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Abstract

In many settings of empirical interest, time variation in the distribution parameters is im-
portant for capturing the dynamic behaviour of time series processes. Although the fitting
of heavy tail distributions has become easier due to computational advances, the joint and
explicit modelling of time-varying conditional skewness and kurtosis is a challenging task.
We propose a class of parameter-driven time series models referred to as the generalized
structural time series (GEST) model. The GEST model extends Gaussian structural time
series models by a) allowing the distribution of the dependent variable to come from any
parametric distribution, including highly skewed and kurtotic distributions (and mixed dis-
tributions) and b) expanding the systematic part of parameter-driven time series models to
allow the joint and explicit modelling of all the distribution parameters as structural terms
and (smoothed) functions of independent variables. The paper makes an applied contribu-
tion in the development of a fast local estimation algorithm for the evaluation of a penalised
likelihood function to update the distribution parameters over time without the need for
evaluation of a high-dimensional integral based on simulation methods.

Keywords: non-Gaussian parameter-driven time series, fast local estimation algorithm,
time-varying skewness, time-varying kurtosis.
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1. Introduction

Many observable business and economic variables are characterized by high skewness and
heavy tails. In many settings of empirical interest, the need for joint and explicit modelling
of time-varying skewness and kurtosis (as a way of capturing the dynamic behavior of uni-
variate time series processes) has become more apparent in recent years, particularly since
the aftermath of the 2008 financial crisis. For example, since the early work of Fama (1965)
and Mandelbrot (1963), the failure of the Gaussian distribution to accurately model (high
frequencies) financial returns has been extensively discussed in econometric and financial lit-
erature. The departure from normality constitutes an important issue in quantifying market
risk since it means that extreme movements in the variables are more likely than a normal
distribution would predict. Although the fitting of heavy tail distributions has become easier
due to computational advances, the joint and explicit modelling of time-varying conditional
skewness and kurtosis is a challenging task.

Our main motivation is to develop a highly flexible structural time series modelling frame-
work for the estimation, analysis and forecasting of the dynamic behaviour of univariate time
series processes. In our empirical analysis we focus on developing different structural time
series models to analyse (rather than forecast) a number of different data series such as
the S&P 500 stock index, the Pound sterling and US dollar exchange rate and the number
of Van drivers killed in the UK (count data). In particular, the analysis of the S&P 500
stock index aims to stochastically analyse the stylised facts of the series based upon time-
varying estimates of the skew student-t (SST') distribution parameters, namely 1 (location),
o (scale), v (skewness) and 7 (kurtosis) (see Appendix 7.1). This is a distinguishing feature
of our approach. It allows the expansion of the systematic part of parameter-driven time
series models to allow the joint and explicit stochastic modelling of all of the distribution
parameters as structural terms and (if necessary) linear, non-linear and smooth functions of
independent variables (see section 3). Thus, we propose a class of parameter-driven time
series model referred to as the generalized structural time series (GEST) model. A fast new
estimation approach through a local likelihood function Q given in Appendix 7.2 is explained
(avoiding computing the likelihood function through the evaluation of a high-dimensional in-
tegral based on simulation methods such as importance sampling and Markov chain Monte
Carlo; see Shephard and Pitt, 1997) and explains why the proposed class of parameter-driven
GEST models have the potential to become popular in the applied statistics and econometrics
literature.

The GEST modelling framework is entirely parameter driven. A key advance of the
parameter-driven models is that they are flexible and can be easily adjusted in new set-
tings; see Cox (1981) for a more detailed discussion of the two classes of (observation- and
parameter-driven) models. In particular, in the GEST model, the structural terms for each
distribution parameter of the conditional distribution can be a random walk or autoregressive
term (of any order) and can include seasonal and/or leverage effects. The GEST modelling
framework proposed here seems to be the first parameter-driven approach to allow the joint
and explicit modelling of time-varying skewness and kurtosis. The GEST model allows pa-
rameters to vary over time as functions of lagged distribution parameters and exogenous



variables. In the model estimation there is no need to evaluate a high-dimensional integral
since model estimation is achieved by maximizing the local likelihood function Q generalizing
Lee et al. (2006). This is a local estimation method, which is much faster in practice, and
has been called penalized quasi likelihood (PQL) (Breslow and Clayton, 1993).

The alternative class of observation-driven models, by contrast, allows parameters to
vary over time as functions of lagged dependent variable values and exogenous variables. By
way of an example, the recently introduced Generalized Autoregressive Score (GAS) models
(Creal et al., 2013), also known as Dynamic Conditional Score (DCS) models, also provide a
general framework for modelling time variation in parametric models as functions of lagged
dependent variables and exogenous variables (see also Creal et al., 2011). Thus, the GAS
model is an observation-driven time series model assuming that we can compute the score of
the parametric conditional observation density with respect to the time varying parameter.
Although parameter-driven models, such as the GEST model, have two or more error terms
while observation-driven models, such as the GAS model, have one error term, heuristically,
for example, two error terms could have a smaller total variance than a single error term.
Thus, in principle it is quite possible for the parameter-driven models to give better fits
(when the focus of the analysis is on explaining stylized facts of the past) or forecasts. In
any case, observation-driven models and parameter-driven models represent two different
classes of models for the estimation, analysis and forecasting of the dynamic behaviour of
time series processes.

Non-Gaussian parameter-driven time series models that rely on parametric theoretical
conditional distributions offer a way of modelling economic and financial observations. Pre-
vious non-Gaussian time series models are based on the structural model for the mean and
the stochastic volatility model for the variance. For example, the stochastic volatility (SV)
model; see Shephard (2005) for a detailed discussion; the stochastic intensity models of
Bauwens and Hautsch (2006) and Koopman et al. (2008); the Bayesian perspective of West
et al. (1985) using Kalman filtering to model response observations from an exponential
family distribution; the treatment of both filtering and smoothing non-Gaussian data based
on approximating non-Gaussian densities by Gaussian mixtures; see Kitagawa (1987) and
Kitagawa (1996). Durbin and Koopman (2000) model the mean of an exponential family
distribution with a state space model and separately model the variance as a stochastic
volatility model. Although non-Gaussian time series models relax the assumption of the
conditional Gaussian distribution, they usually model the conditional mean and occasion-
ally the conditional variance of the non-Gaussian distribution, but rarely both. Effectively,
the systematic part of these models is limited to modelling explicitly the mean or variance
which are usually two of the distribution parameters. In our GEST modelling framework for
time-varying parameters, many of the existing parameter-driven models are encompassed.
In addition, new models can be formulated and investigated.

