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Abstract

We apply well-known results of the econometric learning literature to the Mortensen-Pissarides
real business cycle model. The unique rational expectations equilibrium (REE) is always expecta-
tionally stable with decreasing gain learning, and this result is robust to over-parametrisation of the
econometric model relative to the minimum state variable form used by agents (Strong E-stability).
And so, from this perspective, the assumption of rational expectations in the model is not unreas-
onable. However, using a parametrisation with UK data, simulations suggest that the implied rate
of convergence to the REE with least squares learning is however slow. The cyclical response of
unemployment to structural shocks is muted under learning, and a parametrisation which guaran-
tees root-t convergence is generally not consistent with attempts to match the observed volatility of
labour market data using the standard model.
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1 Introduction

The Mortensen & Pissarides (1994) model of search frictions has become the foundation for the invest-

igation of the functioning of labour markets (see Rogerson & Shimer, 2011 for a survey). The existence

of search frictions in labour markets is usually motivated by the observation that the market is decent-
ralised due to geographical and sectoral differences in firms, and the fact that each worker has distinct

features which make them more or less suitable for these jobs. That is, there is fundamental heterogen-
eity present in labour markets. Whilst searching for a match, unemployed workers and firms must form

expectations of future variables relevant to their decision making process, such as the unemployment
rate and the quantity of open vacancies. The decentralised nature of labour markets makes it a priori not

obvious that workers and firms are able to correctly quantify the values of these relevant variables at all
times. Nevertheless, the assumption that firms and unemployed workers have rational expectations is

usually made in search and matching models. This is likely to pose overly strong requirements on the
cognitive abilities of economic agents, and is unrealistic in the presence of potentially frequent structural

and policy shocks. Even small departures from the rational expectation assumption might alter qualitat-
ive or quantitative predictions, and these should be explored.

Here we analyse the equilibrium properties and dynamics of the textbook real business cycle (RBC)

Mortensen-Pissarides model (see Hagedorn & Manovskii, 2008 for an equivalent discrete time treat-
ment) whilst representing agents as ‘good econometricians,’ who form forecasts according to their es-

timates of structural model parameters (Evans & Honkapohja, 2001). We follow the literature on eco-
nometric learning and assume that agents employ a recursive least squares algorithm to update their

parameter estimates each period when new data becomes available. Econometric learning can provides
a behavioural foundation for the assumption of rational expectations if the rational expectations equi-

librium (REE) is shown to be learnable or E-stable (Evans & Honkapohja, 2001); i.e. small deviations
from this equilibrium are reversed over time, and the economy and agents’ parameter estimates converge

asymptotically to the true equilibrium values. We derive conditions under which the model’s REE is E-
stable. No parameter restrictions are required beyond those made in the standard model when agents

use a minimum state variable rule to form and update their estimates of the level of so-called ‘labour
market tightness.’ Furthermore, we confirm that the model is in fact globally stable and satisfies the

properties of Strong E-stability (i.e. is robust to over-parametrisation of the econometric relationship
by the agents). And so from this perspective, the assumption of rational expectations when studying or

applying this model is not unreasonable.

There exists a significant literature on the representation of the good econometrician in macroe-
conomic models. Mankiw et al. (2004) offer evidence against the rational expectations hypothesis.

Their analysis of surveys of professional forecasters and households containing expected inflation in
one year’s time shows significant autocorrelation in the forecast errors, which is compatible with eco-

nometric learning, but not with rational expectations. Milani (2007, 2011) also argues for the presence
of adaptive learning in DSGE models, using Bayesian methods to estimate a New Keynesian model that

nests learning with habit formation, indexation and other ‘mechanical’ ways of generating persistence.
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His results show that learning is capable of replacing the other sources of persistence whilst at the same
time increasing the fit to the data as compared to rational expectations. Pfajfar & Santoro (2010) ex-

amine a survey of households’ inflation forecasts during 1978-2005 and conclude that the hypothesis of
the presence of rational expectations can be rejected, and that there is evidence in support of adaptive

learning dynamics. This view is further supported by Berardi & Galimberti (2012), who examine post-
WWII data of US inflation and output growth. Comparing the performance of different adaptive learning

algorithms to match survey forecasts, their results suggest that economic agents form these according to
recursive least squares.

Our formulation of learning here is such that agents need only make one-step-ahead forecasts of the
labour market tightness using their estimated model parameters and observed productivity. This is not

the first paper to apply the principles of econometric learning to this class of model. From a similar
model starting point, di Pace et al. (2014) consider an alternate formulation in which agents must make

infinite horizon forecasts about the future path of wages, unemployment and profits. This type of learn-
ing fits into the anticipated utility approach (Kreps, 1998), and has notably been applied to the RBC

model by Eusepi & Preston (2011). di Pace et al. (2014) focus on results with constant gain learning, for
which there are no equivalent analytical results to the E-stability conditions we consider. The authors

use the model to address the so-called ‘unemployment volatility puzzle’ (Shimer, 2005). Under infinite
horizon, they not only match US forecast errors for unemployment, but also generate significant ampli-

fication relative to the baseline model. This is driven by persistence or inertia in agents’ expectations of
the future path of wages, which implies firms are over-optimistic about future profits, post more vacan-

cies, and thus unemployment is more volatile relative to the REE baseline case. They also find some, but
significantly less, propagation of unemployment when they reformulate the model in a one-step-ahead

forecast guise.

We present illustrative simulations and analyse the dynamics of the unemployment model with eco-
nometric learning, and show that the REE could be a poor approximation to an economy in which agents

play the role of good econometricians in terms of levels. Convergence to the REE is slow when we give
agents only 50 quarters of historical data, and even after we allow for weighted least squares learning.

We also show that structural shocks, when agents are learning but initially begin at the REE, generate
a more gradual ‘cyclical’ adjustment of wages, and thus unemployment volatility would be relatively

reduced than under rational expectations. Therefore, we find conflicting results to di Pace et al. (2014).
Given that we derive a minimum state variable form of the model, in which agents need only estimate

the relationship between labour market tightness and productivity to form their expectations and close
the model, the ‘wage curve’ is already built-in. Econometric learning generates inertia in expectations

of the labour market state and wages following shocks.1 And so the same amplification mechanism
described in di Pace et al. (2014) is not present. Given the only true choice variable in the model is the

number of vacancies that firms open or close each period, our application of learning appears to be a

1Although we do not expand on this point later, it is straightforward to see that the minimum state variable solution of the
model, which agents learn and use to form expectations, could be re-written in terms of wages and productivity by substituting
for the standard ‘wage curve’ which derives from the Nash Bargaining solution.
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natural way to extend the baseline model.

