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Abstract 

The results of an experiment with simulated data show that combining inputs with 

different criteria (as cost, material inputs aggregates and other) increases the accuracy of 

the Data Envelopment Analysis (DEA) technical efficiency estimator in data sets with 

dimensionality problems. The positive impact of this approach surpasses that of 

reducing the number of variables, since replacement of the original inputs with an equal 

number of aggregates improves DEA performance in a wide range of cases. 
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I.  Introduction 

Data Envelopment Analysis (DEA) is one of the most widely-used nonparametric 

frontier models for evaluating the technical efficiency of Decision Making Units 

(DMUs) in a multiple input/output scenario. The DEA radial technical efficiency 

estimator is statistically consistent; that is, it converges towards true efficiency with 

growing sample size (see Simar and Wilson, 2015, for a summary of DEA properties). 

Nevertheless, performing a DEA on real data with an inappropriate choice of inputs 

and/or outputs will generate a biased efficiency estimate (Smith, 1997). Also, even if 

the model is correctly specified, the DEA estimator, like many other non-parametric 

estimators, is prey to the curse of dimensionality; that is, its rate of convergence to true 

efficiency diminishes as more inputs and outputs are added. 

While input (output) aggregation is standard practice in the specification of variables for 

use in DEA, its validity has been the object of academic research. Several authors 

(Primont, 1993; Tauer, 2001; Färe and Zelenyuk, 2002; Färe et al., 2004) show that 

radial technical efficiency measures specifying composite cost inputs (or revenue 

outputs) can be biased downwards by allocative inefficiency. The same authors use the 

term “aggregation bias” to refer to the gap between input- oriented technical efficiency 

scores obtained using aggregate versus multiple inputs/outputs. Simar and Wilson 

(2001) suggest various tests for additive inputs or outputs with difference-based 

statistics. Despite this bias, Podinovski and Thanassoulis (2007) consider that the use of 

composite inputs (and/or outputs) it is a practical remedy for reducing the number of 

variables and thus enhancing the discriminatory power of DEA. Ultimately, therefore, 

the results of these studies suggest that whether to use aggregate data in DEA technical 

efficiency estimation is an empirical question that depends on the dimensionality of the 

problem and the possibility of aggregation bias.  
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All the above-mentioned literature on the impact of input (output) aggregation on the 

performance of the DEA technical efficiency estimator focuses on the implications of 

collapsing several groups of inputs into a single composite. Very little research, 

however, has yet gone into assessing and comparing DEA performance with different 

numbers of aggregates of the same inputs. 1 Aldanondo and Casasnovas (2015) extend 

the analysis of technical efficiency input aggregation bias to the use of multiple 

aggregators. They conclude, firstly, that, in complex production problems, the use of 

different aggregates of the same inputs guarantees coherence between technical 

efficiency and the various, conflicting criteria (cost minimization, optimisation of 

management resources, the reduction of pollution by inputs, etc.) of overall efficiency. 

Secondly, they show that input aggregation bias diminishes with the number of 

aggregates of the same inputs. The greater the number of different linear aggregators of 

the same inputs, the closer the outcome to that of the original DEA technical efficiency 

estimator. Aldanondo and Casasnovas (2015) make no specific claims with respect to 

the empirical accuracy of the various estimators, however. 

The purpose of this study is to build on previous research by exploring the implications 

for the radial DEA technical efficiency estimator when multiple composite inputs are 

used. In particular, we incorporate a measurement of the error in the comparison of the 

various estimators by applying a Monte Carlo simulation and generate decision rules for 

the use of multiple aggregators based on the particular conditions in each case. 

                                                 

1 One exception to this is the combined use of Principal Component Analysis and DEA (PCA-DEA) 

(Adler and Yazhemsky, 2010), where multiple linear aggregates of the same inputs and outputs are used. 

One drawback of PCA-DEA is that it hinders interpretation of the results: the coefficients of the input and 

output aggregates can be negative (Yap et al., 2013).  
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The paper is organised as follows: section one describes the Monte Carlo design and the 

methodology used to analyse the DEA model; section two presents the results of the 

analysis of aggregation bias in technical efficiency when using multiple aggregate 

criteria. The paper ends with some conclusions from the research. 

