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Jumps and Market Microstructure Noise∗

Chao Yua, Yue Fangb, Xujie Zhaoa and Bo Zhangc

aUniversity of International Business and Economics, Beijing, P.R.China

bUniversity of Oregon, Eugene, Oregon, U.S.A.

cRenmin University of China, Beijing, P.R.China

Mar 10, 2014

Abstract

This paper considers the problem of estimating spot volatility in the simultaneous presence of

Lévy jumps and market microstructure noise. We propose to use the pre-averaging approach and

the threshold kernel-based method to construct a spot volatility estimator, which is robust to both

microstructure noise and jumps of either finite or infinite activity. The estimator is consistent and

asymptotically normal, with a fast convergence rate. Our estimator is general enough to include

many existing kernel-based estimators as special cases. When the kernel bandwidth is fixed, our

estimator leads to widely used estimators of integrated volatility. Monte Carlo simulations show

that our estimator works very well.

Keywords: high-frequency data, spot volatility, Lévy jump, kernel estimation, microstructure noise, pre-averaging.

1 Introduction

How to estimate the volatility of a financial instrument has long been a central topic of great interest to e-

conomists. The availability of high-frequency financial data has led to substantial improvements in modelling
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and estimating time-varying volatility (Aı̈t-Sahalia and Jacod (2014)). Despite theoretical, computational and

empirical advances, however, most studies have concentrated on Integrated Volatility (IV) over some arbitrarily

fixed time period, typically one day in empirical applications, as a measure of volatility. The results developed

in stochastic calculus show that the sum of squared returns is consistent for IV over a period of time if the pro-

cess is observed continuously. Hence, within the setting of a continuous semimartingale, the IV as a model-free

quantity is a natural choice as a volatility measurement and can be estimated consistently and nonparametrically.

The nonparametric method is appealing because the asymptotic properties can be developed under fairly mild

assumptions (Jacod (1994), Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002), and Mykland and

Zhang (2006)). In this paper, we aim to use a kernel-weighted version of the realized volatility estimator to con-

struct a spot volatility estimator by shrinking the bandwidth at an appropriate rate, resulting in desired asymptotic

properties with a fast convergence rate.

In theory, estimating volatility using high-frequency data requires a large amount of data to be effective.

However, when applied to data recorded at very high frequencies, volatility estimators including IV and spot

volatility estimators are sensitive to market frictions (so-called market microstructure noise) and pronounced

discontinuous patterns of the intraday returns (i.e., jumps).

A common practice for dealing with microstructure noise is to model the log price semimartingale as latent

rather than as observed (see, for example, Fang (1996), Zhou (1996), Andersen, Bollerslev, Diebold and Labys

(2000), Hansen and Lund (2006), Bandi and Russell (2008)). There are currently three main nonparametric

approaches to estimating volatility in the presence of microstructure noise: the two-scale or multi-scale realized

volatility approach based on subsampling (Zhang et al. (2005, 2006)); a realized kernel estimator based on a

linear combination of autocovariances (Barndorff-Nielsen et al. (2008)); and the pre-averaging method, which

uses local “pre-averaging” via a kernel function to produce a set of non-overlapping (asymptotically) noise-free

observations (Podolskij and Vetter (2009) and Jacod, Li, Mykland (2009)). In fact, these three methods give rise

to asymptotically equivalent IV estimators with the optimal convergence rate of n−1/4, where n is the sample size

of the time series. In this paper, we use the pre-averaging approach to construct the noise-robust spot volatility

estimate; consult Jacod et al. (2009) for more about the advantages of the pre-averaging approach and the issues

with implementing the method.

Another complication that usually arises in high-frequency financial data analysis is that the return series do

not have continuous paths, but rather exhibit jumps. Recent empirical evidence points to the fact that jumps in

returns may take on different forms, such as jumps with finite activity or infinite activity (Carr and Wu (2003,

2004, 2007), Li et al. (2008), Lee and Hannig (2010), Fan and Fan (2011), Jing, Kong and Liu (2011), Cont and

Mancini (2011), Aı̈t-Sahalia and Jacod (2009, 2011), and Lee and Mykland (2012)). In this paper, we consider

Lévy jumps which are flexible in modeling various types of jumps, including infinite activity jumps that cannot

be described by either diffusion processes or compound Poisson jumps. We adopt the threshold approach to

construct spot volatility estimates robust to Lévy jumps. We show that the threshold approach works well for
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jumps with both finite and infinite activity.1

Econometric literature on spot volatility estimation with high frequency data was pioneered by Foster and

Nelson (1996), who propose the use of rolling and block sampling filters to estimate the spot volatility in pure

diffusion settings; see also Andreou and Ghysels (2002) for a study of the finite sample performance of Foster

and Nelson’s estimator. In a more recent study, Kristensen (2010) proposes a kernel-weighted version of the

realized volatility estimator for spot volatility in the absence of jump and market microstructure noise; Yu et al.

(2014) extends Kristensen’s results to allow the presence of jumps with finite activity. Both of their estimators

are asymptotically normal and have a convergence rate of n−1/2h−1/2, where h is the kernel bandwidth.

The closest results in other literature to the results given here for spot volatility estimation with the presence

of microstructure noise are those of Mancini, Mattiussi and Renò (2012) and Zu and Boswijk (2014). Although

Mancini, Mattiussi and Renò (2012) use the delta sequence approach and Zu and Boswijk (2014) adopt the kernel

method in constructing spot volatility estimates, both estimators use the two-scale approach proposed by Zhang

et al. (2005) to deal with microstructure noise. The asymptomatic normality of their estimators are established

under similar assumptions to ours. Their estimators, however, have a convergence rate of n−1/6h−1/2, which is

substantially slower than that of our proposed estimator. The slower convergence of their estimators is expected

due to the suboptimal nature of the two-scale procedure (Zhang (2006)). In addition, as Zu and Boswijk (2014)

point out, it is difficult to construct jump-robust estimators with the two-scale approach. We note that Mancini,

Mattiussi and Renò (2012) also consider the case of jumps with finite activity and apply the threshold method to

obtain the jump-robust estimator. They show the consistency of their estimator, but are unable to establish the

asymptotic normality of the estimator in the presence of jumps.

This paper introduces a new type of spot volatility estimator based on high-frequency data, allowing for the

presence of both Lévy jumps and market microstructure noise. The basic strategy is to combine the pre-averaging

approach and the threshold kernel-based method: the averaging of observed prices over a local window allows us

to asymptotically remove the market microstructure noise; while the kernel with an appropriate threshold allows

us to filter out jumps and approximate the true volatility. We show that our estimator is asymptotically normal

with a convergence rate of n−1/4h−1/2. This convergence rate is a natural blend of two causes, which makes it

slower than the usual n−1/2 rate: a 1/4-exponent loss due to microstructure noise and the extra factor h−1/2 due

to kernel filtering of the spot volatility. However, for the problem discussed in this paper, the convergence rate

is very fast. In the case of modelling σ2
t as a Brownian motion, the convergence rate of our estimator is nearly

equal to n−1/8, which is the best rate attainable by any spot volatility estimator based on data observed with noise

(Hoffmann et al. (2010)).

It is well known that if microstructure noise is present but unaccounted for, then the optimal sampling fre-

1Alternative strategies based on bipower and multipower variation processes have been developed in Barndorff-Nielsen

and Shephard (2004, 2006). The multipower variation estimator was first developed by Barndorff-Nielsen and Shephard

(2006) under the assumption of finite activity jumps. Although results have been extended to the case of jumps with infinite

jump activity, as Mancini (2009) pointed out, the extension may only work for very specific volatility cases.
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quency in estimating the IV is finite. This is also true in the estimation of spot volatility here. The development

of noise-robust estimators for spot volatility allows us not to discard a vast amount of data as a solution, but to

diminish the impact of microstructure noise. Our finite sample simulations confirm this: sampling as often as

possible will produce more efficient estimators for spot volatility. Our results also highlight the importance of

choosing an estimator based on both the price dynamics and the sampling frequency. For example, our results

indicate that if both jumps and microstructure noise are present, when the sampling frequency is low, say 5- or

10-min, the noise-robust estimator may be less efficient than the estimator which does not account for noises.

Surprisingly, our results also show that for processes without jumps, the jump-robust estimator may perform bet-

ter at certain frequencies than the estimator which does not account for jumps. Of course, data sampled at higher

frequencies always allow the jump and noise-robust estimators to achieve better estimation results.

The remainder of this paper is organized as follows. Section 2 lays out the basic setup. In Section 3,

we introduce our spot volatility estimators and establish their links with existing estimators. In Section 4, we

provide central limit theorems for our estimators, allowing for market microstructure noise in both scenarios

with no jumps and with jumps; in the presence of jumps, our estimator is applicable whether the jumps have

finite or infinite activity. Section 5 provides a simulation study to demonstrate the proposed estimators’ finite

sample performances. Finally, Section 6 draws conclusions. All proofs are located in the Appendices.

2 SETTING AND ASSUMPTIONS

2.1 The Lévy Jump-diffusion Process

We consider the univariate logarithmic price process (Xt)t≥0 of an asset defined on a filtered probability space

(Ω(0),F (0), (F (0)
t )t≥0,P(0)), and assume that Xt evolves as

dXt = btdt + σtdWt + dJt, (1)

where W = (Wt) is a standard Brownian motion. The drift b = (bt) and the volatility σ = (σt) are progressively

measurable processes which guarantee that (1) has a unique, strong solution. J = (Jt) is a Lévy jump process

with a Lévy jump measure ν and is independent of W.

