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Abstract 

The purpose of this paper is to construct the abatement cost curve for the Greek 

Energy and Industry sectors. To achieve our goal we present and analyze the 

abatement options available in the sector of energy and in the industrial subsectors of 

petroleum and gas refinery, cement and iron and steel. Next, we estimate and present 

the costs and abatement potentials for each abatement option in each sector. We also 

present the cost-effective options for individual energy and industrial sources. Finally, 

the marginal abatement cost curve is constructed and the policy implications are 

discussed. Our analysis reveals a promising potential for pollution reduction and a 

wide range of cost-effective abatement options. 
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1.  Introduction 

Greenhouse gases
1
 (hereafter GHG) emissions from human activities are the 

primary source of anthropogenic air pollution (pollution due to human activities) and 

their mitigation is at the center of environmental policies both at national and 

international level. Air pollution from GHG is of extreme importance due to the 

negative effects on the environment (the problem of climate change among others) 

and the high global warming potential
2
. The most important greenhouse gas is carbon 

dioxide which accounts for the 57% of the total greenhouse gases (IPCC 2007). 

Policy makers around the world wish to achieve the reduction of GHG in a cost- 

effective way.  

The Kyoto protocol is the most important international attempt towards the 

reduction of GHG. It was adopted in 1997 and came into force in 2005 and currently 

has 192 signing parties. The target of the first commitment period (2008-2012) was a 

5% reduction of GHG emissions compared to 1990 level and the target of the second 

commitment period (2013-2020) is to reduce GHG by 18% compared to 1990 levels 

which however have not yet been ratified by all countries
3
. Another important cross-

national attempt towards the reduction of GHG emissions is the European climate and 

energy package known as “20-20-20” targets
4
. According to these targets countries 

are committed to reduce the total EU GHG emission by 20% in 2020 compared to 

1990 levels
5
. The parties are also obliged to raise the share of renewable energy 

sources to 20% of the total EU energy consumption and to improve EU’s energy 

                                                 
1
 The term greenhouse gases refers to carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and 

F-gases (HFCs, PFCs and SF6) emissions. 
2
 Global warming potential is an index measuring different GHGs emissions with different atmospheric 

lifetimes and different radiative properties (for more information see Halkos, 2014). 
3
 More information can be found at: http://unfccc.int/kyoto_protocol/items/2830.php  
4
 For more details see Halkos et al. (2014). 
5
 More information can be found at: http://ec.europa.eu/clima/policies/package/index_en.htm  
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efficiency by 20%. The European Commission has also adopted a proposal which will 

be further discussed in 2015 about a 40% reduction of GHG emissions by 2030
6
. 

Policy makers require a number of environmental tools in order to plan 

effectively
7
 their environmental strategies towards the aforementioned reductions. 

Marginal abatement cost (hereafter MAC) curves are important tools which illustrate 

the cost associated with carbon mitigation and contribute to the optimal pollution 

control levels (Beaumont and Tinch, 2004; McKintrick, 1999). Recently, MACs have 

been applied to estimate the impacts of environmental policies on the reduction of 

GHG emissions (Klepper and Petterson, 2006; Vijay et al., 2010). Therefore a 

marginal mitigation curve is an empirical tool which shed light to control policies and 

classify various abatement options based on their cost-effectiveness and their 

pollution abatement potential, in order to maximize the net social cost. The 

construction of MACs promotes environmental awareness and offers insights into the 

most cost-efficient measures to abate emissions (Beaumont and Tinch, 2004). 

Furthermore, MACs might provide valuable knowledge regarding the environmental 

abatement options and regulations in energy, industry and transport sectors (Kesicki, 

2010).     

 

                                                 
6
 More information can be found at: http://www.bloomberg.com/news/2014-01-22/eu-said-to-propose-

40-greenhouse-gas-reduction-target-by-2030.html  

 
7
 Economic interdependence and structure of the economy are important determinants in the 

effectiveness of adopted policies. Halkos and Tzeremes (2009a) investigated the effect of electricity 

generation on 42 World and East Asian countries' economic efficiency. Their findings reveal an 

inverted U-shape relationship between electricity generation and countries' economic efficiency with a 

much smaller turning point for the European countries compared to the East Asian countries due to the 

shift in energy use from electricity to other sources of energy. At the same time, Halkos and Tzeremes 

(2009b) examining the effects of the European Union enlargement estimated the economic efficiency 

of growth policies of the 25 member countries. Their findings show that the old 15 EU members have 

confronted with problems in reforming their economic policies to face EU’s enlargement which in turn 

had an impact on their economic efficiencies. 
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The purpose of this paper is to construct the abatement cost curve for the 

Energy and Industry sectors in Greece. In order to achieve our goal we present and 

analyze the abatement options under consideration in the energy sector as well as in 

the industrial subsectors of petroleum and gas refineries, cement and iron and steel. 

The structure of the paper is the following. Section 2 presents a brief review of the 

abatement costs curves literature and a presentation of the types of control cost 

curves. Section 3 analyzes the abatement options available for each sector. Section 4 

presents the costs and potentials for every abatement option both at sector and at plant 

levels. In section 5 the abatement cost curve for the Greek energy and industry sectors 

is extracted and the policy implications are discussed. The last section concludes the 

paper. 

 

2.  Literature review 

2.1  The concept of marginal abatement cost curves 

Marginal abatement cost (hereafter MAC) curves are a popular tool for 

assessing abatement options because they approach the complex issue of cost-

effective options in a simple and straightforward manner. MAC curves demonstrate 

graphically the cost-effective way to reduce pollutant’s emissions (in our case carbon 

dioxide). Specifically, they contrast the marginal abatement cost (€/tCO2 equivalent) 

on the y axis for varying amounts of emission reductions (thousand tCO2 equivalent). 

These emission reductions are compared relative to the business as usual economic 

activity where no CO2 reduction policies are implemented. A negative abatement cost 

may be due to market imperfections and proposed control methods have to be 

confronted with the existing ones in the business as usual economic activity.  
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The popularity of MAC curves concept is based on its simplicity as it can 

yield the marginal abatement cost for any given amount of pollution reduction. In 

addition, we can set a desired amount of emissions to be abated and calculate the total 

abatement cost required for this reduction. A MAC curve can also yield the average 

abatement costs. However, the concept of a MAC curve has a number of drawbacks 

(Elkins et al., 2011). At first, the curve is a snapshot and it is limited only at a point of 

time. Furthermore, the curve offers no path dependency or technological structure for 

the abatement options as the decision maker can apply any option in order to achieve 

a desired emission reduction. In addition, uncertainty is an important issue for MAC 

curves which becomes more significant as the time horizon widens e.g. 2050. Finally, 

the reduction of emissions might probably yield a number of additional benefits which 

are not included in the curve such as health benefits. Various alternative models have 

been proposed across the literature, which aim to solve some of the aforementioned 

drawbacks, such as the model proposed by Ward (2014). 