The equilibrium of the textbook search and match RBC model can be characterised by a level of
labour market tightness and the productivity state, which are independent of the state of unemploy-

ment. This is reflected in the minimum state variable rule agents could use under econometric learning,
whereby they choose and form expectations of tightness. In doing so, we are implicitly assuming that

they fully understand the out of steady-state dynamics of unemployment and vacancy creation. The
concept of labour market tightness is a theoretical construct of the model, and not something we would

expect firms and workers to be forecasting in reality. Thus we consider an alternative learning rule which

relaxes this latter implied assumption by setting agents the job of learning how to set vacancy creation.
This alternative rule is not E-stable for the complete range of possible model parameters. And where

it does converge, it does so more slowly than under the minimum state variable representation. The
approximation of the REE would in this case appear to be further weakened.

We also consider in more detail the speed of convergence to the REE of the model. The same para-

meters and magnitudes which reduce the speed of convergence substantially are the same as those which
in the REE model also increase the model’s ability to match unemployment volatility: a relatively high

flow value of unemployment, low worker bargaining power and low matching function elasticity w.r.t.
unemployment (see Hagedorn & Manovskii (2008) for a detailed discussion of these). To match the

observed volatility of unemployment etc., more extreme values of these parameters would be required
when we relax rational expectations in this limited way.

The rest of the paper is structured as follows: in section 2 we add learning to the textbook search and

match model of unemployment and derive key expectational stability results; in section 3 we analyse
and discuss a simple parametrisation of the model and results of stochastic recursive simulations with

learning relative to the REE; and in section 4 we summarise.

2 The Model

We briefly outline a standard textbook search and match model of the labour market (Pissarides, 2000)
and the resultant discrete time dynamic equation for the state of the labour market, measured by its

so-called tightness, thus analogous to the treatment in Hagedorn & Manovskii (2008).

2.1 The labour market

There is a continuum of identical, risk neutral workers with total measure one, and an infinite hori-
zon. The matching function M(ut ,vt) gives the number of successful matches in a given period. It is

increasing and concave in both of its arguments ut and vt , which represent the share of the total work-
force currently unemployed and the level of vacancies relative to the size of the workforce respectively.

Matches and separations occur after agents in the economy have made decisions, at the end of period t.

A Cobb-Douglas, constant returns to scale matching function is chosen due to its simplicity, well-known
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features, and being commonplace in the literature;

M(ut ,vt) = µuα
t v1−α

t µ > 0 α ∈ (0,1). (1)

For the following exposition we define the key the level of labour market tightness, as

θt =
vt

ut
. (2)

The probability of a firm filling an open vacancy is

q(θt) =
M(ut ,vt)

vt
= µθ−α

t , (3)

and the corresponding probability that an unemployed worker gets matched to an open vacancy is

θtq(θt) =
M(ut ,vt)

ut
= µθ 1−α

t . (4)

The law of motion for the share of workers who are unemployed at the beginning of period t +1 is

ut+1 = ut +(1−ut)λ −θtq(θt)ut . (5)

2.2 The household

For ex-positional simplicity we consider an economy comprising a single representative household of
size one, in which all workers are identical, risk neutral and there is perfect consumption insurance

across members. The household can therefore be represented by the Bellman equation

Wt(n,y) = wtnt +Dt +b(1−nt)+δW e
t+1(n,y), (6)

with the law of motion for employment given by

nt+1 = (1−λ )nt +θtq(θt)(1−nt), (7)

where Wt(n,y) represents its current value function, labour productivity is denoted by yt , and e shows

time t subjective expectations. The household takes as given wages wt , dividends from the representative
firm Dt and labour market tightness θt . The period utility value from non-employment is given by b, and

δ is the discount factor. Applying the envelope theorem, the surplus from an additional member of the

household being employed is given by

∂Wt(n,y)
∂nt

= wt −b+δ (1−λ −θtq(θt))
∂W e

t+1(n,y)
∂nt+1

, (8)

i.e. the net value of employment plus the expected continuation value.
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2.3 The firm

A representative firm with linear production function maximises profits by choosing the quantity of
vacancies to post in each period, at constant ongoing cost c, subject to the law of motion for the labour

market, and taking wt and θt as given. This problem can be represented as the Bellman equation

Πt(v; ,n,y) = max
vt≥0

ytnt −wtnt − cvt +δΠe
t+1(v; ,n,y), (9)

with the constraint
nt+1 = (1−λ )nt +q(θt)vt , (10)

Πt(v; ,n,y) represents its current value function. The first order condition is given by

∂Πe
t+1(v;n,y)
∂nt+1

=
c

δq(θt)
. (11)

Applying the envelope theorem, and using the first order condition gives the surplus to the firm from
employing an additional worker

∂Πt(v;n,y)
∂nt

= yt −wt +
(1−λ )c

q(θt)
, (12)

i.e. the net profit from an additional employed worker plus the expected continuation value.

2.4 Wage determination

Wages are determined by generalised Nash bargaining between firm and workers over the additional
surpluses (8) & (12), with worker bargaining power β ∈ (0,1).2 Combining the surplus sharing rules

which form the solution of this problem, iterating forwards, and using (8) (12) & (11) gives what is
referred to in the textbook model as the ‘wage curve’,

wt = (1−β )b+β (yt + cθt). (13)

2.5 REE and dynamics

The equilibrium of the model can be characterised and determined uniquely by the value of labour
market tightness at which point the representative firm is indifferent between opening an additional

vacancy or not, due to the assumption of free entry. The non-linear equation determining this value of
θt can be obtained by iterating forwards and taking expectations of the envelope theorem condition with

respect to employment for the firm, and then using the firm’s first order condition (11) and the wage
curve equation (13);

c
δq(θt)

= (1−β )(ye
t+1 −b)+

(1−λ )c
q(θ e

t+1)
−θ e

t+1βc. (14)

2Note, it is crucial here that both workers and firms are assumed to form expectations in the same way, using the same rule,
otherwise the Nash Bargaining solution would be significantly complicated.
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To provide intuition for this expression, we stress the similarities to (11). Aggregate labour market
tightness θt will adjust immediately to deviations from this equality via the representative firm instant-

aneously opening or closing vacancies. Thus, today’s labour market tightness is determined by expecta-
tions of the value of a filled vacancy in the next period.

We assume that the process of worker productivity takes the form of a stationary AR(1) in logs

log(yt) = ρ log(yt−1)+ εt , ρ ∈ [0,1) (15)

with εt being an i.i.d. normal shock with variance σ 2
ε > 0.