II.  Experimental design  

We use a Monte Carlo experiment to compare aggregation bias and the accuracy of the 

DEA estimator for several linear aggregates of the same inputs. Aggregation bias is 

approximated by estimating DEA efficiency scores for the baseline model with fully 

disaggregated data and comparing them with the efficiency scores obtained when some 

of the inputs in the DEA are linearly aggregated into several composite inputs. The 

accuracy of the models, including the baseline model, is determined by comparing the 

simulated true efficiency value with the DEA efficiency estimates. All comparisons are 

carried out for different numbers of observations n Є (10, 50, 100, 500, 1 000, 2 000, 

and 5 000) and the degree of inefficiency is defined by the standard deviation of 

inefficiency term uσ (0.2, 0.3). 

For ease of comparison with other studies, we conduct a variation on an experiment 

used by Tauer (2001), where we assume that technology is characterised by a Cobb-

Douglas production function, ∏=
k

ik
e
i

kxy α ,with constant economies of scale, 

1=∑
k

kα , one single efficient output e
iy  and five inputs xik (k=1,…,5) for each 

observation i..  Our choice of ranges of variation of inputs, outputs and efficiency are 

guided by the values used in Simar and Wilson (2001) and Banker et al. (1993). The 

experiment consists of 1 000 replications of the following procedure.  
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1) Five parameters kα  are generated from a uniform distribution [0.1, 1] and each kα  is 

divided by the sum of the five selected kα , such that the coefficients add up to 1. 

2) A uniform distribution [0.1, 100] generates the single efficient output e
iy  and the five 

ikw  factor prices are drawn from independent random variables with uniform 

distribution [0.1, 5].  The quantity of inputs is computed by means of the factor demand 

function: ( ) ( )∏∏ −−
kk

ikik
e
ikkik wwy= x αα αα 11

. 

3) Inefficiency is simulated by multiplying the output of each unit e
iy  by the technical 

inefficiency coefficient ( )ii uA −= exp , where iu  is a random value drawn from a 

normal distribution ( )uN σ,0 . Then, the observed output value of each unit i is 

computed as e
iii yAy =  

4) Four inputs are linearly aggregated four times using as weights the corresponding 

prices of these inputs for the first four units of the sample: respectively, ik
k

jk
j

i xwC ∑
=

=
4

1

 

(i=1,…,n ; j=1,…,4; k=1,…,4) where j
iC  denotes the aggregate of the k inputs of unit i, 

weighted by the jkw  input prices of unit j. 

5) From this initial 5 000-unit population, we take subsamples of the first 10, 50, 100, 

500, 1 000, and 2 000 observations in order to obtain smaller samples. Thus, this study 

simulates change in sample size as successive enlargements up to population size, 

thereby maintaining the same technology and the same aggregate weights for different-

sized samples in each replication. 
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6) The linear programming in Equation (1) is used to compute radial technical input 

efficiency h
iÂ  with constant returns to scale (Charnes et al., 1978) for unit i, with 

models with different number of aggregates (h=0,1,2,3,4). The baseline model 0ˆ
iA  

computes the efficiency scores obtained with the five original inputs. The other models 

include one or several aggregates of the first four inputs and the fifth original input. 2 

niz

hkh,...,kxxz

h,...jCCz

yyz

xCyA

i

i
ikiki

hhhj
i

hj
i

i
i

i
iii

ik
j

ii
h
i

,...,1    0

0  if  5  and  0  if  51    

0h  if  1  and  0h  if  0  ;,1   

subject to

min),,(ˆ

=≥

>===≤

>====≤

≥

=

∑

∑

∑

β

δδδβδ

β

 (1) 

All the efficiency scores are computed using FEAR software (Wilson, 2008) for 

platform R.

 

7) For every replication, we compute average technical efficiency scores, mean 

aggregation bias (difference between the baseline DEA estimation model and the 

estimators of models with aggregates), h
i

n

i
i AA

n
MAB ˆˆ1 0 −= ∑ and mean absolute error 

(absolute difference between estimated efficiency and true or simulated efficiency), 

∑
=

−=
n

i
i

h
i AA

n
MAE

1

ˆ1
. 3 It should be noted that, in applied research using real data, 

MAB is the only possible statistic for measuring the goodness-of-fit of the efficiency 

                                                 
2. Thus, the aggregate models have different numbers of composite inputs and one original input. We 

have replicated this experiment with different numbers of original and aggregated inputs.  The results, 

which are similar to the case presented here, are available from the authors upon request. 
3 Spearman rank correlation coefficients estimated to measure the accuracy of the estimators (which have 

no impact on the findings) are omitted for lack of space and because our aim is to compare MAB and 

MAE. 
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estimators of the various models, while, in experimental scenarios, there is an 

appreciable difference between the MAB and the MAE, with the latter showing the true 

accuracy of each estimator.  