 MAC curves have been widely used across the literature. Halkos (1993) 

investigated the transboundary problem of acid rain and sulphur dioxide emissions 

and relied on MAC curves in order to evaluate and classify the abatement options for 

sulphur dioxide reductions in all European countries. In addition, the author examined 

whether economic instruments work better than regulations. The results indicated 

significant differences in favor of economic instruments. The author has marked the 

significance of international cooperation towards the joint reduction of emissions. 

Halkos (1994) examined the abatement technologies for sulphur emissions regarding 

the minimization of abatement cost under different policy scenarios. The results 

indicated significant emissions reductions if countries cooperate instead of acting 

independently.  
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Halsnaes et al. (1994) constructed MAC curves for ten countries for short and 

long term targets for the needs of the UNEP Greenhouse Gas Abatement Costing 

Project. The objective of the Project was to perform studies at a country level and to 

provide a unified framework for countries which have signed the United Nation’s 

Framework Convention on Climate Change in 1994. Soloveitchik et al. (2002) studied 

the electricity sector of Israel for the time period 2003-2013. The authors presented 

MAC curves in order to address emissions mitigation problems and to assist the 

decision maker to set the optimal taxation.  

Baker et al. (2008) investigated how technical change via innovation affects 

the marginal abatement cost and emissions mitigation and they employed MAC 

curves in their analysis. Kuik et al. (2009) conducted a meta-analysis of GHG 

mitigation studies and found abatement costs are sensitive to many factors such as 

business as usual emissions, a number of model assumptions and control variables. 

They constructed long-run MAC curves and found that strict long term targets set by 

the European Commission appear to be highly uncertain. Park and Lim (2009) 

presented a MAC curve for the electricity sector in Korea in order to evaluate 

alternative mitigation options. They have provided insights which are able to assist 

power plants to harmonize with the imposed regulations. Recent studies by Garg et al. 

(2014) and Vogt-Schilb et al. (2014) constructed MAC curves for India and Brazil 

respectively. 

2.2  Types of MAC curves 

Marginal abatement cost curves might adopt various shapes and forms as a 

result of differences among countries/regions, sectors, time, etc (Kesicki, 2010). 

Kesicki (2011) classify MAC curves into two general types, expert-based and model-

derived MAC curves. Expert-based MAC curves are developed based on assumptions 
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made by experts and they present detailed technological options. Each bar of this 

stepwise curve represents solely one technological option (Halkos, 1992, 1995a, 

2010). The width of the bar represents the abatement potential of this abatement 

option and the height of the bar represents the cost for each year, relative to the 

business as usual economic activity. The width of all bars together reveals the total 

abatement potential. Furthermore, the left side of the curve demonstrates the cheapest 

abatement options and as we move to the right side the costs increase rapidly (Halkos, 

1995b).  

Among the advantages of this type of MAC curve is the easy understanding, 

the simple representation of technological options and the ability to account for 

marker distortions. On the other hand, the principal disadvantage is the simplification 

of the assumptions. Furthermore, other drawbacks of expert-based MAC curves are 

the inability to account for any possible interactions among the abatement options or 

for any other interactions, time uncertainty and inconsistency of business as usual 

emissions (Kesicki 2011).  

Recently McKinsey & Company brought expert-based MAC curves back into 

the attention of policy makers by publishing MAC curves for a number of countries
8
 

and also published a global MAC curve regarding energy, industry, transport, 

residential, agricultural, wastes and forestry sectors (Naucler and Enkvist, 2009). 

McKinsey & Company (2012) published a MAC curve for Greece regarding three 

sectors in detail (energy, residential and transport) and two more sectors (industry and 

agriculture). The report indicated that the energy sector is the primary source of 

possible emissions reductions accounting for 40% of possible emissions reduction 

while industry accounts only for 10%. In 2020, the average abatement cost for energy 

                                                 
8 Marginal abatement cost curves and the corresponding reports can be found at: 
http://www.mckinsey.com/client_service/sustainability/latest_thinking/greenhouse_gas_abatement_cos

t_curves  
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sector will be 31€/ t CO2 equivalent and the contribution of the sector into the overall 

abatement potential will be 55%. On the other hand industry’s average abatement cost 

will be -38€/ t CO2 equivalent and the contribution of the sector into the overall 

abatement potential will be 13%. 

The government and scientific communities in the United Kingdom have also 

adopted the concept of expert-based MAC curve. Atomic Energy Authority (2008) 

published a report for Ecofys and Committee on Climate Change with MAC curves 

for industrial, domestic and non-domestic sectors. The Stationery Office (2008) has 

issued a report regarding UK’s emission targets towards 2050, the mitigation choices 

between CO2 and other GHG emissions and other guidelines regarding the optimal 

abatement strategy. They include expert-based MAC curves in their analysis for 

energy, residential, non-domestic buildings, industrial and transport sectors.  

The UK’s Department of Energy & Climate Change (2009a, b) constructed 

MAC curves for the entire UK economy including domestic, non-domestic, transport, 

industry, agriculture and wastes sectors. The target of the reports is to assess the 

mitigation policies under the EU Emissions Trading System (ETS) and those which 

are not included in the ETS and to propose the optimal mitigation strategy for the 

United Kingdom. Johnson et al. (2009) constructed expert-based MAC curves for 

Mexico including agriculture and forestry, oil and gas, energy end-use, transport and 

electricity sectors. O’Brien et al. (2014) also used an expert-based MAC curve in 

order to evaluate abatement options for GHG emissions in Irish agricultural sector. 

 The second type of MAC curve, the model-derived MAC curve, relies on 

calculating the abatement costs and potentials via energy models. Model-derived 

MAC curves avoid a number of drawbacks of expert-based curves, such as the 

interactions between abatement options, model uncertainty and the incorporation of 
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additional benefits (Kesicki, 2011). On the other hand, this type of MAC curve does 

not offer any insights on technological abatement options and cannot handle negative 

costs. Kesicki and Strachan (2011) present two types of model-derived MAC curves, 

those which are based on partial equilibrium bottom-up models which consider one 

sector, and top-down models such as the computable general equilibrium (CGE) 

models accounting for the entire economy. Regarding the strengths and drawbacks of 

each model, bottom-up models offer the ability for a detailed presentation and in-

depth analysis of the energy sector; however all other sectors are not included in the 

analysis. Furthermore, bottom-up models are susceptible to small changes in costs and 

they tend to underestimate abatement costs (Edenhofer et al., 2006). Top-down 

models offer no technological details and no in-depth sectoral analysis; however they 

incorporate macroeconomic effects from the whole economy. 

