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ABSTRACT 

 
Eight consumption-based asset pricing models are developed, 

estimated and compared their capacities in accounting for the asset 
markets in Hong Kong. Results based on conventional metrics or recently 
developed econometric techniques deliver similar results: introducing 
housing into the consumption-based models does not always improve the 
models’ performance; how it is introduced matters. Recursive utility 
model and its housing-augmented variant, which emphasize the 
importance of early resolution of uncertainty and long term risk, 
outperform alternative models in forecasting stock returns. Collateral 
constraint model outperforms in predicting housing return, suggesting the 
importance of imperfect capital market in the housing market.  
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1. INTRODUCTION   

 

This paper attempts to contribute to the literature by identifying the key determinants of 

the asset prices. More specifically, this paper constructs a series of consumption-based asset 

price models, and compares their empirical performance in explaining the housing and stock 

markets. As each model emphasizes a different set of driving force for the asset price 

movements, a comparison of model performance approximates a scientific assessment of 

different theories; each highlights a different set of asset price determinants. An evaluation of 

alternative asset price theories goes beyond intellectual curiosity. The trend of increasing 

integration of asset markets, the co-movements of the aggregate economy and asset markets 

during the recent global financial crisis may point to a different role of the central banks, as 

well as government intervention in the midst of potential asset market failure.1 To address 

such a need, a unifying framework of the asset markets and the macro- economy is clearly 

demanded.  

In fact, the economics literature has long sought to establish such a framework. For 

instance, Consumption-based Capital Asset Pricing Model (referred to canonical CCAPM 

hereafter), originally raised by Lucas (1978) and others, has been developed to relate the 

aggregate consumption to the stock market. Following the canonical CCAPM, researchers 

modified and extended the canonical model mainly in order to improve its empirical 

performance, including: (1) Recursive Preference (Epstein and Zin, 1989, 1991; Weil, 1989); 

(2) Habit Formation (Abel, 1990, 1999; Campbell and Cochrane, 1999; Constantinides, 1990). 

A common theme among these models is time-non-separability, i.e. they allow the marginal 

utility of consumption in the current period depends on previous period consumption or some 

valuation on the possible future holding.2 We will provide more discussion on this in later 

sections. 

Recently, researchers have also extended the canonical CCAPM to include housing in 

the utility function (as a durable consumption good) and in the budget constraint (as an asset). 

                                                              
1
  It is beyond the scope of this paper to discuss this literature. Among others, see Claessens et al. (2014) and the 

reference therein. 
2 Among others, see also Leung and Chen (2006, 2010) on the implications of time-non-separability on the asset 
price movements. 
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Piazzesi, Schneider and Tuzel (2005) label that as “Housing CCAPM” (HCCAPM). The main 

idea of this model is that the representative agent not only concerns the consumption volatility, 

but also the composition risk: the fluctuation in the relative share of housing service in their 

consumption basket. They also show that the non-housing consumption share can be useful in 

predicting the stock return, suggesting that there is a cross-market informational spillover. 

Other authors introduce housing collateral constraint (among others, Lustig and 

Nieuwerburgh, 2005; Iacoviello, 2004), or labor income and home production (Ludvigson and 

Campbell, 2001; Santos and Veronesi, 2006; Davis and Martin, 2009, etc.) into the model, 

which seem to improve the asset price prediction. 

Following all these contributions, this paper attempts to complement the literature by 

providing a comparison of model performance with data of an Asian city, namely, Hong Kong. 