Once agents have formed expectations for θt+1 and yt+1, the remaining endogenous variables of

interest such as wages and unemployment follow mechanically using the model equations derived above.
To solve the system consisting of (14) and (15) we linearise around the steady state values θ̄ and ȳ = 1

(see appendix A.1 for derivation);

θt = ψ0 +ψ1ye
t+1 +ψ2θ e

t+1 (16)

yt = (1−ρ)+ρyt−1 + εt . (17)

In the following, the operator Etx denotes mathematical expectations formed at period t regarding vari-

able x. The linearised dynamics of output (17) can be substituted into (16) for ye
t+1 by noting that under

rational expectations ye
t+1 = Etyt+1 = (1−ρ)+ρyt

θt = ψ̃0 + ψ̃1yt−1 + ψ̃2θ e
t+1 + ψ̃1ρ−1εt , (18)

with

ψ̃0 = ψ0 +ψ1(1−ρ)(1+ρ)

ψ̃1 = ψ1ρ2

ψ̃2 = ψ2.

A REE of the system (17) and (18) is a stochastic process θt that satisfies this system with Etθt+1 =

θ e
t+1. As is well known, linear RE models in which agents form expectations regarding an endogenous

variable can possess multiple equilibria (or bubble solutions, i.e. which are not related to economic
fundamentals)3. If there are multiple stable rational expectations equilibria then a model is said to be

indeterminate. To see the possibility of this, note that (18) can be written in ARMA(1,1) form as

θt = ψ̃−1
2

(
ρ−1ψ̃1(1−ρ)− ψ̃0

)
− ψ̃1ψ̃−1

2 ρ−1yt−1 + ψ̃−1
2 θt−1 +d1εt +d2ηt + ψ̃1ρ−1 (ψ̃−1

2 −1
)

εt−1

(19)

3The literature on bubbles and the related concept of indeterminacy is reviewed in Benhabib & Farmer (1999). The clas-
sic reference on bubble solutions is Blanchard & Watson (1983); see also Bullard & Mitra (2002) for a recent analysis of
indeterminacy in a New Keynesian framework.
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with d1 and d2 arbitrary parameters and ηt := Et+1[θt+2]−Et [θt+2] being a martingale difference se-

quence such that Et [ηt+1] = 0. No restrictions are imposed on d1 or d2 since rational expectations

formed according to (19) always result in an identity regardless of these parameters. Therefore, there
is a continuum of possible solutions to (19). Evans & Honkapohja (1986) have shown that any finite

degree ARMA solution of an equation of the form (18) can at most be ARMA(1,1) and the particular
form of (19) nests all possible ARMA solutions of finite degree. However, the ARMA class of solutions

is stable if |ψ̃2| > 1 and is unstable for |ψ̃2| < 1, in which case the unique stationary solution to (17)

and (18) is the fundamental or minimal state variable (MSV) solution. The MSV solution depends on
a minimal set of state variables such that it is impossible to delete any of the variables from the set and

still obtain solutions to (18) and (15) for all permitted parameter values (McCallum, 1983). The MSV
solution can be guessed to be of the form

θt = A+Byt−1 +Cεt (20)

since the only predetermined variable in the structural equation (18) is yt−1. In the appendix A.2 it

is shown how (20) can be obtained from (19). We first focus on this solution since it is the natural
benchmark for learning and the stability of equilibria (McCallum, 1983; Evans & Honkapohja, 2001). If

agents are not able to learn the simplest representation (as few state variables as possible), they cannot be
expected to be able to learn equilibria containing more state variables and to coordinate their behaviour

towards them.

2.6 E-Stability of the MSV Solution

We now relax the assumption of rational expectations by modelling agents as econometricians attempt-
ing to estimate the parameters underpinning the true motion of the economy under uncertainty. There-

fore, agents are endowed with a perceived law of motion (PLM) of the economy of the MSV form, (20).
The task for agents is then to estimate the values of the parameters A, B and C. They form estimates

in period t given by Ât , B̂t and Ĉt , and update these estimates every period when new data becomes

available. We assume agents perform this updating and estimation task using the recursive least squares
estimator. This is the most widely used estimation technique in the learning literature and Berardi &

Galimberti (2012) provide evidence that this estimator matches the observed survey forecasts of US
time series closely.4 According to the PLM, the forecast of next period’s labour market tightness is

θ e
t+1 = Ât + B̂t ((1−ρ)+ρyt−1 + εt) . (21)

There are potential problems of simultaneity in forward looking models, (Evans & Honkapohja, 2001).

Therefore, it is assumed that although agents forecast θt+1 by using yt , the variable yt is not in the in-

formation set for the estimation of Ât and B̂t . However, as proved by Marcet & Sargent (1989), this does
not alter the asymptotic stability results obtained in the following as compared to an algorithm allowing

for simultaneity so long as agents are assumed to ignore outliers, defined as being an observation outside

4The presented algorithm is comparable to a restricted form of the well-known Kalman filter. For further discussion of this
issue see Berardi & Galimberti (2013).
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some predetermined range. Inserting the econometric forecast into (18) gives the actual law of motion
(ALM) for labour market tightness

θt = ψ̃0 + ψ̃2Ât + ψ̃2(1−ρ)B̂t +(ψ̃1 + ψ̃2ρB̂t)yt−1 +(ψ̃2B̂t + ψ̃1ρ−1)εt . (22)

This defines the following T -mapping from the PLM to the ALM

T
(
Ât , B̂t ,Ĉt

)
=
(
ψ̃0 + ψ̃2Ât + ψ̃2(1−ρ)B̂t , ψ̃1 + ψ̃2ρB̂t , ψ̃2B̂t + ψ̃1ρ−1) . (23)

It is apparent that the T -mapping to Ĉt is determined by the other coefficients, and thus the estimate Ĉt

is independent of C, and does not influence the stability results. Therefore, in what follows we refer
to the mappings T

(
Ât , B̂t

)
, and for Ĉt , V (B̂t). There is a self-referential feature inherent in all learn-

ing models which can be seen in equation (22). Although the parameters of their estimation (20) are
non-stationary during the transition to steady state values, agents neglect this fact whilst forming their

estimates since a least squares method assumes the ‘true’ A, B and C to be constants. Intuitively, if the
coefficient which determines the responsiveness to expectations is sufficiently small, this specification

error becomes asymptotically negligible and the economy converges to the REE (Evans & Honkapohja,
2001).

The estimation takes place via recursive least squares (RLS). Let z′t−1 = (1,yt−1), x′t−1 = (Ât , B̂t) and

θt = z′t−1xt−1 +ηt . (24)

The estimation error ηt is perceived by the agents to be iid, however due to the self-referential nature of

the model there is an endogeneity bias which agents are unaware of and thus ηt is not truly iid. We now

define St = ∑t
i=1 zi−1z′i−1 which allows us to write the RLS estimator as

St = St−1 + zt−1z′t−1 (25)

xt = xt−1 +S−1
t−1xt−1(θt − z′t−1xt−1). (26)

Further, let Rt ≡ t−1St :

Rt = Rt−1 + t−1(zt−1z′t−1 −Rt−1) (27)

xt = xt−1 + t−1R−1
t zt−1(θt − z′t−1xt−1), (28)

and thus

xt = xt−1 + t−1R−1
t zt−1

{
z′t−1

[
T
(
Ât , B̂t

)
− xt−1

]
+V (B̂t)εt

}
, (29)

with the gain sequence 1/t, often referred to as decreasing gain learning.5 This gain guarantees that

asymptotically new information is disregarded by agents.