Thus, there are several important points to make here as a way of justifying the qualifi-
cation ’generalized’ of the class of parameter-driven time series model proposed here:

e A GEST model is fitted using a local penalised likelihood estimation algorithm. We will
argue that the proposed estimation algorithm is an effective choice, as it exploits the



complete density structure, for introducing a fast driving mechanism for time-varying
distribution parameters for parameter-driven time series models. Effectively, the GEST
model expands the systematic part of parameter-driven time series models to allow the
joint and explicit stochastic modelling of all of the distribution parameters as struc-
tural terms. The structural terms for each distribution parameter of the conditional
distribution can be a random walk or autoregressive (of any order) and can include sea-
sonal and/or leverage effects. Thus, extensions to time-varying skewness and kurtosis
and other more complicated dynamics can be considered without introducing further
complexities.

e The GEST model allows the use of a flexible parametric distribution D(uy, oy, v4, 7¢)
for the dependent variable, including highly skewed and/or kurtotic distributions such
as the generalized beta type 2 (including the special case of the generalized Pareto)
of McDonald and Xu (1995), power exponential of Nelson (1991), Johnson’s SU of
Johnson et al. (1994), Gumbel of Crowder et al. (1991), Box-Cox Cole-Green of Cole
and Green (1992), Sinh-arcsinh of Jones and Pewsey (2009) and (skewed) ¢-family
distributions. The GEST model also allows the use of discrete and mixed distributions
(a mixed distribution is a continuous distribution with extra discrete points. e.g. a
gamma distribution with possible values at zero).

e Because of the use of a parametric distribution, the use of a variety of diagnostic tools
(from both the econometric or standard statistical literature) for model checking and
selection is supported; see, for example, section 5.1.2.

e The GEST process has properly defined stochastic properties (see section 2 where
we also illustrate a simulation example). We also present two theorems to show that
under certain circumstances the GEST process is stationary with well defined marginal
mean and variance. Understanding of the properties of a stochastic process helps to
understand the evolution of the fitted conditional distribution through time, among
other things.

The rest of the paper is organized as follows. In Section 2 we introduce the GEST process,
and provide a simulated example of the GEST stochastic process. In Section 3 the full
flexibility of the GEST model is presented. In Section 4 we describe how the GEST model
is estimated using the proposed local maximum likelihood estimation algorithm. Section
5 illustrate the flexibility of the GEST model through the analysis (and model checking
and selection) of the S&P 500 index where the skew Student ¢ (SST') distribution has been
selected - this example is also used to compare the flexibility of the GEST model with popular
observation-driven models. We also demonstrate how the GEST model can be used for the
modelling of stochastic volatility of the Pound sterling and US dollar exchange rate as well
as the use of the Poison distribution to model the number of Van drivers killed in the UK.
The latter two examples are used to compare the GEST model with other parameter-driven
models. Section 6 provides a conclusion.



2. The GEST process

This section defines the GEST process essential for the modelling framework definition
of the next section. The GEST process assumes that the random variable Y; is derived from
a distribution D(6;) with a probability (density) function fy,(y;|0;) conditional on ; where
0, = (014,...,0k,) is a vector of distribution parameters for fy, ().

Hence we may write Y;|0; ~ D(0;) where each 6y; is generated by a random process
given by

Gk (Ort) = Bro + Ve (1)
fort=1,2,...,T, where
Ik
Vit = Z Ok, Viet—j + bret (2)
=1

fort =J+1,J+2,...,T, where, for k = 1,2, ..., K, function gi() is a specified link function,
Vet for t = 1,2,...,T is an individual structural time series random process and by, are
random errors, independent from each other mutually and serially, and normally distributed
with expected values equal to zero and variance ng. Thus bx ~ N,,_j, (0, agkIn, J,), where
b;(r = (bk,Jk—‘rly"'ybk,T) for k = 1,2,...,K.

There are several important points to be made here about a GEST process.

e The probability distribution fy,(y:|6;) can be a continuous or discrete distribution.

e For most practical applications, K, the number of parameters 6, in the distribution
is less than or equal to four. We denote those four parameters as 6; = (pu, oy, V4, 7¢)
where 41, is a time-varying location parameter, o, is a time-varying scale parameter and
v, and 7y are time-varying shape parameters, which may be related to the time-varying
skewness and time-varying kurtosis of the distribution respectively.

e The link function gx() is used to ensure that the individual parameter is defined on a
permissible range. For example, a log link for sigma, i.e. go(0:) = log(or) = 724, will
ensure that o, = exp(7y2,) is always positive.

e The ¢ ; in equation (2) are autoregressive parameters for the individual predictors
for k = 1,2,3,4. Note that specific fixed values for ¢y, ; for j = 1,2,...,J; replaces
autoregressive terms with random walk terms for 7 ;. For example setting J; = 1 and
or1 = 1 gives a random walk order 1, while setting J, = 2, ¢p1 = 2 and ¢y = —1
gives a random walk order 2, for k = 1,2, 3, 4.

e Note that the generation of the GEST process requires four sets of parameter values:
(i) the constant parameters ;o for k =1,2,... K.
(ii) the AR parameters ¢y ; for j=1,2,...,Jyand k =1,2,..., K,
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(iii) the standard deviations oy, of the white noises since by ~ N (0,07 ) for k =
1,2,... . K,

(iv) the initial starting values for the distribution parameters.

The GEST process is very flexible and can take familiar patterns of real data situation.
Below we generate an example of a GEST stochastic process imitating the S&P500 stock
index data analysed in section 5.1 by assuming that the fy,(y;|0;) of the process is a skew
Student ¢, SST (ut, o4, V¢, 1), distribution described in Section 3 and Appendix 7.1. We
simulate each of the distribution parameters of the SST (ju, oy, vy, 7¢) for t = 1,2, ..., n using
a random walk order one process. The resulting GEST process is given by:

Y;f’,utaata Ve, Ty~ SST(Mt,Ut, Vg, Tt)
e = -1+ b1y
log(oy) = log(oy—1) + bay
log(vy) = log(vi—1) + b3y
log(1; — 2) log(m¢—1 — 2) + bay,

where the simulated GEST process above is based upon equation (1) and (2) by setting
Bro =0, Jy = 1land ¢py = 1 for k = 1,2,3,4 and v1; = p, Y21 = log(oy), 73+ = log(vy)
and vy, = log(m — 2). The initial values of the distribution parameters were py = 0, o9 = 1,
v = 1, 79 = 5 and the variances of the by, innovations were chosen to be o7 = 0.0001,
oy, = 0.0009, o7, = 0.0004, and o;, = 0.0004. Note the link function log(r; — 2) is used
because, for the SST' distribution, 7 > 2, ensuring it has a finite mean p; and standard
deviation oy.

