking consolidation. In general, the consolidation will increase the market

power, and therefore lead to a decline in competition. From the viewpoint of competitive

efficiency, the efficiency of banks should be lower in this scenario. Put differently, an

increase in competition will wear the bank’s pricing power away, and increase the bank’s

risk taking behavior; see Berger et al. (2009b) and Beck, Jonghe and Schepens (2013).

Hence, an increase in competition could lead to lower profit and higher cost under the

same allocation of inputs; in other words, cost inefficiency. To explore the relationship
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between banking consolidation and efficiency, we focus on the banks which have not failed

or have merged with other banks. In other words, we collect data for the banks that have

existed over the whole sample period under consideration. By building on this situation,

we can show, on average, the effects of consolidation without the failed banks .

4.1 Data

We evaluate the cost efficiency of commercial and savings banks in the U.S. by using the

proposed transformation allowing for the time-varying decision-independent heterogeneity

in the stochastic frontier model. The conventional intermediation approach to measuring

the cost faced by a bank is used in this study. Total cost is defined as the sum of interest

expenses and non-interest expense. Following Berger et al. (2009a) and Sun and Chang

(2010), we consider the following output variables in the cost function: total loans (TL),

other earning assets (OEA), total deposits (TD) and liquid assets (LA). We additionally

consider the price of capital (PC) and funds (PF), defined by the ratio of non-interest

expenses to total fixed assets and the ratio of interest expenses to total deposits, respec-

tively, as our input prices. In order to guarantee linear homogeneity in the input prices of

the cost function, we re-scale TC and PC by PF.

The cost function used here is

ln

(
TC

PF

)

it

= β0 ln

(
PC

PF

)

it

+ β1 ln TLit + β2 lnOEAit (18)

+ β3 ln TDit + β4 ln LAit + λift + vit + uit.

To allow the inefficiency across banks to be measured by explanatory variables, we use the

scaling function proposed by Wang and Schmidt (2002). The specification of the scaling

function is as follows

h(z′itδ) = exp(δ1 ln TAit + δ2ETAit + δ3ROAAit +Type), (19)

where TA denotes the total assets less liquid assests, ETA denotes the equity to assets,

and ROAA denotes the return on average assets. These three variables are commonly
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used to control the efficiency. TA measures the relationship between the efficiency and

the size of the bank. ETA can represent the equity position of a bank and avoid the scale

bias making large banks more efficient (Berger and Mester, 1997). In addition, ETA may

reflect the risk preference of a manager of a bank. ROAA can be regarded as a proxy for

manager ability. A type dummy variable is also included to capture the effect of different

of types of banks.

We consider a balanced panel data set covering 1994-2007 with 223 banks in the U.S.

The data are taken from Bankscope and are inflation-adjusted. Except for ETA and

ROAA, all the other variables are transformed into natural logs. Table 5 presents the

descriptive statistics of these variables.

4.2 Empirical Results

The empirical results obtained by our approaches are summarized in the right panel of

Table 6. We report not only the estimates of the coefficients in the cost function β’s,

but also the estimates of the parameters in the inefficiency equation δ’s. For comparison

purposes, we additionally show the results based on the Within approach in the left panel

of Table 6.9

Let us consider the coefficients in the cost function using our approach first. The

coefficient of the input prices (PC/PF) is positive at the 1% significance level, which

indicates that a higher capital cost results in a higher total cost and is similar to the

empirical results of Lensink et al. (2008) and Sun and Chang (2010). As expected, the

output variables, such as TL, TD and LA, also have positive effects on the total cost.

While the estimated coefficient of OEA is negative, it has a rather small effect in contrast

to other variables. The empirical results from the Within approach are qualitatively

similar to those based on our CCE approach. However, the former tends to deliver smaller

estimated coefficients of TL, TD and LA than our approach.

Next, we turn our focus to the coefficients of the inefficiency equation. The coefficient

for TA, equal to -0.202, is negative and significant at the 1% level, which implies that

9We also consider the trend effects while implementing the Within approach by adding t and t
2 along

with intercept to form the idempotent matrix M.
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larger banks are on average more efficient than smaller banks as TA is regarded as a proxy

for bank size. The estimated sign of this coefficient is different from that in Han et al.

(2005) and Sun and Chang (2010). However, Delis and Papanikolaou (2009) pointed out

that the relationship between bank size and efficiency is inverse U-shaped, which implies

that the efficiency increases with size and then decreases thereafter. In our data, almost

90% of banks are small and medium-sized and, therefore, are more likely to have a positive

relationship with efficiency.10 In addition, our results indicate that an increase in ETA

will raise inefficiency, which can be explained in two ways. First, ETA can be regarded

as a proxy for the risk-preference of a manager. A higher equity position reveals that the

manager is risk-averse and might not be good at using financial leverage to increase the size

of a bank, which indicates that the manager may not seek to minimize the cost. Second,

inefficiency will lead to a lower profit and put equity in a high position. Furthermore,

the negative relationship between ROAA and inefficiency is also in line with Lensink et

al. (2008).

Although the ROAA should exhibit a negative relationship with inefficiency as pointed

out by Lensink et al. (2008), we can not find strong evidence to link ROAA with efficiency,

even if the sign is negative and has only a very slight effect.

Furthermore, the type dummy variable for identifing the different performance shows

the positive effects on commercial banks. The effect is not only statistically, but also eco-

nomically large. The result shown in the table is equal to -0.263, which provides strong

evidence to show that savings banks are less efficient than their commercial counterparts.

It supports the view that savings banks had poor managerial behavior before the crisis

when they faced overbuilding during the boom period, increasing loans and inappropri-

ate government regulation and did not tend to minimize their costs. On the contrary,

commercial banks were more efficient.

Comparing the results of different approaches further reflects the importance of control-

ling the time-varying decision-independent heterogeneity in the stochastic frontier model.

The second column of the table from the alternative approach which only takes account

10Following Berger et al. (2009a), the classification of bank size is defined as follows. The bank’s size
is considered to be small if its assets are less than or equal to $1 billion, its size is medium if the bank’s
assets are greater than $1 billion but less than $20 billion, and the bank is large if its assets exceed $20
billion.
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of the fixed effects provides different results. It shows that the effects of ETA, ROAA

and the type dummy are completely opposite to our results. Despite the ETA, it is

uncanny to explain the relationship between ROAA and efficiency that is negative. 11

Moreover, the result goes against the traditional concept, which implies that the savings

banks are efficient. Notice that our CCE approach is consistent and has satisfactory fi-

nite sample performance even when there do not exist any or only small time-varying

decision-independent heterogeneity as shown in the previous sections. Thus, the differ-

ent estimated value based on the Within approach appears to reflect the fact that the

time-varying decision-independent heterogeneity have been ignored.

Finally, we further compare the pattern of cost efficiency of the savings and commer-

cial banks. Figure 1 plots the average cost efficiency of each group over the 1994-2007

period. Both the Within and CCE approaches exhibit an upward trend for the savings

and commercial banks, which implies that the banking industry operats more efficiently

under consolidation. This result may support the view that most U.S. banks have faced

increasing returns as recently discussed by Wheelock and Wilson (2012). However, the

pattern further shows that the difference between savings and commercial banks is rela-

tively small by using the Within approach rather than the CCE approach. As the figure

illustrates, savings banks are even more efficient than commercial banks based on the

Within estimation. As we discussed before, the efficiency may be affected by ignoring

the time-varying decision-independent heterogeneity, which leads to bias in the estimated

efficiency.

5 Concluding Remarks

Many studies have revealed the importance of distinguishing fixed effects from inefficiency.

However, such research fails to consider the possibility that the specific heterogeneity can

have the time-varying property. In this paper, a stochastic frontier model with factor struc-

ture is developed to capture the time-varying decision-independent heterogeneity which

is irrelevant to inefficiency and explain the cross-sectional dependence among individual

11This result is the same as that of Sun and Chang (2010), while it might arise due to endogeneity.
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firms. The novel feature of our model is that it distinguishes the time-varying “decision-

independent” heterogeneity and “technical inefficiency” according to a more fundamen-

tal definition of inefficiency mentioned by Koopmans (1951). The proposed maximum

likelihood method by model transformation does not require estimating unobserved time-

varying decision-independent heterogeneity. With the CCE transformation, we can control

the time-varying decision-independent heterogeneity and obtain consistent estimates of pa-

rameters for the panel stochastic frontier model. Our Monte Carlo simulations show that

the modified MLE has satisfactory finite sample properties under a significant degree of

cross-sectional dependence for relatively small T . The desirable results and computational

ease should appeal to empirical researchers.
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Table 1: Simulation results with cross-section dependence

T = 5 T = 10 T = 20

Within CCE Within CCE Within CCE

N = 50 Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.125 0.150 -0.002 0.058 2.596 0.146 0.159 0.000 0.021 7.695 0.155 0.162 0.000 0.012 13.170

δ̂1 -0.010 0.127 0.008 0.208 0.614 -0.002 0.080 -0.002 0.060 1.335 0.000 0.025 0.000 0.015 1.683

δ̂2 0.002 0.095 0.032 0.122 0.778 -0.002 0.021 0.001 0.013 1.565 0.000 0.005 0.000 0.002 2.729

σ̂2v 0.166 0.202 -0.013 0.030 6.663 0.191 0.209 0.000 0.009 23.053 0.199 0.209 0.006 0.009 23.839

σ̂2u 0.049 0.239 0.039 0.279 0.856 0.031 0.159 0.007 0.116 1.372 0.006 0.086 -0.003 0.070 1.232

µ̂ 0.068 0.263 0.014 0.285 0.924 0.020 0.208 -0.001 0.154 1.347 -0.007 0.137 -0.002 0.113 1.221

Within CCE Within CCE Within CCE

N = 100 Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.129 0.155 0.000 0.040 3.921 0.147 0.159 0.000 0.014 11.573 0.154 0.161 0.000 0.008 19.771

δ̂1 -0.027 0.109 -0.005 0.147 0.739 -0.002 0.071 0.001 0.039 1.800 0.001 0.023 0.000 0.010 2.203