5In the case of constant gain learning the weight given each observation is geometrically declining in the time since it was
observed, and the gain sequence would be 0 < γ < 1.
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For the rational expectations equilibrium to be asymptotically stable under learning, the E-stability
principle has to be fulfilled as shown by Evans & Honkapohja (2001). According to this principle,

the stability of the system in (27) and (29) with decreasing gain is governed by the following ordinary
differential equation (ODE), where τ denotes ‘notional’ time

d
dτ

(
Â, B̂

)
= T

(
Â, B̂

)
−
(
Â, B̂

)
. (30)

The REE is then the unique fixed point of these differential equations. With this specification, it can be

shown that the REE of (18) is stable under the learning, i.e. small deviations from the steady state value
θ̄ are reversed, if the sufficient condition

ψ̃2 < 1 (31)

holds. The necessary condition for E-stability is ψ̃2ρ < 1. In appendix A.4 we show that the sufficient

condition always holds for this model, and we have global convergence to the REE (see A.5). As was
explained in the previous section, the model is determinate if |ψ̃2| < 1. We therefore can state the

following:

Proposition 2.1. If the economy described by the system (17) and (18) exhibits determinacy and the

PLM is of the MSV form, and if agents learn using least squares updating, then so long as ψ̃2 < 1 the

unique REE is E-stable.

Corollary 2.2. The textbook equilibrium model of labour market search and match frictions, with ho-

mogeneous agents and no on the job search (Pissarides, 2000: Chapter 1), is E-stable.

2.7 Strong E-stability of the MSV Solution

One potential criticism of the econometric learning literature is that it is not necessarily clear how agents
could settle upon a particular law of motion for the economy. Strong E-stability of a system is defined if

the previous result is robust to over-parametrisation of the PLM (Evans & Honkapohja, 2001). Assume
that agents are forming their expectations of θt+1 according to the general ARMA representation (19),

and are not endowed with a PLM of the MSV form. Moreover, due to econometric considerations they
start with an arbitrarily over-parametrised version

θt = a+
s

∑
j=1

b jyt− j +
r

∑
j=1

c jθt− j +
q

∑
j=1

d jεt− j +
l

∑
j=1

f jηt− j +d0εt + f0ηt . (32)

Accordingly, expectations of θt+1 take the form

θ e
t+1 = a+

s

∑
j=1

b jyt+1− j +
r

∑
j=1

c jθt+1− j +
q

∑
j=1

d jεt+1− j +
l

∑
j=1

f jηt+1− j, (33)

which can be substituted into equation (18) to obtain the new ALM and a corresponding T-mapping in
exactly the same way as before (see appendix A.6). Let b′ = (b1, ...,bs), c′ = (c1, ...,cr), d′ = (d0, ...,dq),

and also f′ = ( f0, ..., fl). Further, define ϕ ′ = (a,b′,c′,d′, f′). According to the E-stability principle, the
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ODE governing the stability of the above system is given by

dϕ
dτ

= T (ϕ)−ϕ . (34)

To investigate whether agents will detect the over-parametrisation and converge towards the MSV solu-
tion, the stability of (34) at the REE must be studied. In appendix A.6 we show the following:

Proposition 2.3. If the economy described by the system (17) and (18) exhibits determinacy and the

PLM is of the over-parametrised ARMA form, and if agents learn using least squares updating, then so

long as ψ̃2 < 1 the unique REE is E-stable.

Corollary 2.4. The textbook equilibrium model of labour market search and match frictions, with ho-

mogeneous agents and no on the job search (Pissarides, 2000: Chapter 1), is Strongly E-stable.

3 Analysis

In the following section we present a brief analysis of the unemployment model with econometric learn-

ing described above. We consider two illustrative simulations to demonstrate the implied speed of con-
vergence and dynamics of the endogenous variables in the standard search model with learning. First,

we demonstrate e-stability when starting ‘realistically’ far away from the REE. Second, with agents ini-
tially having assumed to have learned the RE equilibrium, we consider the impact of a shift implied by

an arbitrary change in some estimated parameter value. We then discuss the speed of convergence of
the model, results under constant gain learning, and the implications if agents use an alternative PLM

which does not implicitly assume they understand the out of stead-state dynamics of unemployment and
vacancy creation.

3.1 Simulations

Since this is not a strict empirical exercise, we follow a relatively ad hoc and illustrative only paramet-

risation strategy using seasonally adjusted UK quarterly data for the period 1998-2013.6

We normalise average productivity to be 1. For the productivity process we estimate an AR(1) in
log deviations from trend7 of output per worker, and find an auto-regressive parameter ρ for the period

of 0.84 and standard deviation of the shocks σε to be 0.0063 (assuming them to be normally distrib-

uted). We estimate the aggregate matching function below using OLS as per Sahin et al. (2014) for
2002q1-2013q2.8 As is common in the literature, we approximate a two state labour market simply by

6All data used from ONS, downloaded 01/08/2014. Labour market data for those aged 16-64 only. For a more complete
calibration of the unemployment model using UK data see Burgess & Turon (2010).

7Dynamically de-trended using Hodrick & Prescott (1997) filter with standard quarterly smoothing parameter.
8Also following Borowczyk-Martins et al. (2013) we consider time trends in the estimation to account for the enodogeneity

of unobserved shifts in the matching efficiency with the number of vacancies that firms open, but these all drop out. We also
carry out tests that the matching function is Cobb-Douglas, and reject the alternative. In line with the existing literature, we
find that the data suggests the matching function has decreasing returns to scale, although we proceed as though it is constant;
see Petrongolo & Pissarides (2001) for a thorough review of estimates of the aggregate matching function.
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ignoring those who are inactive. We proxy the number of matches, or new hires, as the total inflow into
employment mt in any quarter, and use the total number of vacancies in the economy.

log
(

mt

ut

)
= log(µ)+(1−α) log

(
vt

ut

)
+ζt . (35)

We find estimates of α = 0.39 and µ = 1.08. For the exogenous separation we use the UK Labour

Force Survey two quarter hazard rate estimate for leaving employment, which for 2002q1-2013q2 gives
a quarterly average rate of λ = 0.035. Brief summary statistics of the key model quarterly stock and

rate variables for the UK consistent with the parametrisation method here, are described in table 1.9 The
discount factor is set as δ = 0.99 and to restrict the number of free parameters, we let the bargaining

power match the Hosios condition, β = α = 0.39. We also set the flow value of unemployment to 0.8.10

The remaining parameter, the flow vacancy cost c is set to match the observed level of average labour
market tightness. The full list of parameters and implied values of the endogenous variables for the

deterministic equilibrium are given below in table 2.