Figure 1 shows the simulated process y; while Figure 2 shows the generated (black line)
time-varying mean j;, time-varying standard deviation o, time-varying skewness parameter
v, and time-varying reciprocal of the kurtosis parameter 1/7;. Note for the SST distribution
1y < 1 produces a negatively skewed distribution, while v; > 1 produces a positively skewed
distribution. The kurtosis increases as 7, > 2 decreases and 1/7; increases. Figure 2 also
shows the fitted GEST process (red lines) estimated using the estimation procedure described
in Section 4

The GEST process can be non-stationary and potentially explosive by nature. This is
not in general bad, since many economic and financial phenomena are themselves explosive.
However, some statistical properties are difficult to establish unless additional assumptions
about the nature of the GEST progress are made.

Here, we present two theorems to show that under certain circumstances the GEST
process is stationary with well defined marginal mean and variance. In particular note
Theorem 1 assumes: i) identity link function for y; and ii) log link function for o;. Theorem
2 assumes: i) log link function for y; and : ii) log link function for oy:

e Theorem 1: Let j; and co; (where ¢ is a known constant) be, respectively, the condi-
tional mean and standard deviation (assumed to exist) of the distribution Yi|ug, o¢, Vg, Ty ~
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Figure 1: A GEST process realisation from a skew student ¢-distribution (SST)

D(put, 01, Vi, 7t) where py = B+ vt and logoy = Bag + Y2 and where

Ji
Vit = Z ki Vht—j + Ort

=1

for k = 1,2, where by and by are mutually and serially independently normally dis-

tributed with mean 0 and variances ng and 052 respectively and hence

e = P (bie) = Ui(biy)
Yo = ®51(b2,t) = 13 (bay),

assuming ®1 and ®, are invertible, then the GEST process has a stationary mean and
variance given by

ElY] = pBio
VYl = Sio}, + c?exp (2620 + 25507,)

respectively, where Sy, = 1+ 322 97 for k = 1,2 and where Y(B) = ®p(B)~" =
1+ 1B+ vr2B? + ... and provided ®1(B) is invertible, where ®x(B) =1 — ¢y.1B —
draB% — ... — ¢r.5. B’ and B is the backshift time operator, By; = y;_1.

Appendix 7.3.1 gives the proof for Theorem 1. Note that Theorem 1 is not affected
by the form of the model for v, and 7;. Also Theorem 1 applies to any distribution
D in which p; and co, are respectively the mean and standard deviation of D. In



my
00 0102 03 04 05 08

siome
1

nu
06 0810 12 14 16 18

0125 0%
|

a
015

o

8] 1000 2000 3000 4000

Tirme

Figure 2: The actual realisations (in black) for u, o, v and 1/7 for the GEST process shown in Figure 1 and
the fitted process estimated using the estimation procedure described in Section 4.



particular Theorem 1 applies to the normal, NO(u, o), skew student ¢, SST (u, o, v, 7),
Power Exponential, PE(u, o, v), t-family parameterized so o is the standard deviation,
TF2(u,0,v), and Johnson’s Su, JSU(u,o,v, ), distributions, where ¢ = 1. It also
applies to the logistic, LO(u, o), Gumbel, GU(u, ), and Reverse Gumbel, RG(u, o),
where ¢ # 1 (see Stasinopoulos et al., 2008, for the parametrization of the probability
density functions of the distributions).

e Theorem 2: Let the distribution of Y|us, ov, v, 7¢ ~ D(ut, 04, 4, 7t) have a mean p
and variance v(pu, o) where log iy = B1o + 714, and log oy = fag + Y2+ and where

V1(bye)
o (bat)

g = Py'(biy)
Yor = Py (bay)

as defined in Theorem 1, assuming ®1 and @y are invertible, then the following give
marginal means and variances of the related process:

a) EY] = Elu] = exp (ﬁl,o + %51051)

b) VIYy] = V] + Elv(p, o))

¢) V] = exp (2B1,) [GXP (2510131) —eXp (51031)]
d) E[u}] = exp (T’BLO + %7”231021)

e) Elo}] = exp (rfa0 + 572520%)

forr > 0.

Appendix 7.3.2 gives the proof for Theorem 2 together with a corollary for Theorem
2 providing the marginal variance of Y; for four conditional distributions for Y;, the
negative binomial type I and type II, NBI(u,0), NBII(j,0), the gamma, GA(u, o),
and inverse Gaussian, IG(u, o), distributions (see Stasinopoulos et al., 2008, for the
parametrization of the probability (density) functions of the distributions).

3. The GEST model

The previous section provides us with a general stochastic process with potential of
modelling a variety of situations including continuous or discrete variables with possibly high
or low kurtosis and/or positive or negative skewness. Here we introduce a general statistical
model in which all the parameters of the assumed distribution of the dependent variable
can be explicitly modelled as structural terms and (if necessary) functions of explanatory
variables.

Let Y; be the response variable for t = 1,2, ..., T then the GEST model is defined as:



Yilpe, o0, v, 1~ D(pe, 04, v, T1)
gi(pe) =mye = XItlﬁl T Y
Ga(0y) = Mt = XzT,tﬂQ + Yo (3>
W) =134 = XgT,tﬁg + V3t
) =MNMag = XLIB4 + Yau

where D represents the conditional distribution of the response variable, g, is a known link

function (e.g., identity or log link function), 3, is a parameter vector of length p; and the

Xkt are the explanatory terms and the v, are defined as in equation (2) for k = 1,2, 3,4.
Regarding the GEST model, it is important to note that:

The response variable distribution D(p, oy, 14, 7:) can be a continuous or discrete dis-
tribution.

Typically the linear term X;t,@k could include the constant, continuous or categorical
explanatory variables and possibly a linear term in time or a fixed seasonal effect, for
k=1,23,4.

The explanatory variables can be different for each distribution parameter u;, o, 14
and 7.

To account for non-linearities in the relationship between the parameters of the distri-
bution and the explanatory variables, model (3) can be extended to include non-linear
and smooth non-parametric models for the distribution parameters p;, o, v, and 7
as in Rigby and Stasinopoulos (2005). For example equation (3) can be amended to
Mkt = X548, + Zjil s;j(x;) + vk where the s;() are smooth functions e.g. P-splines of
Eilers and Marx (1996).

A distribution parameter model can be extended to include a seasonal effect (with M
seasons)

Gk(Org) = My = X;Itﬂk + Vit + Skt
where 7, is given by (2) and

The random effects 7+ can be extended to include persistent explanatory variable
effects,

Jk

Tkt = Z Ok jVkyt—j T U;Iﬁk + Dpt (4)
j=1
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where 0y, is a parameter vector of length g, and explanatory variable vector vy, is of
length ¢x. This term is used in the S&P 500 analysis of Section 5.1 for modelling
the leverage effect using asymmetric stochastic volatility (see for example Asai and
McAleer, 2005; Omori et al., 2007).