3As most of the previous literature focus on the U.S. data, there are reasons to re-examine 

these models in a different context.4 First, the United States is a large country and hence the 

national housing price index is inevitably a weighted average of the house prices among very 

different regions (for instance, see Green et al, 2005). In contrast, Hong Kong is only a small 

city in terms of geographical area (only about 8% of the New York City), and hence the 

degree of “aggregation bias” in the Hong Kong housing price index may be lower than that in 

the U.S. national counterpart (for instance, see Hanushek et al, 2004). At the same time such a 

small area has about seven million inhabitants currently. The high population density of Hong 

Kong also leads to the existence of an active housing market, which may facilitate the 

interpretation. Second, this paper can provide a robustness check, for instance, whether the 

results in the previous contributions depend on certain institutional setting specific to the 

United States. For instance, the U.S. practices local public finance in the sense that the local 

public goods (including the service of public education, local civil servants, etc.) are financed 

by the property tax in the local district, the counterpart in Hong Kong is financed by the total 

government revenue of the Hong Kong government, which tends to make “local sorting” less 

                                                              
3 After the circulation of the first version of the paper, we are informed about the existence of Gordon and Samson 
(2002), which compare the canonical CCAPM, a CES-extension and the recursive utility model with Canadian 
data. They did not include housing in their analysis and they did not include neither the home production nor the 
collateral constraint model in their comparison. 
4
An important exception is Hwang and Lum (2010). More discussion on that paper will be followed. 
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severe in Hong Kong.5 Third, from the perspective of economic and financial market 

development, Hong Kong is a typical example for the case of “intermediate” development 

level, in the sense that it is not as developed as the U.S. and at the same time at least as 

developed as most countries in Asia. Hence, there may be some lessons for other countries 

currently or going to have the same degree of development. Fourth, certain aspects of the 

institutional setting in Hong Kong may help to simplify the analysis. For instance, Hong 

Kong uses effectively linear tax with no capital gain while US has progressive tax with capital 

gain, which could potentially affect the trading behavior. During our sampling period, the 

nominal exchange rate between the U.S. dollar and Hong Kong dollar is fixed, with no capital 

control or other origin-based discriminating policies imposed in Hong Kong.6 Moreover, due 

to various historical reasons, the boundary of Hong Kong has been fixed even before the 

Second World War.7 All these reasons stated above make Hong Kong a natural candidate for 

a comparison study.  

It also seems to be a natural practice to compare the performance across different models. 

Obviously, all models are abstract of the reality and hence no model can capture every aspect 

of the reality. Nevertheless, for academic as well as policy reasons, we are still interested in 

knowing the “important driving forces” of the asset markets, which may not be directly 

observable. A comparison of model performance would shed light on those driving forces. For 

instance, if the “collateral model” outperforms the alternatives, it may follow that the capital 

market imperfection is indeed a very crucial factor of the asset market. On the other hand, if 

the “labor income model” outperforms the others, it may suggest that the labor market exerts 

significant influence to the asset market.  

To facilitate the comparison, therefore, we actually present both several existing models 

of asset pricing, plus the extensions which include housing. Thus we allow for the fact that 

while some models may not be able to account for the stock market as well as other 

competing models, the “housing-augmented version” may enhance the performance. 

                                                              
5 For an analysis on how the finance of local public goods can affect the sorting of economic agents and hence 
affect the housing market, see Hanushek and Yilmaz (2007), among others. 
6 In contrast, some countries will give a tax-advantage to citizens versus foreigners, while some will give a 
tax-disadvantage.  
7 In contrast, many cities in the U.S. have been expanding in terms of geographical areas in the last few decades. 
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Alternatively, those “housing-augmented versions” may provide superior performance in 

accounting for the housing market performance. More specifically, the models that we 

consider for comparison can be divided into four groups: (1) the consumption-based asset 

pricing models including canonical CCAPM, Habit formation model and Recursive utility 

model; (2) the housing-augmented version of consumption-based models: Housing-CCAPM, 

Housing-Habit formation model and Housing-Recursive utility model; (3) the model contains 

labor income and home production; (4) the collateral constraint model considering borrowing 

capacity of indebted households. 

Equipped with all these models, we are able to address the following questions: First, 

whether the housing-augmented versions outperform the original consumption-based models 

in predicting the stock return; Second, which model provides the best chance to explain both 

HK’s stock and housing price data; Third, whether the consideration of the labor income or 

collateral constraint provides superior empirical performance than the alternatives.  