Table 1: Level & quarterly rate summary statistics:
Consistent with model parametrisation, 2002q1-2013q2

Mean Std err.

Tightness - θt =
vt
ut

0.35 0.039
Job finding rate - θtq(θt) =

mt
ut

0.59 0.045
Job separation rate - λt 0.035 0.0021

‘Equilibrium unemployment’ - u∗t =
λt

λt+
mt
ut

0.058 0.0088

Actual unemployment rate, 16-64 0.058 0.0039

Source: authors’ calculations using UK Labour Force Survey and Labour Market Statistics

For completeness we write-out in full the stochastic recursive sequence that represents the model,
stating from period t0:

(I) ut+2 = λ (1−ut+1)+
[
1−µ

(
z′tT (xt)+V (xt)εt+1

)1−α
]

ut+1

(II) Rt+1 = Rt +
1

t +1
(ztz′t −Rt)

(III) xt+1 = xt +
1

t +1
R−1

t+1zt
{

z′t [T (xt)− xt ]+V (xt)εt+1
}

(IV ) yt+1 = (1−ρ)+ρyt + εt+1

(V ) εt+2 ∼ i.i.d. N(0,σ 2).

9All regressed on cubic trend to account for low frequency shifts for the short period in question.
10How to select or estimate appropriate values of both the bargaining power and the flow value of unemployment are open

to significant academic debate. Shimer (2005) and subsequently Hagedorn & Manovskii (2008) are often considered in the
literature as the extreme examples for parametrisations, and highlight how this greatly affects the ability of the model to match
the observed volatility of unemployment and vacancy creation. With the arbitrary parametrisation here we are somewhere in
between these two extreme values.
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Table 2: Assumed/estimated parameter values and deterministic equilibrium

Deterministic parameter Assumed value

y 1
b 0.8
c 0.74
λ 0.035
µ 1.08
α 0.39
β 0.39
δ 0.99
ρ 0.84
σ 0.006

Endogenous variable Deterministic equilibrium

θ 0.35
u 0.058
v 0.02
w 0.98

Source: authors’ calculations

When written out in sequence order, the simultaneity which requires us to exclude yt from the in-
formation set used to estimate xt becomes clearer. The adaptive learning process, which takes place at

the beginning of each period, can also be represented by figure 1.

To initiate the sequence from t0 we must choose initial values u1, x0, z0 S0 and ε1. The asymptotic

properties of decreasing or constant gains least squares recursion will hold irrespective of the initial con-
ditions. As suggested by Carceles-Poveda & Giannitsarou (2007) the approach taken to set initial values

z0 and S0 should depend on the particular model in question and the empirical purpose of the researchers.
One approach we might take is to use historic or randomly generated data, with t0 set sufficiently large

such that S0 is invertible; in this case t0 ≥ 2. This approach is most useful when attempting to compare
the performance of models with learning and the assumption of agents as being ‘good econometricians’

against real data. However, this gives few clues as to how large t0 should be, and the subsequent simula-
tion is likely to be sensitive to this assumed level of memory of agents, particularly for decreasing gain

least squares. Another attractive option is to choose initial values from an assumed distribution around

the REE.

To set the initial conditions here we use the same data used to parametrise the model to estimate
(36); where cubtrt represents a cubic time trend to account for the possibility that agents recognise low

frequency structural breaks in the relationship; productivity is normalised but not de-trended; and we
include significant MA terms to account for otherwise unaccounted for auto-correlation when the MSV

is applied to real world data, which the good econometrician may in practice account for by what we have
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Figure 1: Timeline of the labour market & agents’ learning

referred to before as an over-parametrised PLM.11 t0 = 50 is the maximum number of UK observations
available to us.

θt = A+ cubtrt +Byt−1 +κ1ζt−1 +κ2ζt−2 +ζt , t = 2001q2...2013q3. (36)

Using this approach, we set S0 =
(

50 50
50 50.075

)
, x′0 = (−1.22,1.77), z′0 = (1,1), ε1 = 0 and

u1 =
λ

λ +µ
(
z′0T (x0)

)1−α (= 0.052).

To analyse the impact of adding adaptive learning to the basic search frictions model of the labour market

we should focus on the simulated time paths of wages and the tightness parameter, which are independ-
ent of u1. With the parametrisation as described above the REE parameters of the MSV solution are

given by x′REE = (−0.9,1.25). That is to say the elasticity of θ to productivity at the long-run average

level is around 3, which is significantly lower than observed in the data.

Figure 2 (see appendix B) demonstrates a simulation for the baseline case of agents with rational
expectations.12 Unsurprisingly, as is common with this class of models, and as described in table 3,

11In determining initial conditions, one could also consider the class of GARCH, error correction, or even VAR models,
however we believe this would be an unnecessarily significant leap from the straightforward least squares updating we assume
that a ‘good econometrician’ carries outs in practice, and which constitutes the learning algorithm we study here.

12Random number seed set to 42 in Python Numpy application for all simulations.
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the REE does not come close to matching the key observed moments for labour market tightness and
unemployment. Figure 3 shows results from a simulation with decreasing gain learning taking initial

values as described above. The key result is that when giving agents a relatively small amount of
historical data (12.5 years), and initial estimates of the model parameters which are not unrealistically

far from the true REE values, decreasing gain learning convergence is very slow. As shown by figure 4
this takes roughly 500 years despite being exponential. This indicates that under adaptive learning, an

economy could be persistently away from its REE level of unemployment, on the high or low side,
even though agents are behaving rationally in the limited sense prescribed by the ‘good econometrician.’

In this sense, rational expectations is a poor approximation to a model with learning in terms of levels.

One recommendation from this result is that when calibrating the Mortensen-Pissarides model, targeting
second moments of the data should always be preferable, whereas not hitting levels of the endogenous

variables should not be too concerning.