An important characteristic of the GEST model is the integration of regression-type
and time-series-type of models for all the distribution parameters (u;, oy, v and 7) of
the assumed parametric conditional distribution D of the response variable, allowing the
location, scale, skewness and kurtosis of the conditional distribution D to change over time.
Also the distribution D can be any parametric (continuous or discrete) distribution and is
not necessarily restricted to the assumption of the exponential family distribution.

By way of two examples, we present below two GEST models by specifying two different
distributions, namely the Gaussian distribution and the Skew student ¢ distribution.

4. Model estimation

4.1. Introduction
The GEST model, defined by equation (3), has four distinct sets of parameters:

(a) B' = (,317[3;,,3;,[31) the betas,
(b) ¥ = (7{.7v2,73,v4) the gammas,

(c) ¢T = (¢1T7 ¢;a ¢3T7 ¢I), the phis and
)

(d) o] = (0b,,08,,0n,0,), the standard deviations of the normal variables by, for k =
]'7 27 37 47

where ¢ and o, are referred as the hyperparameters.
The joint distribution for all the components of the GEST model is given by:

fy.B,7.0,00) = f(yIB.7)f (7], 00) f (D) f(00) (B) (5)
where
T
f(y’/677) = Hf(ytllubat? Vt, Tt)

is the likelihood function, based on the assumed conditional distribution D(puy, oy, 14, 7¢) for
Y} in equation (3), f(v|¢, o) is a product of four independent multivariate normal prior dis-
tributions for «y, for k = 1,2, 3,4 (assuming prior independence between the v, ). The terms
f(@), f(op) and f(B) are independent prior distributions for the ¢, o, and B parameters
respectively and assume independence of 8 and - (given ¢ and o) . In a fully Bayesian
inference, the posterior distribution of 7, 3, ¢ and o, can be obtained by using Markov chain
Monte Carlo sampling as in Fahrmeir and Tutz (2001).
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4.2. The GEST local estimation algorithm

Assuming a uniform prior for 8 from equation (5), we have the posterior distribution of
B and 7,

f(B, 7|, a4, y) < f(yIB,7)f (7|, T). (6)

Maximizing equation (6) gives posterior mode estimates of 8 and =, given ¢ and o. By
taking the log of equation (6), maximizing (6) is equivalent to maximizing the extended (or
joint) log likelihood function (Lee et. al. (2006)) for the parameters 3 and -, given fixed ¢
and o, defined by:

le =1+1log f (7|9, o) (7)

where

L =log f(y|B,v) =D log f(yelm, 00,1, 70) (8)

t=1

is the log likelihood function.

For the GEST estimation algorithm, we extend Rigby and Stasinopoulos (2005) Appendix
B2 and C by introducing step (a)(ii)(II) to estimate the hyperparameters oj and ¢ ; for
k =1,2,3,4. In particular, Righy and Stasinopoulos (2005) maximise the extended likelihood
in (7), given fixed hyperparameters. Thus, the algorithm provides posterior mode estimates
of the sets of parameters of B = (ﬁf,ﬁ;ﬁ;j,ﬁl), and v = (7?,7;,7;,71) by maxi-
mizing the extended log likelihood. Note that below we used the notation (6,05, 03,604) =

(m,0,v, 7).

The GEST algorithm

(A) initialise (01, 05,03,04), i.e. (u,0,v,T), and set initial v, =0 for k = 1,2,3,4

(B) start the outer cycle in order to fit each of the distribution parameter vectors 6y, for
k = 1,2, 3,4 sequentially until convergence [where, 8, = p = (pu1, pt2, ..., )", 02 = o,
03 =V, 94 = T]a

(a) start the following inner cycle (or "local scoring”) for each iteration of the outer
cycle in order to fit one of the distribution parameter vectors, 6y

(i) evaluate the current pseudo response variable z; and current weights Wy, (both
defined in section 4.3)

(ii) start the Gauss-Seidel (or "backfitting”) algorithm

12



(I) estimate 3, by regressing the current partial residuals € = z — 7,
against design matrix X using current weights Wy.

(IT) estimate the hyperparameters o and ¢ by mazimising their local like-
lihood function, and then estimate ~y using equation (11)

(iii) end the Gauss-Seidel algorithm on convergence of 3, and -,
(iv) update 0y and 1, = g(6y).

(b) end the inner cycle on convergence of 6.

(C) end the outer cycle when the global deviance (= —2 * [) of the estimated model con-
verges.

This new step (a)(ii)(II) is described in section 4.3 and in Appendix 7.2. It is important to
emphasise here that the outer cycle fits a specific distribution parameter vector (e.g. u), by
fixing the other distribution parameter vectors (e.g. o, v and 7) to their current maximum
values, and the inner cycle uses a "local scoring” or Newton algorithm resulting in an iterative
reweighted backfitting. Furthermore, the Gauss-Seidel algorithm in (B)(a)(ii) above is called
the "backfitting” algorithm by Hastie and Tibshirani (1990) and Hastie et al. (2009).

4.8. Estimation of hyperparameters ¢ and o, in step (a)(ii)(1l) of the GEST algorithm

When the random effects hyperparameters are unknown, then in principle they can be
estimated by maximizing the marginal likelihood obtained by integrating out « (and also 3
for Restricted Maximum Likelihood Estimation) from [.. This is in practice intractable so a
Laplace approximation (Tierney and Kadane, 1986; Evans and Swartz, 2000, p.62) can be
used to approximate the marginal likelihood, see for example Breslow and Clayton (1993),
Lee and Nelder (1996), Pinheiro and Bates (2000), Pawitan (2001), p.466-467, and Rigby
and Stasinopoulos (2005), Section A.2.3.

We refer to this method as the global estimation procedure (for the random effects hy-
perparameters) to distinguish it from the local estimation method used in this paper and
described below. The local estimation method, which is much faster in practice, is based on
ideas from Pinheiro and Bates (2000), Venables and Ripley (2002), p.297-298, Wood (2006),
Section 6.4, and Rigby and Stasinopoulos (2013). The local method has been called penal-
ized quasi likelihood (PQL). Note, however, that the local method described below and used
in this paper uses penalized likelihood. Furthermore, the local estimation method produces
almost identical results with the global estimation method in our experience.

The local estimation procedure (for the random effects hyperparameters) is step (a)(ii) (1)
in the GEST algorithm. During the fit of each one of u, o, v, and 7, the corresponding
structural parameters [i.e. agk and ¢, for £ = 1,2,3,4 where qb; = (Pk1s P2y Ok,
are estimated by the internal (i.e. local) marginal maximum likelihood estimation procedure
outlined below and given in detail in Appendix 7.2. To simplify the notation the subscript
k is dropped from equation (3) so #; now represents any one of the parameters (pu, oy, vy, 7¢):
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9(0:) = =x/ B+ (9)

fort =1,2,...,T, where =, is defined by (2) with subscript k£ omitted.