Clearly, we are not the first attempt to study the empirical performance of 

consumption-based models in Asia. For instance, Hwang and Lum (2010) (henceforth HL) 

study a version of HCCAPM and examine its ability to account for both the stock market and 

the housing market in Singapore. And since Singapore is also an Asian city, that paper and the 

current study do have some overlapping research interests. On the other hand, there are 

important differences between the two papers. First, HL only studies HCCAPM while this 

paper studies several versions of consumption-based models (such as the habit formation 

model, recursive utility model, collateral constraint model, etc.). Second, the major objective 

of HL is to examine the asset market implications of the discretionary land supply policy of 

the Singapore government, while this paper is more concerned on the overall ability for 

consumption-based models to explain the asset prices. Notice that more than 80% of the 

Singapore population live in the subsidized-ownership housing units provided by the 

government and hence it is very sensible to study the government policy in the context of 

Singapore. On the other hand, subsidized-ownership housing units account for roughly 15% 

of the population of Hong Kong.8 The housing markets of the two cities are indeed very 

                                                              
8
Among others, see Leung and Tang (2012, 2014) for more discussion. 
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different. Third, HL is basically a calibration exercise. They use both VAR and OLS to 

estimate certain parameter values, and then simulate their models with those values in their 

models. On the other hand, this paper applies the same GMM estimation approach on a 

collection of consumption-based models and compares the model performance. In fact, to 

facilitate the comparison of model performance, this paper employs two different types of 

model comparison method, which is by nature very different from the model assessment 

scheme used in HL. Thus, the two papers indeed take very different approaches and could be 

interpreted as complementary.9 

The structure of the paper is as follows: Section 2 will briefly provide the details of each 

model to be compared; Section 3 will display the GMM estimation results; Section 4 will 

explain the two criteria of model comparison and the corresponding results. Section 5 

concludes. And the derivation or mathematics details are provided in the appendix. 

2. MODELS 

The several variants of consumption-based models of asset prices that will be considered 

in this paper share a few common features. Most of them are representative agent, frictionless 

models in which forward-looking agents make optimal consumption allocation by trading a 

full set of contingent consumption claims. These models imply that, although returns can vary 

across assets, expected discounted returns should always be the same for every traded asset:  

1 11 ( ) 1,2,..., .i
t t tE M R i N               (1) 

where 1
i
tR   is the one-period (gross) rate of return of asset i and 1tM   is a stochastic 

discount factor (SDF) that can be identified with the representative agent’s intertemporal 

marginal rate of substitution between consumptions at date t and t+1.10 In our empirical 

analysis we focus on two asset returns, namely, stock return 1
s
tR   and housing return 1

h
tR  , 

and the associated Euler equations 1 11 ( )s
t t tE M R  and 1 11 ( ).h

t t tE M R   As each model 

implies a different SDF, we can then compare the performance of various asset pricing models 

                                                              
9Clearly, we are not the first paper to study the asset markets of Hong Kong neither. Previous Asian studies, on the 
other hand, tend to use a reduced form approach and hence this study can be complementary to that literature. 
Among others, see Chang et al (2012, 2013). 
10  See Hansen et al. (2007) and Ludvigson (2012) for surveys of the consumption-based asset pricing literature.  
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based on evaluation criteria derived from the two Euler equations.  

Notice that in (1) the SDF is common to all assets.11 This suggests an analytical shortcut 

for the purpose of deriving the SDF. Rather than writing down a general model with many 

assets, it is sufficient to solve the representative agent’s utility maximization problem with 

only one asset, in particular, the theoretical construct of the wealth portfolio which implies a 

very simple budget constraint.12 This is the approach we are going to take in deriving the 

SDF anew for various consumption-based asset pricing models considered in this paper, some 

of which are generalization of existing models and have not appeared in the literature before. 