Assumption A1. (Properties of b and σ)

(a) Both b and σ are adapted, and càdlàg process, and jointly independent of W;

(b) The path of volatility t 7→ σ2
t lies in Cm,γ[0, T ] for some m ≥ 0 and 0 < γ < 1, i.e. t 7→ σ2

t are m times

differentiable with the mth derivative (σ2
t )(m) satisfying

|(σ2
t+δ)

(m) − (σ2
t )(m)| ≤ L(t, |δ|)|δ|γ + o(|δ|γ), δ→ 0 (a.s.)

where δ 7→ L(t, δ) is a slowly varying (random) function at zero and t 7→ L(t, 0) is continuous.
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Assumption A1(a) consists of regularity conditions of the local behavior of the spot drift and volatility pro-

cesses. Clearly, this assumption is satisfied by a wide class of stochastic volatility models, including those in

which b and σ have continuous trajectories (see, for example, Hull and White (1987) and Heston (1993)). It

does, however, rule out leverage effects. Although the independence assumption does not appear to be strictly

necessary, Kanaya and Kristensen (2010) demonstrate that in the case of the diffusion process without jumps,

their spot volatility estimator remains consistent if one drops the independence assumption. To focus on devel-

oping a spot estimator robust to microstructure noises and jumps, we will restrict our analysis to the case without

leverage effects.

Assumption A1(a) is typically required for integrated volatility estimations. It would suffice to derive the

asymptotic properties of kernel volatility estimators in the fixed bandwidth setting. In the setting of estimating

spot volatility, we require that h → 0. In this case, we need to impose smoothness assumptions on the volatility

process to control the bias. A standard approach to bias reduction is to assume the object of interest is differ-

entiable up to a certain order. This assumption is, however, violated by standard stochastic volatility models.

Following Kristensen (2010) and Yu et al. (2014), we introduce a more general smoothness condition in As-

sumption A1(b) that allows for process (σ2
t ) to have nondifferentiable trajectories as long as they are smooth of

order 0 < γ < 1 almost surely.

Assumption A1(b) is satisfied by diffusion processes commonly used in volatility literature. In the special

case that σt is driven by Brownian motion, it holds with m = 0 and 0 < γ < 1/2. A similar smoothness condition

with m ≥ 2 is imposed in Genon-Catalot et al. (1992). See also Genon-Catalot et al. (1992) for alternative

definitions and assumptions regarding the smoothness conditions imposed on volatility processes.

All our requirements for the jump process are expressed in the next two assumptions. Note that Jt can be

written as the sum of “large” jump and “small” jump components:

Jt =

∫ t

0

∫
|x|>1

xµ(ds, dx) +
∫ t

0

∫
|x|≤1

x(µ(ds, dx) − ν(dx)ds) := J1t + J2t, (2)

where µ is the Poisson random measure of Jt and µ̃(ds, dx) = µ(ds, dx) − ν(dx)ds is the compensated measure.

J1t is a compound Poisson process with finite activity of jump and can be further written as J1t =
∑Nt

i=1 Yτi , where

Nt is a Poisson process and Yτi denotes the jump size at jump time τi. J2t is a square integrable martingale with

infinite activity of jump.

Assumption A2. (Finite activity jumps)

(a) Nt is independent of Wt;

(b) Nt has a constant intensity λ;

(c) Yτi are i.i.d. and independent of Nt.

Assumption A3. (Infinite activity jumps)∫
|x|≤δ

x2ν(dx) = O(δ2−α), as δ→ 0,
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∫
δ≤|x|≤1

|x| jν(dx) = O( jc + (−1) jcδ j−α), j = 0, 1,

where c is a constant, ν is the Lévy measure of Jt and α is the Blumenthal-Getoor index measuring the activity

of small jumps of Jt, defined as

α := inf{δ ≥ 0,
∫
|x|≤1
|x|δν(dx) < +∞}.

Note that Jt is a Lévy pure jump process. Thus, α ∈ [0, 2]. An infinite activity jump process with Blumenthal-

Getoor index α < 1 has paths with finite variation. If α > 1, the sample paths have infinite variation almost

surely. For α = 1, the sample paths have either finite or infinite variation.

Assumption A3 is not as formidable as it appears. In fact, it is trivially satisfied for many commonly used

models, such as NIG, Variance Gamma, tempered stable, α-stable, and GHL, among others. Similar requirements

are given in Cont and Mancini (2011) and Mancini (2009).

2.2 Market Microstructure Noises

We assume that at any given time ti, the observed log-price Zti is

Zti = Xti + ϵti , (3)

where ϵt is the market microstructure noise.

We further assume that for any t ≥ 0, we have a transition probability Qt(ω(0), dz) from (Ω(0),F (0)
t ) into R,

which satisfies ∫
zQt(ω(0), dz) = Xt(ω(0)). (4)

We endow the space Ω(1) = R[0,∞) with the product Borel σ-field F (1) and with the probability Q(ω(0), dω(1)),

which is the product ⊗t≥0Qt(ω(0), ·). Process (Zt)t≥0 is defined on (Ω(1),F (1)) and the filtration F (1)
t = σ(Zs : s ≤

t). We work in the filtered probability space (Ω,F , (F )t≥0,P) defined as follows:

Ω = Ω(0) ×Ω(1), F = F (0) × F (1), Ft = ∩s>tF (0)
s × F (1)

s ,

P(dω(0), dω(1)) = P(0)(dω(0))Q(ω(0), dω(1)).

Assumption A4. (Market microstructure noise)

The ϵts are i.i.d. and independent of Wt and Jt processes, with Eϵt = 0 and E|ϵt|8 < ∞.2

Let αt = E((Zt)2|F (0)) − (Xt)2. Assumption A4 implies that the process αt is càdlàg, and E((Zt)8|F (0)) is

a locally bounded process. Clearly, the noise process which meets the requirements given in Assumption A4

satisfies (4).

2Similar to most other literature, we start with the pure additive noise and make a few basic and mild assumptions on

the noise process. As usual, we require some moment conditions. Note that the 8th moment condition requirement is

primarily for reasons of tractability. Although our results may be modified to account for more general microstructure noise

processes, these processes introduce intricate technical challenges without providing much more insight into the problem

and are outside the scope of this paper.
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2.3 Kernel and Threshold Functions

The requirements of the kernel function are presented in Assumption A5.3

Assumption A5. (The kernel function)

The kernel K : R 7→ R is continuously differentiable and bounded, with

(a)
∫
R K(x)dx = 1;

(b)
∫
R xiK(x)dx = 0, where i = 1, · · · , r − 1, and

∫
R |x|

r |K(x)|dx < ∞ for some r ≥ 0.

Assumption A5 is satisfied by most standard kernels where r ≤ 2. In this paper, we use one-sided kernels,

which require only information up to current time and generally lead to more precise estimates near boundaries;

see, for example, Zhang and Karunamuni (1998) and Kristensen (2010).

The last assumption, Assumption A6, presents the requirements of the threshold function r(x), which are

essential for identifying the intervals where no jump occurred with noisy observation.

Assumption A6. (The threshold function)

The threshold function r(x) is a deterministic function of the step length x, such that

(a) limx→0 r(x) = 0;

(b) limx→0
x1/2(log 1

x )2

r(x) = 0.

Power functions r(x) = βxα for any α ∈ (0, 1/2) and β ∈ R are possible choices.

3 The Estimator

3.1 The Definition

Assume that observations of Zt are sampled at discrete times 0 = t0 < t1 < ... < tn = T over a fixed time interval

[0,T ]: Zn
0 , Z

n
1 , · · · , Zn

n . For simplicity, we consider that observations are sampled at regularly spaced discrete

times ti = i∆n for i = 0, 1, · · · , n. The goal is to estimate σ2
τ for τ ∈ [0, T ] in (1). In the following, we use the

shorthand notation Zn
i = Zi∆n , ∆n

i Z = Zn
i − Zn

i−1.

Let Z̄n
i denote the weighted average of kn observations of Zn

i , Z
n
i+1, · · · , Zn

i+kn−1. More specifically, Z̄n
i =∑kn−1

j=1 gn
j∆

n
i+ jZ

n
i , with weights gn

j = g( j/kn). The weighting function g(x) is required to be continuous on [0, 1],

piecewise C1 with a piecewise Lipschitz derivative g′, and with g(0) = g(1) = 0,
∫ 1

0 g(s)2ds > 0. We further

require that the integer sequence kn satisfies kn
√
∆n = θ + o(∆1/4

n ) for some constant θ > 0. Our proposed spot

volatility estimator takes on the general form

σ̂2(τ) =
√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
i )2IA(Z̄n

i ) − ψ1∆n

2θ2ψ2

n∑
i=1

Kh(ti − τ)(∆n
i Z)2IA(Z̄n

i ), (5)

3In our study, we use kernels as weights to construct estimators for the kernel-smoothed integrated volatility of both

fixed and shrinking bandwidths. We note that the kernel technique is also used in Barndorff-Nielsen et al. (2008) to

estimate integrated volatility. However, Barndorff-Nielsen et al. uses kernels to eliminate microstructure noise rather than

to construct estimates for spot volatility.
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where Kh(x) = K(x/h)/h with bandwidth h, and IA is an indicator function on set A, which takes different forms

depending on whether or not jumps are present. The parameters ψ1 and ψ2 are constants associated with the

weighting function g(x) in the pre-averaging step and are defined in the Appendix A.

3.2 Special Cases

The proposed estimator (5) represents a very general class of spot volatility estimators. It defines new estimators

and includes many existing kernel-based spot volatility estimators as special cases. It is also related to sever-

al popular integrated volatility estimators proposed in other literature. We will first introduce our two newly

proposed estimators: σ̂2
PAT KV and σ̂2

PAKV .

If both market microstructure noise and jumps are present, we advocate the following jump- and noise-robust

estimator for spot volatility: σ̂2
PAT KV .

• σ̂2
PAT KV : The pre-averaging threshold kernel estimator. Let A = {(Z̄n

i )2 ≤ r(∆n)}, where r(∆n) is a threshold

function satisfying Assumption A6. Then, we have

σ̂2
PAT KV (τ) ≡

√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
i )2I{(Z̄n

i )2≤r(∆n)} −
ψ1∆n

2θ2ψ2

n∑
i=1

Kh(ti − τ)(∆n
i Z)2I{(Z̄n

i )2≤r(∆n)}. (6)

This proposed PAT KV estimator is the main focus of the paper. It ia constructed by carefully combining

the pre-averaging approach and the threshold kernel-based method. The asymptotic properties of σ̂2
PAT KV

will be examined for jumps with finite activity in Section 4.2 and for jumps with infinite activity in Section

4.3.