 Beaumont and Tinch (2004) investigated whether environmental regulation on 

industrial wastes can result in improvement for both industrial activity and the 

environment. The authors used a bottom-up approach and constructed MAC curves 

for copper pollution in Humber Estuary, UK. Criqui et al. (2006) used the bottom-up 

AGRIPOL model to evaluate the mitigation options for GHG emissions and created 

MAC curves for the agricultural sector. Simoes et al. (2008) used TIMES_PT which 

is a bottom-up model to create MAC curves and study the CO2 emissions in 

Portuguese energy sector. Delarue et al. (2010) used a simulation bottom-up model in 

order to study the electricity sector in Europe. In addition the authors constructed a 3D 

abatement curve where they included gas to coal price ratio in order to capture more 

complex interactions. Kiuila and Rutherford (2013a) proposed a methodology about a 

piecewise smoothing approximation for bottom-up MAC curves. The methodology 

could be introduced to any sector with decreasing returns to scale technologies. 
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 Rasmussen (2001) constructed a multi-sector MAC curve for Denmark using a 

top-down general equilibrium model in order to study the effects of learning-by-doing 

in renewable energy. Sands (2004) applied the Second Generation Model which is a 

top-down collection of CGE models and constructed MAC curves over time for GHG 

emissions abatement. Klepper and Peterson (2006) used the top-down CGE model 

DART and studied how the MAC curves in a country level are affected by global 

abatement efforts and energy prices. The findings indicate that global actions affect 

national MAC curves.  

Bernard et al. (2006) investigated the global economy using a top-down CGE 

model for different regions in multiple countries. The authors found that the 

incorporation of more GHGs than just CO2 in the analysis results in a cost reduction 

in long term. Bohringer et al. (2009) applied the CGE PACE model to examine the 

impact of EU climate policies on international trade and the use of energy. Dellink et 

al. (2004) integrated a bottom-up and a top-down approach in a dynamic CGE 

framework. Kiuila and Rutherford (2013b) also deal with the incorporation of bottom-

up approach inside the top-down framework. The above approaches aim to tackle the 

entire economy (top-down model) and to benefit from the detailed information for the 

sector (bottom-up). 

 

3. Abatement options for energy and industry sectors 

3.1. Energy sector 

The last decades the Greek national energy policy target is the relevant 

independence of the country from petroleum. In that manner, other energy sources 

have been exploited such as lignite and hydro energy and others have been imported 

such as natural gas. Petroleum remains the largest source regarding the total primary 
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energy supply, followed by other fossil fuels like lignite and natural gas. Lignite (with 

the associated environmental problems) is the primary energy source for electricity in 

Greece. 

Next we present five abatement options for the Greek energy sector followed 

by a number of abatement options available in the industrial sector and in the 

subsectors of petroleum and gas – downstream refining, cement and iron and steel.  

3.1.1. Wind Power 

Wind power refers to the power which comes from the wind. Wind turbines, 

windmills and wind pumps are used to convert wind into energy such as electrical or 

mechanical power. In order to produce a considerable amount of energy, large wind 

farms are needed which consist of hundreds of wind turbines. When these 

constructions are onshore, the cost is very low and in most cases it is considerable 

cheaper than fossil fuels. On the other hand, when the farms are offshore, the cost of 

construction and maintenance is significantly higher; however the construction is 

better and more efficient. Wind is plenty in Greece and wind power is a good 

alternative option. Furthermore, it is a clean energy and produces no greenhouse 

gases. The average efficiency wind power is 35% (EURELECTRIC, 2003). 

In this abatement option we assume that ten wind parks which have already 

been announced or are in the process of planning, will be constructed. These parks are 

located in Karditsa, Lefkada, Rethymno, Andros, Tinos, Kefallonia, Samos, Mykonos, 

Pella and Sifnos. The total installed capacity of these ten wind parks is 94.4 MW
9
. 

The capital cost of these plants in average is 2500 €/kWe and the fixed operating and 

                                                 
9 
http://www.ppcr.gr/Home.aspx?C=2  
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maintenance cost is 90 €/kWe (IPA, 2010). Two years
10
 are needed for the parks to be 

constructed while the amortization period is five years (Karagiorgas et al., 2010). 

3.1.2. Solar Photovoltaic 

 A Photovoltaic system uses the sun as a source of power in order to produce 

electric power. Photovoltaic cells are made usually from silicon. When the sun is 

shining the light hits on the cells and an electric field is created. On hotter and more 

shinny days more electricity is produced, however electricity is still produced on 

cloudy days. The efficiency of a photovoltaic panel is at 27%
11
. A photovoltaic 

module is a connected assembly of about 40 solar cells ad a solar panel or solar array 

is consists of multiple photovoltaic modules. The use of photovoltaic systems offers 

multiple advantages. Sunlight is free and as a result, after the initial capital cost, the 

operational cost for electricity will be significantly reduced. In addition, solar energy 

is a renewable energy source and does not release any greenhouse gases. 

  Solar energy is another abundant energy source in Greece. This abatement 

option assumes that five photovoltaic parks which have already been announced or 

are in the process of planning will be constructed. The locations of these parks are in 

Agrinio, Megalopoli, Ptolemaida, Athina and Thessaloniki with total installed 

capacity at 260.84 MWh
12
. The capital cost of a photovoltaic park is at 4500 €/kWe 

and the fixed operating and maintenance cost is at 30 €/kWe (IPA, 2010). Two years 

are needed for the parks to be constructed (PPC, 2012) while the amortization period 

is seven years (Karagiorgas et al., 2010). 

                                                 
10 
http://www.ppcr.gr/Home.aspx?C=2    

11
 http://www.cres.gr/kape/index.htm     

12 
http://www.ppcr.gr/Home.aspx?C=2  
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3.1.3. Geothermal energy 

Geothermal energy is produced and stored inside the earth. The sources of 

thermal energy are primarily the decay of uranium and potassium (80%) and also the 

formation of the earth (20%). Beneath the surface of the earth there is the magma 

layer which is a very hot mixture of molten and semi-molten rocks, volatiles and 

solids. Most of the decay of radioactive materials takes place here. When the crust of 

the earth is very thin, the heat can come up to the surface. These places are 

seismically active and as a result earthquakes can break the rocks on the surface, 

letting hot water out. These areas are called hot springs. This is the natural expression 

of geothermal energy.  

However, geothermal energy can be found everywhere. Geothermal power 

plants can exploit the geothermal energy almost anywhere in the world using 

hydrothermal convection. The geothermal plant sends cool water into the earth where 

it is heated and then rises up to the surface. The heated water produces steam which 

powers the electrical generators. The average efficiency of a geothermal power plant 

is 55% (Karagiorgas et al., 2010). 

Greece meets the geological standards in order to produce geothermal energy 

in large scale. Geothermal energy is currently used in Greece for residential, industrial 

and agricultural use. This abatement option assumes that four geothermal plants 

which have already been announced or are in the process of planning will be 

constructed. The locations of these power plants are in Kimolos, Lesvos, Nisyros and 

Methana with total installed capacity at 23 MWh
13
. The capital cost of a geothermal 

power plant is at 2600 €/kWe and the fixed operating and maintenance cost is at 110 

                                                 
13
 http://www.ppcr.gr/Home.aspx?C=2  
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€/kWe (IPA, 2010). Three years are needed for the plants to be constructed (PPC, 

2012) while the amortization period is five years (Karagiorgas et al., 2010). 