In addition to analytical tractability, this approach provides a common platform on which 

many diverse models from the literature can be naturally compared and understood, thereby 

significantly facilitates the identification of key features and insights most relevant for the 

present investigation. In what follows we will only outline the model setup, leaving the 

algebraic details to the appendix. Table 1 provides a one-line summary for each of the 8 

consumption-based asset pricing models considered in this paper.  

(Insert Table 1 here) 

 Notice that (1) is robust in the sense that it holds regardless the housing supply is 

endogenous or not. In the case of exogenous housing supply (e.g. the case of Piazzesi et al., 

2007) (1) can be estimated directly with GMM. If housing supply is endogenous, then we 

should in principle estimate (1) jointly with the first order condition pertaining to the real 

estate developers. In the current context, the amount of new housing supply is very small 

relative to the stock during our sampling period.13 Figure 1 shows that in HK, quarterly 

changes in housing price are many times more volatile than housing supply, suggesting that 

housing returns are mainly demand determined. Moreover, the Hong Kong government only 

provides data of the amount of new housing supply in annual frequency, which does not 

match the quarterly frequency of other data series in this paper. Casual observations also 

suggest that new housing supply is not evenly distributed over time, due to seasonal (such as 

                                                              
11  The existence and uniqueness of SDF follows from the absence of arbitrage opportunities in frictionless 
markets (Hansen and Richard, 1987). In particular, the complete market assumption is necessary for the 
uniqueness of SDF.  
12 Among others, see Singleton (2006) for a discussion of alternative empirical practices in the literature.  
13 Among others, see Leung and Tang (2012, 2014) for an updated analysis of the housing supply in Hong Kong. 
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Christmas and Chinese New Year) or institutional reasons (for instance, students do not go to 

school in the summer and hence some households are more willing to move during 

summer).14 It means that if we use interpolation on the annual housing supply series, we 

might introduce measurement errors into the model. In light of these constraints, it seems 

reasonable to treat housing supply as exogenous, at least for our purpose of explaining 

quarterly returns.  

                          (Insert Figure 1 here) 

We now outline the consumption-based models that will be compared among themselves. 

Model 1: CCAPM 

This is a one-good model in which the representative agent maximizes lifetime utility that 

is separable over time and across states of nature:  

1

1
0

1
( ) ( ) ,   where ( )

1
j

t t j t t t t
j

c
E u C V u C E V u c



 




 



   

       (2) 

where 0 1   is the discount factor; 0   doubles as the coefficient of relative risk 

aversion and the inverse elasticity of intertemporal substitution; and 
tC  is real consumption 

in nondurables and services.  The representative agent’s utility maximization problem with 

the wealth portfolio being the only asset is characterized by the Bellman equation     

 1 1 1 1( , ) max ( ) ( , )   subject to  ( )
t

t t t t t t t t t t
C

V x z u C E V x z x R x C           (3) 

where tx  is the wealth portfolio that delivers the entire consumption stream tC  as the 

dividend; 1tR   is the gross rate of return of the wealth portfolio; and tz  is an exogenous  

Markovian random shock driving the wealth return. Solving the Bellman equation results in 

an Euler equation for asset return that looks like (1) with the SDF being     

1
1

t
t

t

C
M

C









 
  

 
.              (4) 

 

Model 2: HCCAPM  

                                                              
14 Among others, see Harding et al. (2003). 
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This is a two-good generalization of CCAPM by Piazessi et al. (2007). The 

representative agent’s lifetime utility is the same as in (2) but 
tC  is now an aggregate of 

non-housing consumption 
tc  and housing service consumption 

ts :  

 1/(1 )1 1( , ) 0, 0t t t t tC g c s c s
   
            (5) 

Piazessi et al. (2007) derives the asset pricing equations for stock and housing explicitly by 

writing down a two-good Lucas tree model. We instead take the shortcut of the wealth 

portfolio approach to find out the appropriate SDF and then simply apply (1) to stock and 

housing returns. The representative agent’s utility maximization problem is characterized by 

the Bellman equation    

1 1
,

1 1

( , ) max ( ) ( , )  subject to

                        ( ) and ( , )
t t

t t t t t t
c s

t t t t t t t t t

V x z u C E V x z

x R x c q s C g c s

  

 

 

   
     (6) 

where non-housing consumption is designated to be the numeraire, and tq  is the relative 

price of housing service or the rental rate. We show in the appendix that the SDF for the 

HCCAPM model is  

1
1 1

1
t t

t
t t

c
M

c

 









 



   
    

   
               (7) 

where / ( )t t t t tc c q s    is the ratio of non-housing consumption to total consumption. 