If microstructure noise is present but jumps are absent, we advocate the following noise-robust estimator for spot

volatility, σ̂2
PAKV , which is a special case of σ̂2

PAT KV .

• σ̂2
PAKV : The pre-averaging kernel estimator. It is defined by selecting A = R:

σ̂2
PAKV (τ) ≡

√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
i )2 − ψ1∆n

2θ2ψ2

n∑
i=1

Kh(ti − τ)(∆n
i Z)2. (7)

The asymptotic properties of PAKV will be studied in Section 4.1. The results will then be extended to

σ̂2
PAT KV , which allows for the presence of jumps, in Sections 4.2 and 4.3. Two closely related estimators

are worth noticing. Working in the same setting as the PAKV estimator, Mancini, Mattiussi and Renò

(2012) and Zu and Boswijk (2014) propose the use of the two-scale approach to deal with microstructure

noise. To the best of our knowledge, they are the first to show how to construct noise-robust estimators for

spot volatility. Their estimators are consistent and asymptotically normal. However, their estimators have

a slower convergence rate than that of σ̂2
PAKV .
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Next, we will present several estimators that have been studied in other literature. If jumps are present but mi-

crostructure noise is absent, we can construct the kernel estimator directly with (Xi)s and advocate the following

jump-robust estimator for spot volatility.

• σ̂2
T KV : The threshold kernel estimator. It is defined as

σ̂2
T KV (τ) ≡

n∑
i=1

Kh(ti − τ)(∆iX)2I{(∆iX)2≤r(∆n)}, (8)

where the requirements of threshold function r(∆n) is different with Assumption A6. This T KV estimator

has been studied by Yu et al. (2014). They show that T KV is jump-robust and is asymptotically normal-

ly distributed. See also Bandi and Renò (2010) for an alternative approach that localizes an integrated

variance estimator to filter spot volatility in the presence of jumps.

The T KV estimator extends Kristensen’s (2010) kernel estimator in a setting where both jumps and market

microstructure noise are absent.

• σ̂2
KV : The kernel estimator. It is defined as

σ̂2
KV (τ) ≡

n∑
i=1

Kh(ti − τ)(∆iX)2. (9)

This KV estimator can be regarded as a Nadaraya-Watson-type kernel estimator and has been studied by

Kristensen (2010). It also includes the rolling window estimator proposed by Foster and Nelson (1996) as

a special case.

When we replace the kernel Kh(ti−τ) with an arbitrary bounded weight function w(ti), our estimator σ̂2(τ) defined

in (5) leads to widely used IV estimators. Consider, for example, the noise-robust estimator Ĉn,w
t and the jump-

and noise-robust estimator Ĉn, j
t .

• Ĉn,w
t : The estimator for the weighted IV when market microstructure noise is present but jumps are absent.

Let A = R. Then, the estimator (5) takes the form

Ĉn,w
T ≡

√
∆n

θψ2

n−kn+1∑
i=0

wi(Z̄n
i )2 − ψ1∆n

2θ2ψ2

n∑
i=1

wi(∆n
i Z)2. (10)

As will be shown in Section 4.1, Ĉn,w
t is a consistent estimator for the weighted IV,

∫ T
0 w(s)σ2

sds. As a

special case, if we let w(x) = I{0≤x≤T }(x), the estimator (5) takes the form

Ĉn
T ≡

√
∆n

θψ2

n−kn+1∑
i=0

(Z̄n
i )2 − ψ1∆n

2θ2ψ2

n∑
i=1

(∆n
i Z)2.

Ĉn
T is the pre-averaging realized volatility estimator for

∫ T
0 σ2

sds studied in Jacod et al. (2009).
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• Ĉn, j
T : The IV estimator when both market microstructure noise and jumps are present. If A = {(Z̄n

i )2 ≤ r(∆n)}
and w(x) = I{0≤x≤T }(x), the estimator (5) becomes the realized volatility estimator considered in Jing et

al.(2014):

Ĉn, j
T ≡

√
∆n

θψ2

n−kn+1∑
i=0

(Z̄n
i )2I{(Z̄n

i )2≤r(∆n)} −
ψ1∆n

2θ2ψ2

n∑
i=1

(∆n
i Z)2I{(Z̄n

i )2≤r(∆n)}.

4 ASYMPTOTIC PROPERTIES

4.1 The Case of Continuous Semimartingale

In this subsection, we consider the asymptotics of the pre-averaging kernel volatility estimator σ̂2
PAKV for scenar-

ios in which market microstructure noise is present but jumps are absent. We start by studying the asymptotic

behavior of the general weighted version of the pre-averaging volatility estimator Ĉn,w
T , defined in (10). We

denote Cw
T =

∫ T
0 w(s)σ2

sds.

Theorem 1 If Assumptions A1 and A4 hold, for any fixed T > 0, the sequence ∆−1/4
n (Ĉn,w

T − Cw
T ) converges

stably in law to a variable defined on an extension of the original space. This variable has the form

YT =

∫ T

0
wsγsdBs,

where B is a standard Wiener process independent of F and γt is given by

γ2
t =

4
ψ2

2

(Φ22θσ
4
t + 2Φ12

σ2
t αt

θ
+ Φ11

α2
t

θ3 ).

Moreover, let

Γ
n,w
T =

4Φ22

3θψ4
2

n−kn+1∑
i=0

w2
i (Z̄n

i )4

+
4∆n

θ3

Φ12

ψ3
2

− Φ22ψ1

ψ4
2

 n−2kn+1∑
i=0

w2
i (Z̄n

i )2
i+2kn−1∑
j=i+kn

(∆n
jZ)2

+
∆n

θ3

Φ11

ψ2
2

− 2Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

 n−2∑
i=1

w2
i (∆n

i Z)2(∆n
i+2Z)2.

Then,

Γ
n,w
T

P→
∫ T

0
w2

sγ
2
sds.

Therefore, for any T > 0, the sequence 1
∆

1/4
n
√
Γ

n,w
T

(Ĉn,w
T − Cw

T ) converges stably in law to a N(0, 1) variable

independent of F .

As noted in Section 3.2, if one lets w(s) = I[0,T ](s), Ĉn,w
t is equivalent to the IV estimator considered in Jacod

et al. (2009). Theorem 1 covers Jacod’s Theorem 3.1 as a special case.
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Now, we are ready to study the asymptotic properties of σ̂2
PAKV . When we let w(s) = Kh(s), we have the

following theorem.

Theorem 2 If Assumptions A1, A4, and A5 hold and kernel K(x) satisfies A5 with r ≥ m + γ, as nh2 → ∞
and nh4(m+γ)+2 → 0, for any τ ∈ (0, T ), we have√

∆
−1/2
n h

(
σ̂2

PAKV (τ) − σ2
τ

) d→ N(0, γ2
τ

∫
R

K2(s)ds).

Moreover, let

γ̂2
PAKV (τ) =

4Φ22

3θψ4
2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
i )4

+
4∆n

θ3

Φ12

ψ3
2

− Φ22ψ1

ψ4
2

 n−2kn+1∑
i=0

Kh(ti − τ)(Z̄n
i )2

i+2kn−1∑
j=i+kn

(∆n
jZ)2

+
∆n

θ3

Φ11

ψ2
2

− 2Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

 n−2∑
i=1

Kh(ti − τ)(∆n
i Z)2(∆n

i+2Z)2.

Then,

γ̂2
PAKV (τ)

P→ γ2
τ as h→ 0.

Kristensen (2010) considers the problem of spot volatility estimation in the absence of market microstruc-

ture noise. His estimator has a convergence rate of n−1/2h−1/2. The extra factor h−1/2 (beyond the usual n−1/2

convergence rate) is the result of spot volatility kernel filtering. Theorem 2 indicates that the convergence rate of

σ̂2
PAKV is n−1/4h−1/2, which is 1/4-exponentially slower than that of Kristensen’s estimator. The n−1/4 efficiency

loss due to microstructure noise coincides with n−1/4 efficiency loss observed when estimating IV: the correction

of microstructure noise tends to reduce the convergence rate of the estimators by n−1/4 (see, for example, Zhang

(2006), Barndorff-Nielsen et al. (2008), and Jacod et al. (2009)). This is in contrast to the convergence rate of

n−1/6h−1/2 obtained from the two scale approach (Zu and Boswijk (2014)).

Theorem 2 indicates that the convergence rate of σ̂2
PAKV depends on the smoothness of the volatility process.

The convergence rate is, in general, very fast. Since we require that nh2 → ∞ and nh4(m+γ)+2 → 0, Op(n−1/4h−1/2)

can be written as Op(n−1/4+λ) for any λ > (8(m + γ) + 4)−1. Several authors studies model volatility as a smooth

function that is m times differentiable (see, for example, Stanton (1997), Fan and Yao (1998), and Müller et al.

(2011)). In this case, λ = Op( 1
8m ). Thus, the convergence rate of σ̂2

PAKV can be made arbitrarily close to Op(n−1/4)

for large m. If the volatility is assumed to follow a diffusion process, it has continuous sample paths but is not

differentiable (i.e., m = 0). In this case, our estimator can still have a fast convergence rate. In particularly, the

convergence rate of σ̂2
PAKV for Brownian motion (m = 0 and γ < 1/2) is nearly equal to n−1/8, which is the best

rate attainable for any spot volatility estimator in the presence of market microstructure noise (Hoffmann et al.

(2010)).
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4.2 The Case of Finite Activity Jumps

The following theorem presents the asymptotic properties of σ̂2
PAT KV in the presence of microstructure noise and

jumps with finite activity.

Theorem 3 If Assumptions A1-A2 and A4-A6 hold and kernel K(x) satisfies A5 with r ≥ m + γ, as nh2 → ∞
and nh4(m+γ)+2 → 0, for any τ ∈ (0, T ), we have√

∆
−1/2
n h

(
σ̂2

PAT KV (τ) − σ2
τ

) d→ N(0, γ2
τ

∫
R

K2(s)ds).