3.1.4. Biomass 

Biomass is a carbon neutral source of energy and it is created from organic 

waste which comes from living or recently living organisms which can be either 

plants or animals. Biomass can be directly used for energy purposes or it can be used 

to produce biofuels. The biomass coming from plants is called lignocellulosic biomass 

and currently its largest source is wood such as forest debris. The biomass power 

plants burn the organic waste in order to produce steam which drives a turbine to 

produce electricity and heat. The average efficiency of a geothermal power plant is 

34% (Karagiorgas et al., 2010).  

There are various types of biomass plants which use alternative sources to 

produce biomass such as wood (bark, brash, logs, sawdust, wood chips, wood pellets 

and briquettes), energy crops (miscanthus, switchgrass, reed canary grass, rye, giant 

reed, hemp, poplar, willow, eucalyptus, nothofagus, sycamore, ash, sugar crops, starch 

crops, oil crops, microalgae, macroalgae, pond and lake weeds, etc), agricultural 

residues (straw, corn stover, poultry litter, animal slurry, grass silage, dying biomass 

material), food waste and industrial waste and co-products (untreated wood, treated 

wood and residues, wood composites and laminates, paper pulp and wastes, textiles 

and sewage sludge)
14
. 

Greece has abundance of raw materials for the production of biomass and an 

agricultural sector which accounts for 5.2% of GDP which is significantly above the 

average of the European Union (1.8%). Furthermore, the country is obliged to replace 

10% of the conventional fuels with biofuels by 2020. This abatement option assumes 

                                                 
14
 http://www.biomassenergycentre.org.uk/portal/page?_pageid=75,17304&_dad=portal&_schema=PORTAL  
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that a biomass power plant in Kozani which has already been announced will be 

constructed with total installed capacity at 25 MWh
15
. The capital cost of a biomass 

power plant is at 2000 €/kWe and the fixed operating and maintenance cost is at 50 

€/kWe (IPA, 2010). Four years are needed for the plants to be constructed (PPC, 

2012) while the amortization period is three years (Karagiorgas et al., 2010). 

3.1.5. Small-hydro 

 Small hydro refers to plants which generate hydroelectric power in order to 

power an industrial plant or a small community. By definition, a small hydro plant has 

a generation capacity up to 10 MW. Hydroelectric power uses the movement of water 

(falling or flowing) in order to produce electricity. The power plant needs a 

reasonable flow and a height in order the water to fall. Then the water flows or falls 

inside a pipe and drives a turbine which generates the electrical power. A common 

place for a small hydro is an existing or a newly developed dam. The most 

challenging aspect of small hydro power plants is their high average efficiency (90%) 

(Karagiorgas et al., 2010). Small hydro offers a number of advantages such as it does 

not pollute the environment and does not rise the water temperature. Also, their 

construction usually benefits other activities such as pumping, fishing and leisure. 

The geographical and geological shape of Greece fosters the development of 

small hydro power plants under certain circumstances and planning. This abatement 

option assumes that eight small hydro power plants which have already been 

announced or are in the process of planning will be constructed. The locations of these 

power plants are in Alatopetra Grevena, Ilariona Kozani, Kalamata, Ladona, 

Makrohori, Mesohora Trikala, Pournari and Smokovo with total installed capacity at 

                                                 
15
 http://www.ppcr.gr/Home.aspx?C=2  
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24.62 MWh
16
. The capital cost of a small hydro power plant is at 3000 €/kWe and the 

fixed operating and maintenance cost is at 50 €/kWe (IPA, 2010). Three years are 

needed for the plants to be constructed (PPC, 2009) while the amortization period is 

five years (Karagiorgas et al., 2010). 

 

3.2. Industry sector 

Here we consider three of the most polluting industrial subsectors: petroleum 

and gas – downstream refining, cement and iron and steel. 

3.2.1. Petroleum and Gas – Downstream Refining 

The downstream sector commonly refers to the refining of petroleum crude 

oil and the processing and purifying of raw natural gas, as well as the marketing and 

distribution of products derived from crude oil and natural gas. The Greek market 

consists of two companies, namely Hellenic Petroleum and Motor Oil Hellas. Hellenic 

Petroleum operates three refineries in Aspopyrgos, Thessaloniki and Elefsina and 

Motor Oil Hellas operates one refinery in Agioi Theodoroi. The total installed 

capacity of these four refineries is 726.96 MW and the annual load factor is 79.4% 

(Ministry of Development, 2008).  

The available abatement methods in this subsector follow.  

3.2.1.1.  Energy efficiency from behavioral changes 

This option assumes the implementation of energy conservation awareness 

programs such as energy and GHG awareness of personnel, a management system 

which includes monitoring and an energy management which focuses on all 

processes. The average efficiency of behavioural changes is assumed at 100% and we 

assume that there are no losses due to human factor. The capital cost and the fixed 

                                                 
16 
http://www.ppcr.gr/Home.aspx?C=2  
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operating and maintenance cost is 0 €/kW (McKinsey& Company , 2009). We assume 

that behavioral changes are applied immediately. 

3.2.1.2.  Energy efficiency from improved maintenance and process control 

This option assumes additional and/or improved maintenance which ensures 

optimal condition for the equipment. In addition, improved process control is assumed 

which reduces suboptimal performance. The average efficiency of improved 

maintenance and process control is assumed at 100% and we assume that there are no 

losses due to human factor. The capital cost is at 1.65 €/kW and the fixed operating 

and maintenance cost is at 0.25 €/kW (McKinsey & Company, 2009). We assume that 

improved maintenance and process control is applied immediately while the 

amortization period is assumed to be one year. 

3.2.1.3.  Energy efficiency requiring capital expenses at process unit level 

This abatement option assumes replacements, upgrades and additions which 

do not alter the process flow of a refinery. Also, it assumes replacement of boilers, 

heaters, turbines and motors and waste heat recovery through heat integration. The 

average efficiency of energy efficiency changes which require capital expenses at 

process unit level is assumed at 100% and we assume that there are no losses due to 

human factor. The capital cost is at 82.51 €/kW and the fixed operating and 

maintenance cost is at 4.13 €/kW (McKinsey & Company, 2009). We assume that 

changes are applied immediately while the amortization period is assumed to be one 

year. 