δ̂2 -0.006 0.086 0.020 0.095 0.903 -0.002 0.019 0.000 0.010 1.906 0.000 0.005 0.000 0.001 3.499

σ̂2v 0.177 0.214 -0.009 0.022 9.859 0.194 0.211 0.000 0.006 33.560 0.201 0.210 0.003 0.005 40.385

σ̂2u 0.060 0.218 0.059 0.256 0.853 0.019 0.111 0.003 0.073 1.514 0.005 0.069 -0.003 0.051 1.348

µ̂ 0.096 0.231 -0.004 0.240 0.963 0.026 0.173 0.004 0.106 1.642 -0.003 0.111 -0.001 0.079 1.412
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(continued)

T = 5 T = 10 T = 20

Within CCE Within CCE Within CCE

N = 200 Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.131 0.153 0.001 0.028 5.409 0.147 0.159 0.000 0.010 16.189 0.154 0.160 0.000 0.006 28.865

δ̂1 -0.026 0.094 -0.007 0.105 0.903 0.004 0.062 0.001 0.030 2.100 0.002 0.023 0.000 0.007 3.260

δ̂2 -0.006 0.078 0.010 0.078 0.998 -0.003 0.018 0.000 0.007 2.478 0.000 0.005 0.000 0.001 4.584

σ̂2v 0.179 0.212 -0.005 0.015 13.772 0.195 0.212 0.000 0.004 48.627 0.200 0.209 0.002 0.003 63.266

σ̂2u 0.051 0.185 0.061 0.216 0.853 0.015 0.093 0.003 0.055 1.708 0.002 0.056 -0.002 0.036 1.548

µ̂ 0.087 0.202 -0.015 0.196 1.027 0.009 0.147 -0.003 0.076 1.944 -0.003 0.093 0.001 0.057 1.630

Within CCE Within CCE Within CCE

N = 400 Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.126 0.148 0.000 0.019 7.817 0.147 0.158 0.000 0.007 23.143 0.155 0.161 0.000 0.004 40.098

δ̂1 -0.026 0.085 -0.003 0.082 1.036 0.000 0.059 0.001 0.021 2.794 0.000 0.022 0.000 0.005 4.404

δ̂2 -0.005 0.076 0.010 0.073 1.032 -0.002 0.017 0.000 0.006 3.025 0.000 0.005 0.000 0.001 5.839

σ̂2v 0.173 0.205 -0.004 0.011 18.678 0.194 0.211 0.000 0.003 67.751 0.202 0.210 0.001 0.002 105.087

σ̂2u 0.044 0.152 0.043 0.175 0.868 0.011 0.084 0.000 0.036 2.319 0.002 0.050 -0.002 0.026 1.895

µ̂ 0.082 0.180 -0.028 0.159 1.131 0.015 0.132 -0.005 0.052 2.521 0.006 0.080 0.002 0.043 1.849

1 In brief, we denote Within as the abbreviation of the within-transformation and CCE as the abbreviation for the proposed transformation.
2 ψ is the ratio of RMSE(Within)/RMSE(CCE).
3 The true values of the parameter set are β = 0.5, δ1 = 0.5, δ2 = 0.1, σ2v = 0.1, σ2u = 0.2, and µ = 0.5.
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Table 2: Simulation results with cross-section dependence under different σf

(T=10) σ2f = 0(only fixed effects) σ2f = 0.1 σ2f = 1

N = 50 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.000 0.015 0.000 0.020 0.776 0.087 0.097 -0.001 0.020 4.963 0.433 0.446 -0.000 0.019 24.016

δ̂1 0.001 0.031 0.004 0.066 0.478 0.001 0.075 0.006 0.077 0.971 0.014 0.126 0.002 0.074 1.694

δ̂2 0.000 0.007 0.000 0.016 0.446 0.001 0.200 -0.003 0.232 0.862 0.015 0.280 0.004 0.216 1.299

σ̂2v 0.000 0.007 -0.002 0.009 0.763 0.109 0.119 -0.001 0.009 13.655 0.592 0.604 -0.001 0.009 67.373

σ̂2u 0.012 0.103 0.012 0.129 0.801 0.017 0.152 0.009 0.151 1.008 0.077 0.258 0.017 0.158 1.629

µ̂ -0.020 0.150 -0.009 0.172 0.870 0.007 0.182 0.010 0.181 1.006 -0.038 0.226 -0.003 0.177 1.272

N = 100 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.000 0.011 0.000 0.014 0.781 0.089 0.098 -0.000 0.014 7.041 0.427 0.439 -0.001 0.014 31.009

δ̂1 -0.001 0.022 0.005 0.049 0.458 0.001 0.052 0.001 0.050 1.037 0.002 0.096 -0.001 0.051 1.871

δ̂2 0.000 0.005 -0.001 0.012 0.420 0.009 0.130 0.001 0.162 0.805 0.002 0.182 0.004 0.162 1.125

σ̂2v 0.000 0.005 -0.001 0.006 0.816 0.112 0.123 -0.000 0.006 19.624 0.596 0.607 -0.000 0.006 98.686

σ̂2u 0.003 0.064 0.000 0.081 0.786 0.009 0.103 0.009 0.105 0.982 0.082 0.229 0.011 0.107 2.143

µ̂ 0.001 0.092 0.001 0.111 0.833 -0.009 0.128 -0.001 0.125 1.026 -0.040 0.192 -0.004 0.136 1.412
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(continued)

(T=10) σ2f = 0(only fixed effects) σ2f = 0.1 σ2f = 1

N = 200 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.000 0.008 0.000 0.010 0.789 0.089 0.096 -0.000 0.009 10.234 0.430 0.441 0.000 0.010 45.506

δ̂1 0.000 0.015 -0.001 0.035 0.430 0.002 0.037 0.001 0.037 0.995 0.001 0.068 -0.002 0.037 1.845

δ̂2 0.000 0.003 0.001 0.010 0.353 0.003 0.094 0.008 0.114 0.824 -0.007 0.133 -0.003 0.115 1.154

σ̂2v 0.000 0.004 -0.001 0.005 0.765 0.111 0.121 0.000 0.004 28.167 0.597 0.608 -0.000 0.004 135.998

σ̂2u 0.002 0.043 0.004 0.059 0.736 0.005 0.068 0.002 0.070 0.978 0.083 0.195 0.009 0.076 2.560

µ̂ -0.001 0.064 0.001 0.081 0.801 -0.008 0.088 -0.003 0.089 0.987 -0.060 0.152 0.003 0.087 1.754

N = 400 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.000 0.006 0.000 0.007 0.803 0.088 0.094 -0.000 0.007 13.411 0.426 0.438 0.000 0.007 65.428

δ̂1 -0.001 0.011 0.001 0.026 0.416 0.003 0.026 0.001 0.024 1.068 -0.003 0.049 0.002 0.025 1.980

δ̂2 0.000 0.002 0.000 0.009 0.283 0.002 0.067 -0.000 0.079 0.843 -0.007 0.094 0.004 0.077 1.229

σ̂2v 0.000 0.003 0.000 0.003 0.808 0.109 0.119 -0.000 0.003 38.680 0.594 0.606 -0.000 0.003 193.373

σ̂2u 0.001 0.032 -0.001 0.042 0.755 0.002 0.049 0.000 0.043 1.124 0.086 0.178 0.003 0.046 3.831

µ̂ 0.001 0.043 0.000 0.056 0.761 -0.009 0.062 -0.002 0.063 0.986 -0.060 0.119 -0.008 0.060 1.963

1 ψ is the ratio of RMSE(Within)/RMSE(CCE).
2 The true values of the parameter set are β = 0.5, δ1 = 0.5, δ2 = 0.5, σ2v = 0.1, σ2u = 0.2, and µ = 0.5.
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Table 3: Simulation results with cross-section dependence under different σf

(T=20) σ2f = 0(only fixed effects) σ2f = 0.1 σ2f = 1

N = 50 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.000 0.011 0.001 0.012 0.912 0.089 0.094 0.000 0.011 8.272 0.447 0.453 0.000 0.012 38.062

δ̂1 0.000 0.007 0.000 0.014 0.466 -0.002 0.044 -0.003 0.035 1.257 -0.000 0.089 -0.002 0.038 2.332

δ̂2 0.000 0.001 0.000 0.002 0.759 0.000 0.171 -0.002 0.194 0.885 0.002 0.209 -0.006 0.193 1.084

σ̂2v 0.000 0.005 -0.001 0.005 0.923 0.110 0.116 -0.000 0.005 22.063 0.626 0.631 -0.000 0.005 122.391

σ̂2u 0.006 0.079 0.004 0.080 0.988 0.010 0.110 -0.001 0.101 1.096 0.054 0.207 -0.000 0.102 2.030

µ̂ -0.015 0.122 -0.014 0.124 0.988 0.001 0.141 0.015 0.130 1.080 -0.013 0.171 0.011 0.131 1.310

N = 100 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.000 0.008 0.000 0.009 0.909 0.089 0.093 0.000 0.008 11.114 0.443 0.448 0.000 0.008 53.979

δ̂1 0.000 0.004 0.000 0.010 0.437 0.000 0.033 0.000 0.025 1.299 0.000 0.062 0.001 0.025 2.512

δ̂2 0.000 0.001 0.000 0.001 0.778 0.002 0.118 -0.003 0.135 0.875 -0.008 0.140 -0.006 0.133 1.055

σ̂2v 0.000 0.003 0.000 0.004 0.908 0.110 0.116 -0.000 0.004 31.880 0.629 0.635 -0.000 0.004 169.412

σ̂2u 0.003 0.053 0.003 0.054 0.973 0.003 0.078 -0.002 0.069 1.127 0.041 0.148 -0.002 0.069 2.133

µ̂ -0.009 0.082 -0.008 0.085 0.974 -0.004 0.094 0.003 0.091 1.037 -0.018 0.125 0.004 0.087 1.428
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(continued)

(T=20) σ2f = 0(only fixed effects) σ2f = 0.1 σ2f = 1

N = 200 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.000 0.005 0.000 0.006 0.906 0.088 0.092 -0.000 0.006 16.425 0.442 0.447 -0.000 0.006 77.077