On the predictor scale (9), in the structural model fitting part of the backfitting algorithm
[i.e. step (a)(ii)(II) of the GEST fitting algorithm| the following local approximate internal
model is used:

e=v+te

where e ~ N7(0,X) and ¥ = 0?W™! € = z — X3 are the current partial residuals, z =
1+ W lu is the current pseudo response variable, W is a diagonal matrix of current weights

2
—-F [ 2L } or <%> , i.e. the observed information,

given by one of the following —%, oo™ o

the expected information or the squared score function, depending respectively on whether
a Newton-Raphson, Fisher scoring or quasi-Newton algorithm is used, and u = %. The
algorithm given in Appendix 7.2 maximises the local likelihood function @), given below,
directly over the structural model parameters a = (07, @), where ¢' = (¢1,bs,...,05),
using a numerical algorithm.

Fort=1,2,...,T,

where 7; is given in (2). Hence,

J
by = ’Yt—z¢j’7t—j
j=1

fort=J+1,J4+2,...,T.

Note that Pawitan (2001) shows a computational equivalence between the usual estima-
tion of random effects and their parameters (i.e. integrating out the random effects and
maximizing over the fixed and random parameters) and maximizing an objective function @
(in the form of an adjusted profile extended likelihood for the random effects parameters).
Given the absence of fixed effects locally, the ) function, maximized over the random effects
~ given the random effects parameters a = (07, @), gives the local likelihood function of «.
Here locally the random effects are v with parameters av and, generalizing Lee et al. (2006),
p.277-279, the local function Q is given by

1 T
Q = log f(e|vy)+logf(vy)— 5 log|=~! +0,2D'D| + 3 log 27
(10)
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where T is the number of observations, € = z — X3 is the vector of current partial residuals,
e ~ Nz(0,02W~1), where e = (e1,¢a,...,er)", & = 0?W ! and D is defined in Appendix

7.2. Note that assuming diffuse uniform priors for (y1,...,7s) in @ gives
T T
f) =11 roubve) = [ £00) = )
t=J+1 t=J+1

where v, = (71,72, -+, Y-1), b= (by11,b542,-..,br) ", b ~ Npr_;(0,0I7_ ;). Maximising
Q over a = (0}, ) gives estimates of o7 and ¢. Then, from Appendix 7.2, v is estimated
effectively by smoothing the partial residuals using

v =[='40,°D'D] "= e (11)

The total effective degrees of freedom of the fitted model, df, combines those of the models
for 61, 6,,05 and 6, i.e. u,o,v and 7, given by dfy, dfs, dfs and df4 respectively. Hence,

df = dfy + dfy + dfs + dfs

where

dfy = pr + di

for k =1,2,3,4, and py is the length of 3,, while dj, the effective degrees of freedom for the
random effects v, is obtained from d in Appendix A, ie

~ N N N -1 . _
dy = tr [Bk} — { [zk g &,;fD;Dk} o 1}

where By, 3, Dy, and &gk are the values of B, 3, D (given in Appendix 7.2) and agk for the
model for 6, on convergence of the GEST model fitting procedure.

5. Illustrating examples

In this section we present a number of GEST models as a way of illustrating the flexibility
of the proposed class of parameter-driven time series models. We also compare the GEST
model we other popular observation-driven and parameter-driven models.

First, we present a detailed analysis of the daily returns of the S&P 500 stock index
where we illustrate the flexibility of the GEST model. We also demonstrate the use of
variety of diagnostic tools (from both the econometric or standard statistical literature) for
GEST model checking and selection. Then we present briefly how to fit a GEST stochastic
volatility model to pound/dollar exchange rates’ returns and how to fit a Poisson model to
assess the effect of road safety measures on the development in traffic safety over time.
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5.1. Standard and Poor 500 stock index

In this example, the GEST model is illustrated by an application to financial daily re-
turns of the S&P 500 stock index. The data, taken from Yahoo.finance website, are daily
closing prices of the S&P 500 stock index from 02/01/1980 to 31/12/2012, i.e. 8324 daily
observations. Thus, following Harvey (1985) and Harvey and Jaeger (1993) in terms of using
a structural time series model to stochastically estimate ’stylised facts’ of time series obser-
vations, the flexibility of the GEST model is demonstrated here in terms of establishing a
set of ’stylised facts’ (rather than forecasting) associated with the returns of the S&P 500
index based upon time-varying estimates of the distribution parameters pu,, o;, v, and 7.

We compare different GEST models and select the best model using the Akaike informa-
tion criterion (AIC). Then, in sections 5.1.1 and 5.1.2, we compare the chosen GEST model
with the APARCH model using AIC and normalized probability integral transform (normal-
ized PIT) residuals to assess the adequacy of each fitted model. It is important to note that
we are not comparing the GEST model with another parameter-driven time series model as
we are not aware of any other parameter-driven time series model capable of modelling all
the distribution parameters. Thus, the use of the APARCH model enable us to compare the
GEST model with a popular observation-driven model.

The skew student-t (SST') distribution, which is a skew heavy tailed distribution, is used
in the GEST model for the conditional distribution of the S&P 500 daily returns.

Let P; be the price at time ¢ and y; = In(F;/P,_1) * 100 be the return of the S&P 500
over the period 02/01/1980 to 31/12/2012. The conditional probability density function
Iyl e, o0y v, 73) of the S&P 500 index returns g, is modelled by a skew ¢-distribution, SST
described in Section 3 and Appendix 7.1, using the GEST process to model the stochastic
volatility, stochastic skewness and stochastic kurtosis of the returns using an autoregressive
model for log(o;), and a random walk for log(1;) and log(7; — 2). The model is given by

Y;t|,ut70't77/t77_t ~ SST(Mtao-th:Tt)

pe = o
log(ov) = P20+ 72s (12)
log(v;) = B30+ 734
log(r; = 2) = Bao+ Yau

where

Yot = Q17241+ bay
Y3r = Y31+ b3y
Yar = Yar—1+ bay

This is model m1 in Table 1. Note that 5 is the reversion line for log(c;) around which
the autoregressive process vy, varies.
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In model m2, asymmetric stochastic volatility terms were included in the model for log(oy)
to account for leverage effect giving

Vot = GP1Y24—1 + 01V1 41 + 02V 41 + Doy (13)

where vy ;1 = arcsinh(y;—1) (if y,—1 < 0) and vy;—; = arcsinh(y;—1) (if y—1 >=0).

The use of the transformed arcsinh(y;_;) rather than just y;_; was found to reduce oc-
casional extreme spikes in the fitted volatility. This is model m2 in Table 1. Submodels
of model m2 where v and/or 7 is constant over time are also given in Table 1. Effectively,
Table 1 compares between the submodels of the GEST model m2 to check whether we need
a random walk (rw) model for skewness and/or a random walk model for kurtosis or just a
constant for one or both parameters. Therefore, we fit five submodels to the S&P 500 data
and summarise the Akaike information criterion (AIC) (Akaike, 1983). Note that the "ar
with lev.” model for oy is given by equation (13).