8) Finally, the results presented in the next section are the average over the 1 000 

replications of the average technical efficiency, the MAE and MAB.  

III.  Results and discussion 

Table 1 and Table 2 give the estimates for standard deviations of inefficiency of 0.2 and 

0.3, respectively. For the sake of clarity, both tables include average technical 

efficiency, mean aggregation bias (MAB) and mean absolute error (MAE). The results 

will be discussed in blocks, starting with the average technical efficiency scores, which 

are the indicators most widely discussed in the literature cited above. This will be 

followed by an analysis of the MAE in each model. Lastly, the advantages and 

disadvantages of aggregating data will be discussed and the MAB and MAE analysed in 

order to test the capacity of the former as a goodness-of-fit estimator.  

The average technical efficiency scores uphold some known theoretical and 

experimental findings reported by Fare et al. (2004) and Tauer (2001). Firstly, the DEA 

average efficiency score for the baseline model, using the five original inputs, is well 

above the true average efficiency for small sample sizes, converging towards true 

efficiency with growing sample size. This can be checked by looking at the average 

efficiency trends displayed in Table 1 and Table 2. In Table 1, for example, the DEA 

baseline model average efficiency diminishes from 0.993 (n=10) to 0.890 (n=5 000) for 

a true average efficiency of 0.858. Secondly, the average efficiency score obtained 

using models with input aggregators is biased downwards relative to that given by the 

model with fully disaggregated inputs. This bias decreases as more aggregates of the 
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same inputs are added. Thirdly, the average efficiency score for models with composite 

inputs falls below true efficiency as the sample size increases. Again, Table 1 shows 

that the average efficiency score given by the model with one aggregator drops to 0.706 

(n=5 000) and to 0.817 (n=5 000) for the model with four aggregators. This has been 

reported by Tauer (2001) as evidence of the inconsistency of DEA technical efficiency 

estimation using aggregates, since the computed average efficiency score does not 

converge towards true average efficiency.  

The true error values, that is, the MAE scores, confirm some of the above observations 

while also providing new findings. With respect to aggregation bias, the trend of the 

MAE as a function of sample size confirms the inconsistency of DEA efficiency 

estimators when using aggregates for non-additive inputs. As can be seen from both 

tables, the MAE of the models using aggregates does not converge towards zero with 

larger sample size in any of the models, while the MAE of the baseline model DEA 

estimator without aggregates always decreases with larger sample size. For example, 

with four aggregates of four inputs and uσ =0.2, the MAE score decreases gradually 

from 0.104 to 0.049 as sample size grows from 10 to 1 000 units, and increases slightly 

to 0.051 when sample size reaches 5 000 units. This stabilisation effect or increase in 

MAE appears in all the models using aggregates reported in Tables 1 and 2, highlighting 

the fact that an increase in sample size does not correct the true error or bias in a 

misspecification of the variables.  

The MAE performance, however, suggests that it is better to use aggregates when faced 

with dimensionality problems. Indeed, although the aggregate models contain some bias 

and do not converge towards true efficiency, they may have greater estimation accuracy 

in certain empirical contexts than the baseline model. As can be seen in Table 2 for the 
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case of n=10-unit, for example, the MAE for the one-aggregate model is 0.111, which is 

lower than in the baseline model (MAE=0.211) and all the other models. Conversely, 

using the same table, the lowest MAE for n=50 is found in the model with 3 aggregators 

and, for n=100, in the model with four aggregators. Generally speaking, the results 

show that models with fewer aggregates produce better estimates with small sample size 

and high standard deviation of efficiency; while the accuracy of estimators using a 

larger number of linear aggregates improves as sample size grows. When the sample 

size is large enough to eliminate dimensionality problems, the basic DEA estimator 

without aggregates gives the best performance.  

As far as we are aware, it has never been reported in experimental studies that the DEA 

efficiency estimator using a number of aggregates equal to the number of replaced 

original inputs could give a better result than the model using fully disaggregated 

inputs, despite that both programs have the same dimension. 4 It can be seen, for 

example, that the model with four aggregates has a lower MAE than the model with the 

five original inputs when applied to samples of 1 000 units or less for a uσ =0.2 (Table 

1) and to samples of 2 000 units or less for a uσ =0.3 (Table 2). This holds even for a 

production function without additive inputs, like the one specified herein.  