3.2.1.4.  Carbon capture and storage 

It is applied to the exhaust emissions coming from the direct energy use in the 

downstream refineries and at the emissions which are coming from the hydrogen 

generation unit. Carbon capture and storage (CCS) captures CO2 which otherwise 
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would have been emitted to the environment. The captured CO2 is then transported to 

a storage site and is disposed back to the environment but in a way which it cannot 

enter the atmosphere (e.g. underground). It is a method to decrease carbon dioxide 

emissions, global warming and ocean acidification. The average efficiency of carbon 

capture and storage is at 72% (McKinsey & Company, 2009). The capital cost is at 

3.16 €/kW and the fixed operating and maintenance cost is at 0.137 €/kW
17
. Nine 

years are needed for the plants to be constructed
18
 while the amortization period is 

assumed to be one year.  

 

3.2.2. Cement 

 Cement sector is one of the leaders in Greek industry. Three companies 

operate in this sector. Namely, Heracles GCC of Lafarge Group with cement plants in 

Volos and Milaki
19
 and a total installed capacity of 6.7 million tons

20
, TITAN with 

cement plants at Thessaloniki, Drepano, Kamari and Elefsina and a total installed 

capacity of 7,04 million tons
21
 and Halyps Cement of Italcementi Group with a total 

installed capacity of 1 millions tons
22
. The total installed capacity of the sector is 

14.74 million tons of cement. The annual load factor is estimated at 39.8% with an 

annual production of 5.86 million tons
23
. 

The available control methods in this subsector are presented next. 

 

 

                                                 
17
 Calculated relying on McKinsey (2009) data. 

18
 http://www.iea.org/publications/freepublications/publication/CCS_roadmap_foldout.pdf  

19
 The company has a third plant in Halkida with installed capacity at 2.9 million tons which was 

recently closed. 
20
 http://www.lava.gr/en/whoweare/  

21
 http://www.cemnet.com/GCR/country/Greece  

22
 http://www.sepan.gr/index.php/el/xalyps  

23
 http://www.kathimerini.gr/30873/article/oikonomia/epixeirhseis/hellastat-ypoxwrhsh-ths-paragwghs-

skyrodematos  
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3.2.2.1.  Clinker replacement with fly ash and slag 

This option assumes the reduction of clinker component in cement by 

substitution with fly ash or slag. Clinkers are formed by heating cement elements in 

a kiln. Limestone, clay, bauxite and iron ore sand in specific proportions are heated in 

a rotating kiln until they begin to form clinkers. Fly ash is one of the two by-products 

burning coal. When coal is burned it produces coal ash which is a non-combustible 

byproduct. Two types of coal ash are produced: bottom ash which is collected at the 

bottom of coal furnaces and fly ash which is collected at the smokestacks. Slag is a 

byproduct of iron production. During the iron blast furnace, slag and iron both are 

collected at the bottom of the furnace in molten form and are separated from each 

other. The molten slag is drenched with water until it turns into a raw material called 

granules, which then are cooled and dried in order to be ready for cement use.  

The substitution of clinker with other elements such as fly ash and slag helps 

towards the reduction of process and fuel combustion emissions and also the 

reduction of electric power used for clinker production. These emissions account for 

the 90% of total emissions in the cement industry. Max replacement of clinker with 

fly ash is 25% and with slag is 40% (McKinsey & Company, 2009). Based on max 

replacement the total installed capacity for fly ash is calculated at 3.685 million tones 

and for slag is calculated at 5.896 million tones. The average efficiency of clinker 

replacement with fly ash is at 80% (Tsakalakis, 2010) and with slag is at 95%
24
. Fuel 

calorific value for the abatement option of fly ash is 25.3 GJ/tonne (coal burning) and 

for the abatement option of slag is 29.5 GJ/tonne (coke burning). The capital cost is at 

5 €/tonne for fly ash and at 145 €/tonne for slag (McKinsey & Company, 2009). The 

fixed operating and maintenance cost is at 17.5 €/tonne for fly ash and 21.5 €/tonne 

                                                 
24 http://en.wikipedia.org/wiki/Ground_granulated_blast-furnace_slag 
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for slag (McKinsey & Company, 2009). We assume one year for both replacements to 

fully take place and an amortization period of one year. 

3.2.2.2.  Increased share of waste or biomass as kiln fuel 

This option assumes the substitution of fossil fuels in the cement kiln with 

alternative fuels (municipal and industrial fossil waste or biomass). This will reduce 

the average fuel combustion emissions of the clinker making process. It is assumed 

that CO2 from biomass is climate-neutral. The real reductions of CO2 emissions at the 

alternative waste-disposal operations are attributed to the cement sector and sufficient 

amount of biomass and waste are available to substitute fossil fuels. The average 

efficiency of increased share of waste as kiln fuel is at 21%
25
 and of increased share 

of biomass as kiln fuel is at 34% (Karagiorgas, 2010).  

Fuel calorific value for the abatement option of waste as fuel is 21 GJ/tonne 

(Tsakalakis, 2010) and for the abatement option of biomass as fuel is 16 GJ/tonne
26
. 

The capital cost is at 200 €/tonne for both abatement options (McKinsey & Company, 

2009). The fixed operating and maintenance cost is at 12 €/tonne for waste as fuel and 

27 €/tonne for biomass as fuel (McKinsey & Company, 2009). For the increased share 

of waste as fuel we assume one year for the abatement option to fully take place and 

an amortization period of one year. For increased share of biomass as fuel four years 

are needed for biomass plants to be constructed (PPC, 2012) while the amortization 

period is three years (Karagiorgas et al., 2010). 

 

 

 

 

                                                 
25 http://en.wikipedia.org/wiki/Waste-to-energy  
26 http://www.omafra.gov.on.ca/english/index.html  
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3.2.3. Iron and Steel 

 Since 1937, iron and steel sector is also one of the leaders in the Greek 

industry. After 2000 the sector experienced a rapid growth, however the last couple of 

years it has been highly affected by the global financial crisis. The three major 

companies of iron and steel industry are Hellenic Halyvourgia, Sidenor S.A. and 

Hellenic Steel
27
 with total installed capacity at 4,445 million tones. Specifically, 

Hellenic Halyvoyrgia operates two plants in Volos and Velestino
28
 with total installed 

capacity of 1.3 million tons
29
. Sidenor S.A. operates two plants in Thessaloniki and 

Almyros with total installed capacity of 2 million tons
30
. Hellenic Steel operates one 

plant in Thessaloniki with installed capacity of 1,145 million tons
31
. A distinctive 

mark of the financial crisis is the low annual load factor which is only 5.6%
32
. 

The available mitigation options in this subsector are discussed next. 

3.2.3.1.  Co-generation 

The Blast furnace (BF) and Basic Oxygen furnace (BOF) in steel 

manufacturing process generate waste gas as a by-product. This abatement option 

recovers the gas and cleans it and then uses it for power generation. Co-generation is 

assumed to be a thermodynamically efficient use of fuel because instead of disposing 

the waste heat which is produced in the process, it employs it in a good use. This 

option is integrated into the furnaces and helps towards the reduction of the total 

energy demand. All energy plants which use BF and BOF can be generated internally 

without the need of an outside generation at all. The average efficiency of co-

                                                 
27
 Halivourgiki is another major company which however it is not operating for the last year and it is 

not included in our analysis. 
28
 Aspropyrgos plant with installed capacity of 0,4 million tons was closed. 