Table 1: Submodels of model m2

model | oy vy T df AIC
ml const ar rw rw | 349.4901 | 22005.87
m2 const | ar with lev. | rw rw | 311.0655 | 21862.74
m3 const | ar with lev. | rw | const | 334.4506 | 21871.31
m4 const | ar with lev. | const | rw | 299.5491 | 21874.33
mb5 const | ar with lev. | const | const | 330.4522 | 21879.61

The model selected with minimum AIC is m2 giving

Yt|,ut7 Ot, Ve, Tt ™~ SST(,Mt, Ot, Vt, Tt)

W = 0.0266
log(o;) = 0.1362 + 724 (14)
log(v;) = —0.0693 + 3.

log(s —2) = 24514 4,

where

Yot = 0.9855’727,5,1 — 0.0658’017t,1 — 0.0712’1}2’15,1 -+ b27t
Yot = Yai-1+bay
Yar = Yag-1+ bag

The fitted values for the variances are 65, = 0.00336, 6;, = 3.2459¢~* and o;, = 0.00199
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Figure 3: Returns y; and fitted o, vy and 1/7¢ for model m2.




5.1.1. Comparing GEST model m2 and APARCH(1,1) model

The chosen GEST model m2 is now compared with alternative models. Asymmetric power
ARCH (APARCH) models are used to model volatility of the S&P 500 stock index returns
with the SST distribution in order to see how well they capture the asymmetry and the fat
tails of the asset returns compared with the GEST model. To measure the goodness of fit,
we use the global deviance (equals to - twice the maximum log-likelihood). The Akaike infor-
mation criterion (AIC) was used to choose the best fitted model. Using the fGarch package
available in R (Wurtz et al., 2006) we compare between the GEST model, the GARCH(1,1)
model introduced by Bollerslev (1986), the GJR-GARCH(1,1) model introduced by Glosten,
Jagannathan and Runkle (1993) to allow for leverage effect, and the APARCH(1,1) model in-
troduced by Ding, Granger and Engle (1993) which adds the flexibility of a varying exponent.
The GEST model m2 has the lowest AIC followed by the APARCH(1,1) model.

Table 2: Model comparison between the GEST, GARCH, GJR-GARCH, and APARCH

Information Criteria GEST GARCH | GJR-GARCH | APARCH
Global Deviance 21240.61 | 22294.64 22615.48 22141.96
AIC 21862.74 | 22306.65 22625.48 22157.96

5.1.2. Residual analysis for GEST model m2 and APARCH(1,1) model

In this section we compare the residual analysis for the GEST model m2 with that of the
APARCH(1,1) model.

The residuals used here are called the normalized probability integral transform (normal-
ized PIT) residuals, (Rosenblatt, 1952; Mitchell and Wallis, 2011) or normalized quantile
residuals (Dunn and Smyth, 1996) and are defined by

ft - (Dil (’LALt)

where

ﬁ/t = FYt (yt’ﬂh a-ta ﬁt; 7A—t>

where 4, are the PIT residuals, Fy is the cumulative distribution function of the conditional
distribution of Y, and ®~! is the inverse cumulative distribution function of a standard
normal N(0,1) variable. The reason for using these residuals is that the true residuals r;
have a standard normal distribution if the model is correct. Hence the residuals 7; can be
compared with a normal distribution using the 7 statistics.

5.1.8. Interpreting the Z statistics
Model diagnosis is investigated by calculating Z statistics to test the normality of the
residuals within time groups (Royston and Wright, 2000).
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Table 3: The guide range of Z statistics (first column), interpreted with respect to the normalized PIT
residuals (seconf column) and the model response variable (third column).

Z statistics | Normalized PIT residuals | Response variable
71 < -2 mean too small mean too large
71 > 2 mean too large mean too small
72 < -2 variance too small variance too large
72 > 2 variance too large variance too small
73 < -2 positive skewness skewness too high
73 > 2 negative skewness skewness too low
74 < -2 platykurtosis kurtosis too high
(i.e. tails too heavy)
74 > 2 leptokurtosis kurtosis too low
(ie. tails too light)

Let G be the number of time groups and let {ry,i =1,2,..,n;} be the residuals in time
group g, with mean 7, and standard deviation s,, for g = 1,2, ..,G. The following statistics
Zg1,2L42,243,Z4 are calculated from the residuals in group g to test whether the residuals in

group g have population mean 0, variance 1, skewness 0 and kurtosis 3, where Z, = n;/ 2fg,

Zy = {5?/3 —[1-2/(9n, — 9)]} /{2/(9n, — 9)}1/2 and Zg3 and Z,4 are test statistics for
skewness and kurtosis given by D’Agostino et al. (1990), in their equations (13) and (19)
respectively. Provided the number of groups G is sufficiently large then the Z,; values
should have approximately standard normal distributions under the null hypothesis that
the true residuals are standard normally distributed. We suggest as a rough guide values
of |Z,;| greater than 2 be considered as indicative of significant inadequacies in the model.
Note that significant positive (or negative) values Z,; > 2 (or Z,; < —2) for j = 1,2,3 or
4 indicate respectively that the residuals in time group ¢ have a higher (or lower) mean,
variance, skewness or kurtosis than the assumed standard normal distribution. See Table 3
for the interpretation.

Table 4 gives the values of Z,; obtained from the APARCH fitted model. The significant
negative values of Zy, are Z3, and Zj, indicating that the residual variance is too low (or
equivalently that the fitted APARCH model variance or volatility is too high) within the
corresponding interval of time ¢. The significant negative values of Z;3 are Zy3 and Zg3
indicating that the residual skewness is too low (or equivalently the model skewness is too
high) while the significant positive value of Zy3 is Z;3 indicating that the residual skewness
is too high (or equivalently the model skewness is too low). The significant negative value of
Z,4 is Z54 indicating that the residual kurtosis is too low (or equivalently the model kurtosis
is too high) while the significant positive values of Z 4 are Zy4 and Zs4, indicating that the
residual kurtosis is too high (or equivalently the model kurtosis is too low). Clearly a constant
skewness and constant kurtosis in APARCH model is inadequate.
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Table 5 gives the values of Z,; obtained from the GEST fitted m2 model. There is only
one significant value Z,3, indicating the residual skewness is too low (or equivalently the
model skewness is too high).

In conclusion, the residual analysis shows that the GEST fitted model does fit the data
better than the APARCH model.