Moreover, let

γ̂2
PAT KV (τ) =

4Φ22

3θψ4
2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
i )4I{(Z̄n

i )2≤r(∆n)}

+
4∆n

θ3

Φ12

ψ3
2

− Φ22ψ1

ψ4
2

 n−2kn+1∑
i=0

Kh(ti − τ)(Z̄n
i )2I{(Z̄n

i )2≤r(∆n)}

i+2kn−1∑
j=i+kn

(∆n
jZ)2I{(Z̄n

i+kn
)2≤r(∆n)}

+
∆n

θ3

Φ11

ψ2
2

− 2Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

 n−2∑
i=1

Kh(ti − τ)(∆n
i Z)2(∆n

i+2Z)2I{(Z̄n
i )2≤r(∆n)}.

Then,

γ̂2
PAT KV (τ)

P→ γ2
τ as h→ 0.

As Theorem 3 shows, σ̂2
PAT KV has the same asymptotic distribution as σ̂2

PAKV . In other words, the presence of

jumps with finite activity does not affect the convergence rate and the asymptotic distribution of our spot volatility

estimator, provided one uses an appropriate threshold to (asymptotically) identify and then exclude the intervals

where jumps occur. A similar result is discussed in Yu et al. (2014) when the authors consider the problem of

estimating spot volatility from observations without contamination of microstructure noise. Our result that the

presence of finite-activity jumps does not affect the efficiency of spot volatility estimator is also consistent with

the results in Mancini (2009), which studies the problem of IV estimation.

4.3 The Case of Infinite Activity Jumps

The following theorem directly extends the results of Theorem 3 to the case of infinite activity jumps.

Theorem 4 Assume that Assumptions A1, A3 and A4-A6 hold, and kernel K(x) satisfies A5 with r ≥ m + γ.

Let r(∆n) = ∆βn. As nh2 → ∞ and nh4(m+γ)+2 → 0, for any τ ∈ (0,T ),

(a) if α < 1 and β > 1
4−2α ∈ ( 1

4 ,
1
2 ),√
∆
−1/2
n h

(
σ̂2

PAT KV (τ) − σ2
τ

) d→ N(0, γ2
τ

∫
R

K2(s)ds),

(b) if α ≥ 1, for any β ∈ (0, 1/2), √
∆
−1/2
n h

(
σ̂2

PAT KV (τ) − σ2
τ

) P→ +∞.
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Note that σ̂2
PAT KV explodes if the sample path has infinite variation (α ≥ 1). When the sample path has finite

variation, the degree of activity of jumps, α, does not impair the convergence rate. However, the choice of r(∆n)

does depends on α.

To the best of our knowledge, Theorem 4 is the first contribution to solving the problem of estimating spot

volatility with noisy observation in the presence of jumps with infinite activity. The result can be also useful in

constructing tests for identifying the finer characteristics of jumps such as the degrees of jump activities.

5 SIMULATION FOR FINITE SAMPLE BEHAVIOR

To evaluate the finite sample performance of the proposed method, we conduct a simulation study for σ̂2
PAKV in

the absence of jumps in Section 5.1 and for σ̂2
PAT KV in the presence of jumps in Section 5.2. For comparison, we

also report the results of the kernel-based filtering volatility estimator (Kristensen (2010)), σ̂2
KV , and the threshold

kernel volatility estimator (Yu et al. (2014)), σ̂2
T KV . We note that both σ̂2

KV and σ̂2
T KV are designed to provide

consistent estimates of spot volatility in cases where market microstructure noise is absent. Nevertheless, we

include σ̂2
KV and σ̂2

T KV in our simulation comparisons to illustrate the risk of ignoring market microstructure

noise when it is present in practice.4

The integrated mean squared error (IMSE) is used as the performance measure to evaluate the finite sample

properties of the estimators in our simulation study:

IMS E =
∫ Tu

Tl

E[(σ̂2
t − σ2

t )2]dt,

where 0 ≤ Tl < Tu ≤ T and σ̂2
t = PAT KV , PAKV , T KV , or KV .

5.1 The Case without Jumps

We consider the following stochastic volatility diffusion model, as studied by Banrdorff-Nielsen and Shephard

(2004) and Huang and Tauchen (2005):

dXt = udt + exp[β0 + β1vt]dW1,t (11)

dvt = αvvtdt + dW2,t, (12)

where W1,t and W2,t are two independent, standard Brownian motions, and vt is a stochastic volatility factor. We

set u = 0.03, β0 = 0, β1 = 0.125, and αv = −0.10. These parameters were chosen to conform to other studies

previously published in Andersen, Benzoni, and Lund (2002), Andersen, Bollerslev, and Diebold (2007), Huang

and Tauchen (2005), and Chernov, Gallant and Ghysels et al.(2003).

4A one-sided kernel is adopted when constructing the various estimators in the simulation study. When jumps are

present, a data-driven approach is used to select the optimal threshold; see Yu et al. (2014) for details.
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To evaluate the impact of microstructure noise on the performances of the estimators, we consider three

scenarios of σϵ : 0.025, 0.035, and 0.05. To get an idea of the magnitude of the microstructure noise, we compute

the ratio of σϵ to the variance of the observed return over the interval [ti − ∆n, ti]:

π(∆n) =
2σ2

ϵ

σ2
d∆n + 2σ2

ϵ

,

where σ2
d is the unconditional daily variance of (Xt). Note that π(∆n) can be viewed as the percentage of the

variance of the observed return attributed to microstructure noise (Aı̈t-Sahalia et al. (2005)). In general, π(∆n)

increases as σ2
ϵ and sampling frequency increase; see Table 1. When data are sampled every 10 minutes, π(∆n)

is relatively small, ranging from 4.65% to 16.32%. When the sampling frequencies reach 30 and 10 seconds,

the volatility of the observed return series is caused mainly by the variability of the microstructure noise. For

example, π(∆n) = 92.13% when σϵ = 0.05 and the sampling frequency is 10 seconds.

Table 1: π(∆n) under different values of σϵ and sampling frequencies

Frequency σϵ = 0.025 σϵ = 0.035 σϵ = 0.05

10 sec 0.7452 0.8515 0.9213

30 sec 0.4937 0.6565 0.7959

1 min 0.3277 0.4886 0.6610

5 min 0.0888 0.1604 0.2806

10 min 0.0465 0.0872 0.1632

In our simulation, we set T = 1 and ∆n = 1/(6.5 × 60 × 60). Hence, each simulation is conducted over one

trading day consisting of 6.5 trading hours. In each simulation, we simulate 23,400 second-by-second data by

utilizing the first-order Euler discretization scheme of (11) and (12). We simulate one trajectory for (σ2
t ) and

keep them fixed. Then, we run 1,000 Monte Carlo repetitions for (Xt), which evaluate the performance of various

estimators based on the sampling frequencies, which range from 10 seconds to 10 minutes.

Table 2 reports the IMSEs of σ̂2
PAKV and σ̂2

KV . As expected, σ̂2
PAKV is noise-robust: the IMSEs of σ̂2

PAKV

decay as the sampling frequencies increase. We note that the most efficiency gains occur in the frequency range

between 30 seconds and five minutes, in which the proportion of microstructure noise contributions increases

sharply (see Table 1). For a given sampling frequency, the IMSEs of σ̂2
PAKV increase slightly as the level of

microstructure noise increases.

In contrast, the efficiency of suffers when market microstructure noise is present. For any given level of σϵ ,

the curve of the IMSE of σ̂2
KV exhibits a U-shaped pattern that highlights the trade-off between the use of more

data and the microstructure noise effect. Our results indicate that the “optimal” sampling frequency for σ̂2
KV is
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Table 2: The IMSEs of σ̂2
PAKV and σ̂2

KV : the case with no jumps

Frequency
σϵ = 0.025 σϵ = 0.035 σϵ = 0.05

σ̂2
PAKV σ̂2

KV σ̂2
PAKV σ̂2

KV σ̂2
PAKV σ̂2

KV

10 sec 0.0260 4.598 0.0269 16.75 0.0304 71.01

30 sec 0.0272 0.5843 0.0309 2.139 0.0353 8.598

1 min 0.0588 0.2372 0.0725 0.7330 0.0842 3.050

5 min 0.2334 3.5524 0.2389 10.68 0.2405 58.40

10 min 0.2565 7.7822 0.2790 20.24 0.2882 114.4

about one minute, which is consistent with the results reported in other studies (for example, Bandi and Russell

(2008) and Zhang et al. (2005)).

The results in Table 2 clearly highlight the importance of accounting for microstructure noise when estimating

spot volatility. Even when the level of market microstructure noise is relatively low, the KV estimator at the

“optimal” sampling frequency still performs much worse than σ̂2
PAKV . For example, when σϵ = 0.025, the

optimal sampling frequency of σ̂2
KV is 1 minute. In this case, the IMSE of σ̂2

KV = 0.2372, which is about 400%

of that of σ̂2
PAKV .

5.2 The Case with Jumps

Consider the following finite activity jump diffusion model:

dXt = udt + exp[β0 + β1vt]dW1,t + dJt (13)

dvt = αvvtdt + dW2,t, (14)

where Jt =
∑Nt

j=1 Yτ j is a compound Poisson jump process. We further assume that Nt is a Poisson process with

intensity λ = 3 and jump size Yτ j ∼ N(0, σ2
Y ). To evaluate the impact of jump sizes on the performance of the

estimators, we consider three scenarios: A. the case with no jumps (σY = 0.0); B. the case with jumps of a

relatively small size (σY = 0.5); C. the case with jumps of a relatively large size (σY = 1.5). All other parameters

are kept the same as in Section 5.1.