29 http://www.hlv.gr/company-facilities-en.html/   
30 http://www.sidenor.gr/PlainText.aspx?MenuTxtId=20&lang=GR/    
31 https://www.steelbb.com/?PageID=157&article_id=84264/   
32
 http://www.greenpeace.org/greece/el/blog/blog_dimitris_ibrahim/blog/48287/  
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generation is at 80%
33
. Fuel calorific value for the co-generation due to burning of 

natural gas is 38.1 GJ/tonne
34
. The capital cost is at 70 €/tonne and the fixed operating 

and maintenance cost is at 0 €/tonne (McKinsey & Company, 2009). We assume that 

co-generation is applied after one year while the amortization period is four years
35
.  

3.2.3.2.  Direct casting 

Current techniques in steel casting favor the continuous casting into slabs, 

billets and blooms. After the casting and during the rolling, they need to be reheated 

in order to take the final shape. This abatement option integrates the casting and hot 

rolling into one step and reduces the heat needed. In addition, it incorporates two 

newly developed direct casting techniques, namely the net-shape casting and the strip 

casting. The only drawback is that it can only be applied to new-builds. The average 

efficiency of direct casting is at 90%
36
. The capital cost is at 80 €/tonne and the fixed 

operating and maintenance cost is at 0 €/tonne (McKinsey & Company, 2009). We 

assume that direct casting is applied after one year and the amortization period is three 

years. 

3.2.3.3.  Smelt reduction 

As smelting reduction abatement option we can group a set of ironmaking 

processes which aim to surpass certain fundamental problems of the currently in-use 

blast furnace route. Such problems are the dependence on large scale operation, 

reliance on coking coal and environmental pollution. Specifically, this abatement 

option combines upstream hot metal production processes into one step and therefore 

it completely avoids the coking process. The result is less fuel used and less 

                                                 
33
 http://en.wikipedia.org/wiki/Cogeneration  

34
 http://setis.ec.europa.eu/technologies/Cogeneration-of-heat/info  

35 
http://www.cumminspower.com/www/literature/technicalpapers/PT-7018-EvaluatingCogen-en.pdf  

36 
http://climatetechwiki.org/technology/direct-casting  
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emissions. The average efficiency of smelt reduction is at 29%
37
. The capital cost is at 

100 €/tonne and the fixed operating and maintenance cost is at 0 €/tonne (McKinsey , 

2009). Smelt reduction needs up to ten years
38
 in order to be available in Greece 

(currently it is available only in developing countries) and the amortization period is 

four years. 

 

4. Cost analysis 

In order to find the least cost of each potential technology we use the cost 

function given by:
 39
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Where tC represents the annual Capital cost; tFOM and VOMt the annual Fixed and 

Variable Operating and Maintenance cost respectively; tF stands for the annual Fuel 

cost; tP  represents the amount of energy produced from the candidate power 

technology in year t; r represents the discount rate; N represents the number of 

years.
40
  

 In these lines we present in Tables 1-4 the least cost options and the abatement 

potentials for each abatement technology option. We used the abatement potential 

from McKinsey & Company (2009). Table 1 shows the least costs for the energy 

sector. 

 

                                                 
37
 http://climatetechwiki.org/technology/smelt-reduction  

38 
http://climatetechwiki.org/technology/smelt-reduction/     

39
 We acknowledge the help of the member of our research team Chris Tziourtzioumis for discussions 

and advice on the least cost calculations.   
40
 A number of other cost functions are used in the calculation of the least cost of each potential 

technology like annual energy production, annual capital cost, annual fixed and variable operating and 

maintenance costs and the annual fuel cost. For simplicity these cost functions are not presented here. 
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Table 1: Least cost options and abatement potentials for Energy sector 

Abatement options Least cost options (million €) Abatement potentials 

Wind power 39.12 7.9% 

Solar photovoltaic 49.18 10.5% 

Geothermal energy 44.66 5.25% 

Biomass 356.85 11.2% 

Small-hydro 39.52 4.5% 

 

Table 2 shows that energy efficiency from behavioural changes is the least 

cost option with abatement potential up to 2.75%. On the other hand carbon capture 

and storage abatement technology option has an abatement potential up to 40%. 

Table 2: Least cost options and abatement potentials for petroleum downstream 

refining subsector 

Abatement options 
Least cost option (million 

€) 
Abatement potential 

Energy efficiency from 

behavioral changes 
0 2.75% 

Energy efficiency from 

improved maintenance and 

process control 

319.49 4.25% 

Energy efficiency 

requiring Capital expenses 

at process unit level 

831.229 4.2% 

Carbon capture and 

storage 
43.451 40% 

  
Table 3 shows that clinker replacement with slag is the least cost option with 

abatement potential up to 50%.  

Table 3: Least cost options and abatement potentials for cement subsector  

Abatement options Least cost option (million €) Abatement potential
41

 

Clinker replacement 

with fly ash 
241.29 50% 

Clinker replacement 

with slag 
223.02 50% 

Increased share of waste 

as kiln fuel 
765.60 27%  

Increased share of 

biomass as kiln fuel 
710.17 27% 

Table 4 demonstrates that energy efficiency improvements is the least cost 

option with abatement potential up to 32%. 

                                                 
41
 The abatement potential for clinker replacement with fly ash and with slag and the abatement 

potential for increased share of waste and biomass as kiln fuel are all in average values. 
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Table 4: Least cost options and abatement potentials for iron and Steel subsector 

Abatement options Least cost option (million €) Abatement potential 

Energy efficiency 

improvements 
1.91 32% 

Co-generation 34.40 21% 

Direct casting 4.49 3% 

Smelt reduction 10.45 12% 

 

Next, we will focus our analysis at a plant level. Table 5 presents a brief 

overview for the energy sector concerning the existing thermal plants in Greece. 

Specifically we present the number of units for each plant, the fuels used and the 

installed capacity (in MW) (YPEKA, 2013)
42
. Table 6 presents the cost-effectiveness 

of the conversion to RES. 