Table 4: Z statistics of APARCH

group, ¢ time, ¢ 71 72 73 74
1 0.5 to 1387.5 |-0.14 | -0.13 | 3.44 | -1.44
2 1387.5 to 2775.5 | 1.27 | 1.51 |-2.75| 3.14
3 2775.5 to 4162.5 | 0.69 | -3.38 | 0.53 | 2.06
4 4162.5 to 5549.5 | 0.08 | 1.94 | -1.48 | -1.85
5 5549.5 to 6937.5 | -0.58 | -2.16 | -0.53 | -2.49
6 6937.5 to 8324.5 | -0.69 | 1.83 | -2.58 | -1.08

Table 5: Z statistics of GEST

group, ¢ time, ¢ Z1 72 73 74
1 0.5 to 1387.5 | -0.28 | -0.13 | 0.84 | -1.71
2 1387.5 to 2775.5 | 1.14 | 0.23 | -2.16 | 0.34
3 2775.5 to 4162.5 | 0.99 | -0.66 | -0.39 | -0.05
4 4162.5 to 5549.5 | 0.20 | 0.38 | -0.37 | -1.11
5 5549.5 to 6937.5 | -0.30 | -0.37 | -0.10 | -1.82
6 6937.5 to 8324.5 | -0.62 | 0.48 | -0.49 | -0.60

5.2. Pound sterling and US dollar exchange rate

The data in this example are the pound sterling and US dollar daily exchange rates
from 01-10-1981 to 28-06-1985. Harvey et al. (1994), Shephard and Pitt (1997), Kim et al.
(1998) and Durbin and Koopman (2000) fitted a stochastic volatility model to pound/dollar
exchange rates’ returns with a conditional normal distribution to model the volatility clus-
tering effect of the returns.

Let formulate the following GEST model:

Y2|Mt70t ~ NO(MuUt)
me = Pro
log(oy) = Bao+ 2 (15)
Yor = Y21+ bay
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where by; ~ NO(0, o).
The GEST estimation of the hyperparameters gives very similar results to Bayesian
approach of Durbin and Koopman (2000):

e GEST stochastic volatility model: 02 = 0.007182 & ¢= 0.9744
e Durbin and Koopman with Bayesian: o2 = 0.007425 & ¢= 0.9731

Figure 4 shows the fitted stochastic volatility of the GEST model. The GEST model rep-
resents the volatility clustering effect of the pound/dollar returns with a stochastic volatility
model for log(o;) as an autoregressive order 1 process. Clearly, d; increases when the volatil-
ity clustering effect is high, and decreases when the clustering is low.
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Figure 4: The fitted stochastic volatility with the GEST model for the pound/dollar daily returns

5.3. Van drivers killed in the UK

In time series analysis of road traffic safety, it is often required to assess the effect of road
safety measures on the development in traffic safety over time. The data in this example are
the monthly number of light goods vehicle drivers killed in road accidents from 1969 to 1984
in the UK.

The model which Durbin and Koopman (2000) fitted to the van drivers was a structural
mean model with a random walk local level and stochastic seasonal for the conditional
Poisson distribution. Their parameter estimates for the random walk local level and the
seasonal disturbances were g, = 0.0245 and o,, = 0 respectively, with a conclusion that the
seasonal effect is constant over time. Their parameter estimate for the seat belt intervention
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variable was 61,1 = —0.280, which corresponds to a reduction in the number of deaths of
24%. The fitted GEST model gives similar results (with ¢, = 0.02417 and ¢, = 0.00008):

Y;:\Mta ~ PO(Mt)

e = Bro+ BT+ Y1+ Sig (16)
Yt = V-1 T by
M—1
S16 = — Z S1t—m + Wiy
m=1

where by, ~ NO(0,02) and wy; ~ NO(0,02) and x = (0,0,..,0,1,..,1) is an explanatory
variable for the seat belt introduction.

Clearly, more complicated GEST models can be fitted, including the two parameter
Negative Binomial type I distribution.

6. Conclusion

We have introduced the generalized structural time series (GEST) model as a uniformly
applicable parameter-driven model specification to capture time variation in parameters. A
clear advantage of the GEST model is that it expands the systematic part of parameter-
driven time series models to allow the updating of all the distribution parameters over time,
fitted through the development of a fast local estimation algorithm.

The proposed GEST model primarily addresses the difficulty in modelling time-varying
skewness and time-varying kurtosis (beyond location and dispersion parameter-driven time
series models) to better describe the non-Gaussian movements in a time series. There are
several important points to make here with respect to the class of parameter-driven time
series models proposed here:

e The GEST model allows the use of a flexible parametric distribution D(p, oy, v4, 7¢) for
the dependent variable, including highly skewed and/or kurtotic distributions (mixed
distributions).

e A GEST model is fitted using a fast penalised likelihood estimation algorithm (without
computing the likelihood function though the evaluation of a high-dimensional integral
based on simulation methods).

e The GEST model expands the systematic part of parameter-driven time series models
to allow the joint and explicit modelling of all the distribution parameters (p, o, V4, 7%).

e The structural terms for each distribution parameter of the conditional distribution
can be a random walk or autoregressive term (of any order) and can include seasonal
and/or leverage effects.

Time-varying mean, variance, skewness and kurtosis are of interest in themselves and
provide information on various aspects of a time series. We argue here that the GEST model
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provides a useful framework within which to stochastically present ’stylised facts’ on time
series based upon time-varying estimates of the distribution parameters (p, o¢, v, 7¢). Thus,
by fitting a GEST model, we also provide a model that is intended to be taken as a full
description of the conditional distribution of time-varying observations.

We demonstrate in section 5 the flexibility of the GEST model by formulating a number
of GEST models. In particular, the GEST model of equation (12) demonstrates how to
capture the time-varying movements of the returns of the S&P 500 index. Furthermore, a
variety of diagnostic tools have also been used to compare the adequacy of the GEST model
with the APARCH model for the returns of the S&P 500 index. The use of the APARCH
model enables us to compare the GEST model with a popular observation-driven model.
The other examples presented here demonstrate the properties of the GEST model with
respect to other parameter-driven models - we are not aware of any other parameter-driven
model capable of jointly and explicitly modelling time-varying skewness and kurtosis. The
examples presented here should be taken as an illustration of the flexibility of a class of
parameter-driven time series model referred to as the GEST model.
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7. Appendix

7.1. Skew Student t distribution

A skewed Student ¢ distribution was used to allow for skewness and kurtosis

in the

conditional distribution of financial returns initially by Hansen (1994) and subsequently
by Fernandez and Steel (1998) using an alternative parametrization. Fernandez and Steel

(1998) consider a shifted and scaled ¢ distribution with 7 degrees of freedom, i.e. pyg

+ O'0T

where T' ~ t,, denoted here by T'F (g, 09, 7), and splice together at p two differently scaled
distributions, Y ~ T'F(pg, 00/v, T) below pg and Yo ~ T'F (19, ogv, T) above i, The resulting
distribution is denoted here by Y ~ ST3(uo, 00, v, 7). Wurtz et al. (2006) reparameterized
the skew ¢ distribution of Fernandez and Steel (1998) so that in the new parametrization u
is the mean and o is the standard deviation, denoted here by Y ~ SST(u, o, v, ), where

