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Abstract

The results of an experiment with simulated datawshhat combining inputs with
different criteria (as cost, material inputs aggteg and other) increases the accuracy of
the Data Envelopment Analysis (DEA) technical édficy estimator in data sets with
dimensionality problems. The positive impact ofstrapproach surpasses that of
reducing the number of variables, since replaceroktite original inputs with an equal

number of aggregates improves DEA performancewda range of cases.
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I. Introduction

Data Envelopment Analysis (DEA) is one of the mustlely-used nonparametric
frontier models for evaluating the technical e#iety of Decision Making Units
(DMUs) in a multiple input/output scenario. The DEAdial technical efficiency
estimator is statistically consistent; that iscanverges towards true efficiency with
growing sample size (see Simar and Wilson, 2015afsummary of DEA properties).
Nevertheless, performing a DEA on real data withirmppropriate choice of inputs
and/or outputs will generate a biased efficienaymesgte (Smith, 1997). Also, even if
the model is correctly specified, the DEA estimaldte many other non-parametric
estimators, is prey to the curse of dimensionathgt is, its rate of convergence to true

efficiency diminishes as more inputs and outputsaaided.

While input (output) aggregation is standard practn the specification of variables for
use in DEA, its validity has been the object of deraic research. Several authors
(Primont, 1993; Tauer, 2001; Fare and Zelenyuk22®&reet al., 2004) show that
radial technical efficiency measures specifying posite cost inputs (or revenue
outputs) can be biased downwards by allocativefimency. The same authors use the
term “aggregation bias” to refer to the gap betwmgmt- oriented technical efficiency
scores obtained using aggregate versus multipletsigutputs. Simar and Wilson
(2001) suggest various tests for additive inputsoatputs with difference-based
statistics. Despite this bias, Podinovski and Thaaalis (2007) consider that the use of
composite inputs (and/or outputs) it is a practiemhedy for reducing the number of
variables and thus enhancing the discriminatorygyosi DEA. Ultimately, therefore,
the results of these studies suggest that whebhase aggregate data in DEA technical
efficiency estimation is an empirical question tdapends on the dimensionality of the

problem and the possibility of aggregation bias.



All the above-mentioned literature on the impactigfut (output) aggregation on the
performance of the DEA technical efficiency estiandibcuses on the implications of
collapsing several groups of inputs into a singtenposite. Very little research,
however, has yet gone into assessing and compBiify performance with different
numbers of aggregates of the same ingutSidanondo and Casasnovas (2015) extend
the analysis of technical efficiency input aggrewatbias to the use of multiple
aggregators. They conclude, firstly, that, in coempproduction problems, the use of
different aggregates of the same inputs guarantederence between technical
efficiency and the various, conflicting criteriaof minimization, optimisation of
management resources, the reduction of pollutiompuyts, etc.) of overall efficiency.
Secondly, they show that input aggregation biasimdghes with the number of
aggregates of the same inputs. The greater the ewofldifferent linear aggregators of
the same inputs, the closer the outcome to th#teobriginal DEA technical efficiency
estimator. Aldanondo and Casasnovas (2015) makspeafic claims with respect to
the empirical accuracy of the various estimatoosydver.

The purpose of this study is to build on previoesearch by exploring the implications
for the radial DEA technical efficiency estimatohen multiple composite inputs are
used. In particular, we incorporate a measuremietiteoerror in the comparison of the
various estimators by applying a Monte Carlo sirmafeand generate decision rules for

the use of multiple aggregators based on the p#ticonditions in each case.

! one exception to this is the combined use of RuaicComponent Analysis and DEA (PCA-DEA)
(Adler and Yazhemsky, 2010), where multiple linaggregates of the same inputs and outputs are used.
One drawback of PCA-DEA is that it hinders intetption of the results: the coefficients of the inpnd
output aggregates can be negative (¥ag., 2013).



