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THE SMALL MULT IPLE IN
ECONOMETR ICS – A REDES IGN

klein , torsten l .*

December 11, 2014

�is brief note serves as a companion paper to Klein (2014). Small
multiples incorporate graphical frameworks such as P value plots with
ease, and thus facilitate visualizing quantitative data that record pa-
rameter change from simulation experiments. Pitfalls in layout may
be avoided when observing elementary design principles. To illustrate
their workings the principles revise a small multiple that collects simu-
lation results on the empirical size of procedures testing exogeneity in
the bivariate probit model.

jel code : C10, C15, C35, C52, Y10.
keywords : Monte Carlo, bivariate probit model, exogeneity

testing; data visualization.

1 SHAP ING EV IDENCE : THE SMALL MULT IPLE
AND GUIDEL INES FOR EFFECT IVE DES IGN

Analyzing characteristics of statistical tests obtained from Monte
Carlo simulation P value plots o�er a comprehensive approach to ex-
amine quantitative results. Figure 1 gives an example. It compares the
empirical size of seven testing procedures according to their P values’
empirical distribution function (EDF) for a particular combination
of data generating process (DGP) and sample length (N).1 Changing
these parameters will change the empirical size of tests. One method
of framing variation stores the evidence to a small multiple.

* pas Research Unit, B7,17, 68159 Mannheim, Germany, tl.klein@gmx.de. I am
grateful for comments from Rainer Fath. All errors are mine.

1 Davidson and MacKinnon (1998) introduce the concept of P value plots in de-
tail. Figure 1 replicates simulation evidence from a Monte Carlo experiment by
Monfardini and Radice (2008) on tests of exogeneity in the bivariate probit model.
Additional information on both the graphical framework as well as the simulation
can be found in Klein (2014).
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�e small multiple is constructed by duplicating a graphical
object, keeping its form intact while varying content. Each duplicated
object will then be arranged on the medium of communication. In
a two-dimensional environment such as the printed page or the
inanimate computer screen all duplicates obtained from �gure 1 by
changing simulation design are placed into a matrix of P value plots:
while the data generating process varies along one dimension the
length of the sample estimation is based on varies along the other.2
A possible arrangement is displayed in Figure 2.

Although the small multiple creates a simple structure care needs
to be taken for maintaining the convenience of its graphical building
block. Figure 2 makes a case in point: the small multiple picks �gure
1 as a nucleus, and copies every component to its slots. Easy to grasp
it is not. �e evolution of size seems clad in static accessory giving
readers, whether author or audience, a hard time to part substance
from supplement. Just like plain text an early dra� of graphical dis-
plays may therefore bene�t from sensible editing too. In order to �nd
content an e�ective layout the principles mentioned in Tu�e (1983,
92–100, 162–169) o�er advice: put information �rst, kill redundancy
in ink, whether data-related or not, and space. �e Monte Carlo ex-
ercise generates meaningful information by contingent comparison
of test size – for di�erent parameter sets, to nominal signi�cance,
to competing procedures. �e small multiple helps organizing such
comparison; any revision must try and put this quality to best use.

�ere are two basic strategies when revising �gures, one additive,
the other reductive. �e �rst one starts by showing bare facts only,
subsequently placing feature a�er feature that helps explain them to
the reader; the second one takes the opposite direction, removing
from a given dra� any element not deemed necessary for e�ectively
communicating its central idea. In what follows �gure 2 serves as a
starting point to be stripped of all things irrelevant for understanding
simulation results.

2 Further details on the small multiple can be found in Tu�e (1983, 170–174) and
Tu�e (1990, 67–79). If more than two parameters vary one can iterate on the
building principle. Each cell entry may then itself contain a matrix, constructed
from another multiple, and so forth (Tu�e, 1990, 29).
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2 A STEP–BY–STEP REV I S ION OF THE SMALL
MULT IPLE

�e checkup of �gure 2 starts with P value plots themselves. Some
judgment is required as to whether every setting should be taken into
account. A sensible strategy weighs providing more information to
the reader against consuming more of limited space. Presenting the
entire simulation output creates a matrix �gure of 15 entries (3× 5),
each to store results for the seven procedures under study – a total
of 105 objects arranging 22,575 data points. Which quantitative infor-
mation is essential, and should therefore be kept, which is redundant,
and could easily be omitted? �ree tests (LM2, LM3 and LM4) show
heavy size distortion for all combinations of DGP and sample length
considered. �eir EDF remains zero for small to medium nominal
signi�cance levels. Due to such lack of variation P value plots fail
to contribute anything beyond the notion of under-rejection which
is most e�ciently stated in plain text. Hence, they are erased. In
contrast to standard tabular displays of Monte Carlo exercises re-
porting empirical size at a few levels only, the small multiple plots P
values over the entire domain of nominal signi�cance. But for results
this would be valuable only if it takes the (0, 1) interval to establish
pattern and regularity; since most of the time inference operates on
the le� tail of EDF, the revised small multiple in �gure 3 considers
evidence associated with nominal values smaller than 0.5.