Table 5: Existing thermal power plants in Greece 

Power plant Region 
Number of 

units 
Fuel used 

Installed Capacity 

(MW) 

Agios Georgios Attica 2 NG 360 

Agios Dimitrios W. Macedonia 5 Lignite 1595 

Aliveri C. Greece  4 Mazut 380 

Amynteo W. Macedonia 2 Lignite 600 

Kardia W. Macedonia 4 Lignite 1250 

Lavrio Attica 5 NG-Mazut 1572 

Liptol W. Macedonia 2 Lignite 43 

Megalopoli Peloponnese 4 Lignite 850 

Ptolemaida W. Macedonia 4 Lignite 620 

Linoperamata Crete 12 Diesel-Mazut 192.87 

Florina W. Macedonia 1 Lignite 330 

Komotini Thrace 1 NG 485 

Rhodes Dodekanisa 10 Diesel-Mazut 206.11 

  

 Table 6: Cost effectiveness for thermal power plants 

                                   Cost effectiveness (€/ t CO2 equivalent) 

Power plant Small-hydro Solar Photovoltaic Geothermal Biomass Wind 

Agios Georgios 650.96 818.40 657.60 5938.16 743.15 

Agios Dimitrios 1035.85 1302.28 1046.41 9449.14 1182.55 

Aliveri 2920.30 3671.43 2950.07 26639.27 3333.87 

Amynteo 1024.67 1288.22 1035.11 9347.11 1169.78 

Kardia 1047.95 1317.50 1058.64 9559.55 1196.36 

Lavrio 3020.21 3797.04 3050.99 27550.61 3447.92 

Liptol 991.37 1246.36 1001.47 9043.33 1131.76 

Megalopoli 1031.41 1296.70 1041.92 9408.61 1177.47 

Ptolemaida 1021.01 1283.62 1031.41 9313.73 1165.60 

Linoperamata 2964.41 3726.89 2994.63 27041.66 3384.23 

Florina 1014.42 1275.34 1024.76 9253.64 1158.08 

Komotini 648.21 814.94 654.82 5913.06 740.01 

Rhodes 3167.91 3982.73 3200.20 28898.00 3616.54 

 

                                                 
42
 http://www.dei.gr/el/i-dei/i-etairia/tomeis-drastiriotitas/paragwgi/analutikos-xartis-stathmwn  
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Next, in a similar way, tables 7-12 present the information for petroleum 

refineries, cement and iron and steel plants.  

Table 7: Installed capacity and pollutants for petroleum refineries  
Company Refinery Region Installed Capacity (MW) 

Aspropyrgos Attica 239.38 

Thessaloniki C. Macedonia 132.96 
Hellenic 

Petroleum 
Elefsina Attica 177.31 

Motor Oil Hellas Agioi Theodoroi Peloponnese 177.31 

 

Table 8: Installed capacity and pollutants for cement plants  

Company Plant Region 
Installed Capacity  

(thousands tons of cement) 

Volos Magnesia 4500 Heracles GCC 

(Lafarge Group) Milaki (Evia) C. Greece 2200 

Elefsina Attica 140 

Thessaloniki C. Macedonia 2000 

Drepano (Ahaia) Peloponnese 2000 
TITAN 

Kamari C. Greece 2900 

Halyps Cement 

(Italcementi Group) 
Aspropyrgos Attica 1000 

 

Table 9: Installed capacity and pollutants for iron and steel plants  

Company Plant Region 

Installed Capacity 

(thousands tons of 

cement) 

Velestinos Magnesia 700 Hellenic 

Halyvourgia Volos Magnesia 600 

Thessaloniki C. Macedonia 800 
Sidenor S.A. 

Almyros Magnesia 1200 

Hellenic Steel Thessaloniki C. Macedonia 1145 

 

Table 10: Abatement costs for petroleum refineries 

 

 

 

 

 

 

 

 

 Abatement cost (thousand €) 

Refinery 

Energy efficiency 

from behavioural 

changes 

Energy 

efficiency 

from improved 

maintenance 

and process 

control 

Energy 

efficiency 

requiring Capital 

expenses at 

process unit level 

 

Carbon 

capture and 

storage 

Aspropyrgos 0 10521.19 273726.19 14308.82 

Thessaloniki 0 5843.59 152030.72 7947.29 

Elefsina 0 7792.77 202741.93 10598.17 

Agioi 

Theodoroi 
0 7792.77 202741.93 10598.17 
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Table 11: Abatement costs for cement plants 

 

Table 12: Abatement costs for iron and steel plants 

 

 

5. Marginal Abatement cost curves and policy implications 

Following Kesicki (2011) mitigation policies can be divided into two 

categories: incentive and non-incentive based instruments. On the one hand, incentive 

based instruments create motives for the emitters to reduce their emissions. They are 

preferred relative to non-incentive instruments because they do not enforce a solution; 

on the contrary they motivate towards a lower level of emissions and let the market  

choose the optimal solution. Incentive based instruments might take two forms: price-

based instruments such as taxes and quantity-based instruments such as tradable 

permits. Both of these instruments set a limit for the emissions and it is assumed that 

up to this point all the available abatement options will take place.  

Specifically, taxation on emissions incentivizes an emitting firm to internalize 

the cost of its emissions. The firm who wishes to maximize its profits will control the 

emissions through mitigation policy up to the point which it costs less than the 

imposed tax. A cap and trade system creates a market for emission permits which are 

 Abatement cost (thousand €) 

Plant 
Replacement of 

clinker with fly ash 

Replacement of 

clinker with slag 

Increased share of 

waste as fuel  

Increased share of 

biomass as fuel 

Volos 73.67 68.09 233.73 216.81 

Milaki (Evia) 36.01 33.29 114.27 106.00 

Elefsina 2.29 21.18 7.27 6.75 

Thessaloniki 32.74 30.26 103.88 96.36 

Drepano (Ahaia) 32.74 30.26 103.88 96.36 

Kamari 47.47 43.88 150.63 139.72 

Aspropyrgos 16.37 15.13 51.94 48.18 

 Abatement cost (thousand €) 

Plant 
Improvements in 

energy efficiency 
Co-generation Direct casting 

Smelt 

reduction 

Velestinos 0.30 5.42 0.71 1.65 

Volos 0.26 4.64 0.61 1.41 

Thessaloniki 0.34 6.19 0.81 1.88 

Almyros 0.52 9.29 1.21 2.82 

Thessaloniki 0.49 8.86 1.16 2.69 
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tradable. These permits define the amount of emissions which any source is able to 

emit. Emissions above this point or without any permit are charged with large fines. 

The total amount of permits inside a market defines the optimal level of emissions. 

 Non-incentive based instruments are considered less efficient than incentive 

based instruments because they are less flexible and they do not let the market to 

choose the optimal solution. However, they are considered as necessary in the 

presence of market imperfections. Non-incentive based instruments can be divided 

into two categories: command and control policies and research and development and 

deployment policies (Keisicki 2011). Command and control policies are enforced 

through regulation and they cannot be ignored by any party. They are useful in case of 

market failures such as imperfect information and they can be enforced at the first part 

of the MAC curve, the negative part.  

As mentioned previously, negative costs for abatement options imply that 

these options have to be confronted with the existing methods in the business as usual 

economic activities. This market failure can be easily tackled with command and 

control policies. Command and control policies among others might take the form of 

standards, voluntary agreements and subsides. Conversely research and development 

policies are useful for the last (steep) part of the MAC curve where the marginal 

abatement cost is very high. The target is to promote innovation through academic 

and non-academic research and projects. Deployment policies are also useful for the 

last part of the MAC curve and they may be formed by fiscal or non-fiscal policies. 