δ̂1 0.000 0.003 0.000 0.007 0.437 -0.000 0.023 -0.000 0.017 1.314 -0.001 0.044 -0.000 0.017 2.558

δ̂2 0.000 0.001 0.000 0.001 0.681 0.003 0.085 0.004 0.090 0.940 -0.003 0.101 -0.001 0.094 1.081

σ̂2v 0.000 0.002 0.000 0.003 0.902 0.110 0.115 -0.000 0.003 44.603 0.631 0.636 0.000 0.003 244.367

σ̂2u 0.000 0.035 0.000 0.037 0.966 0.005 0.052 -0.001 0.045 1.165 0.040 0.116 0.000 0.049 2.383

µ̂ -0.003 0.053 -0.003 0.054 0.977 -0.008 0.057 -0.001 0.053 1.067 -0.028 0.087 0.002 0.053 1.644

N = 400 Within CCE Within CCE Within CCE

Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ Bias RMSE Bias RMSE ψ

β̂ 0.000 0.004 0.000 0.004 0.906 0.088 0.091 -0.000 0.004 22.551 0.444 0.449 -0.000 0.004 107.029

δ̂1 0.000 0.002 0.000 0.005 0.441 0.001 0.015 -0.000 0.012 1.291 0.001 0.030 0.000 0.013 2.374

δ̂2 0.000 0.001 0.000 0.001 0.593 0.007 0.059 0.004 0.065 0.919 -0.003 0.075 -0.002 0.066 1.126

σ̂2v 0.000 0.002 0.000 0.002 0.911 0.109 0.114 -0.000 0.002 62.508 0.635 0.639 0.000 0.002 354.291

σ̂2u 0.001 0.025 0.001 0.026 0.956 0.002 0.035 0.001 0.032 1.097 0.031 0.082 0.001 0.033 2.524

µ̂ -0.002 0.040 -0.002 0.040 0.978 -0.010 0.040 -0.002 0.035 1.140 -0.031 0.067 -0.002 0.037 1.815

1 ψ is the ratio of RMSE(Within)/RMSE(CCE).
2 The true values of the parameter set are β = 0.5, δ1 = 0.5, δ2 = 0.5, σ2v = 0.1, σ2u = 0.2, and µ = 0.5.
3 The bias is defined by (Estimated value− True Value).
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Table 4: Simulation results: x and z are affected by an

unobservable common shock (T=20).

Within CCE

N = 50 Bias RMSE Bias RMSE ψ

β̂ 0.292 0.534 0.000 0.012 45.393

δ̂1 -0.139 0.431 0.001 0.066 6.514

δ̂2 0.102 0.373 0.001 0.037 10.198

σ̂2v 1.507 9.953 -0.001 0.005 1837.170

σ̂2u 34721.845 68882.385 1.412 13.975 4928.831

µ̂ 0.038 0.225 0.036 0.234 0.959

Within CCE

N = 100 Bias RMSE Bias RMSE ψ

β̂ 0.272 0.446 0.000 0.008 54.281

δ̂1 -0.140 0.342 0.001 0.054 6.370

δ̂2 0.089 0.304 0.000 0.028 10.693

σ̂2v 0.917 3.523 -0.001 0.004 968.563

σ̂2u 39725.677 76044.209 0.180 0.866 87785.493

µ̂ 0.054 0.214 0.008 0.174 1.227

Within CCE

N = 200 Bias RMSE Bias RMSE ψ

β̂ 0.287 0.486 -0.000 0.006 85.221

δ̂1 -0.124 0.372 0.003 0.039 9.653

δ̂2 0.093 0.288 -0.001 0.020 14.582

σ̂2v 1.135 5.096 -0.000 0.003 2004.083

σ̂2u 32871.244 65416.402 0.078 0.444 147318.408

µ̂ 0.039 0.213 -0.011 0.106 2.004

Within CCE

N = 400 Bias RMSE Bias RMSE ψ

β̂ 0.249 0.390 -0.000 0.004 95.194

δ̂1 -0.136 0.349 -0.000 0.027 12.743

δ̂2 0.098 0.230 0.000 0.014 16.608

σ̂2v 0.856 2.493 -0.000 0.002 1348.341

σ̂2u 40286.341 76224.203 0.050 0.319 238843.857

µ̂ 0.048 0.213 -0.007 0.050 4.282

1 ψ is the ratio of RMSE(Within)/RMSE(CCE).
2 The true values of the parameter set are β = 0.5, δ1 = 0.2, δ2 =

−0.1, σ2v = 0.1, σ2u = 0.4, and µ = 0.5.
3 The bias is defined by (Estimated value −True Value).
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Table 5: Statistics of variables used in the cost function

Variables Mean Std. Dev. Min Max

Total Cost 1.11×103 4.60×103 4.10 8.08×104

Output quantities

Total loans 1.06×104 4.29×104 42.60 6.77×105

Other earning assets 5.77×103 3.30×104 0.50 6.92×105

Total deposits 1.20×104 5.21×104 1.80 7.94×105

Liquid assets 3.28×103 2.59×104 0.10 6.48×106

Input prices

Price of capital 0.04 0.05 1.99×10−3 1.24

Price of funds 5.29 1.48×103 0.34 7.56×104

Other variables’ quantity and ratios

Total assets 1.86×104 8.31×104 62.00 1.32×106

Return on average assets 1.32 1.20 -3.18 24.04

Equity to assets 9.77 5.39 4 82.36

1 The variables in total cost and output quantities are measured in U.S. $ millions.
2 There are a total of 3,122 bank-year observations.

30



Table 6: Estimation results of the cost frontier

Within CCE

Exp. Sign θ̂ Std. Dev. θ̂ Std. Dev.

Effects on cost function

ln(PC/PF) (+) 0.371 ∗∗∗ 0.018 0.184 ∗∗∗ 0.006

ln(TL) (+) 0.033 ∗ 0.019 0.216 ∗∗∗ 0.015

ln(OEA) (+) 0.002 0.018 -0.012 ∗∗ 0.005

ln(TD) (+) 0.696 ∗∗∗ 0.020 0.861 ∗∗∗ 0.014

ln(LA) (+) 0.048 ∗∗∗ 0.018 0.027 ∗∗∗ 0.003

Effects on inefficiency

ln(TA) (?) -0.347 ∗∗∗ 0.022 -0.202 ∗∗∗ 0.018

ETA (+) -0.166 ∗∗ 0.018 0.068 ∗∗∗ 0.010

ROAA (-) 0.470 ∗∗∗ 0.024 -0.005 ∗∗∗ 0.002

TYPE (-) 0.117 ∗∗∗ 0.018 -0.263 ∗∗∗ 0.085

σ2v 0.153 0.004

σ2u 518.796 38.127

1 ∗ Significant at the 10% level, ∗∗ Significant at the 5% level and ∗∗∗ Significant at the 1%

level.
2 Exp. Sign explains the expected relationship between inefficiency and variables.
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Figure 1: Average Cost Efficiency in All Banks
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Appendix A-Useful Lemmas

Below we introduce some useful lemmas for proving the main results in our paper. The proof

can be founded in the Supplementary Material.

Assumption for Lemma 1:

(L1) Q0(θ) is three times continuously differentiable with its derivatives satisfying

√
NTS(θ0)

D−→ N(0, {E[−H(θ0)]}−1),

H(θ0)
IP−→ E[H(θ0)],

max
j=1,...,d

sup
θ

|| ∂Q0(θ)

∂θ∂θ′∂θj
|| = Op(1),

where S(θ0) = ∂Q0(θ)
∂θ |θ0

and H(θ0) =
∂Q0(θ)
∂θ∂θ′

|θ0
.

Lemma 1. As assumption (L1) holds with Θ which is compact, and
√
NT supθ |Q̃NT (θ)−QNT (θ)| =

op(1) as N, T → ∞. Then
√
NT (θ̃−θ0) D−→ N(0, {E[−H(θ0)]}−1), where θ̃ is obtained from max-

imizing the objective function Q̃NT (θ).

Throughout the following lemmas, we use the following notations: ξ̄ = (ξ̄1, ..., ξ̄T )
′, ξi = (ξi1, ..., ξiT )

′,

vi = (vi1, ..., viT )
′, ū = (ū1, ..., ūT )

′, ζ̄ = h̄0µ
+
0 − ū, ūi = T−1

∑T
t=1 uit, h̄i = T−1

∑T
t=1 hit and

G = [ D F ū ]. Recall that H̄0 =
[
D, ȳ, X̄, h̄0µ

+
0

]
, together with equation (9), H̄0 can be

rewritten as H̄0 =
[
GP̄+ ψ̄ + ξ̄∗

]
, where

P̄ =




1 B̄ 0

0 C̄ 0

0 e′(k+1)1
1


 , G =

[
D F ū

]

and

ξ̄∗ =
[
0(T×1) ξ̄ 0(T×1)

]
, ψ̄ =

[
0(T×1) 0(T×(k+1)) ζ̄

]
,

and e(k+1)1 denotes a k+1 vector where the first element is -1/1 for production/cost function and

the others are zero.

Lemma 2. As assumptions 1–4 hold, we have

(B1) T−1ξ̄′ξ̄ = Op(N
−1);

(B2) T−1ξ′iξ̄ = Op(N
−1) +Op((NT )

−1/2);
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(B3) T−1D′ξ̄ = Op((NT )
−1/2);

(B4) T−1F′ξ̄ = Op((NT )
−1/2);

(B5) T−1D′vi = Op(T
−1/2);

(B6) T−1F′vi = Op(T
−1/2).