Table 3: Simulation results

St.dev St.dev Min Max
t ≤ t0 +20 t ≤ t0 +100

Rational expectations eq.
w 0.01 0.008 0.96 0.99
u 0.0014 0.0012 0.056 0.061
θ 0.018 0.014 0.032 0.038

Learning (I) - least squares
w 0.011 0.009 0.98 1.02
u 0.0014 0.0014 0.05 0.056
θ 0.023 0.019 0.37 0.45

Learning (IV) - constant gain γ = 0.05
w 0.013 0.010 0.97 1.01
u 0.0018 0.0022 0.051 0.059
θ 0.027 0.026 0.33 0.44

Source: authors’ calculations

As a further example in figure 5 we simulate the model with no memory, and allow the agents’ to
have guessed the correct initial parameter estimates x′0 = x′REE , but suppose that there is an immediate

negative 10% shock to the flow value of unemployment. Under rational expectations, due to the rise in
the surplus of a match, firms immediately open more vacancies, and the unemployment rate falls. Under

learning, the initial increase in θ is smaller. Therefore, unemployment falls more slowly as agents

effectively attempt to disentangle the effects of the structural shock from the stochastic process. In this
sense, the response to the shock leads to a less volatile response for unemployment. Thus, if actual

labour market series feature the effects of frequent permanent shocks of this kind, econometric learning
will not improve the ability of the model to match their cyclicality.
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3.2 Speed of convergence

As shown theoretically in (Benveniste et al., 2012), the learning of the agents results in root-t conver-
gence to the true REE parameter estimates if all the eigenvalues of the Jacobian of the system have real

part < 1/2.13 As shown, in appendix A.4 when we derive the E-stability conditions, this requires that
ψ̃ < 1/2. In the example parametrisation above (figure 3) this is ensured, with ψ̃ = 0.39. In fact, more

generally, it can also be shown with simulations that the speed of convergence decreases substantially as
the value of ψ̃ moves closer to 1, the threshold for E-Stability. To illustrate this, in figure 6 we consider

a doubling of ψ̃ by decreasing worker bargaining power to β = 0.1, keeping all other parameters except

c constant, which we again use to match our target value of θ . As expected, the rate of convergence is

slowed substantially, and the economy remains more persistently away from the REE. A higher speed
of convergence is one way in which the REE model could become an improved approximation of an

alternative with econometric learning.

3.3 Constant gain learning

In figure 7, for completeness we also compare the results of our first simulation with decreasing gain

learning to an equivalent example with a gain parameter γt = 0.05.14 As expected, when agents weight

recent data more highly, i.e. with weighted least squares learning, convergence to the REE is faster,
and agents’ parameter estimates are more volatile. This faster convergence also results in more volatile

series of labour market tightness, wages and unemployment. However, the gain parameter we use here
to guarantee faster convergence implies agents roughly only use data over the past 20 quarters to update

their beliefs, and is notably outside the range suggested by the adaptive learning literature (see for ex-
ample di Pace et al. (2014) for a discussion). The simulation results with constant gain learning, with

more reasonable levels of memory weighting, are not dissimilar to those with decreasing gain.

3.4 An alternative non-steady-state perceived law of motion

So far we have described a model of econometric learning in which agents endeavour to forecast the
object θ , the labour market tightness. However, this is a construct of the model and its assumptions.

It is an attractive feature of the search and matching models that the equilibrium can be described by
this choice variable, determined by the state of the productivity process, but independent of the level of

unemployment. However, firms in the model are in fact described in terms of choosing vacancies, or
whether or not to enter the labour market. And for given levels of θ and productivity, this choice does

depend on the state of the labour market. In fact, in the rational expectations equilibrium, if we consider
a situation where the model is at its steady state (i.e. the unemployment and vacancy rates are on the

Beveridge curve), then following some one-off shock, the level of vacancies is non-monotonic in moving

13I.e. the rate at which in classical econometrics the mean of the least squares parameter estimate converges to the true
value.

14For constant gain learning there is no analytic solution for expectational stability and so we must select a reasonably small
gain parameters to ensure convergence.
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to the new steady state. In characterising agents as learning how to choose and forecast θ , we imply that

they fully understand the non-steady state dynamics of the model. Here we consider the implications of
relaxing this assumption (for what follows, see appendix A.7 for full derivation of results and parameter

values).

Linearising the system determining the full equilibrium given by (10), (14) & (15) we derive an
alternative system defining the economy

vt = κ0 +κ1ye
t+1κ2ve

t+1 +κ3ne
t+1 +κ4nt (37)

nt = ϕ0 +ϕ1nt−1 +ϕ2vt−1 (38)

yt = (1−ρ)+ρyt−1 + εt . (39)

We endow agents with a PLM by which they use both the productivity and employment rate states to

forecast vacancy creation,
vt = Ât + B̂tyt +Ĉtnt−1. (40)

Given (37)-(40), we can then derive the ALM for this version of the economy, and subsequently a T̃ -

mapping
T
(
Ât , B̂t ,Ĉt

)
=
(
κ̃0 + κ̃2

[
Ât +(1−ρ)B̂t

]
, κ̃1 + κ̃2ρB̂t , κ̃3 + κ̃2Ĉt

)
. (41)

Assuming agents update their parameter estimates for the PLM using the same form of recursive least

squares as we used previously, and applying the same E-stability principle, it can be shown that the
sufficient condition to guarantee local convergence to the REE is given by κ̃2 < 1. Comparing this with

the condition for stability of the MSV-PLM, κ̃2 > ψ̃2. Hence, convergence to the REE is slower when

agents do not implicitly know the out of steady-state dynamics of employment and vacancy creation.
The REE model is then a poorer approximation to an economy with econometric learning. What is

more, for a subset of parameter values we cannot claim that the model is E-stable. It is less likely to be
E-stable in the circumstance of inefficiently high firm entry, although for the parametrisation we have

used above, the model would certainly converge.

4 Summary and discussion

We take the textbook RBC version of the Mortensen-Pissarides model of search and match frictions for
the labour market and show that the unique REE is not only always E-stable, but this result is robust to

over-parametrisation of the MSV-PLM used by agents (Strong E-stability) with decreasing gain learning.
This PLM is assumed to be in the minimum state variable form, and as such agents only use productivity

and estimated model parameters to form expectations of future labour market conditions. These local
convergence conditions also extend trivially to global convergence. Hence, from the perspective that

agents may in practice apply something that looks like econometric learning, the rational expectations
assumption in this class of model is not unreasonable. We use recent UK data to parametrise the model,

and show that although the model is E-stable, implied convergence can be very slow. Therefore, the ra-

tional expectations model of unemployment could be a poor approximation to one in which agents learn
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econometrically, particularly in the presence of frequent structural or permanent shocks. What is more,
the MSV-PLM implicitly assumes that agents understand the out of steady-state path of employment and

vacancy creation in the model. When we consider a version of the PLM which relaxes this assumption,
we see that convergence is further slowed, and local E-stability of the model is not guaranteed, making

the approximation of the rational expectations model even weaker.