Table 3 reports the estimation results of σ̂2
PAT KV . For comparison, we also report the results of σ̂2

T KV , which

is robust to jumps but does not account for the market microstructure noise (Yu et al. (2014)). As can be seen in

Table 3, σ̂2
PAT KV is robust to jumps with both small and large jump sizes. As the sampling frequency increases,

the IMSE of σ̂2
PAT KV improves. In contrast, the estimation error of σ̂2

T KV increases sharply with the sampling

frequency for a given level of microstructure noise, regardless of jump size.
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When the sampling frequency is low and fixed, however, σ̂2
PAT KV may be less efficient than σ̂2

T KV . As can

be seen in Table 3, if the sampling frequency is 5 minutes or lower, the IMSE of σ̂2
T KV is smaller than that of

σ̂2
PAT KV when σϵ = 0.025 or 0.035. For larger noise σϵ = 0.05, the sampling frequency needs to be 10 minutes

or higher for σ̂2
PAT KV to outperform σ̂2

T KV .

Table 3: The IMSEs of σ̂2
PAT KV and σ̂2

T KV : the case with jumps of finite activity

Frequency
σϵ = 0.025 σϵ = 0.035 σϵ = 0.05

σ̂2
PAT KV σ̂2

T KV σ̂2
PAT KV σ̂2

T KV σ̂2
PAT KV σ̂2

T KV

Scenario A: Diffusion with no jumps σY = 0.0

10 sec 0.0201 4.5198 0.0153 15.089 0.0105 37.257

30 sec 0.0292 0.6206 0.0268 1.9994 0.0230 6.6617

1 min 0.0519 0.2236 0.0469 0.6587 0.0392 1.8445

5 min 0.2207 0.1257 0.2063 0.1924 0.1801 0.2864

10 min 0.2426 0.1541 0.2335 0.1690 0.2177 0.2078

Scenario B: Diffusion with small jumps σY = 0.5

10 sec 0.0184 4.476 0.0178 14.77 0.0108 37.48

30 sec 0.0307 0.5958 0.0291 2.095 0.0214 6.241

1 min 0.0489 0.2338 0.0479 0.6162 0.0397 3.041

5 min 0.2361 0.1519 0.2187 0.1589 0.1830 0.4135

10 min 0.2451 0.1740 0.2363 0.1808 0.2212 0.1977

Scenario C: Diffusion with large jumps σY = 1.5

10 sec 0.0191 4.507 0.0171 14.68 0.0112 36.37

30 sec 0.0319 0.6180 0.0271 1.938 0.0231 6.313

1 min 0.0490 0.2141 0.0489 0.6623 0.0402 3.025

5 min 0.2228 0.1205 0.2087 0.1613 0.1787 2.102

10 min 0.2460 0.1615 0.2316 0.1664 0.2205 0.2053

It is also interesting to observe that for a given sampling frequency, the higher the level of microstructure

noise, the smaller the IMSEs of σ̂2
PAT KV . For example, for data sampled every 10 seconds, the IMSEs of σ̂2

PAT KV

in the small jump size scenario (Scenario B), where σϵ = 0.025, 0.035, and 0.05, are 0.0184, 0.0178, and 0.0108,

respectively. The reason for this seemingly contradicting phenomenon is that in σ̂2
PAT KV , “large” microstructure

noises are identified as “jumps” and are removed when the threshold is applied. This is in complete contrast to

the estimator σ̂2
PAKV , which is developed by assuming that jumps are absent: for any given sampling frequency,
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the performance of σ̂2
PAKV gradually deteriorates as the the level of market microstructure noise increases (see

Table 2).

Finally, we evaluate the quality of the finite sample performance of σ̂2
PAT KV in the presence of jumps with

infinite activity. We consider the case that the jump component is modeled by a Variance Gamma (VG) process,

which is a pure jump process with infinite activity and finite variation. More specifically, Jt is given by cGt+ηWGt ,

i.e., a composition of Brownian motion with drift and an independent Gamma process G. For each t, Gt at time t

follows a gamma distribution: Gt ∼ Gamma(t/b, b), where c and η are constants. Now, the jump diffusion model

(13) and (14) can be written as

dXt = udt + exp[β0 + β1vt]dW1,t + cGt + ηWGt (15)

dvt = αvvtdt + dW2,t. (16)

As did in Mancini (2009) and Madan (2001), we let b = 0.23, c = −0.2, and η = 0.2.

Table 4: The IMSEs of σ̂2
PAT KV and σ̂2

T KV : the case with jumps of infinite activity

Frequency
σϵ = 0.025 σϵ = 0.035 σϵ = 0.05

σ̂2
PAT KV σ̂2

T KV σ̂2
PAT KV σ̂2

T KV σ̂2
PAT KV σ̂2

T KV

10 sec 0.0187 4.4632 0.0138 15.03 0.0107 36.91

30 sec 0.0314 0.6230 0.0256 1.9860 0.0219 6.2279

1 min 0.0524 0.2312 0.0473 0.6482 0.0419 2.3760

5 min 0.2340 0.1223 0.2139 0.1567 0.1918 1.6820

10 min 0.2498 0.1468 0.2376 0.1614 0.2270 0.1872

Table 4 contains the results corresponding to the IMSEs of σ̂2
PAT KV and σ̂2

T KV for the case with jumps of

infinite activity. The finite sample performance of the jump-robust version, σ̂2
PAT KV , is very similar to that of

the case with jumps of finite activity. In particular, σ̂2
PAT KV provides consistent estimates of spot volatility: the

higher the sampling frequency, the smaller the IMSE. Again, σ̂2
T KV fails to provide consistent estimates: as the

sampling frequency increases, the IMSE increases sharply. This result is hardly surprising as the variance of the

observed series contains microstructure noise and is severely biased when data are sampled at frequencies higher

than 5 minutes. However, if the sampling frequency is 5 minutes or lower, σ̂2
T KV may outperform σ̂2

PAT KV , as

seen in the case of jumps with finite activity.
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6 CONCLUSIONS

Since Foster and Nelson (1996) and Andreou and Ghysels (2002), among others, substantial attention has been

devoted to the use of nonparametric estimation in spot volatility estimation. In particular, recent works by

Mancini, Mattiussi and Renò (2012) and Zu and Boswijk (2014) provide theoretical justifications for using high-

frequency data contaminated with microstructure noise to consistently estimate spot volatility of the efficient

price process.

This paper introduces a general class of kernel-based estimators of spot volatility. The proposed estimators

are robust to both microstructure noise and Lévy jumps with finite or infinite activity. The estimators are asymp-

totically normally distributed and have fast convergence rates. Monte Carlo simulations are conducted to study

the finite sample properties of our estimators.

We demonstrate that in the context of spot volatility estimation, one should always use all available data and

model jumps no matter whether jumps are present or not. If the sampling frequency is higher than 5 minutes, the

noise- and jump-robust estimator, σ̂2
PAT KV , performs well, particularly when the level of market microstructure

noise is high. If the sampling frequency is 5 minutes or lower, one should use the simpler jump-robust estimator

σ̂2
T KV , since σ̂2

T KV provides a better bias and variance trade-off for data sampled at 5 minutes or lower frequencies.
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Appendix A: Preliminaries
We follow the notations of Jacod et al. (2009), and use the idea of that paper to obtain results of Lemma 1,

which are the results of Lemmas 5.1 to 5.3 of Jacod et al. (2009) adapted to our setups.

For convenience, we use the shorthand notation gn
i for g(i/kn), and we set hn

i = gn
i+1 − gn

i , ḡ =
∫ 1

0 g(s)ds.

Define, on R+,

ϕ1(s) =
∫ 1

s g′(u)g′(u − s)du, ϕ2(s) =
∫ 1

s g(u)g(u − s)du, when s ∈ [0, 1],

ϕ1(s) = 0, ϕ2(s) = 0, when s > 1, and

Φi, j =
∫ 1

0 ϕi(s)ϕ j(s)ds, ψi = ϕi(0), for i, j = 1, 2.

For a given process V = (Vt)t≥0, we write Vn
i = Vi∆n , ∆n

i V = Vn
i −Vn

i−1, and V̄n
i =

∑kn−1
j=1 gn

j∆
n
i+ jV = −

∑kn−1
j=0 hn

jV
n
i+ j.

In the following, L denotes a constant, which may change from line to line and depend on supn k2
n∆n and the

bounds of various processes used in the proofs. We write it Lr if it depends on an additional parameter r. We also

write Ou(x) for a (possibly random) quantity smaller than Lx.

Unless otherwise stated, p ≥ 1 denotes an integer and q > 0 a real number. For each n,

gn(s) =
kn−1∑
j=1

gn
j I( j−1∆n, j∆n](s),

which is bounded uniformly in n and vanishes for s > (kn − 1)∆n and s ≤ 0.

Define the processes X(n, s)t and C(n, s)t as

X(n, s)t =
∫ t

0 bugn(u − s)du +
∫ t

0 σugn(u − s)dWu

C(n, s)t =
∫ t

0 σ
2
u(gn(u − s))2du.

Both X(n, s)t and C(n, s)t are constant in time for t ≥ s+ (kn−1)∆n but vanish for t ≤ s. We also use the following

shorthand notations:

X
n
i = X(n, i∆n)(i+kn)∆n ,

and

cn
i = C(n, i∆n)(i+kn)∆n ,

which equals to
∑kn−1

j=1 (gn
j)

2∆n
i+ jC, where process C = (Ct)t≥0, and Ct =

∫ t
0 σ

2
sds.

We further let

An
i, j =

i∧ j+kn−1∑
m=i∨ j

hn
m−ih

n
m− jα

n
m, An

i = An
i,i =

kn−1∑
m=0

(hn
m)2αn

i+m,

Z̃′ni = (Z
n
i )2 − An

i − cn
i , ζ(Z, p)n

i =
∑i+pkn−1

j=i w jZ̃′nj ,

ζ(X, p)n
i =

∑i+pkn−1
j=i w j

(
(X

n
j)

2 − cn
j

)
, ζ(W, p)n

i =
∑i+pkn−1

j=i w j
(
(σn

i W
n
j)

2 − cn
j

)
.
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In addition, for any process V , let

ζ′(V, p)n
i =

∑
( j,m):i≤ j≤m≤i+pkn−1

w jwmV
n
jV

n
mϕ1

(
m − j

kn

)

ζ′′(V)n
i = (V

n
i )2

i+2kn−1∑
j=i+kn

(∆n
jV)2.