Compared with the canonical CCAPM case in (4) where consumption growth is the only risk 

factor, agents in this case also care about composition risk – the variability of the relative 

weight between housing and non-housing consumption.   

 

Model 3: Habit Formation  

We consider a simple version of the habit formation model a la Abel (1990), 

Constantinides (1990), Campbell and Cochrane (1999), among many others. The 

representative agent’s expected lifetime utility is the same as in (2) but /t t tC c X , a ratio of 

current consumption 
tc  to a benchmark or habit consumption level 

1( )t tX c 
  taken to be 

exogenous by the representative agent, where 
1tc 
 is economy-wide past consumption. The 
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representative agent’s problem is characterized by the Bellman equation    

 1 1 1 1( , ) max ( / ) ( , )  subject to ( )
t

t t t t t t t t t t t
c

V x z u c X E V x z x R x c          (8) 

Solving the Bellman equation and imposing the equilibrium condition 
t tc c  result in an 

Euler equation for asset return with the SDF being   

( 1)

1
1

1

t t
t

t t

c c
M

c c

  


 






   
    

   
               (9) 

Compared with CCAPM, the habit formation mechanism in this model introduces 

time-non-separability into preferences and the SDF ends up with having lagged consumption 

growth as an additional risk factor.   

 

Model 4: H-habit Formation                 

This is a hybrid of HCCAPM and habit formation which has not appeared in the 

literature before, to the best of our knowledge. The representative agent’s expected lifetime 

utility is the same as in (2) but 

 1/(1 )1 1
1 1( , ) / ,   ( , ) ,  and  ( , )t t t t t t t t t t tC g c s X g c s c s X g c s

  
 

         (10) 

where 
1tc 

 and 
1ts 

 are lagged economy-wide non-housing and housing consumption 

treated as exogenous by the representative agent. The representative agent’s problem is 

characterized by the Bellman equation    

1 1
,

1 1

( , ) max ( ) ( , )  subject to

                        ( ) and ( , ) /
t t

t t t t t t
c s

t t t t t t t t t t

V x z u C E V x z

x R x c q s C g c s X

  

 

 

   
          (11) 

which implies an Euler equation for asset return with the SDF being   

    

(1 )
( 1)

1 1
1 1

1
1 1

t t t t
t

t t t t

c c
M

c c

     
  


 

 
 

 
 


 

       
        

       
               (12)  

Clearly this SDF is a mixture of the corresponding expressions in (7) for HCCAPM and in (9) 

for the habit formation model. As expected, the habit formation mechanism introduces 

time-non-separability into the HCCAPM model, thereby making lagged consumption growth 

and lagged expenditure share growth as additional risk factors in the SDF.  
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Model 5: Recursive Utility  

Let 
tV  be the lifetime utility as of date t of the representative agent. The recursive utility 

model of Epstein and Zin (1989, 1991) and Weil (1989) defines 
tV  by the recursion  

 
1/(1 )(1 )/(1 )1 1

1 1(1 ) ( , ( ))t t t t t t tV C E V F C V
    

  
 

      
          (13) 

where 1 1/(1 )
1 1( ) ( )t t t tV E V    
   is the certainty equivalent of future utility or continuation 

value;   0 1   is the discount factor; 0   is the coefficient of relative risk aversion; 

and 0   is the inverse elasticity of intertemporal substitution. With recursive preferences 

the representative agent is no longer indifferent between the timing of resolution of 

uncertainty; in particular, when   the agent prefers early resolution. When    the 