Lemma 3. As assumptions 1–4 hold, we have

(C1) T−1
(
ū′ξ̄
)
= Op

(
(NT )−1/2

)
;

(C2) T−1
(
ξ̄′ζ̄
)
= OP (N

−1T−1/2);

(C3) T−1
(
G′ζ̄

)
= Op(N

−1/2);

(C4) T−1
(
ζ̄′ζ̄
)
= Op(N

−1);

(C5) T−1
(
ξiζ̄
)
= Op((NT )

−1/2);

(C6) T−1 (ξ′iG) = Op(T
−1/2);

(C7) T−1
(
(ui − ūi)

′ξ̄
)
= Op((NT )

−1/2);

(C8) T−1
(
(ui − ūi)

′ζ̄
)
= Op(N

−1) +Op((NT )
−1/2);

(C9) T−1 ((ui − ūi)
′G) = Op(N

−1) +Op(T
−1/2);

(C10) T−1(hi − h̄i)
′N−1

∑N
j=1 hju

∗
j = Op(N

−1) +Op(T
−1/2).
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Appendix B-Proof of Main Propositions and Theorems

Recall the transformed log-likelihood functions of (12) and (13),

QNT (θ) = (NT )−1
N∑

i=1

{
−1

2
(T − s)

(
ln (2π) + lnσ2

v

)
− 1

2
(yi −Xiβ − F0λi,0)

′ ×

M̄Π−M̄(yi −Xiβ − F0λi,0) +
1

2

(
µ2
c

σ2
∗
− µ2

σ2
u

)
+ ln

(
σ∗Φ

(
µc

σ∗

))
− ln

(
σuΦ

(
µ

σu

))}
,

(12)

and

Q̃NT (θ) = (NT )−1
N∑

i=1

{
−1

2
(T − s)

(
ln (2π) + lnσ2

v

)
− 1

2
(yi −Xiβ)

′ ×

M̄Π−M̄(yi −Xiβ) +
1

2

(
µ2
∗
σ2
∗
− µ2

σ2
u

)
+ ln

(
σ∗Φ

(
µ∗
σ∗

))
− ln

(
σuΦ

(
µ

σu

))}
.

(13)

Proof of Proposition 1. To complete the proof of Proposition 1, we separate (13) into five parts:

P1 = (NT )−1
N∑

i=1

{
−1

2
(T − s)

(
ln(2π) + lnσ2

v

)}
,

P2 = (NT )−1
N∑

i=1

{
−1

2
(yi −Xiβ)

′M̄Π−M̄(yi −Xiβ)

}
,

P3 = (NT )−1
N∑

i=1

{
1

2

(
µ2
∗
σ2
∗
− µ2

σ2
u

)}
,

P4 = (NT )−1
N∑

i=1

{
ln

(
σ∗Φ

(
µ∗
σ∗

))}
,

P5 = (NT )−1
N∑

i=1

{
− ln

(
σuΦ

(
µ

σu

))}
.

Since P1 and P5 are the same as part of (12), we only need to investigate the differences of P2,

P3 and P4 between (12) and (13).

Consider P2. By the facts that yi = Dαi+Xiβ+Fλi+εi, M̄Dαi = 0 and M̄Π−M̄ = σ−2
v M̄,
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P2 can be rewritten as,

(NT )−1
N∑

i=1

{
−1

2
(yi −Xiβ)

′M̄Π−M̄(yi −Xiβ)

}

= σ−2
v (NT )−1

N∑

i=1

{
−1

2
(yi −Xiβ)

′M̄(yi −Xiβ)

}

= σ−2
v (NT )−1

N∑

i=1

{
−1

2
(F0λi0 + εi +Xi(β0 − β))′ M̄ (F0λi0 + εi +Xi(β0 − β))

}

= σ−2
v (NT )−1

N∑

i=1

{
−1

2
(Xi(β0 − β))′ M̄ (Xi(β0 − β))

}

− σ−2
v (NT )−1

N∑

i=1

{
(Xi(β0 − β))′ M̄F0λi0

}
− σ−2

v (NT )−1
N∑

i=1

{
(Xi(β0 − β))′ M̄εi

}

− σ−2
v (NT )−1

N∑

i=1

ε′iM̄F0λi0 − σ−2
v (NT )−1

N∑

i=1

1

2
λ′
i0F

′
0M̄F0λi0 − σ−2

v (NT )−1
N∑

i=1

1

2
ε′iM̄εi

=: A1(θ) +A2(θ) +A3(θ) +A4(θ) +A5(θ) +A6(θ).

Particularly, A1(θ), A3(θ) and A6(θ) do not affected by the factor structure, therefore we will

focus on the properties of A2(θ), A4(θ) and A5(θ) respectively. For A2(θ),

A2(θ) =− σ−2
v (NT )−1

N∑

i=1

(Xi(β0 − β))′ M̄F0λi0

=− σ−2
v (NT )−1

N∑

i=1

(Xi(β0 − β))′ M̄F0(λ̄ − η̄)− σ−2
v (NT )−1

N∑

i=1

(Xi(β0 − β))′ M̄F0ηi0

=− σ−2
v T−1(β0 − β)′X̄′M̄F0(λ̄− η̄)− σ−2

v (NT )−1
N∑

i=1

(Xi(β0 − β))′ M̄F0ηi0

=0− σ−2
v (NT )−1

N∑

i=1

(Xi(β0 − β))′ M̄0F0ηi0 − σ−2
v (NT )−1

N∑

i=1

(Xi(β0 − β))′ F0ηi0κNT

= : A2,1(θ) +A2,2(θ).

Since λi0 = η + ηi0, after taking cross-sectional average of λi0, we have λ̄ = η + η̄. The second

equality holds by replacing λi0 by λ̄ − η̄ + ηi0. The fourth equality holds because M̄X̄ = 0 and

M̄ = M̄0 + κNT , where κNT = O(bNT ) by θ ∈ B. Note that for easy to state, we use A2,1(θ) and

A2,2(θ) to denote the rest of terms we need to discuss.

Consider A2,1(θ), because of the fact that F0 = −(ξ̄ + Ū)C̄′(C̄C̄′)−1 from equation (10) and

Ū = (Ū1, ..., ŪT )
′, we have
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A2,1(θ) =σ
−2
v (NT )−1

N∑

i=1

(Xi(β0 − β))′ M̄0(ξ̄ + Ū)C̄′(C̄C̄′)−1ηi0

=σ−2
v (NT )−1

N∑

i=1

(Xi(β0 − β))′ M̄0ξ̄C̄
′(C̄C̄′)−1ηi0

+ σ−2
v (NT )−1

N∑

i=1

(Xi(β0 − β))′ M̄0ŪC̄′(C̄C̄′)−1ηi0.

The property of the first term can be obtained from the fact that C̄′(C̄C̄′)−1 is bounded and

the result that
(β0−β)′X′

iM̄0

√
N ξ̄√

T
= OP (1) proved by Pesaran (2006). Therefore, with ηi0 which is

distributed independently of Xi, ξ̄ and elements in M̄0, we have

N−1
N∑

i=1

(β0 − β)′X′
iM̄0

√
N ξ̄√

T
C̄′(C̄C̄′)−1ηi0 = Op(N

−1/2),

that is σ−2
v (NT )−1

∑N
i=1 (Xi(β0 − β))′ M̄0ξ̄C̄

′(C̄C̄′)−1ηi0 = Op(N
−1T−1/2). We can prove the

second term in A2,1(θ) in the similar way because M̄0Ū = M̄0(Ū− [h̄0µ
+
0 ,0]) = [M̄0ζ̄,0], and

N−1
N∑

i=1

(β0 − β)′X′
iM̄0

√
N ζ̄√

T
C̄′(C̄C̄′)−1ηi0 = Op(N

−1/2).

Thus, we have A2,1(θ) = Op(N
−1T−1/2).

Next, consider A2,2(θ). We have

A2,2(θ) = −σ−2
v (NT )−1

N∑

i=1

(β0 − β)′X′
iF0ηi0κNT

= −σ−2
v (NT )−1

N∑

i=1

(β0 − β)′(F0τi0 + ei)
′F0ηi0κNT

= −σ−2
v (NT )−1

N∑

i=1

(β0 − β)′τ ′
i0F

′
0F0ηi0κNT − σ−2

v (NT )−1
N∑

i=1

(β0 − β)′e′iF0ηi0κNT ,

where the first equality comes from facts that Xi = DA′
i + Fτi + ei and DA′

i has been re-

moved by M̄. The first term of the last equation can be rearranged as −σ−2
v (N)−1

∑N
i=1(β0 −

β)′τ ′
i0

F
′

0
F0

T ηi0κNT . Since
F

′

0
F0

T = Op(1) and ηi0 is distributed independently of τi0 and F0,

we have −σ−2
v (NT )−1

∑N
i=1(β0 − β)′τ ′

i0F
′
0F0ηi0κNT = Op(N

−1/2bNT ). Further, according to

the result of
e′

iF0

T = Op(T
−1/2) and the property of ηi0 we used before. We can show that

−σ−2
v (NT )−1

∑N
i=1(β0 − β)′e′iF0ηi0κNT = Op((NT )

−1/2bNT ). Combining these results, we have

A2,2(θ) = Op(N
−1/2bNT ). Therefore, A2(θ) = OP (N

−1T−1/2) +Op(N
−1/2bNT ).
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For A4(θ), using the same fact that λi0 = λ̄− η̄ + ηi0, we have

A4(θ) = −σ−2
v (NT )−1

N∑

i=1

ε′iM̄F0λi0

= −σ−2
v (NT )−1

N∑

i=1

ε′iM̄F0(λ̄ − η̄)− σ−2
v (NT )−1

N∑

i=1

ε′iM̄F0ηi0

= −σ−2
v T−1ε̄′M̄F0(λ̄− η̄)− σ−2

v (NT )−1
N∑

i=1

ε′iM̄F0ηi0

=: A4,1(θ) +A4,2(θ).

In particular,

A4,1(θ) = −σ−2
v T−1ε̄′M̄0F0(λ̄− η̄)− σ−2

v T−1ε̄′F0(λ̄ − η̄)κNT

= −σ−2
v T−1(v̄ + (ū − h̄0µ

+
0 ))

′M̄0F0(λ̄− η̄)− σ−2
v T−1(v̄ + ū)′F0(λ̄− η̄)κNT .

We can rewrite the first term of the above equation as

− σ−2
v T−1(v̄ + (ū − h̄0µ

+
0 ))

′M̄0F0(λ̄− η̄)

= −σ−2
v T−1v̄′M̄0F0(λ̄− η̄)− σ−2

v T−1(ū− h̄0µ
+
0 )

′M̄0F0(λ̄− η̄).