2

Frlylpov,7) = a:;gﬂk@ﬂ@<uw+fﬁdwﬂyZmﬂ

—(4+1)/2
¢ (y = po)* [ 1
= 1+ |vI(y< —I(y >
o { + 27 [V (y < po) + 3 (y > o)

for —0o < y < 00, —00 < p < 00,0 > 0,v > 0,and 7 > 2, where ¢ = 2v/ [(1 + ) B(3

fto = p—om/s,

and
oy =0/s
and
_ o 1/2(,2 L7
m=2r""(v"=1)/ |(T — 1)1/3(57 5)
and

sS={r(*+v7?) /[ -2)wv+v ]} -m"

’ %)71/2] )

Hence Y ~ SST(u,o0,v,7) = ST3(o, 00, v, 7) has mean pu and variance o since E(Y) =

po + 0oE(Zy) = (u—om/s)+ (o/s)m = p and V(YV) = 03V (Zy) = (02/s%)s* = o2,

where

Zo = (Y — o) /oo ~ ST3(0,1,v,7) and where F(Zy) = m and V(Z;) = s* provided 7 > 2
from Fernandez and Steel (1998) p360. Note that Z = (Y —u)/o ~ SST(0, 1, v, 7) has mean

0 and variance 1.

7.2. The algorithm for estimating o

1. Select starting values for a = (02, 0%, ¢).

2. Maximize Q over a using a numerical algorithm, where v given « is obtained
calculating Q in the function evaluating Q.

3. Use the maximizing values for a to calculate the maximizing values for ~.
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In step 2, let Q be given by

1 T
Q = logf(elvy)+logf(vy)— §1og |2*1 + al)_?DTD‘ + 510g2ﬂ'
| 1 1
log f(ely) = —5log[2aW | = So.* (e =) W (e =) — 5T logo?
1 1
log f(7) = log f(b) = =50, *y' D Dy’ — (T = J)log (270})

since b = Dy ~ N(0, 02It_j), where v = (1,72, ...,77) , X" = 0.*W and

by —by1 e e = 10 0 ...... 0 0
0  —¢y —byj1 .o .. —¢r 1 0 ...... 0 0

D= :
0 0 S | SR o S |

and the maximizing of () over v given « is given by

vy =[2'+0,°D'D] 'S € (17)

Note that D is a (n — J) x T matrix and X is n x n.

Let B=[27' 4 0;2D'D] "' = ! and let B, 3, D,4 and ;2 be the values of B, X, D, v
and o, ? on convergence of the GEST fitting procedure (see Section 4).

On convergence, 4 = Be. Hence d, the effective degrees of freedom used in the model, is

. . G
d=tr|B| = tr{[E '+5,D'D| = 1}
(18)
As d is difficult to calculate directly for large n, it can be calculated by setting 0Q/do? = 0
giving on convergence d = J+6; 24T DDA, using the result % log |zC + F| = tr [(zC + F)~'C],

where z is a scalar and C' and F' are r x r matrices (provided |xC + F| # 0). Hence, for

each distribution parameter, d is calculated using the values 4 and 67 on convergence of the
GEST fitting algorithm.

7.83. Proof of the Theorems
7.3.1. Theorem 1 Proof

Y;t‘,ut, Ot, Vg, Ty ™~ D(Mt, Ot, Vg, Tt) where log He = 51,0+71,t, and log o, = 52,0+’72,t- Applying
the law of iterated expectations,

26



EY)] = E[E |, 00, 7)) = Elp]
Elw] = Bio+E(ny)
‘1)1(3)71,75 = biy
i = ®(B) by = 1 (B)byy

since ®4(B) is assumed to be invertible

Elng = $i(B)E(bi) =0
E[Mt] = ﬂl,o
Hence E[Yt] = 6170
b)
Vi = VIE M, o0, v, )] + EV (Yilpe, 0, v, 7))
VY] = Viw]+Elo}f]
but V] Ve = V[(B)b] = Sioy,
and E[o?] E [exp (2020 + 2724)] = exp (20a,0) E [exp (272.4)]

where E [exp (272¢)]

where Sy

and ngo
Hence V[Y4]

7.8.2. Theorem 2 Proof

E [exp (202(B)b2s)] = [ | E [exp (24,02,—)]

§=0
H exp (21&;]-052) = exp (252052)
j=0
L+ 4,
j=1
1

Slagl + cZexp (25270 + 252052)

a) ElY)]| = E[E (Y|, 00,00, 7)] = Elp] = exp (B1,0 + 35107, from d) below.
b) VY] =V [E (Yilus, 00, v6, 7)) + E [V (Yilpe, 00, v, 7)] = V] + E [v(p, 01)]-
c) Viw] = E[1i2] — {E[m]}* = exp(2B1,) [exp(25102) — exp(S102,)], from d) below.

d) Elu;] = Elexp(rpio+ 7"71,t)} = GXP(TﬁLo)E [GXP(T%(B)bl,t)]-
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o

- 1 1
E [exp(ri1(B)b14)] = HE lexp (7)1 ;b1,4—4] = Hexp <§T2¢ijazl) = exp (§r251021> ,
j=1 j=1

since if b ~ N(0,02), E [exp(ryb)] = ffooo exp(rwb)ﬂi - exp [—2”—22] db
™o Ub
= exp (%7"277/1202) ffooo \/%Jb exp [—ﬁ(b — 7“7,[10,3)2} db = exp (%7“21/)202).

e) As for d).

Corollary 1 Theorem 2 applies to the following distributions, the negative binomial
type 1 and 2, NBI and NBII, respectively, the gamma, GA, and inverse Gaussian, IG,
distributions. The results below for the marginal mean E[Y;] and variance V[Y;] of Y; use
the results of Theorem 2.

1. Y|, 00 ~ NBI(ps, 0¢) with mean p; and variance p; + oyu?, then E[Y;] = Eu] and
VY] = V] + Elus] + Elo| E[1i?]. Note o, = 0 gives Yi|us ~ PO(1z).

2. Yi|ue, 00 ~ NBII(py, 04) with mean p; and variance p; + oyp, then E[Y;] = Elu,] and
VY] = Vil + Bl + Elod Elpu]

3. Y|, 00 ~ GA(uy, 04) with mean p, and variance o?p?, then E[Y;] = E[u] and V[Y;] =
V] + Elo?]E[11?]. Note op = 1 gives Yi|puy ~ EX P ().

4. Yi|pe, 00 ~ IG(pug,04) with mean j; and variance o243, then E[Y;] = E[u,;] and V[V;] =
Vipe] + Elof] Elu].
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