Thus, aggregation of the inputs achieves more than the mere reduction of the number of 

variables in the DEA program. Indeed, one drawback of the DEA radial technical 

efficiency measure is that it does not capture all sources of inefficiency, because this 

measure fails to take into account the non cero slacks in inputs and outputs. The slack 

trouble increases with the dimensionality of the problem: the greater the number of 

                                                 
4 In contrast to PCA-DEA studies, when the number of aggregates is equal to the number of inputs or 
outputs (explaining the total variance of the sample), the DEA efficiency estimator gives the same result 
with or without aggregates (Adler and Golany, 2001). 
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inputs and outputs, the less likely the efficiency score incorporates all excesses in inputs 

and shortfalls in outputs. Allen et al. (1997) propose weight constraints in (dual) DEA 

as a way to solve slack allocation problems. Charnes et al. (1990) and Podinovski and 

Thanassoulis (2007) show that, in very particular circumstances, 5 replacement of the 

inputs with linear aggregates in the primal DEA program is equivalent to constraining 

input weights in the corresponding multiplicative DEA model. 6 Our results suggest that 

the impact of the multiple aggregation of the same inputs in the DEA model works in 

two ways: firstly, the higher the degree of aggregation, the fewer slacks (or zero 

weights) will appear (Olesen and Petersen, 1996; Førsund, 2013); and, secondly, the 

more linear aggregators of the same inputs are included, the closer the estimate to the 

true frontier of efficiency (Varian, 1984; Banker and Maindiratta, 1988).  

Finally, the experiment allows comparison between MAB and MAE. The MAB statistic 

is usually used to compare the performance of various DEA models or measure input 

and output additivity, since it is the only available statistic when estimating efficiency 

using real data. In our case, we are able to identify the conditions under which the MAB 

is the appropriate indicator for establishing superiority criteria for input aggregation in 

DEA by analyzing the differences between MAB and MAE. We focus on comparing 

models with different numbers of aggregates, since additivity tests based on the MAB 

can be found in Simar and Wilson (2001). As can be seen from the tables, the MAB is 

                                                 
5 Charnes et al. (1990) demonstrate the mathematical equivalence of constraining  relative weights 

(assurance region) and aggregating  inputs and outputs, for the very simple case in which one constrains 

the variation of the relative weights of the only two inputs of the input set within an interval of R+. 

Podinovski and Thanassoulis (2007) suggest the equivalence of aggregating inputs or outputs in the 

baseline DEA and constraining their relative weights in the dual form of the DEA model. This, however, 

would hold whenever the constraint on the respective aggregate input (output) in the DEA model holds.  
6 The relation between the relative weight constraints and the use of input or output aggregates for 

multiple constraints, has, to our knowledge, never been described. See Førsund (2013) for a recent review 

of the research on weight constraints.  
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lower in the model using four aggregates of the same inputs than in those using fewer 

than four. With small samples, however, the MAE in models with fewer aggregates is 

lower than in those with larger numbers of aggregates. Thus, our results suggest that the 

MAB discriminates well between models that are free of dimensionality problems. This 

finding is line with that of Simar and Wilson (2001) and consistent with the functional 

form of the estimated aggregation bias. 7  

IV.  Conclusions 

The main conclusion from this research is that the use of multiple linear aggregates of 

the same inputs has a positive impact on the performance of the radial DEA efficiency 

estimator in the presence of dimensionality problems. Our results show that this positive 

effect outweighs the known effect of reducing the number of variables in the DEA 

program. Indeed, in several cases the mean absolute error (MAE) of the model with four 

linear aggregates of the same four inputs is lower than the MAE of the program using 

the original inputs. With no dimensionality problems and no additive inputs, DEA 

technical efficiency models with fully disaggregated inputs are the most appropriate 

method.  

Estimators with multiple aggregates of the same inputs perform better overall than those 

with a single aggregate, except when applied to very small samples with high standard 

deviation of inefficiency. These results have major implications for DEA efficiency 
                                                 

7 The estimated aggregation bias ABi
h which can be broken down as follows:  

4 ,3 ,2 ,1         )ˆ()ˆ(ˆˆ 00 =−−−=−= hAAAAAAAB i
h
iii

h
ii

h
i  

Thus, h
iAB  is a better estimator of true error, i

h
i AA −ˆ , when the estimated efficiency of unit 0ˆ

iA  

converges towards true efficiencyiA , with growing sample size. If i
h
i AA <ˆ , h

iAB  is the sum of the two 

errors. 
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estimation. The use of multiple rather than a single linear aggregate of the same inputs 

can improve the performance of the radial DEA efficiency estimator while also ensuring 

coherence between technical efficiency measures and multiple criteria of overall 

efficiency. 
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Table 1.  Computed average technical efficiency, mean aggregation bias and mean 
absolute error (from random production data and σu=0.2) 