Another task when revising concerns legibility. If procedures ex-
hibit similar behavior under given simulation conditions, e.g. in large
samples, their P value plots become clustered and therefore hard to
distinguish. �ough disorder means comparability in performance
and so contains valuable information Davidson and MacKinnon
(1998, 3) recommend using not the empirical distribution function,
but P value discrepancy plots: the di�erence between EDF and nom-
inal signi�cance level.3 Challenges for legibility arise in the opposite
direction as well. �e small multiple collects evidence over a se-
quence of ��een parameter variations generating among procedures
marked size distortion as well as almost ideal behavior. Treated one
by one, each of the associated sub-�gures could receive a di�erent

3 �e use of P value discrepancies also facilitates incorporating a variant of the
Kolmogorov-Smirnov test on whether EDF is compatible with its theoretical coun-
terpart, the uniform distribution, cf. �gure 3 and Davidson and MacKinnon (1998,
11).
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range of scaling, yet mutual comparability calls for �tting the same
scale on all of them. One option resorts to identical, but non-linear
scaling that compresses large discrepancies and ampli�es smaller
ones: �gure 3 employs a simple power transformation to achieve
both ends.4 �e price to pay comes with two connected drawbacks.
Non-linear scaling labels evenly spaced ticks irregularly, and compli-
cates assessment of points on the EDF that fall in-between. However,
the trade-o� seems acceptable, because of the comparative focus in
the simulation exercise.

P value plots channel all quantitative information to the empiri-
cal distribution function. Unless essential to understanding, every-
thing else in �gure 2 can – and should – be disposed of. Frames and
labels and legend surrounding each sub-�gure obstruct comparison
between results of di�erent parameter sets; grid lines compete with
EDF for space and recognition in the respective display area. Instead,
ticks may be detached from their frame and placed in the margin
between sub-�gures to guide the reader. Allowing better comparison
of empirical size between rows ticks are set in column-speci�c ranges
that mark for each sample length the maximum over- and under-
rejection. Adequate coloring can bring relevant information to the
fore while restraining supplementary elements. Finally, the small
multiple may be shrunk in size without compromising accessibility
of information, an adjustment which helps to realign display with
the general orientation of the body text.

Not every obstacle to communicating quantitative information
will be removed by applying the principles stated in the previous sec-
tion. If there is a lot of data to report shortening the EDF’s interval
on display, employing discrepancy plots or converting scales will not
always produce a design easy to read. Hence, there exists a limit as to
how many objects one �gure may incorporate. Also, small multiples
are most e�ective when they tell a unidirectional story. Map is one-
to-one: moving further in one direction of the parameter domain
associates withmoving further in the same direction of the results’ tar-
get set, for all objects under study. From the small multiple in �gure
3, for example, the reader may recognize at a glance that irrespective
of the data generating process simulating with larger samples will
reduce over-rejection for all testing procedures. On the other hand,
changing the data generating process a�ects di�erent tests in a di�er-

4 Other remedies include using multiple or split scales in one �gure, or cutting o�
dispensable observations.
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ent manner.5 Here, examining the small multiple requires more time
and e�ort to disentangle the opposing consequences. Readability
su�ers.
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5 Take CM and LM1: for the former a move from DGP1 to DGP2 results in lower
size distortion than one from DGP1 to DGP3, for the latter the reverse is true. �e
non-uniform behavior seems more likely to occur if, as is the case here, more than
one simulation parameter changes while moving from one matrix entry to the
next, cf. Klein (2014, table 4).
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Figure 1: P value plots – comparing empirical size of testing proce-
dures.

Source: Klein (2014)
Notes: �e �gure depicts for a speci�c combination of data generating process
(DGP) and sample length (N) the empirical distribution function (EDF) of proce-
dures testing exogeneity in the bivariate probit model analysed by Monfardini and
Radice (2008, section iv).
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Figure 3:�e small multiple – a redesign of �gure 2 using P value
discrepancies.

Notes: P value discrepancies are calculated by taking the di�erence between the P
values’ empirical distribution function F̂(x i) and nodes x i inserted for evaluation.
Each ordinate is scaled non-linearly according to the power transformation g: y ↦
sgn(y) ⋅ ∣y∣0.5. �e shaded area enveloping abscissae indicates the non-rejection
region of the Kolmogorov-Smirnov test at 0.05 critical values.
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