The paper is organised as follows: section onerttescthe Monte Carlo design and the
methodology used to analyse the DEA model; sedtian presents the results of the
analysis of aggregation bias in technical effickervehen using multiple aggregate

criteria. The paper ends with some conclusions fileeresearch.
[I. Experimental design

We use a Monte Carlo experiment to compare aggoeghias and the accuracy of the
DEA estimator for several linear aggregates of ghme inputs. Aggregation bias is
approximated by estimating DEA efficiency scores tfte baseline model with fully
disaggregated data and comparing them with theiefity scores obtained when some
of the inputs in the DEA are linearly aggregatetb iseveral composite inputs. The
accuracy of the models, including the baseline hodealetermined by comparing the
simulated true efficiency value with the DEA ef@ocy estimates. All comparisons are
carried out for different numbers of observation§' (10, 50, 100, 500, 1 000, 2 000,
and 5 000) and the degree of inefficiency is defilgy the standard deviation of

inefficiency termo, (0.2, 0.3).

For ease of comparison with other studies, we conduwariation on an experiment

used by Tauer (2001), where we assume that tecyyadocharacterised by a Cobb-

Douglas production function,yf=|—|>qk"k ,with constant economies of scale,
k

Zak =1, one single efficient outputy’ and five inputsxy (k=1,...,5) for each

k

observation.. Our choice of ranges of variation of inputs,pui$ and efficiency are
guided by the values used in Simar and Wilson (@01 Bankewt al. (1993). The

experiment consists of 1 000 replications of tHewing procedure.



1) Five parameterg, are generated from a uniform distribution [0.1ahH eachn, is

divided by the sum of the five selectegl, such that the coefficients add up to 1.

2) A uniform distribution [0.1, 100] generates 8iagle efficient outputy® and the five
w, factor prices are drawn from independent randomabkes with uniform

distribution [0.1, 5]. The quantity of inputs israputed by means of the factor demand

function: x,= (|_| a,’ )_1ak yievvik_l(ﬂ w, % )

3) Inefficiency is simulated by multiplying the putt of each unity® by the technical
inefficiency coefficient A =exp(-u,), whereu, is a random value drawn from a
normal distribution N(0,0,). Then, the observed output value of each tinis

computed asy, = Ay’

4) Four inputs are linearly aggregated four timem@ as weights the corresponding

) 4
prices of these inputs for the first four unitstioé sample: respectivelg;’ = ZijXik
k=1

(i=1,...n;j=1,...,4;k=1,...,4)where C/ denotes the aggregate of thmputs of unit,

weightedby the w,, input prices of unit.

5) From this initial 5 000-unit population, we tagebsamples of the first 10, 50, 100,
500, 1 000, and 2 000 observations in order toiotsiaaller samples. Thus, this study
simulates change in sample size as successivegeniants up to population size,
thereby maintaining the same technology and theesaggregate weights for different-

sized samples in each replication.



6) The linear programming in Equation (1) is usedcompute radial technical input

efficiency A“ with constant returns to scale (Charnes et al7819or uniti, with

models with differentnumber of aggregate$<0,1,2,3,4). The baseline modezﬁ[0

computes the efficiency scores obtained with tke @riginal inputs. The other models
include one or several aggregates of the first iloputs and the fifth original input.

A1h(yi ,Cl, %, ) =ming

subject to

ZZiYi =7

I i xh i sh h - h . (1)
> zC/'d"<pClo" j=1..,h;38"=0if h=0andd"=1if h>0

> zx <P k=1.5if h=0andk=5if h>0

z20 i=1..,n

All the efficiency scores are computed using FEA&tveare (Wilson, 2008) for

platform R.

7) For every replication, we compute average tedinefficiency scores, mean

aggregation bias (difference between the baselig#\ [@stimation model and the

. . 1S 20 4
estimators of models with aggregateﬁ/]AB=—z A’ - A"and mean absolute error
n=

(absolute difference between estimated efficienegl &ue or simulated efficiency),

_15
MAE—nZ

i=1

Ah —A‘. % It should be noted that, in applied research usea data,

MAB is the only possible statistic for measuring tlo®dnpess-of-fit of the efficiency

2. Thus, the aggregate models have different number®mposite inputs and one original input. We
have replicated this experiment with different nemsbof original and aggregated inputs. The results
which are similar to the case presented here,\aitahle from the authors upon request.

% Spearman rank correlation coefficients estimateghi¢asure the accuracy of the estimators (whick hav
no impact on the findings) are omitted for lackspface and because our aim is to compéA® and
MAE.



estimators of the various models, while, in expental scenarios, there is an
appreciable difference between #é&B and theMAE, with the latter showing the true

accuracy of each estimator.