Using the fact 1
T v̄

′M̄0F0 = 1
T v̄

′F0 − 1
T v̄H̄0(H̄0H̄

′
0)

−1H̄′
0F0 and the results from lemmas (B1),

(B3), (B4), (C1)-(C4) and the fact v̄ = Op(N
−1/2), we have

1

T
v̄′H̄0(H̄0H̄

′

0)
−1H̄′

0F0 =
v̄′H̄0

T

(
H̄0H̄

′

0

T

)−1
H̄′

0F0

T

=









v̄′G

T
P̄

︸ ︷︷ ︸

Op(N−1/2)

+
v̄′(ξ̄∗ + ψ̄)

T
︸ ︷︷ ︸

Op(N−1)

















P̄′
G′G

T
P̄+ P̄′

G′(ξ̄∗ + ψ̄)

T
+

(ξ̄∗ + ψ̄)′G

T
P̄

︸ ︷︷ ︸

Op(N−1/2)

+
(ξ̄∗ + ψ̄)′(ξ̄∗ + ψ̄)

T
︸ ︷︷ ︸

Op(N−1)









−1

×









P̄′
G′F0

T
+

(ξ̄∗ + ψ̄)′F0

T
︸ ︷︷ ︸

Op((NT )−1/2)









= =
v̄′G

T
P̄

(

P̄′
G′G

T
P̄

)
−1

P̄′
G′F0

T
+Op(N

−1).

Notice that we keep the first term of the above equation to illustrate the fact that 1
T v̄

′F0 −
v̄′

G

T P̄
(
P̄′ G′

G

T P̄
)−1

P̄′G′
F0

T = 1
T v̄

′M̄GF0 = 0 because F0 ∈ G. Combining these results, we

have 1
T v̄

′M̄0F0 = Op(N
−1). In the same manner, we have 1

T (ū − h̄0µ
+
0 )

′M̄0F0 = Op(N
−1).

In addition, the term, σ−2
v T−1(v̄ + ū)′F0(λ̄ − η̄)κNT is needed to investigate. The property of

this term can be obtained by using 1
T v̄

′F0 = Op((NT )
−1/2) and 1

T ū
′F0 = Op(T

−1/2). Thus,

σ−2
v T−1(v̄+ ū)′F0(λ̄− η̄)κNT = Op(T

−1/2bNT ). These give A4,1(θ) = Op(N
−1)+Op(T

−1/2bNT ).
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Next, consider A4,2(θ),

A4,2(θ) = −σ−2
v (NT )−1

N∑

i=1

(εi − ε̄i)
′M̄0F0ηi0 − σ−2

v (NT )−1
N∑

i=1

(εi − ε̄i)
′F0ηi0κNT .

The first term of A4,2(θ) can be decomposed into 1
T (εi − ε̄i)

′M̄0F0 = 1
T (εi − ε̄i)

′F0 − 1
T (εi −

ε̄i)
′H̄0(H̄0H̄

′
0)

−1H̄′
0F0 and using lemmas (B2), (C5) and (C7)-(C8), with 1

T (εi−ε̄i)′G = Op(N
−1)+

Op(T
−1/2) by lemmas (C6) and (C9), we have

1

T
(εi − ε̄i)

′H̄0(H̄0H̄
′

0)
−1H̄′

0F0

=









(εi − ε̄i)′G

T
P̄

︸ ︷︷ ︸

Op(N−1)+Op(T−1/2)

+
(εi − ε̄i)′(ξ̄∗ + ψ̄)

T
︸ ︷︷ ︸

Op(N−1)+Op((NT )−1/2)

















P̄′
G′G

T
P̄+ P̄′

G′(ξ̄∗ + ψ̄)

T
+

(ξ̄∗ + ψ̄)′G

T
P̄

︸ ︷︷ ︸

Op(N−1/2)

+
(ξ̄∗ + ψ̄)′(ξ̄∗ + ψ̄)

T
︸ ︷︷ ︸

Op(N−1)









−1

×









P̄′
G′F0

T
+

(ξ̄∗ + ψ̄)′F0

T
︸ ︷︷ ︸

Op((NT )−1/2)









=
(εi − ε̄i)

′G

T
P̄

(

P̄′
G′G

T
P̄

)
−1

P̄′
G′F0

T
+ Op(N

−1) +Op((NT )
−1/2).

Similarly, we keep the first interaction term, together with 1
T (εi − ε̄i)

′F0, then we have 1
T (εi −

ε̄i)
′F0 − (εi−ε̄i)

′
G

T P̄
(
P̄′ G′

G

T P̄
)−1

P̄′ G′
F0

T = 1
T (εi − ε̄i)

′M̄GF0 = 0. Thus, 1
T (εi − ε̄i)

′M̄0F0 =

Op(N
−1) + Op((NT )

−1/2). Since ηi0 is distributed independently of F0, vi and ui, we can con-

clude that −σ−2
v (NT )−1

∑N
i=1(εi − ε̄i)

′M̄0F0ηi0 = Op(N
−3/2) + Op(N

−1T−1/2). Finally, since

1
T v

′
iF0 = 1

T (ui − ūi)
′F0 = Op(T

−1/2), we therefore have −σ−2
v (NT )−1

∑N
i=1(εi − ε̄i)

′F0ηi0κNT =

Op((NT )
−1/2bNT ). Taking these results from A4,1(θ) and A4,2(θ), we have A4(θ) = Op(N

−1) +

Op(N
−1T−1/2) +Op((NT )

−1/2bNT ).

Now, consider A5(θ). By using the following inequality

‖ 1
T
λ′
i0F

′
0M̄F0λi0‖ = ‖ 1

T
λ′
i0F

′
0M̄M̄F0λi0‖ ≤ 1

T

T∑

t=1

‖M̄F0λi0(t)‖2,
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where M̄F0λi0(t) denotes the t−th element of M̄F0λi0. Since

λ′

i0F
′

0M̄ = λ′

i0F
′

0κNT + λ′

i0F
′

0 − λ′

i0F
′

0H̄0(H̄0H̄
′

0)
−1H̄′

0

= λ′

i0F
′

0κNT + λ′

i0F
′

0 − λ′

i0









F′

0G

T
P̄+

F′

0(ξ̄
∗ + ψ̄)

T
︸ ︷︷ ︸

Op((NT )−1/2)

















P̄′
G′G

T
P̄+ P̄′

G′(ξ̄∗ + ψ̄)

T
+

(ξ̄∗ + ψ̄)′G

T
P̄

︸ ︷︷ ︸

Op(N−1/2)

+
(ξ̄∗ + ψ̄)′(ξ̄∗ + ψ̄)

T
︸ ︷︷ ︸

Op(N−1)









−1

×






P̄′G′ + (ξ̄∗ + ψ̄)

︸ ︷︷ ︸

OP (N−1/2)







= λ′

i0F
′

0κNT + λ′

i0F
′

0 − λ′

i0

F′

0G

T
P̄

(

P̄′
G′G

T
P̄

)
−1

P̄′G′ + Op(N
−1/2)

= λ′

i0F
′

0κNT + λ′

i0F
′

0M̄G + Op(N
−1/2)

= Op(bNT ) + Op(N
−1/2),

we have 1
T

∑T
t=1 ‖M̄F0λi0(t)‖2 = Op(b

2
NT ) +Op(N

−1) +Op(N
−1/2bNT ) and A5(θ) = Op(b

2
NT ) +

Op(N
−1) + Op(N

−1/2bNT ). Combining the above results of A2(θ), A4(θ) and A5(θ), we have

P2 = Op(N
−1) +Op(N

−1/2bNT ) +Op(b
2
NT ).

So far, we still need to examine P3 and P4. First, we define

(NT )−1
N∑

i=1

lnΦ

(
µc

σ∗

)
=: (NT )−1

N∑

i=1

f

(
µc

σ∗

)
,

and by the first order of Taylor expansion at µ∗

σ∗

, we have

(NT )−1
N∑

i=1

f

(
µc

σ∗

)
≈ (NT )−1

N∑

i=1

[
f

(
µ∗
σ∗

)
+ f ′

(
µ∗
σ∗

)
(hi − h̄i)

′M̄Fλi/σ
2
v(

h′
iM̄hi/σ2

v + 1/σ2
u

)1/2

]
,

where h̄i = T−1
∑T

t=1 hit. Rewrite the second term in the brackets of right hand side as

(NT )−1
N∑

i=1

[
f ′
(
µ∗
σ∗

)
(hi − h̄i)

′M̄Fλi/σ
2
v(

h′
iM̄hi/σ2

v + 1/σ2
u

)1/2

]

=N−1T−1/2
N∑

i=1


f

′
(
µ∗
σ∗

)(
h′
iM̄hi/σ

2
v + 1/σ2

u

T

)−1/2

︸ ︷︷ ︸
Op(1)

(
(hi − h̄i)

′M̄Fλi/σ
2
v

T

)

 .

Here,

(hi − h̄i)
′M̄Fλi/σ

2
v

T
=

(hi − h̄i)
′M̄0Fλi/σ

2
v

T
+

(hi − h̄i)
′Fλi/σ

2
v

T
× κNT .

The first term can be decomposed into 1
T (hi−h̄i)′M̄0Fλi/σ

2
v = 1

T (hi−h̄i)′F0− 1
T (hi−h̄i)′H̄0(H̄0H̄

′
0)

−1H̄′
0F0.
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We use the results similar to Lemmas (C7)-(C8) and obtain

1

T
(hi − h̄i)

′H̄0(H̄0H̄
′

0)
−1H̄′

0F0

=









(hi − h̄i)′G

T
P̄+

(hi − h̄i)′(ξ̄∗ + ψ̄)

T
︸ ︷︷ ︸

Op(N−1)+Op((NT )−1/2)

















P̄′
G′G

T
P̄+ P̄′

G′(ξ̄∗ + ψ̄)

T
+

(ξ̄∗ + ψ̄)′G

T
P̄

︸ ︷︷ ︸

OP (N−1/2)

+
(ξ̄∗ + ψ̄)′(ξ̄∗ + ψ̄)

T
︸ ︷︷ ︸

Op(N−1)









−1

×









P̄′
G′F0

T
+

(ξ̄∗ + ψ̄)′F0

T
︸ ︷︷ ︸

OP ((NT )−1/2)









.