We will consider the discrete time filtrations F n
j = F

(0)
j∆n
⊗ F (1)

j∆n− and F ′nj = F (0) ⊗ F (1)
j∆n− for j ∈ N. We set

G(p)n
j = F n

j(p+1)kn
and G′(p)n

j = F n
j(p+1)kn+pkn

, along with the following variables:

η(p)n
j =

√
∆n

θψ2
ζ(Z, p)n

j(p+1)kn
, η(p)n

j = E(η(p)n
j |G(p)n

j),

η′(p)n
j =

√
∆n

θψ2
ζ(Z, 1)n

j(p+1)kn+pkn
, and η′(p)n

j = E(η′(p)n
j |G′(p)n

j).

Let jn(p,T ) and in(p, T ) denote
[

T+∆n
(p+1)kn∆n

]
− 1 and ( jn(p, T ) + 1)(p + 1)kn, respectively. Then, for all p ≥ 1

we have the following identity as in Jacod et al. (2009):

Ĉn,w
T −Cw

T = M(p)n
t + M′(p)n

T + F(p)n
T + F′(p)n

T + Ĉ(p)n
T + Ĉ′(p)n

T + Ĉ′′nT , (A.1)

where
F(p)n

t =
∑ jn(p,T )

j=0 η(p)n
j , M(p)n

t =
∑ jn(p,T )

j=0 (η(p)n
j − η(p)n

j),

F′(p)n
t =

∑ jn(p,T )
j=0 η′(p)n

j , M′(p)n
t =

∑ jn(p,T )
j=0 (η′(p)n

j − η
′(p)n

j),

Ĉ(p)n
T =

√
∆n

θψ2

n−kn+1∑
i=in(p,T )

wiZ̃′ni ,

Ĉ′(p)n
T =

√
∆n

θψ2

n−kn+1∑
i=0

wiAn
i −

ψ1∆n

2θ2ψ2

n∑
i=1

wi(∆n
i Z)2,

and

Ĉ′′nT =

√
∆n

θψ2

n−kn+1∑
i=0

wicn
i −Cw

T .

Finally, let
β(p)n

i = sups,t∈[i∆n,(i+(p+2)kn)∆n] (|bs − bt| + |σs − σt| + |αs − αt|) ,
χ(p)n

i = ∆
1/4
n +

√
E((β(p)n

i )2|F n
i ),

Ξi j = −
∫ 1

0 sϕi(s)ϕ j(s)ds.

Lemma 1 We have

E
(
(ζ(W, p)n

i )2|F n
i

)
= 4(pw2

i∗Φ22 + w2
i Ξ22)k4

n∆
2
n(σn

i )4 + Ou(p2χ(p)n
i ),

E
(
(ζ′(W, p)n

i )|F n
i

)
= (pw2

i∗Φ12 + w2
i Ξ12)k3

n∆n + Ou(p∆−1/4
n ),

|E(ζ(X, p)n
i |F n

i )| ≤ Lp,w∆
−1/4
n χ(p)n

i ,
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∣∣∣∣E (
(ζ(X, p)n

i )2|F n
i

)
− 4(pw2

i∗Φ22 + w2
i Ξ22)k4

n∆
2
n(σn

i )4
∣∣∣∣ ≤ Lp,wχ(p)n

i ,∣∣∣∣E (
(ζ′(X, p)n

i )|F n
i

)
− (pw2

i∗Φ12 + w2
i Ξ12)k3

n∆n(σn
i )2

∣∣∣∣ ≤ Lp,w∆
−1/2
n χ(p)n

i ,

where i∗ ∈ (i, i + pkn) satisfies the mean value theorem
∫ ti+pkn

ti
w2(s)ds = w2(ti∗)pkn∆n.

Proof: Since the weighting function w(s) is bounded, the arguments used in the proofs of Lemmas 5.1 - 5.3 of

Jacod et al. (2009) work in the present context, so we omit the proof.

Appendix B: Proofs
Proof of Theorem ??.

Given the identity of (A.1), the proof of Theorem ?? hinges on the asymptotic properties of the six terms on

the right-hand side of (A.1), which are evaluated one by one.

First, for any fixed p ≥ 1, we have ∆−1/4
n F(p)n

T
P→ 0 and ∆−1/4

n F′(p)n
T

P→ 0. Since the weighting function

w(s) is bounded, in a similar way as proving (5.40) in Jacod et al. (2009), we have E(ζ(Z, p)n
i |F ′ni ) = ζ(X, p)n

i ,

E((ζ(Z, p)n
i )4|F n

i ) ≤ Lp,w, and |E(ζ(Z, p)n
i |F ′ni )| ≤ Lp,w∆

1/4
n χ(p)n

i . Combining those results with Lemma 1 in

Appendix A and Lemma 5.4 in Jacod et al. (2009) yields the desired results.

Second, since E(Z̃′ni |F ′ni ) = (X
n
i )2 − cn

i , |cn
i | ≤ L

√
∆n, and E(|Xn

i |q|F n
i ) ≤ Lq∆

q/4
n , we have

E(∆−1/4
n Ĉ(p)n

T |F n
i ) = E(E(∆−1/4

n

√
∆n

θψ2

n−kn+1∑
i=in(p,T )

wiZ̃′ni |F ′ni )|F n
i )

= ∆
−1/4
n

√
∆n

θψ2

n−kn+1∑
i=in(p,T )

wiE(((Xi)2 − cn
i )|F n

i )

≤ ∆
−1/4
n

√
∆n

θψ2
Lw

Lp√
∆n

Lq
√
∆n → 0.

Then, we readily deduce the result that ∆−1/4
n Ĉ(p)n

T
P→ 0.

Now we proceed with term ∆−1/4
n Ĉ′′nT . By mean value theorem, for s1 ∈ [( j + i − 1)∆n, ( j + i)∆n] and

s2 ∈ [ j∆n, ( j + 1)∆n], we have

n−kn+1∑
i=0

wicn
i =

kn−1∑
i=1

(gn
i )2

i+n−kn+1∑
j=i

w j−i∆
n
jC

=

kn−1∑
i=1

(gn
i )2

i+n−kn+1∑
j=i

w j−i(∆n
j−i+1C + ∆n

jC − ∆n
j−i+1C)

=

kn−1∑
i=1

(gn
i )2

n−kn+1∑
j=0

w j∆
n
j+1C +

kn−1∑
i=1

(gn
i )2

n−kn+1∑
j=0

w j−i(∆n
jC − ∆n

j−i+1C)

=

kn−1∑
i=1

(gn
i )2

n−kn+1∑
j=0

w j

∫ ( j+1)∆n

j∆n

σ2
sds +

kn−1∑
i=1

(gn
i )2

n−kn+1∑
j=0

w j(∆n
j+iC − ∆n

j+1C)
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=

kn−1∑
i=1

(gn
i )2

(∫ t

0
w(s)σ2

sds + O(∆n + kn∆n)
)
+

kn−1∑
i=1

(gn
i )2

n−kn+1∑
j=0

w j
(
σ2

s1
− σ2

s2

)
∆n.

Denote an =
∑kn−1

j=1 (gn
j)

2. Then we have an = knψ2 + Ou(1). In addition, since |σ2
s1 − σ2

s2| ≤ kn∆n, ∆−1/4
n Ĉ′′nT

P→ 0

holds.

Next, we show that ∆−1/4
n Ĉ′(p)n

T
P→ 0. Let ζn

i = wi((∆n
i Z)2 − (αn

i+1 + α
n
i )). For 1 ≤ i ≤ j − 2, we have

E(ζn
i ) = E(wi(∆n

i X)2) = Ou(∆n), E(ζn
i ζ

n
j ) = E(wiw j(∆n

i X)2(∆n
j X)2) = Ou(∆2

n), and E(|ζn
i |2) ≤ L, as in Lemma

5.6 of Jacod et al. (2009). Obviously, E((
∑n

i=1 ζ
n
i )2) ≤ L/∆n. Thus, we have Gn := ψ∆3/4

n
2θ2ψ2

∑n
i=1 ζ

n
i

P→ 0. Now, it

suffices to show that 1
∆

1/4
n

Ĉ′(p)n
T +Gn

P→ 0. We write 1
∆

1/4
n

Ĉ′(p)n
T +Gn = Un + Vn, where

Un =

∆1/4
n

θψ2

kn−1∑
l=0

(hn
l )2

 − ψ1∆
3/4
n

θ2ψ2

 in(p,T )−1∑
i=kn

wiα
n
i +
∆

1/4
n

θψ2

kn−1∑
l=0

(hn
l )2

in(p,T )−1∑
i=kn

(wi−l − wi)αn
i

and

Vn =
∆

1/4
n

θψ2

kn−1∑
i=0

αn
i

i∑
l=0

wi−l(hn
l )2 +

in(p,T )+kn−2∑
i=in(p,T )

αn
i

kn−1∑
l=i+1−in(p,T )

wi−l(hn
l )2


−ψ1∆

3/4
n

2θ2ψ2

w0α
n
0 + 2

kn−1∑
i=1

(wi + wi+1)αn
i + 2

n−1∑
i=in(p,T )

(wi + wi+1)αn
i + wnα

n
n

 .
Note that |Vn| → 0, because αt and wi are bounded, and |hn

l | ≤ L
√
∆n. The result that Un → 0 pointwise follows

from the fact that
∑kn−1

l=0 (hn
l )2 =

ψ1
kn
+ O(∆n), whereas

∑in(p,T )−1
i=kn

wiα
n
i ≤ L/∆n and

∑in(p,T )−1
i=kn

(wi−l − wi)αn
i ≤ kn.

Finally, we evaluate the two remaining terms M(p)n
T and M′(p)n

T , which are sums of martingale differences.