The so-called ‘Shimer puzzle’ addresses the extent to which the RBC version of the Mortensen-
Pissarides can match key moments of economic time series, in particular the volatility of unemployment,

and lack thereof for wages. Hagedorn & Manovskii (2008) discuss at length how the model can be

calibrated to match these moments. They focus on the roles of a high flow utility from non-employment
(b), and low worker bargaining power (β ) and matching elasticity (α) to match these volatilities. In our

linearised system, the sensitivity of θ to productivity shocks is determined by the true REE parameter

B, which becomes large as ψ̃ goes to 1. It is straightforward to show that the same combination of high

b, low β & α not only implies higher volatility of θ and unemployment, but also slower convergence

to the REE in the model with learning.15 Thus, in a world with least squares learning, more ‘extreme’
values of these parameters would be implied to match the observed cyclicality of unemployment, wages

etc.. And so the result of relaxing rational expectations in this limited way is to also move us further
from addressing the unemployment volatility puzzle.
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A Appendix

A.1 Linearisation

We take a first order Taylor approximation around the deterministic steady state values of θ and yt , θ̄
and ȳ = 1 respectively, approximating the right and the left hand side of equation (14) which is stated

here again for convenience

c
δq(θt)

= (1−β )(ye
t+1 −b)+

(1−λ )c
q(θ e

t+1)
−θ e

t+1βc.

This results in
c

δq(θ̄)
− cq′(θ̄)

δ [q(θ̄)]2
(θt − θ̄) =(1−β )(ȳ−b)+(1−β )(ye

t+1 − ȳ)

− θ̄βc−βc(θ e
t+1 − θ̄)+

(1−λ )c
q(θ̄)

− (1−λ )cq′(θ̄)
[q(θ̄)]2

(θ e
t+1 − θ̄).

(42)

By noting that
c

δq(θ̄)
= (1−β )(ȳ−b)+

(1−λ )c
q(θ̄)

− θ̄βc

must hold in equilibrium according to (14), this steady state condition can be subtracted from both

sides of the approximated equation. Then solving explicitly for θt and defining the functional form

q(θ̄) = µθ̄−α , (42) becomes

θt =

{
1+

βδ µ2(θ̄)−2α

αµ(θ̄)−α−1 − (1−λ )δ
}

θ̄

− (1−β )δ µ2(θ̄)−2α

cαµ(θ̄)−α−1 ȳ

+
(1−β )δ µ2(θ̄)−2α

cαµ(θ̄)−α−1 ye
t+1

+

{
−βδ µ2(θ̄)−2α

αµ(θ̄)−α−1 +(1−λ )δ
}

θ e
t+1.

(43)

which can be simplified to the form given in the text, (16), θt = ψ0 +ψ1ye
t+1 +ψ2θ e

t+1 with coefficients

ψ0 = [1−ψ2] θ̄ −ψ1ȳ,

ψ1 =
(1−β )δ θ̄q(θ̄)

cα
,

ψ2 = δ
[
(1−λ )− β θ̄q(θ̄)

α

]
,

with the steady state value for labour market tightness the solution to

(1−β )(ȳ−b)−
c(1−δ

δ +λ )
q(θ̄)

−βcθ̄ = 0.
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A.2 ARMA(1,1) and the MSV solution

Derivation of MSV solution: (19) can be re-written as

θt =
ρψ̃0 − ψ̃1(1−ρ)

ρ(1− ψ̃2)
+

ψ̃1

ρ(L− ψ̃2)
yt−1 −

d1ψ̃2

(L− ψ̃2)
εt −

d2

(L− ψ̃2)
ηt , (44)

with L denoting the lag operator such that Lxt = xt−1. The parameter d1 and d2 can be chosen arbitrarily.

In particular, to obtain the MSV solution

θt = A+Byt−1 +Cεt

one must first set d2 = 0. (44) can be re-written as:

θt =
ρψ̃0 − ψ̃1(1−ρ)

ρ(1− ψ̃2)
− (ρ−1ψ̃1yt−1 −d1ψ̃2εt)

∞

∑
i=1

ψ̃−i
2 Li−1.

θt =
ρψ̃0 − ψ̃1(1−ρ)

ρ(1− ψ̃2)
+ρ−1ψ̃1ψ̃−1

2 (1−ρ)
∞

∑
i=1

(
i

∑
j=1

ρ− j)ψ̃−i
2 −ρ−1ψ̃1ψ̃−1

2 yt−1

∞

∑
i=0

(ρψ̃)−i

+ εt−1(ρ−1ψ̃1ψ̃−1
2

∞

∑
i=1

(
i

∑
j=1

ρ− jLi− j)ψ̃−i
2 +d1

∞

∑
i=1

ψ̃−i
2 Li−1)+d1εt .

(45)

Therefore, to derive an MSV solution from a broader the class of ARMA(1,1) solutions, in which no

lags of εt can remain, we therefore see from (45) that

d1 =− ψ̃1

ρψ̃2

(
1

ρψ̃2
+(

1
ρψ̃2

)2 +(
1

ρψ̃2
)3 + ...

)
(46)

=
ψ̃1

ρψ̃2(1−ρψ̃2)
i f ψ̃2 >

1
ρ
> 1, (47)

which corresponds to the condition for stable ARMA(1,1) solutions. Otherwise, the MSV solution can-
not be derived from the class of unstable ARMA(1,1) solutions, and is instead the only stable solution.

A.3 REE Values

The REE values of the parameters A, B, and C are found using the method of undetermined coefficients

A =
ψ̃0

1− ψ̃2
+

ψ̃1ψ̃2(1−ρ)
(1− ψ̃2)(1− ψ̃2ρ)

,

B =
ψ̃1

1− ψ̃2ρ
,

C = Bρ−1,

where we have assumed that ψ̃2 ̸= 1 and ψ̃2ρ ̸= 1.
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A.4 E-Stability

As shown by to Evans & Honkapohja (2001) an REE is E-stable if the associated ordinary differen-
tial equation given in (30) is asymptotically locally stable under learning. This is the case, if all the

eigenvalues of the Jacobian of T (Â, B̂)− (Â, B̂) have negative real parts. Thus, we must have

ψ̃2ρ −1 < 0

and
ψ̃2 −1 < 0,

whereby the second condition implies the validity of the first. Therefore, we need to check when the

second condition is true. Writing out the term ψ̃2 and rearranging, we see that

δ
[
(1−λ )− β θ̄q(θ̄)

α

]
< 1 (48)

is always true for the widest range of sensible assumed parameter values (0 ≤ δ < 1, λ > 0, 0 <

β < 1, µ > 0, α > 0; and which all imply θ̄ > 0) and hence the REE is E-stable.

A.5 Global convergence

Given the model discussed here has a unique equilibrium, and satisfies the assumptions of Evans &

Honkapohja (1998) that guarantee global convergence, we simply apply their Theorem 2 to the recursive
learning algorithm given by (27) and (29).

For Rt , using Eztz
′
t = Mz, where Mz is some positive definite matrix, taking expectations we have the

ODE
dR
dτ

= Mz −S, (49)

which is clearly globally asymptotically stable and independent of xt .