Notice that 1
T (hi−h̄i)′G = Op(N

−1)+Op(T
−1/2) because of lemma (C10) and a similar argument

of (C9), thus

1

T
(hi − h̄i)

′H̄0(H̄0H̄
′
0)

−1H̄′
0F0 =

(hi − h̄i)
′G

T
P̄

(
P̄′G

′G

T
P̄

)−1

P̄′G
′F0

T

+Op(N
−1) +Op((NT )

−1/2).

Further, together with a similar argument of (C9), the second term
(hi−h̄i)

′
Fλi/σ

2

v

T × κNT =

Op(T
−1/2bNT ). Thus

(hi − h̄i)
′M̄Fλi/σ

2
v

T
= Op(N

−1) +Op((NT )
−1/2) +Op(T

−1/2bNT ).

Using this result, the term f ′
(

µ∗

σ∗

)(
h′

iM̄hi/σ
2

v+1/σ2

u

T

)−1/2 (
(hi−h̄i)

′
M̄Fλi/σ

2

v

T

)
should be Op(N

−1)+

Op((NT )
−1/2) +Op(T

−1/2bNT ). It implies that the difference between (NT )−1
∑N

i=1 f
(

µc

σ∗

)
and

(NT )−1
∑N

i=1 f
(

µ∗

σ∗

)
is Op(N

−1T−1/2) +Op(N
−1/2T−1) +Op(T

−1/2bNT ). The results of P3 and

P4 are readily obtained.

Taking results from P2, P3 and P4, we have

P2+P3+P4 = Op(N
−1)+Op(N

−1/2T−1)+Op(T
−1/2bNT )+Op(N

−1/2bNT )+Op(b
2
NT ). (M.1)

The first result of Proposition 1 can be proved because when bNT → 0, P2 + P3 + P4
IP−→ 0. The

second result about θ ∈ B
c ∩Θ can be proved by assuming bNT does not converge to zero. In this

case, it implies that the difference of P2+P3+P4 will be dominated by the term Op(b
2
NT ) which

comes from the quadratic term of A4(θ). Thus the difference between QNT (θ0) and Q̃NT (θ) is

greater than zero in probability one when θ ∈ B
c ∩Θ.

Proof of Theorem 1. For any ǫ > 0, we have (a) Q̃NT (θ̃) > Q̃NT (θ0) − ǫ
3 ; (b) Q̃NT (θ0) >

Q0(θ0)− ǫ
3 and (c) Q̃0(θ) > Q̃NT (θ)− ǫ

3 . (a) holds because θ̃ maximizes Q̃NT , (b) holds because
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the result 1 from Proposition 1 by letting θ = θ0, and (c) holds because Assumption 5 (iv).

Therefore, we have

Q̃0(θ̃) > Q̃NT (θ̃)−
ǫ

3
> Q̃NT (θ0)−

2ǫ

3
> Q0(θ0)− ǫ.

Using the same definitions of bNT and B, we have QNT (θ0) − Q̃NT (θ) > 0 with probability 1 for

all θ ∈ B
c ∩Θ from the first result of Proposition 1. Taking this result with conditions (iii) and

(iv) of Assumption 5, for any given ǫ > 0, there is a constant K > 0 such that

P[|Q0(θ0)− Q̃0(θ) > K] ≥ 1− ǫ,

for all θ ∈ B
c ∩ Θ. Also Q0(θ0) = Q̃0(θ0) if and only if Q0 = Q̃0 and Q0(θ0) > Q̃0(θ) for

all θ ∈ B
c ∩ Θ. Therefore, by B

c ∩ Θ is compact, θ0 maximizes Q0(θ) and (i) of Assumption

5, supθ∈Bc∩Θ Q̃0(θ) = Q0(θ
∗) < Q0(θ0) for some θ∗ ∈ B

c ∩ Θ. Thus, choosing ǫ = Q0(θ0) −

supθ∈Bc∩Θ Q̃0(θ), it follows that

Q̃0(θ̃) > sup
θ∈Bc∩Θ

Q̃0(θ).

with probability one, and hence θ̃ ∈ B.

Proof of Proposition 2. It can be proved immediately by multiplying
√
NT and equation (M.1)

from Proposition 1.

Proof of Theorem 2. Since the result from Proposition 2 satisfies the requirement of Lemma 1,

we can prove the asymptotic normality of our proposed estimator immediately.
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Supplementary Material

Proof of Lemma 1. See Theorem A.5 of Kristensen and Shin (2012).

Proof of Lemma 2. It can be shown based on Lemma 2 of Pesaran (2006).

Through out these proofs, we useK to denote a positive number which is bounded and subscript

“0” to denote the parameter which is evaluated at the true value.

Proof of Lemma (C1). Let ξ̄l = (ξ̄1,l, ξ̄2,l, ..., ξ̄T,l)
′ denotes the l-th element of ξ̄. Since hit,0,

u∗i , vit and eit are mutually independent and note that E(hit,0) < K and E(u∗i ) < K, ∀i, j. We

have

E

(
N−1

N∑

i=1

h′
i,0u

∗
i ξ̄l

)
= 0 (S.1)

and

E(ū2t ) = E



(
N−1

N∑

i=1

hit,0u
∗
i

)2



= N−2E




N∑

i=1

h2it,0u
∗2
i +

N∑

i=1

∑

j 6=i

hit,0hjt,0u
∗
i u

∗
j




= N−2
N∑

i=1

E(h2it,0)E(u∗2i ) +N−2
N∑

i=1

∑

j 6=i

E(hit,0)E(hjt,0)E(u∗i )E(u∗j ) = O(1).

Thus,

Var

(
N−1

N∑

i=1

h′
i,0u

∗
i ξ̄l

)
= Var

(
T∑

t=1

ūtξ̄t,l

)
=

T∑

t=1

Var
(
ūtξ̄t,l

)

=

T∑

t=1

E(ū2t )E(ξ̄2t,l) = O
(
TN−1

)
, (S.2)

the second equality comes from the fact,

Cov
(
ūtξ̄t,l, ūsξ̄s,l

)
= E

(
ūtξ̄t,lūsξ̄s,l

)
− E

(
ūtξ̄t,l

)
E
(
ūsξ̄s,l

)

=E
(
ξ̄t,l
)
E
(
ξ̄s,l
)
E (ūtūs)− E

(
ξ̄t,l
)
E (ūt)E

(
ξ̄s,l
)
E (ūs) = 0,

where the last equality holds by E(vitvis) = 0 and E(eite
′
is) = 0 for all i, j, and the last equality

of (S.2) holds by E(ξ̄2t,l) = O(N−1). Together with (S.1) and (S.2), we obtain

Var
(
T−1ū′ξ̄

)
= O

(
(NT )−1

)
,

hence, T−1ū′ξ̄ = Op

(
(NT )−1/2

)
.
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Proof of Lemma (C2). Recall that ζ̄ = h̄0µ
+
0 − ū, the mean of ξ̄tūt is equal to 0 for all t by

the fact that hit,0, u
∗
i , vit and eit are mutually independent. Furthermore,

Var

[
(NT )−1

T∑

t=1

ξ̄t

N∑

i=1

hit,0(µ
+
0 − u∗i )

]

= (NT )−2
T∑

t=1

E
(
ξ̄tξ̄

′
t

)
E



(

N∑

i=1

hit,0(µ
+
0 − u∗i )

)2



= (NT )−2
T∑

t=1

E
(
ξ̄tξ̄

′
t

) N∑

i=1

E(h2it,0)E
[
(µ+

0 − u∗i )
2
]
,

in particular, the second and third equalities hold by E(ξ̄tξ̄
′
s) = 0 ∀t 6= s and E[(µ+

0 − u∗i )(µ
+
0 −

u∗j)] = 0 ∀i 6= j, respectively. Moreover,E(h2it,0) < K, E
[
(µ+

0 − u∗i )
2
]
< K and

(
ξ̄tξ̄

′
t

)
= Op(N

−1),

thus,

Var

[
(NT )−1

T∑

t=1

ξ̄t

N∑

i=1

hit,0(µ
+
0 − u∗i )

]
= O(N−2T−1).

We therefore have (NT )−1
∑T

t=1 ξ̄t
∑N

i=1 hit,0(µ
+
0 − u∗i ) = Op(N

−1T−1/2).

Proof of Lemma (C3). Recall G = [ D F ū ], we prove (C3) for each element of G, first,

we turn our focus on (NT )−1
∑T

t=1Dt

∑N
i=1 hit,0(µ

+
0 − u∗i ). Notice that the mean is equal to 0 by

u∗i and hit,0 are mutually independent, and

Var

[
(NT )−1

T∑

t=1

Dt

N∑

i=1

hit,0(µ
+
0 − u∗i )

]

=(NT )−2E

[
T∑

t=1

Dt

N∑

i=1

hit,0(µ
+
0 − u∗i )

]2

=(NT )−2E




T∑

t=1

D2
t

(
N∑

i=1

hit,0(µ
+
0 − u∗i )

)2

+

T∑

t=1

∑

s6=t

DtDs

(
N∑

i=1

hit,0(µ
+
0 − u∗i )

)


N∑

j=1

hjs,0(µ
+
0 − u∗j )




 .

The first term can be written as

E


(NT )−2

T∑

t=1

D2
t

(
N∑

i=1

hit,0(µ
+
0 − u∗i )

)2



=(NT )−2
T∑

t=1

D2
t

N∑

i=1

E(h2it,0)E
[
(µ+

0 − u∗i )
2
]

=O((NT )−1), (S.3)

where the second equality comes from the fact that E[(µ+
0 − u∗i )(µ

+
0 − u∗j )] = 0 ∀i 6= j, and u∗i
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is independent of hjt,0 for all i, j. The last equality holds by E(h2it,0) < K, E
[
(µ+

0 − u∗i )
2
]
< K.