In a similar way as in Jacod et al. (2009), we have

E
((
ζ(Z, p)n

i

)2 |F ′ni

)
=

∑
i≤ j,m≤i+pkn−1

w jwmE
(
Z̃′nj Z̃′nm |F ′ni

)
=

∑
i≤ j,m≤i+pkn−1

w jwm

((
X

n
j

)2 − cn
j

) ((
X

n
m

)2 − cn
m

)
+

∑
i≤ j,m≤i+pkn−1

w jwmX
n
j X

n
mAn

j,m

+
∑

i≤ j,m≤i+pkn−1

2w jwm
(
An

j,m

)2
+

∑
i≤ j,m≤i+pkn−1

Ou
(
∆

3/2
n + ∆n|X

n
j |∆n|X

n
m|

)

=

i+pkn−1∑
j=i

w j

((
X

n
j

)2 − cn
j

)
2

+
4
kn

∑
i≤ j,m≤i+pkn−1

w jwmX
n
j X

n
m

(
αn

i ϕ1

(
m − j

kn

))
+

∑
i≤ j,m≤i+pkn−1

2w jwm
(
An

j,m

)2
+

∑
i≤ j,m≤i+pkn−1

w jwmX
n
j X

n
mOu(p∆n +

√
∆nβ(p)n

i )

+
∑

i≤ j,m≤i+pkn−1

Ou
(
∆

3/2
n + ∆n|X

n
j |∆n|X

n
m|

)
=

(
ζ(X, p)n

i

)2
+

8
kn
αn

i ζ
′(X, p)n

i + 4(αn
i )2(pw2

i∗Φ11 + w2
i Ξ11)

+p3Ou

( √∆n + β(p)n
i

) 1 + i+pkn−1∑
j=i

|Xn
j |2


 .
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Thus ∣∣∣∣∣E ((
ζ(Z, p)n

i

)2 |F n
i

)
− 4(pw2

i∗Φ22 + w2
i Ξ22)k4

n∆
2
n(σn

i )4 (B.1)

−8αn
i (σn

i )2(pw2
i∗Φ12 + w2

i Ξ12)k2
n∆n − 4(αn

i )2(pw2
i∗Φ11 + w2

i Ξ11)
∣∣∣ ≤ Lp,wχ(p)n

i ,

and hence

E
(
sup
s≤T

∣∣∣M′(p)n
s

∣∣∣2) ≤ LT
p

√
∆n.

Now we turn to the last term in (A.1), M(p)n
T . Again, since wi is bounded, (5.57) and (5.58) in Jacod et al.

(2009) also hold here, and we have

1
√
∆n

jn(p,T )∑
j=0

(
E

((
η(p)n

j

)2 |G(p)n
j

)
−

(
η(p)n

j

)2
)

=

√
∆n

θ2ψ2
2

jn(p,T )∑
j=0

E
((
ζ(Z, p)n

j(p+1)kn

)2 |G(p)n
j

)
−
√
∆n

θ2ψ2
2

jn(p,T )∑
j=0

(
E

(
ζ(Z, p)n

j(p+1)kn
|G(p)n

j

))2
.

By a Riemann sums argument and (B.1), we readily deduce the following convergence results:

1
√
∆n

jn(p,T )∑
j=0

(
E

((
η(p)n

j

)2 |G(p)n
j

)
−

(
η(p)n

j

)2
)

P→
∫ T

0
w2

sγ(p)2
sds.

Then we obtain the result that for any fixed p ≥ 2, the sequence 1
∆

1/4
n

M(p)n of processes converges stably in law

to

Y(p)T =

∫ T

0
wsγ(p)sdBs,

where B is a standard Wiener process independent of F , and γ(p)t is the square root of

γ(p)2
t =

4
ψ2

2

((
p

p + 1
Φ22 +

1
p + 1

Ψ22

)
θσ4

t + 2
(

p
p + 1

Φ12 +
1

p + 1
Ψ12

)
σ2

t αt

θ(
p

p + 1
Φ11 +

1
p + 1

Ψ11

)
α2

t

θ3

)
.

This establishes the first claim of Theorem ??. In view of the proof of (3.10) in Jacod et al. (2009), it’s easy to

obtain Γn
T

P→
∫ T

0 w2
sγ

2
sds, and hence the proof of Theorem ?? is complete.

Proof of Theorem 4.1.
First, we write

√
h(σ̂2

PAKV (τ) − σ2
τ)

∆
1/4
n

√
γ2
τ

∫
R K2(s)ds

=
σ̂2

PAKV (τ) −
∫ T

0 Kh(s − τ)σ2
sds

∆
1/4
n

√∫ T
0 K2

h (s − τ)γ2
sds

×

√
h
∫ T

0 K2
h (s − τ)γ2

sds√
γ2
τ

∫
R K2(s)ds

+

√
h
(∫ T

0 Kh(s − τ)σ2
sds − σ2

τ

)
∆

1/4
n

√
γ2
τ

∫
R K2(s)ds

. (B.2)
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For f ∈ Cm,γ[0,T ], we have by Taylor expansion that there exists s̄ ∈ [s, τ] such that∫ T

0
Kh(s − τ) f (s)ds = f (τ)

∫ T

0
Kh(s − τ)ds +

m−1∑
k=1

f (k)(τ)
k!

∫ T

0
Kh(s − τ)(s − τ)kds

+

∫ T

0

f (m)(s̄)
m!

Kh(s − τ)(s − τ)mds.

Since
∫ T

0 Kh(s − τ)(s − τ)kds = hk
∫ (T−τ)/h
−τ/h K(z)zkdz, k = 0, · · · ,m, and∫ T

0
Kh(s − τ)(s − τ)m

(
f (m)(s̄) − f (m)(τ)

)
ds

=

∫ T

0
Kh(s − τ)(s − τ)m

(
L f (τ, |s̄ − τ|)|s̄ − τ|γ + o(|s̄ − τ|)

)
ds

= hm+γL f (τ, 0)
∫
R

K(z)zm+γdz + o(hm+γ),

we obtain ∫ T

0
Kh(s − τ) f (s)ds = f (τ) + hm+γL f (τ, 0)

∫
R

K(z)zm+γdz + o(hm+γ).

In a similar way, we get∫ T

0
K2

h (s − τ) f 2(s)ds =
f 2(τ)

h

∫
R

K2(z)dz + hm+γ−1L f 2(τ, 0)
∫
R

K2(z)zm+γdz + o(hm+γ−1).

Combining (B.2) and the results in Theorem ?? by substituting the weighting function Kh(s) for w(s), the first part

of Theorem 4.1 follows. In addition, with the same arguments above, we can easily show that γ̂2
PAKV (τ)

P→ γ2
τ .

Then the proof of Theorem 4.1 is complete.

Proof of Theorem 4.2.
Denote X0t the continuous diffusion part of price process. Then Zt = X0t + ϵt + J1t := Z0t + J1t, X̄n

0i =∑kn−1
j=1 gn

j∆
n
i+ jX0, and Z̄n

0i =
∑kn−1

j=1 gn
j∆

n
i+ jZ0. By Lévy law for modulus of continuity of Brownian motion paths

(see Theorem 9.25, Karatzas and Shreve, 1999) and time-changed Brownian motion (Theorems 1.9-1.10, Revuz

and Yor, 2001), we have that for small ∆n,

sup
i∈{i=1,···,n−kn+1}

|X̄n
0i|

∆
1/4
n

√
log 1

∆n

≤ Λ(ω), a.s.

In addition, the central limit theorem implies that

P(|ϵ̄n
i | ≤

√
1/kn log

1
∆n

) = P(|ϵ̄n
i | ≤ ∆

1/4
n log

1
∆n

) = 1 − o(∆1/4
n ).

Then we can easily show that a.s., ∃∆ > 0 such that ∀∆n ≤ ∆, I{(Z̄n
i )2≤r(∆n)} = I{∩i+kn−1

j=i+1 (∆ jN=0)}. Hence,

σ̂2
PAT KV (τ) =

√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
0i)

2I{(Z̄n
i )2≤r(∆n)}
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− ψ1∆n

2θ2ψ2

n∑
i=1

Kh(ti − τ)(∆n
i Z0)2I{(Z̄n

i )2≤r(∆n)}

= σ̂2
PAKV (τ) −

√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
0i)

2I{(Z̄n
i )2≥r(∆n)}

+
ψ1∆n

2θ2ψ2

n∑
i=1

Kh(ti − τ)(∆n
i Z0)2I{(Z̄n

i )2≥r(∆n)}

:= σ̂2
PAKV (τ) + Rn

T (τ).

Since

∆
−1/4
n
√

hRn
T (τ) ≤ ∆1/4

n
√

h × LknNT ×
(
sup

i
(Z̄n

0i)
2 + ∆

1/2
n sup

i
(∆n

i Z0)2
)

P→ 0,

the first part of Theorem 4.2 follows by Theorem 4.1.

Next, we proceed to evaluate γ̂2
PAT KV (τ). In fact, we can have the following decomposition

γ̂2
PAT KV (τ) = γ̂2

PAKV (τ) + R1 + R2 + R3,

where

R1 = −
4Φ22

3θψ4
2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
0i)

4I{(Z̄n
i )2>r(∆n)},

R2 =
4∆n

θ3

Φ12

ψ3
2

− Φ22ψ1

ψ4
2


− n−2kn+1∑

i=0

Kh(ti − τ)(Z̄n
0i)

2I{(Z̄n
i )2>r(∆n)}

i+2kn−1∑
j=i+kn

(∆n
jZ0)2

−
n−2kn+1∑

i=0

Kh(ti − τ)(Z̄n
0i)

2
i+2kn−1∑
j=i+kn

(∆n
jZ0)2I{(Z̄n

i+kn
)2>r(∆n)}

+

n−2kn+1∑
i=0

Kh(ti − τ)(Z̄n
0i)

2I{(Z̄n
i )2>r(∆n)}

i+2kn−1∑
j=i+kn

(∆n
jZ0)2I{(Z̄n

i+kn
)2>r(∆n)}

 ,
and

R3 = −
∆n

θ3

Φ11

ψ2
2

− 2Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

 n−2∑
i=1

Kh(ti − τ)(∆n
i Z0)2(∆n

i+2Z0)2I{(Z̄n
i )2>r(∆n)}.