Following Kesicki (2011) the first part of MAC curve, where negative 

marginal abatement costs are present due to market imperfections, command and 

control policies are the best available option. The second part of the MAC curve 

where the marginal abatement cost is positive the optimal policies are price or 
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quantity market-based instruments such as taxes and tradable permits. The last part of 

the MAC curve where marginal abatement costs are very high demands research and 

development or deployment policies.  

Next in Figure 1 we present the MAC curve for the energy and industry 

sectors. The business as usual economic activity is the standard activity which is 

presently in action, for example the energy sector to continue with its present form 

which is based primarily to lignite. At the first part of the MAC curve, the negative 

part, there are five abatement options, namely small-hydro, behavioral changes in 

petroleum refineries, direct casting, smelt reduction and co-generation for iron and 

steel. Specifically, small-hydro offers the ability to abate 1494 thousand t CO2 

equivalent for a marginal abatement cost of -19.93 euro/tCO2 equivalent. 

 Furthermore, behavioral changes abatement option in petroleum refineries 

offers the opportunity to abate up to 1498.76 thousand t CO2 equivalent for a marginal 

abatement cost of -0.51 €/ t CO2 equivalent. Direct casting abatement options for iron 

and steel can abate up to 1503.21 thousand t CO2 equivalent for a marginal abatement 

cost of -0.48 €/ t CO2 equivalent. Smelt reduction abatement option for iron and steel 

can abate up to 1520.99 thousand t CO2 equivalent for a marginal abatement cost of    

-0.41 €/ t CO2 equivalent. Co-generation abatement option for iron and steel offers the 

opportunity to abate up to 1552.12 thousand t CO2 equivalent for a marginal 

abatement cost of -0.18 €/ t CO2 equivalent.  

 Regarding the above analysis this might be a result of market imperfection 

such as split incentives, imperfect information or other barriers. The optimal strategy 

for this abatement option is to impose command and control policies in order to build 

more small-hydro plants. Innes and Bial (2002) found evidence that support setting 

environmental standards as a better option than market-based instruments such as 
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taxes. In addition, Requate and Unold (2003) compared a number of alternative 

climate change policies and found that in some cases command and control policies, 

and specifically imposing standards, appear to perform better than other instruments. 

Bauman et al. (2008) found evidence that command and control policies work better 

than market-based instruments for the case of Korean energy sector. 

Furthermore, seven abatement options which appear to be at the second part of 

the MAC curve where market-based policies are the optimal strategy. Specifically, 

increased share of biomass as a fuel at cement plants offers the opportunity to abate 

up to 2035.96 thousand t CO2 equivalent for a marginal abatement cost of 0.22 €/ t 

CO2 equivalent. Increased share of wastes as a fuel at cement plants can abate up to 

2519.80 thousand t CO2 equivalent for a marginal abatement cost of 0.65 €/ t CO2 

equivalent. Clinker replacement with slag at cement plants can abate up to 3415.80 

thousand tCO2 equivalent for a marginal abatement cost of 0.77 €/ t CO2 equivalent. 

Clinker replacement with fly-ash at cement plants can abate up to 4311.80 thousand t 

CO2 equivalent for a marginal abatement cost of 0.91 €/ t CO2 equivalent. 

Moreover, the abatement option of geothermal energy we can abate up to 

6054.80 thousand t CO2 equivalent for a marginal abatement cost of 23.58 €/ t CO2 

equivalent. Furthermore, wind power abatement option offers the opportunity to abate 

up to 8677.60 thousand t CO2 equivalent. for a marginal abatement cost of 38.49 €/ t 

CO2 equivalent, and solar photovoltaic abatement option can abate up to 12163.60 

thousand t CO2 equivalent for a marginal abatement cost of 52.60 €/ t CO2 equivalent. 

Price-based instruments such as taxes or quantity-based instruments such as tradable 

permits are among others the optimal options towards the realization of these 

abatement options.  
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There are mixed results across the literature about taxes and permits. Jung et 

al. (1996) examined auctioned and tradable permits, emission taxes and subsidies and 

standards. The authors found that permits provide the best results followed by taxes. 

Kennedy and Laplante (1999) examined taxes and permit and found that taxes 

perform slightly better although the differences are not large. Carlson et al. (2000) 

examine the market for SO2 tradable permits. They found that tradable permits have 

lowered the marginal abatement costs. Montero (2002) compared four climate change 

policies, namely emission and performance standards and tradable and auctioned 

permits. The author found in perfect competition permits perform equally or better 

than standards. Requate and Unold (2003) support that taxes is a better instrument 

than permits in terms of providing incentives to lower emissions. Since all the 

abatement options in industrial subsectors have low marginal abatement costs we did 

not propose any abatement options which require R&D or deployment policies 

without implying that innovative and more cost-effective control methods are not 

always encouraged. 

Biomass abatement option is on the far right corner of our energy MAC curve 

with an extremely high marginal abatement cost at 148.57 €/ t CO2 equivalent, and 

also very high abatement potential up to 15882 thousand t CO2 equivalent. The very 

high marginal abatement cost should be addressed with R&D or deployment policies. 

There are controversial findings regarding these policies across the literature. 

According to Parry (1998) welfare gains from these policies (e.g. R&D subsidies) are 

insignificant. Innes and Bial (2002) argue that innovating firms among others benefit 

from the high cost of their rivals after their successful innovation. Bauman et al. 

(2008) found no support than innovations lower marginal abatement costs; on the 

contrary some innovations increased the marginal abatement costs for Korean energy 
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sector. Loschel (2002) found evidence that technical change through innovation and 

R&D leads to lower marginal abatement costs, more efficient environmental policy 

both in terms of mitigation potential and time, positive spillovers and negative 

leakage. 

Figure 1: Marginal abatement cost curve for energy and industry sectors  
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6. Conclusions 

In this study we have presented and analyzed the available abatement options 

for the energy sector and the industrial subsectors of petroleum and gas – downstream 

refining, cement and iron and steel considered among the most important and bigger 

pollution sources. We have constructed the abatement cost curve aiming to assist the 

decision maker to determine the optimal strategy for environmental regulation and we 

have discussed the policy implications.  

Our analysis reveals significant potentials in pollution abatement even at 

negative costs. Specifically we found four abatement technologies in industry sector 

and one in energy sector with negative costs. The interpretation of negative cost is that 

society benefits from these abatement technologies both in cost and pollution 

abatement terms. Furthermore, we found that abatement technologies in the industry 

sector cost considerably less than abatement technologies in the energy sector, 

however there are significantly larger abatement potentials in the energy sector. In 

addition, the energy sector emits 33.2 million tons of CO2 equivalent while the 

industry sector emits 2.11 million tons of CO2 equivalent (YPEKA, 2013). To sum 

up, the energy sector is by far the larger emitter but it presents significant 

opportunities for pollution abatement.  
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