The second term,

E


(NT )−2

T∑

t=1

∑

s6=t

DtDs

(
N∑

i=1

hit,0(µ
+
0 − u∗i )

)


N∑

j=1

hjs,0(µ
+
0 − u∗j )






=(NT )−2
T∑

t=1

∑

s6=t

DtDs

N∑

i=1

E(hit,0his,0)E(µ+
0 − u∗i )

2 = O(N−1), (S.4)

the second equality holds for the same reason that E[(µ+
0 − u∗i )(µ

+
0 − u∗j )] = 0, and the desired

result can be obtained with the assumption of finite first moment of hit,0. To sum up (S.3) and

(S.4), we obtain

Var

(
(NT )−1

T∑

t=1

Dt

N∑

i=1

hit,0(µ
+
0 − u∗i )

)
= O(N−1),

and which implies (NT )−1
∑T

t=1Dt

∑N
i=1 hit,0(µ

+
0 − u∗i ) = Op(N

−1/2).

Next, consider the l-th row of T−1
[
F′N−1

∑N
i=1 hi,0(µ

+
0 − u∗i )

]
, which can be written as

T−1[
∑T

t=1 fltN
−1
∑N

i=1 hit,0(µ
+
0 −u∗i )]. Notice that its mean is equal to 0 by the similar argument

in the previous case, and the variance,

Var

[
T−1

(
T∑

t=1

fltN
−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)]

=(NT )−2E

[
T∑

t=1

flt

N∑

i=1

hit,0(µ
+
0 − u∗i )

]2

=(NT )−2E




T∑

t=1

f2
lt

(
N∑

i=1

hit,0(µ
+
0 − u∗i )

)2

+
T∑

t=1

∑

s6=t

fltfls

(
N∑

i=1

hit,0(µ
+
0 − u∗i )

)


N∑

j=1

hjs,0(µ
+
0 − u∗j)






=(NT )−2

[
T∑

t=1

E(f2
lt)

N∑

i=1

E(h2it,0)E(µ+
0 − u∗i )

2

+

T∑

t=1

∑

s6=t

E(fltfls)

(
N∑

i=1

E(hit,0his,0)E(µ+
0 − u∗i )

2

)
 ,

the third equality holds by E[(µ+
0 − u∗i )(µ

+
0 − u∗j)] = 0. Furthermore, because F is covariance sta-

tionary process distributed independently of u∗i , the autocovariance function decays exponentially
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in |t− s|. By these assumptions,

Var

[
T−1

(
T∑

t=1

fltN
−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)]

=(NT )−2

[
T∑

t=1

E(f2
lt)

N∑

i=1

E(h2it,0)E(µ+
0 − u∗i )

2

+

T∑

t=1

∑

s6=t

Γfl(|t− s|)
(

N∑

i=1

E(hit,0his,0)E(µ+
0 − u∗i )

2

)
 = O((NT−1)),

where Γfl is the autocovariance function of flt, and the last equality holds by E(f2
lt) < K,

E(h2it,0) < K, E(µ+
0 −u∗i )2 < K andE(hit,0his,0) < K, which establishes T−1

[
F′N−1

∑N
i=1 hi,0(µ

+
0 − u∗i )

]
=

Op((NT )
−1/2).

Finally, we analyze the last term. Notice that

E


T−1

T∑

t=1

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)
N−1

N∑

j=1

hjt,0u
∗
j






=N−2T−1
T∑

t=1

N∑

i=1

E(h2it,0)E(µ+
0 − u∗i )u

∗
i

=O(N−1), (S.5)

the first equality holds by the assumption that E[(µ+
0 − u∗i )u

∗
j ] = 0, ∀i 6= j, and the last equality

is true by E(h2it,0) < K, and E(u∗2i ) < K. The variance,

Var


T−1

T∑

t=1

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)
N−1

N∑

j=1

hjt,0u
∗
j






=E


T−1

T∑

t=1

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)
N−1

N∑

j=1

hjt,0u
∗
j





2

−


E


T−1

T∑

t=1

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)
N−1

N∑

j=1

hjt,0u
∗
j







2

,
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where the first term can be rearranged as

T−2E




T∑

t=1

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)2

N−1

N∑

j=1

hjt,0u
∗
j




2



+ T−2E




T∑

t=1

∑

s6=t

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)
N−1

N∑

j=1

hjt,0u
∗
j




×


N−1

N∑

j=1

hjs,0(µ
+
0 − u∗j)




N−1

N∑

j=1

hjs,0u
∗
j






=:A1 +A2.

Consider A1,

A1 = N−4T−2E
T∑

t=1




N∑

i=1

N∑

j=1

N∑

k=1

N∑

l=1

hit,0hjt,0hkt,0hlt,0(µ
+
0 − u∗i )(µ

+
0 − u∗j)u

∗
ku

∗
l


 ,

in which expectation is non-zero only in the following three cases: (i) i = j = k = l, (ii) i = j and

j = l, and (iii) i = l and j = k by assuming that the forth moment of hit,0 exists. It follows that

A1 =N−4T−2E

T∑

t=1




N∑

i=1

h4it,0(µ
+
0 − u∗i )

2u∗2i +

N∑

i=1

∑

k 6=i

∑

l 6=i

h2it,0hkt,0hlt,0(µ
+
0 − u∗i )

2u∗ku
∗
l

+

N∑

i=1

∑

j 6=i

h2it,0h
2
jt,0(µ

+
0 − u∗i )(µ

+
0 − u∗j )u

∗
i u

∗
j


 = O((NT )−1).

Furthermore, A2 has the similar result except that we have to sum up the terms for all t 6= s,

t, s = 1, ..., T . Thus, we have A2 = O((N)−1). Taking A1,A2 and (S.5) together, we have

Var


T−1

T∑

t=1

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)
N−1

N∑

j=1

hjt,0u
∗
j




 = O(N−1),

which implies T−1
∑T

t=1

(
N−1

∑N
i=1 hit,0(µ

+
0 − u∗i )

)(
N−1

∑N
j=1 hjt,0u

∗
j

)
= O(N−1/2). Therefore

T−1

[
G′N−1

N∑

i=1

hi,0(µ
+
0 − u∗i )

]
= Op(N

−1/2)

as required.
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Proof of Lemma (C4). Write

E


T−1

T∑

t=1

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)2



=N−2T−1
T∑

t=1

N∑

i=1

E(h2it,0)E(µ+
0 − u∗i )

2 = O(N−1), (S.6)

which holds by the assumption that E
[
(µ+

0 − u∗i )(µ
+
0 − u∗j)

]
= 0, E(h2it,0) < K and E(µ+

0 −u∗i )2 <

K. Furthermore,

E


T−1

T∑

t=1

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)2


2

=T−2E




T∑

t=1

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)4



+ T−2E




T∑

t=1

∑

s6=t

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)2

N−1

N∑

j=1

hjs,0(µ
+
0 − u∗j )




2



=:A1 +A2.

Consider A1, in which expectation is non-zero only in the following case

A1 =N−4T−2E

[
T∑

t=1

(
N∑

i=1

h4it,0(µ
+
0 − u∗i )

4

)]

+N−4T−2E

T∑

t=1




N∑

i=1

∑

j 6=i

h2it,0h
2
jt,0(µ

+
0 − u∗i )

2(µ+
0 − u∗j )

2


 = O(N−2T−1),

where the result comes from assuming hit,0 and u∗i are independently distributed with finite fourth

moment, and the fact that u∗i ’s are cross-sectional independent. Now consider A2,

A2 =N−4T−2E
T∑

t=1

∑

s6=t

[
N∑

i=1

N∑

k=1

hit,0hkt,0(µ
+
0 − u∗i )(µ

+
0 − u∗k)

]

×




N∑

j=1

N∑

l=1

hjs,0hls,0(µ
+
0 − u∗j )(u

∗
l − µ+

0 )


 ,

in which expectation is non-zero only in the following cases: (i) i = j = k = l, (ii) i = k, j = l (iii)

i = j, k = l, it follows that

A2 =N−4T−2E

T∑

t=1

∑

s6=t




N∑

i=1

h2it,0h
2
is,0(µ

+
0 − u∗i )

4 +

N∑

i=1

∑

j 6=i

h2it,0h
2
js,0(µ

+
0 − u∗i )

2(µ+
0 − u∗j )

2

+

N∑

i=1

∑

k 6=i

hit,0his,0hkt,0hks,0(µ
+
0 − u∗i )

2(µ+
0 − u∗k)

2


 = O(N−2).
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Taking A1, A2 and (S.6) together, we have

Var


T−1

T∑

t=1

(
N−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

)2

 = O(N−2),

which implies T−1
∑T

t=1

(
N−1

∑N
i=1 hit,0(µ

+
0 − u∗i )

)2
= Op(N

−1).

Proof of Lemma (C5). Recall that ξit =


 vit + β

′eit

eit


, it is easy to show that its expectation

is 0 by the fact that vit, eit, hit,0 and u
∗
i are distributed independently. So we can write the variance

as

Var

[
T−1

T∑

t=1

ξitN
−1

N∑

i=1

hit,0(µ
+
0 − u∗i )

]

=(NT )−2E

[
T∑

t=1

ξit

N∑

i=1

hit,0(µ
+
0 − u∗i )

]2

=(NT )−2




T∑

t=1

E(ξitξ
′
it)E

(
N∑

i=1

hit,0(µ
+
0 − u∗i )

)2



=(NT )−2

[
T∑

t=1

E(ξitξ
′
it)E

(
N∑

i=1

h2it,0(µ
+
0 − u∗i )

2

)]
, (S.7)

the second equality holds by the fact that vit and eit are serially uncorrelated, and the third equal-

ity holds by u∗i are cross-sectionally independent. Furthermore, the term E||ξitξ′it|| < K by vit

and eit have finite variance, together with E(h2it,0) < K and E(µ+
0 − u∗i )

2 < K, we can obtain

Var
[
T−1

∑T
t=1 ξitN

−1
∑N

i=1 hit,0(µ
+
0 − u∗i )

]
= O((NT )−1). Therefore T−1

∑T
t=1 ξitN

−1
∑N

i=1 hit,0(µ
+
0 −

u∗i ) = Op((NT )
−1/2).