It is easy to show that ∆−1/4
n
√

hRi
P→ 0 for i = 1, 2, 3. Therefore, we have γ̂2

PAT KV (τ)
P→ γ2

τ . This concludes the

proof of Theorem 4.2.

Proof of Theorem 4.3.
Denote Z1t = X0t + J1t + ϵt. Then we have Zt = Z1t + J2t. Consider the following decomposition:

√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
i )2I{(Z̄n

i )2≤r(∆n)} =

√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
1i)

2I{(Z̄n
1i)

2≤4r(∆n)} (B.3)
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+

√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
1i)

2
(
I{(Z̄n

i )2≤r(∆n)} − I{(Z̄n
1i)

2≤4r(∆n)}
)

+
2
√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)Z̄n
1i J̄

n
2iI{(Z̄n

i )2≤r(∆n)} +

√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)(J̄n
2i)

2I{(Z̄n
i )2≤r(∆n)}

:= I1 + I2 + I3 + I4.

Since the results of Theorem 4.2 can be applied to the term I1, we only need to exhibit the limits of the remaining

terms in (B.3) and show that they either tend to zero or to infinity.

We start with I2. On {(Z̄n
i )2 ≤ r(∆n), (Z̄n

1i)
2 > 4r(∆n)}, we have√

r(∆n) ≥ |Z̄n
i | > |Z̄n

1i| − |J̄n
2i| > 2

√
r(∆n) − |J̄n

2i|.

Thus, |J̄n
2i| >

√
r(∆n). Moreover, if |Z̄n

1i| > 2
√

r(∆n), we necessarily have ∆ jN , 0 for some j ∈ {i+1, i+2, · · · , i+
kn − 1}. It follows that

P

 √∆n

∆
1/4
n θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
1i)

2I{(Z̄n
i )2≤r(∆n),(Z̄n

1i)
2>4r(∆n)} , 0


≤ ∆1/4

n nP(|J̄n
2i| >

√
r(∆n),∆iN , 0) ≤ ∆1/4

n nO(∆n)
E[(J̄n

2i)
2]

r(∆n)
= O

 ∆3/4
n

r(∆n)

→ 0.

In addition, we have that on {(Z̄n
1i)

2 ≤ 4r(∆n)}, ∆i+kn
i N = 0 for sufficiently small ∆n. It follows that

{(Z̄n
i )2 > r(∆n), (Z̄n

1i)
2 ≤ 4r(∆n)} ⊂ {(Z̄n

0i + J̄n
2i)

2 > r(∆n))}

⊂ {(Z̄n
0i)

2 > r(∆n)/4} ∪ {(J̄n
2i)

2 > r(∆n)/4}.

Thus,
√
∆n

∆
1/4
n θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
1i)

2I{(Z̄n
i )2>r(∆n),(Z̄n

1i)
2≤4r(∆n)} (B.4)

≤
√
∆n

∆
1/4
n θψ2

n−kn+1∑
i=0

Kh(ti − τ)(Z̄n
0i)

2I{(J̄n
2i)

2>r(∆n)/4}

≤ ∆1/4
n ∆

1/2
n

(
log

1
∆n

)2 n−kn+1∑
i=0

I{(J̄n
2i)

2>r(∆n)/4} = O

∆ 1
4−

αβ
2

n

(
log

1
∆n

)2 .
The last equality in (B.4) will follow if we prove

P
(
|J̄n

2i| >
√

r(∆n)/2
)
= O(∆1/2−αβ/2

n ). (B.5)

To prove (B.5), we define Ñt :=
∑

s≤t I{|∆J2s |>
√

r(∆n)/2}. Hence, we have

P
(∣∣∣J̄n

2i

∣∣∣ > √
r(∆n)/2

)
≤ P

| kn−1∑
j=1

∆i+ jJ2| >
√

r(∆n)/2


= P

(
∆

i+kn−1
i Ñ = 0, |∆i+kn−1

i J2| >
√

r(∆n)/2
)
+ P

(
∆

i+kn−1
i Ñ ≥ 1, |∆i+kn−1

i J2| >
√

r(∆n)/2
)

≤ P
(
∆

i+kn−1
i Ñ = 0, |∆i+kn−1

i J2| >
√

r(∆n)/2
)
+ P

(
∆

i+kn−1
i Ñ ≥ 1

)
.
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The two quantities in the last inequality can be easily evaluated:

P
(
∆

i+kn−1
i Ñ = 0, |∆i+kn−1

i J2| >
√

r(∆n)/2
)

≤ P
(
|∆i+kn−1

i J2| >
√

r(∆n)/2, |∆J2s| ≤
√

r(∆n)/2, for all s ∈ (i∆n, (i + kn − 1)∆n]
)

≤ 2
E

[
(∆i+kn−1

i J2)2I{|∆J2s |≤
√

r(∆n)/2,for all s∈(i∆n,(i+kn−1)∆n]}
]

r(∆n)
= O

(
∆

1/2−αβ/2
n

)
and

P
(
∆

i+kn−1
i Ñ ≥ 1

)
= O(kn∆nν{|x| >

√
r(∆n)/2}) = O(∆1/2−αβ/2

n ).

This establishes (B.5). Therefore, I2 = O
(
∆

1
4−

αβ
2

n

(
log 1

∆n

)2
)
.

Now we proceed with I3. We first write I3 as the following decomposition

I3 =
2
√
∆n

θψ2

n−kn+1∑
i=0

Kh(ti − τ)Z̄n
1i J̄

n
2i

[
I{(Z̄n

i )2≤r(∆n),(J̄n
i )2≤4r(∆n)} + I{(Z̄n

i )2≤r(∆n),(J̄n
i )2>4r(∆n)}

]
.

On one hand, we have

P

 2
√
∆n

θψ2∆
1/4
n

n−kn+1∑
i=0

Kh(ti − τ)Z̄n
1i J̄

n
2iI{(Z̄n

i )2≤r(∆n),(J̄n
i )2>4r(∆n)} , 0


≤ ∆1/4nP(|J̄n

2 | >
√

r(∆n),∆iN , 0) = O
 ∆3/4

n

r(∆n)

→ 0.

On the other hand, if I{(Z̄n
i )2≤r(∆n),(J̄n

i )2≤4r(∆n)} = 1, then for sufficiently small ∆n, we have ∆i+kn−1
i N = 0. By the

Cauchy-Schwartz inequality, we have

√
∆n

∆
1/4
n

n−kn+1∑
i=0

Kh(ti − τ)
∫ (i+kn)∆n

i∆n

gn(u − i∆n)buduJ̄n
2iI{(Z̄n

i )2≤r(∆n),(J̄n
i )2≤4r(∆n)}

≤
∆

1/4
n

√∑n−kn+1
i=0 (

∫ (i+kn)∆n

i∆n
gn(u − i∆n)budu)2

∆
1/4
n

√√√√
∆n

n−kn+1∑
i=0

(J̄n
2i)

2I{(J̄n
i )2≤4r(∆n)}

= O(η(
√

r(∆n))),

where η2(δ) :=
∫
|x|≤δ x2ν(dx). We also have that as ∆n → 0,

η2
(
2
√

r(∆n)
)
=

∫
|x|≤2

√
r(∆n)

x2ν(dx) = O(r(∆n)1− α2 )

by Assumptions A3 and A6.

Moreover, a direct computation yields

√
∆n

∆
1/4
n

n−kn+1∑
i=0

Kh(ti − τ)
∫ (i+kn)∆n

i∆n

gn(u − i∆n)σudWu J̄n
2iI{(Z̄n

i )2≤r(∆n),(J̄n
i )2≤4r(∆n)}
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=

√
∆n

∆
1/4
n

n−kn+1∑
i=0

Kh(ti − τ)
∫ (i+kn)∆n

i∆n

gn(u − i∆n)σudWu J̄n,m
2i (B.6)

−
√
∆n

∆
1/4
n

n−kn+1∑
i=0

Kh(ti − τ)
∫ (i+kn)∆n

i∆n

gn(u − i∆n)σudWu J̄n,c
2i

−
√
∆n

∆
1/4
n

n−kn+1∑
i=0

Kh(ti − τ)
∫ (i+kn)∆n

i∆n

gn(u − i∆n)σudWu J̄n
2iI{(Z̄n

i )2>r(∆n),(J̄n
i )2≤4r(∆n)},

where J̄n,m
2i =

∫ (i+kn)∆n

i∆n

∫
|x|≤2r(∆n)/gn(u−i∆n) gn(u−i∆n)xµ̃(dx, dt), J̄n,c

2i =
∫ (i+kn)∆n

i∆n

∫
2r(∆n)/gn(u−i∆n)≤|x|≤1 gn(u−i∆n)xν(dx)dt.

Hence, we have J̄n
2i = J̄n,m

2i − J̄n,c
2i . Since it’s easy to show that each term in (B.6) tends to zero in probability, we

have 1
∆

1/4
n

I3
P→ 0.

Finally, for I4, we have

P lim
n→0

√
∆n

∑n−kn+1
i=0 (J̄n

2i)
2I{(J̄n

i )2≤4r(∆n)}

r(∆n)1−α/2 = P lim
n→0

√
∆n

∑n−kn+1
i=0 (J̄n

2i)
2I{(Z̄n

i )2≤r(∆n),(J̄n
i )2≤4r(∆n)}

r(∆n)1−α/2

≤ P lim
n→0

√
∆n

∑n−kn+1
i=0 (J̄n

2i)
2I{(J̄n

i )2≤9r(∆n)/4}

r(∆n)1−α/2 = L.

When α < 1 and β > 1
4−2α ∈ (1/4, 1/2), r(∆n)1−α/2

∆
1/4
n

→ 0. In view of the results in Theorem 4.2, the claim (a) of

Theorem 4.3 follows. When α > 1, we have
√

hr(∆n)1−α/2

∆
1/4
n

→ +∞, hence Theorem 4.3 (b) results.
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