8) Finally, the results presented in the next sectire the average over the 1 000

replications of the average technical efficienbg MAE andMAB.

1. Results and discussion

Table 1 and Table 2 give the estimates for standavéations of inefficiency of 0.2 and
0.3, respectively. For the sake of clarity, botlbléa include average technical
efficiency, mean aggregation bi@dAB) and mean absolute errdi@E). The results
will be discussed in blocks, starting with the aggr technical efficiency scores, which
are the indicators most widely discussed in therdiure cited above. This will be
followed by an analysis of th#MAE in each model. Lastly, the advantages and
disadvantages of aggregating data will be discuasddheMAB andMAE analysed in

order to test the capacity of the former as a gesshof-fit estimator.

The average technical efficiency scores uphold sokmewn theoretical and
experimental findings reported by Fateal. (2004) and Tauer (2001). Firstly, the DEA
average efficiency score for the baseline modehguthe five original inputs, is well
above the true average efficiency for small sanges, converging towards true
efficiency with growing sample size. This can beeated by looking at the average
efficiency trends displayed in Table 1 and Tablén2Table 1, for example, the DEA
baseline model average efficiency diminishes frof®8 fi=10) to 0.8901=5 000) for

a true average efficiency of 0.858. Secondly, therage efficiency score obtained
using models with input aggregators is biased doavdse/ relative to that given by the

model with fully disaggregated inputs. This biazréases as more aggregates of the
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same inputs are added. Thirdly, the average efiftigiescore for models with composite
inputs falls below true efficiency as the sampleesncreases. Again, Table 1 shows
that the average efficiency score given by the rhaite one aggregator drops to 0.706
(n=5 000) and to 0.81M€5 000) for the model with four aggregators. Thes lbeen
reported by Tauer (2001) as evidence of the instersty of DEA technical efficiency
estimation using aggregates, since the computedagweefficiency score does not

converge towards true average efficiency.

The true error values, that is, tNAE scores, confirm some of the above observations
while also providing new findings. With respectdggregation bias, the trend of the
MAE as a function of sample size confirms the incdesisy of DEA efficiency
estimators when using aggregates for non-additipeits. As can be seen from both
tables, theMAE of the models using aggregates does not convekgards zero with
larger sample size in any of the models, while M&E of the baseline model DEA
estimator without aggregates always decreases laigfer sample size. For example,

with four aggregates of four inputs amg =0.2, theMAE score decreases gradually

from 0.104 to 0.049 as sample size grows from 1D @00 units, and increases slightly
to 0.051 when sample size reaches 5 000 units. staislisation effect or increase in
MAE appears in all the models using aggregates raport€ables 1 and 2, highlighting

the fact that an increase in sample size does mweat the true error or bias in a

misspecification of the variables.

The MAE performance, however, suggests that it is befteise aggregates when faced
with dimensionality problems. Indeed, although dlggregate models contain some bias
and do not converge towards true efficiency, they imave greater estimation accuracy

in certain empirical contexts than the baseline @holls can be seen in Table 2 for the



case oih=10-unit, for example, th®IAE for the one-aggregate model is 0.111, which is
lower than in the baseline mod@lAE=0.211) and all the other models. Conversely,
using the same table, the low®&$AE for n=50 is found in the model with 3 aggregators
and, forn=100, in the model with four aggregators. Generalhgaking, the results

show that models with fewer aggregates producebestimates with small sample size
and high standard deviation of efficiency; whilee thccuracy of estimators using a
larger number of linear aggregates improves as asipe grows. When the sample
size is large enough to eliminate dimensionalitgbbems, the basic DEA estimator

without aggregates gives the best performance.

As far as we are aware, it has never been reportedperimental studies that the DEA
efficiency estimator using a number of aggregamsakto the number of replaced
original inputs could give a better result than thedel using fully disaggregated
inputs, despite that both programs have the sammerdiion.® It can be seen, for
example, that the model with four aggregates hasvar MAE than the model with the

five original inputs when applied to samples ofQD @nits or less for @,=0.2 (Table
1) and to samples of 2 000 units or less far,&0.3 (Table 2). This holds even for a

production function without additive inputs, likeetone specified herein.