Proof of Lemma (C6). Given Lemmas (B5) and (B6), we already discussed two of three ele-

ments in G. It remains to show the rate of T−1
∑T

t=1 ξitN
−1
∑N

i=1 hit,0u
∗
i . Consider its mean.

Again, given the fact that vit, eit, hit,0 and u∗i are distributed independently, it can be shown that
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the mean is 0. The variance,

Var

[
T−1

T∑

t=1

ξitN
−1

N∑

i=1

hit,0u
∗
i

]

=(NT )−2E

[
T∑

t=1

ξit

N∑

i=1

hit,0u
∗
i

]2

=(NT )−2




T∑

t=1

E(ξitξ
′
it)E

(
N∑

i=1

hit,0u
∗
i

)2



=(NT )−2




T∑

t=1

E(ξitξ
′
it)




N∑

i=1

N∑

j=1

E(hit,0hjt,0)E(u∗i u
∗
j )




 ,

where the second equality holds as the same as preceding discuss that vit and eit are serially

uncorrelated. However, by expanding
(∑N

i=1 hit,0u
∗
i

)2
, it is Op(N

2) by the assumptions that

E(hit,0hjt,0) < K and E(u∗i u
∗
j) < K for all i, j. Together with E||ξitξ′it|| < K, we get

Var

[
T−1

T∑

t=1

ξitN
−1

N∑

i=1

hit,0u
∗
i

]
= O(T−1),

which implies T−1
∑T

t=1 ξitN
−1
∑N

i=1 hit,0u
∗
i = Op(T

−1/2).

Proof of Lemma (C7). Consider the mean. Because vit, eit, hit,0 and u∗i are mutually inde-

pendent, we can obtain the mean is 0 easily. Next, the variance,

Var

[
T−1

T∑

t=1

(uit − ūi)ξ̄t

]
=T−2

T∑

t=1

E
(
u∗i (hit,0 − h̄i,0)

)2
E(ξ̄tξ̄

′
t)

=T−2
T∑

t=1

E(u∗2i )E(hit,0 − h̄i,0)
2E(ξ̄tξ̄

′
t).

Notice that the above holds by the fact vit and eit are serially uncorrelated and assumptions

we used in the mean. Because we have E(u∗2i ) < K, E(hit,0 − h̄i,0)
2 < K and the order of

E(ξ̄tξ̄
′
t) is O(N

−1). Thus, we have Var
[
T−1

∑T
t=1(uit − ūi)ξ̄t

]
= O((NT )−1), and it follows that

T−1
∑T

t=1(uit − ūi)ξ̄t = Op((NT )
−1/2).

Proof of Lemma (C8). We first consider its mean. Write,

E


T−1

T∑

t=1

(uit − ūi)N
−1

N∑

j=1

hjt,0(µ
+
0 − u∗j )




=(NT )−1


E

T∑

t=1

(uit − ūi)hit,0(µ
+
0 − u∗i ) + E

T∑

t=1

(uit − ūi)

N∑

j 6=i

hjt,0(µ
+
0 − u∗j )


 ,
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where the second term inside the square brackets is 0 by the assumption that u∗i is cross-sectional

independent. Further, since uit = hit,0u
∗
i and using the assumptions that hit,0 and u∗i are mutually

independent with finite mean and variance, we get

E


T−1

T∑

t=1

(uit − ūi)N
−1

N∑

j=1

hjt,0(µ
+
0 − u∗j )




=(NT )−1
T∑

t=1

[
E(h2it,0 − hit,0h̄i,0)E(u∗2i − u∗iµ

+)
]
= O(N−1). (S.8)

Consider the variance, we first evaluate the term

(NT )−2E




T∑

t=1

(uit − ūi)

N∑

j=1

hjt,0(µ
+
0 − u∗j )



2

=(NT )−2E




T∑

t=1

(hit,0 − h̄i,0)
2u∗2i

(
N∑

j=1

hjt,0(µ
+
0 − u∗j)

)(
N∑

k=1

hkt,0(µ
+
0 − u∗k)

)

+

T∑

t=1

∑

s6=t

(hit,0 − h̄i,0)(his,0 − h̄i,0)u
∗2
i

(
N∑

j=1

hjt,0(µ
+
0 − u∗j)

)(
N∑

k=1

hks,0(µ
+
0 − u∗k)

)
 .

Note that the expected value of above equation is non-zero only in the case that j = k, so we can

rewrite them as

(NT )−2E




T∑

t=1

(uit − ūi)

N∑

j=1

hjt,0(µ
+
0 − u∗j )



2

=(NT )−2E




T∑

t=1

(hit,0 − h̄i,0)
2u∗2i

N∑

j=1

h2jt,0(µ
+
0 − u∗j )

2

+

T∑

t=1

∑

s6=t

(hit,0 − h̄i,0)(his,0 − h̄i,0)u
∗2
i

(
N∑

j=1

hjt,0hjs,0(µ
+
0 − u∗j )

2

)


=(NT )−2E




T∑

t=1

(h2it,0 − hit,0h̄i,0)
2(u∗iµ

+
0 − u∗2i )2 +

T∑

t=1

(hit,0 − h̄i,0)u
∗2
i

N∑

j 6=i

h2jt,0(µ
+
0 − u∗j )

2

+

T∑

t=1

∑

s6=t

(h2it,0 − hit,0h̄i,0)(h
2
is,0 − his,0h̄i,0)(u

∗
iµ

+
0 − u∗2i )2

+

T∑

t=1

∑

s6=t

(hit,0 − h̄i,0)(his,0 − h̄i,0)u
∗2
i

(
N∑

j 6=i

hjt,0hjs,0(µ
+
0 − u∗j )

2

)
 . (S.9)

Given the assumptions that hit,0 and u∗i are mutually independent with finite fourth moment, the

first term inside square brackets divided by (NT )2 is O(N−2T−1). Using the similar argument, the

third term divided by (NT )2 is O(N−2). Further, since u∗i is cross-sectional independent and hit,0 is

covariance stationary process, the second and fourth terms divided by (NT )2 are (NT )−1. Thus,

by summarizing (S.8) and (S.9), we have Var
[
T−1

∑T
t=1(uit − ūi)N

−1
∑N

j=1 hjt,0(µ
+
0 − u∗j )

]
=
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O(N−2) + O((NT )−1). Therefore, we obtain T−1
∑T

t=1(uit − ūi)N
−1
∑N

j=1 hjt,0(µ
+
0 − u∗j) =

Op(N
−1) +Op((NT )

−1/2).

Proof of Lemma (C9). Since hit,0, Dt and ft are independent stationary process, it is easy to

obtain T−1((ui − ūi)
′D) = Op(T

−1/2) and T−1((ui − ūi)
′F) = Op(T

−1/2). The remains can be

denoted as T−1
∑T

t=1(uit− ūi)N−1
∑N

j=1 hjt,0u
∗
j , and using the similar arguments in Lemma (C8),

the mean,

E


T−1

T∑

t=1

(uit − ūi)N
−1

N∑

j=1

hjt,0u
∗
j




=(NT )−1


E

T∑

t=1

(h2it,0 − hit,0h̄i,0)u
∗2
i + E

T∑

t=1

(hit,0 − h̄i,0)u
∗
i

N∑

j 6=i

hjt,0u
∗
j




=(NT )−1

[
T∑

t=1

E(h2it,0 − hit,0h̄i,0)E(u∗2i )

]
= O(N−1). (S.10)

The second equality holds by the fact that hit,0 is cross-sectional independent with E[
∑T

t=1(hit,0−

h̄i,0)] = 0. The result holds by hit,0 and u
∗
i are mutually independent with finite mean and variance.

Next, we consider

(NT )−2E




T∑

t=1

(hit,0 − h̄i,0)u
∗
i

N∑

j=1

hjt,0u
∗
j



2

=(NT )−2E




T∑

t=1

(hit,0 − h̄i,0)
2u∗2i

(
N∑

j=1

hjt,0u
∗
j

)(
N∑

k=1

hkt,0u
∗
k

)

+

T∑

t=1

T∑

s6=t

(hit,0 − h̄i,0)(his,0 − h̄i,0)u
∗2
i

(
N∑

j=1

hjt,0u
∗
j

)(
N∑

k=1

hks,0u
∗
k

)


=(NT )−2E




T∑

t=1

(h2it,0 − hit,0h̄i,0)
2u∗4i +

T∑

t=1

(hit,0 − h̄i,0)
2u∗2i




N∑

j 6=i

N∑

k 6=i

hjt,0hkt,0u
∗
ju

∗
k




+
T∑

t=1

∑

s6=t

(h2it,0 − hit,0h̄i,0)(h
2
is,0 − his,0h̄i,0)u

∗4
i

+
T∑

t=1

∑

s6=t

(hit,0 − h̄i,0)(his,0 − h̄i,0)




N∑

j 6=i

N∑

k 6=i

hjt,0hks,0u
∗
ju

∗
k




 . (S.11)

The above expressions are quite similar with (C8), the assumptions that hit,0 and u∗i are mu-

tually independent with finite fourth moment imply the first and third terms divided by (NT )2

are O(N−2T−1) and O(N−2). The difference is that the case j 6= k is non-zero here, thus the

second and forth terms divided by (NT )2 are O(T−1). Taking (S.10) and(S.11) together, we

have Var
[
T−1

∑T
t=1(hit,0 − h̄i,0)u

∗
iN

−1
∑N

j=1 hjt,0(u
∗
j − µ+

0 )
]
= O(N−2) +O(T−1), which implies
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T−1
∑T

t=1(hit,0 − h̄i,0)u
∗
iN

−1
∑N

j=1 hjt,0(u
∗
j − µ+

0 ) = Op(N
−1) +Op(T

−1/2).

Proof of Lemma (C10). The proof of (C10) is quite similar to the last part of (C9) except we

drop u∗i from (uit − ūi) and do not evaluate at true value of δ. We still have the same result that

is T−1
∑T

t=1(hit − h̄i)N
−1
∑N

j=1 hjt,0u
∗
j = Op(N

−1) +Op(T
−1/2).
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