 DEA Basic 1 agg. 2 agg. 3 agg. 4 agg. 
 Efficiency scores 
n=10 0.993 0.864 0.920 0,942 0.953 
 (0.020)* (0.140) (0.108) (0.089) (0.077) 
50 0.967 0.788 0.852 0.878 0.893 
 (0.066) (0.147) (0.129) (0.118) (0.111) 
100 0.953 0.765 0.831 0.857 0.873 
 (0.077) (0.145) (0.130) (0.121) (0.115) 
500 0.922 0.729 0.797 0.824 0.841 
 (0.093) (0.141) (0.129) (0.122) (0.117) 
1 000 0.910 0.719 0.787 0.815 0.832 
 (0.096) (0.140) (0.128) (0.122) (0.117) 

2 000 0.901 0.710 0.779 0.807 0.824 

 (0.097) (0.139) (0.128) (0.121) (0.116) 
5 000 0.890 0.706 0.772 0.801 0.817 
 (0.099) (0.137) (0.127) (0.120) (0.116) 
 Mean Aggregation Bias (MAB) 
n=10  0.128 0.073 0.051 0.039 
50  0.178 0.115 0.089 0.074 
100  0.187 0.122 0.096 0.080 
500  0.193 0.125 0.097 0.081 
1 000  0.192 0.124 0.096 0.079 
2 000  0.191 0.122 0.094 0.077 
5 000  0.184 0.118 0.089 0.072 
 Mean Absolute Error (MAE) 
n=10 0.135 0.104 0.096 0.100 0.104 
50 0.108 0.108 0.074 0.068 0.067 
100 0.094 0.116 0.073 0.062 0.058 
500 0.063 0.136 0.078 0.059 0.050 
1 000 0.052 0.144 0.082 0.061 0.049 
2 000 0.042 0.151 0.086 0.063 0.050 
5 000 0.031 0.153 0.090 0.064 0.051 
Notes: Standard deviation of computed efficiency in parentheses.  True mean efficiency is 0.858 with 
standard deviation 0.097 for all sample sizes.  
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Table 2.  Computed average technical efficiency, mean aggregation bias and mean 
absolute error (from random production data and σu=0.3) 

 DEA Basic 1 agg. 2 agg. 3 agg. 4 agg. 
 Efficiency scores 
n=10 0.979 0.837 0.892 0.913 0.924 
 (0.049)* (0.163) (0.135) (0.121) (0.111) 
50 0.935 0.751 0.810 0.835 0.850 
 (0.107) (0.166) (0.154) (0.148) (0.143) 
100 0.914 0.726 0.786 0.811 0.827 
 (0.119) (0.164) (0.155) (0.149) (0.146) 
500 0.873 0.687 0.749 0.775 0.790 
 (0.132) (0.157) (0.152) (0.148) (0.145) 
1 000 0.859 0.675 0.738 0.764 0.780 
 (0.135) (0.155) (0.150) (0.147) (0.145) 
2 000 0.847 0.666 0.730 0.756 0.772 
 (0.136) (0.154) (0.149) (0.146) (0.144) 
5 000 0.835 0.661 0.722 0.749 0.764 
 (0.136) (0.152) (0.148) (0.145) (0.143) 
 Mean Aggregation Bias (MAB) 
n=10  0.142 0.087 0.067 0.055 
50  0.184 0.124 0.100 0.085 
100  0.188 0.128 0.103 0.088 
500  0.186 0.124 0.098 0.083 
1 000  0.184 0.121 0.095 0.079 
2 000  0.181 0.118 0.091 0.076 
5 000  0.174 0.113 0.086 0.070 
 Mean Absolute Error (MAE) 
n=10 0.211 0.111 0.116 0.124 0.130 
50 0.136 0.099 0.076 0.075 0.076 
100 0.115 0.104 0.071 0.064 0.063 
500 0.074 0.122 0.072 0.056 0.049 
1 000 0.060 0.130 0.075 0.056 0.047 
2 000 0.048 0.137 0.078 0.057 0.046 
5 000 0.035 0.140 0.082 0.058 0.047 
Notes: Standard deviation of computed efficiency in parentheses.  True mean efficiency is 0.799 with 
standard deviation 0.133 for all sample sizes.  
 
 