Thus, aggregation of the inputs achieves more tinamere reduction of the number of
variables in the DEA program. Indeed, one drawbatkhe DEA radial technical

efficiency measure is that it does not capturesallrces of inefficiency, because this
measure fails to take into account the non cercksla inputs and outputs. The slack

trouble increases with the dimensionality of thebpem: the greater the number of

“* In contrast to PCA-DEA studies, when the numbeagdregates is equal to the number of inputs or
outputs (explaining the total variance of the sahphe DEA efficiency estimator gives the samailtes
with or without aggregates (Adler and Golany, 2001)



inputs and outputs, the less likely the efficiescgre incorporates all excesses in inputs
and shortfalls in outputs. Alleet al. (1997) propose weight constraints in (dual) DEA
as a way to solve slack allocation problems. Clagheal. (1990) and Podinovski and
Thanassoulis (2007) show that, in very particulacuenstances: replacement of the
inputs with linear aggregates in the primal DEAgyeom is equivalent to constraining
input weights in the corresponding multiplicativ&® model.? Our results suggest that
the impact of the multiple aggregation of the sanpaits in the DEA model works in
two ways: firstly, the higher the degree of aggregation, the fewerkslgor zero
weights) will appear (Olesen and Petersen, 1$@¥8sund, 2013); and, secondly, the
more linear aggregators of the same inputs areidied, the closer the estimate to the

true frontier of efficiency (Varian, 1984; BankarcaMaindiratta, 1988).

Finally, the experiment allows comparison betwd&B andMAE. The MAB statistic

is usually used to compare the performance of uariDEA models or measure input
and output additivity, since it is the only avaiklstatistic when estimating efficiency
using real data. In our case, we are able to ifyetfte conditions under which thd¢AB

is the appropriate indicator for establishing siguéy criteria for input aggregation in

DEA by analyzing the differences betweBt®B and MAE. We focus on comparing

models with different numbers of aggregates, sembaitivity tests based on thd¢AB

can be found in Simar and Wilson (2001). As carsé&en from the tables, tiMAB is

® Charneset al. (1990) demonstrate the mathematical equivalericeonstraining relative weights
(assurance region) and aggregating inputs anditsjtfior the very simple case in which one conssrai
the variation of the relative weights of the onlyotinputs of the input set within an interval of.R
Podinovski and Thanassoulis (2007) suggest thevalguice of aggregating inputs or outputs in the
baseline DEA and constraining their relative wesghtthe dual form of the DEA model. This, however,
would hold whenever the constraint on the respedigregate input (output) in the DEA model holds.

® The relation between the relative weight constsaand the use of input or output aggregates for
multiple constraints, has, to our knowledge, ndaen described. See Farsund (2013) for a receisirev

of the research on weight constraints.
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lower in the model using four aggregates of theesarputs than in those using fewer
than four. With small samples, however, MAE in models with fewer aggregates is
lower than in those with larger numbers of aggregiathus, our results suggest that the
MAB discriminates well between models that are fredimiensionality problems. This
finding is line with that of Simar and Wilson (2004nd consistent with the functional

form of the estimated aggregation bias.
V. Conclusions

The main conclusion from this research is thatuse of multiple linear aggregates of
the same inputs has a positive impact on the pagnce of the radial DEA efficiency
estimator in the presence of dimensionality prolsle®@ur results show that this positive
effect outweighs the known effect of reducing thenber of variables in the DEA
program. Indeed, in several cases the mean absshate(MAE) of the model with four
linear aggregates of the same four inputs is Ialwan theMAE of the program using
the original inputs. With no dimensionality problerand no additive inputs, DEA
technical efficiency models with fully disaggregatmputs are the most appropriate

method.