It is possible that for some t Rt may not be invertible, though this will happen only a finite number

of times with probability 1. We modify the algorithm for xt to

xt = xt−1 + t−1u(Rt−1)zt−1
{

z′t−1
[
T
(
Ât , B̂t

)
− xt−1

]
+ηt

}
, (50)

where u(R) is a bounded regular function from the space of 2x2 matrices to the subspace of positive

definite matrices such that u(R) = R−1 in the neighbourhood of Mz. Then taking expectations the ODE
is given by

dx
dτ

= u(s)Mz(T (Â, B̂)− (A,B))
′

(51)

= u(s)Mz(ψ̃2 −1)((Â, B̂)− (A,B))
′
. (52)
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Given that the other requirements of the theorem are trivially satisfied, then it applies, and this differential
equation is clearly globally asymptotically stable for ψ̃2 < 1, and this stability is exponential; (Â, B̂)→
(A,B) globally almost surely.

A.6 ALM and T-mapping ARMA solution and E-stability

θt =
ψ̃0 + ψ̃2(a+b1(1−ρ))

1− ψ̃2c1
+

ψ̃1 + ψ̃2(b2 +b1ρ)
1− ψ̃2c1

yt−1 +
ψ̃2(b1 +d1)+ ψ̃1ρ−1

1− ψ̃2c1
εt +

ψ̃2 f1

1− ψ̃2c1
ηt

+
ψ̃2

1− ψ̃2c1

s

∑
j=3

b jyt+1− j +
ψ̃2

1− ψ̃2c1

r

∑
j=2

c jθt+1− j

+
ψ̃2

1− ψ̃2c1

q

∑
j=2

d jεt+1− j +
ψ̃2

1− ψ̃2c1

l

∑
j=2

f jηt+1− j. (53)

This defines again a T-mapping from the PLM to the ALM with corresponding elements

a =
ψ̃0 + ψ̃2(a+b1(1−ρ))

1− ψ̃2c1
, (54)

b1 =
ψ̃1 + ψ̃2(b1ρ +b2)

1− ψ̃2c1
, (55)

d0 =
ψ̃1ρ−1 + ψ̃2(b1 +d1)

1− ψ̃2c1
, (56)

b j =
ψ̃2

1− ψ̃2c1
b j+1, j = 2, ...,s−1, bs = 0, (57)

c j =
ψ̃2

1− ψ̃2c1
c j+1, j = 1, ...,r−1, cr = 0, (58)

d j =
ψ̃2

1− ψ̃2c1
d j+1, j = 1, ...,q−1, dq = 0, (59)

f j =
ψ̃2

1− ψ̃2c1
f j+1, j = 0, ..., l −1, fl = 0. (60)

Since (54) - (60) describes a non-linear system of differential equations, we first have to linearise (34) to
study stability properties. However, the subsystem (58) is independent of the other equations and can be

analysed separately. The eigenvalues of the Jacobian of T (c)−c at the REE values c j = 0 for j = 1t, ...,r

are found to be r times repeatedly equal to −1 and therefore the subsystem (58) will converge towards

the REE values. Due to the convergence of c it is apparent that d (apart from d0) and f will also converge
to their REE values of vectors of zeros. Moreover, b j = 0 for j = 2, ...,s is easily verified to be the

values towards which the economy under learning converges. Finally, convergence of a, b1 and d0 are

studied by analysing the Jacobian of the system (54)-(56). If this Jacobian has eigenvalues strictly less
than unity, then the whole system is E-stable. It can easily be verified that the eigenvalues are ψ̃2 and
ψ̃2ρ .
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A.7 A non-steady-state PLM

The system defined as (37)-(39), linearised around steady-state values v̄, n̄, ȳ = 1 has derived parameter
values as follows,

κ0 = (1−κ2) θ̄ − ȳκ1

κ1 =
δ (1−β )(1− n̄)θ̄q(θ̄)

cα

κ2 = δ
[
(1−λ )− β θ̄q(θ̄)

α

]
(= ψ2)

κ3 = θ̄κ2

κ4 =−θ̄

ϕ0 = αq(θ̄)(v̄+ θ̄ n̄)

ϕ1 = (1−λ )−αθq(θ̄)

ϕ2 = q(θ̄)(1−α).

Given the PLM (40), agents form expectations according to

ve
t+1 = Ât + B̂t [(1−ρ)+ρyt ]yt +Ĉtnt , (61)

and the ALM is given by

vt = κ̃0 + κ̃2
[
Ât +(1−ρ)B̂t

]
+
[
κ̃1 + κ̃2ρB̂t

]
yt +

[
κ̃3 + κ̃2Ĉt

]
nt , (62)

where

κ̃0 =
κ0 +κ1(1−ρ)+κ3ϕ0

1−κ3ϕ2

κ̃1 =
κ1ρ

1−κ3ϕ2

κ̃2 =
κ2

1−κ3ϕ2

κ̃3 =
κ4 +κ3ϕ1

1−κ3ϕ2
.

Given the mapping T̃ defined in the main text, then following Evans & Honkapohja (2001), the REE is

E-stable if all the eigenvalues of the Jacobian of T̃ (Â, B̂,Ĉ)− (Â, B̂,Ĉ) have negative real parts. Thus,
we must have

κ̃2ρ −1 < 0

and

κ̃2 −1 < 0,

whereby the second condition implies the validity of the first. Therefore, we need to check what range

of parameter values for the model the second condition is true. Writing out the term κ̃2 and rearranging,
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we see that the required condition is

δ
[
(1−λ )− β θ̄q(θ̄)

α

][
1+ θ̄q(θ̄)(1−α)

]
< 1, (63)

or

ψ̃2
[
1+ θ̄q(θ̄)(1−α)

]
< 1. (64)

Given that κ̃2 > ψ̃2, if the E-stability condition holds with this alternative PLM, convergence will be

slower. For the complete range of possible model parameters, this condition does not hold. As realistic
levels of λ are small, the condition would be sensitive to assumed parameter values of β and α . For ex-

ample, given α > β = 0, which is the case of zero worker bargaining power, whereby wages are reduced

to the value of the outside option, and there is excessive firm entry, or inefficiently high according to the
Hosios condition, it is more likely E-stability will not hold.
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B Simulation Figures

Figure 2: Baseline – Rational expectations eq.
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Figure 3: Learning (I) - Comparison of recursive least squares learning with rational expectations eq.

Note.- With initial parameter estimates assumed to be ‘realistically’ far away from true REE values.
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Figure 4: Learning (I) - Convergence of parameter estimates
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Figure 5: Learning (II) - Comparison of recursive least squares learning with rational expectations eq.

Following a -10% shock to the flow value of unemployment, with initial parameter estimates assumed to be at the true REE
values.
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Figure 6: Learning (III) - Speed of convergence comparison, changing worker bargaining power β

Given β = 0.1, then ψ̃ = 0.81. For β = α , ψ̃ = 0.39.
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Figure 7: Learning (IV) - Comparison of decreasing and constant gain learning

With initial parameter estimates assumed to be ‘realistically’ far away from true REE values.

32