Estimators with multiple aggregates of the sametsiperform better overall than those
with a single aggregate, except when applied ty sarall samples with high standard

deviation of inefficiency. These results have majoplications for DEA efficiency

" The estimated aggregation bia#\B" which can be broken down as follows:

AB'= A0 -A=(A°-A)-(A"-A) h=1234
Thus, AB" is a better estimator of true err(g\ﬁ — A, when the estimated efficiency of unj?ﬁ0

converges towards true efficiendy, with growing sample size. Iy’ < A, AB" is the sum of the two

errors.
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estimation. The use of multiple rather than a @rglear aggregate of the same inputs
can improve the performance of the radial DEA efficy estimator while also ensuring
coherence between technical efficiency measures raolliple criteria of overall

efficiency.
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Table 1. Computed average technical efficiency, rae aggregation bias and mean
absolute error (from random production data ande,=0.2)

DEA Basic 1 agg. 2 agg. 3 agg. 4 agg.
Efficiency scores
n=10 0.993 0.864 0.920 0,942 0.953
(0.020)* (0.140) (0.108) (0.089) (0.077)
50 0.967 0.788 0.852 0.878 0.893
(0.066) (0.147) (0.129) (0.118) (0.111)
100 0.953 0.765 0.831 0.857 0.873
(0.077) (0.145) (0.130) (0.121) (0.115)
500 0.922 0.729 0.797 0.824 0.841
(0.093) (0.141) (0.129) (0.122) (0.117)
1 000 0.910 0.719 0.787 0.815 0.832
(0.096) (0.140) (0.128) (0.122) (0.117)
2 000 0.901 0.710 0.779 0.807 0.824
(0.097) (0.139) (0.128) (0.121) (0.116)
5000 0.890 0.706 0.772 0.801 0.817
(0.099) (0.137) (0.127) (0.120) (0.116)
Mean Aggregation Bias MAB)
n=10 0.128 0.073 0.051 0.039
50 0.178 0.115 0.089 0.074
100 0.187 0.122 0.096 0.080
500 0.193 0.125 0.097 0.081
1 000 0.192 0.124 0.096 0.079
2 000 0.191 0.122 0.094 0.077
5000 0.184 0.118 0.089 0.072
Mean Absolute Error (MAE)
n=10 0.135 0.104 0.096 0.100 0.104
50 0.108 0.108 0.074 0.068 0.067
100 0.094 0.116 0.073 0.062 0.058
500 0.063 0.136 0.078 0.059 0.050
1 000 0.052 0.144 0.082 0.061 0.049
2 000 0.042 0.151 0.086 0.063 0.050
5000 0.031 0.153 0.090 0.064 0.051

Notes: Standard deviation of computed efficiency in péneses. True mean efficiency is 0.858 with
standard deviation 0.097 for all sample sizes.
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Table 2. Computed average technical efficiency, rae aggregation bias and mean
absolute error (from random production data ande,=0.3)

DEA Basic 1 agg. 2 agg. 3 agg. 4 agg.
Efficiency scores
n=10 0.979 0.837 0.892 0.913 0.924
(0.049)* (0.163) (0.135) (0.121) (0.111)
50 0.935 0.751 0.810 0.835 0.850
(0.107) (0.166) (0.154) (0.148) (0.143)
100 0.914 0.726 0.786 0.811 0.827
(0.119) (0.164) (0.155) (0.149) (0.146)
500 0.873 0.687 0.749 0.775 0.790
(0.132) (0.157) (0.152) (0.148) (0.145)
1 000 0.859 0.675 0.738 0.764 0.780
(0.135) (0.155) (0.150) (0.147) (0.145)
2 000 0.847 0.666 0.730 0.756 0.772
(0.136) (0.154) (0.149) (0.146) (0.144)
5000 0.835 0.661 0.722 0.749 0.764
(0.136) (0.152) (0.148) (0.145) (0.143)
Mean Aggregation Bias MAB)
n=10 0.142 0.087 0.067 0.055
50 0.184 0.124 0.100 0.085
100 0.188 0.128 0.103 0.088
500 0.186 0.124 0.098 0.083
1 000 0.184 0.121 0.095 0.079
2 000 0.181 0.118 0.091 0.076
5 000 0.174 0.113 0.086 0.070
Mean Absolute Error (MAE)
n=10 0.211 0.111 0.116 0.124 0.130
50 0.136 0.099 0.076 0.075 0.076
100 0.115 0.104 0.071 0.064 0.063
500 0.074 0.122 0.072 0.056 0.049
1 000 0.060 0.130 0.075 0.056 0.047
2 000 0.048 0.137 0.078 0.057 0.046
5000 0.035 0.140 0.082 0.058 0.047

Notes: Standard deviation of computed efficiency in péineses. True mean efficiency is 0.799 with
standard deviation 0.133 for all sample sizes.
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