CCAPM model emerges as a special case because (13) reduces to         

1 1 1
1

0

(1 ) (1 ) ,  where j
t t t t t j t t

j

J C E J C J V     


  
 



                 (14) 

which is nothing but a scaled version of (2). The representative agent’s utility maximization 

problem can be characterized by the Bellman equation     

1 1 1 1( , ) max ( , [ ( , )]) subject to ( )
t

t t t t t t t t t t
C

V x z F C V x z x R x C            (15) 

which implies an Euler equation for asset return with the SDF being   

1

1
11 1 1

1 1 1
1( )

t t t
t t t

t t t t

C V C
M R R

C V C


    

 



   

  
  



      
       
       

             (16) 

   To empirically implement (16) one will have to construct the aggregate wealth return. 

Epstein and Zin (1991) use the value-weighted NYSE stock market return as a proxy. This 

approach can be criticized by noting that other important assets such as human capital and 

housing are not included in the stock index return, although they may be correlated with stock 

index return to some degree. In our empirical work, we follow Campbell (1996) to measure 

the aggregate wealth return by a weighted average of stock index return, labor income growth 

(as a proxy for human capital return), and housing return.   

 

Model 6: H-Recursive Utility  

This is the recursive utility analogue of the HCCAPM model in Fillat (2007) and Zhang 
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(2009). The representative agent’s lifetime utility is the same as in (13) with tC  being an 

aggregate of non-housing consumption and housing service consumption as stated in (5). 

With non-housing consumption designated to be the numeraire, the representative agent’s 

utility maximization problem is characterized by the Bellman equation    

1 1
,

1 1

( , ) max ( , [ ( , )])  subject to 

                         ( ) and ( , )
t t

t t t t t t
c s

t t t t t t t t t

V x z F C V x z

x R x c q s C g c s

  

 



   
          (17) 

where tq  is the relative price of housing service or the rental rate. We show in the appendix 

that the SDF for the H-recursive utility model is  

1 (1 ) (1 )
1 (1 )(1 )

11 1
1 1 1

t t
t t t

t t

c
M R R

c

       




   
   

 
  

    
     
     

           (18) 

 

Model 7: Labor Income 

Davis and Martin (2009) introduce leisure into the Piazzesi et al. (2007) HCCAPM setup, 

expanding it to a three-good model. The representative agent’s lifetime utility is the same as 

(2) with the consumption index 
tC  being an aggregate of leisure 

tn , non-housing 

consumption 
tc , and housing service consumption 

ts :  

 1/(1 )1 1,  where ( , )t t t t t t t tC g n g g c s c s
  
              (19) 

There are two layers of aggregation in (19). The first layer aggregates non-housing and 

housing consumption by the CES function ( , )t t tg g c s  as in Piazzesi et al. (2007). In the 

second layer tg  and leisure are aggregated into tC  by a Cobb-Douglas function with 

relative weight v. Davis and Martin (2009) derive explicitly the asset pricing equations for 

stock portfolios, housing, and other assets by writing down a Lucas-tree typed model with 

many assets. We instead take the shortcut of the wealth portfolio approach with only one asset 

and hence derive the corresponding SDF comparable to the other models. The representative 

agent’s utility maximization problem is characterized by the Bellman equation    
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1 1
, ,

1 1

( , ) max ( ) ( , )  subject to 

                         ( - - (1- )) and ( , )

t t t
t t t t t t

c s n

t t t t t t t t t t t t

V x z u C E V x z

x R x c q s w n C g c s n

  

 

 

  
      (20) 

where tq  is the relative price or rental rate of housing service, tw  is the real wage, and the 

agent’s time endowment has been normalized to 1. In the appendix we show that the SDF in 

this case extends the corresponding HCCAPM expression in (7) by adding labor income 

growth as an additional risk factor:   

(1 ) (1 ) (1 )
1

1 1 1
1

t t t
t

t t t

c w
M

c w

       





      


  



     
      

     
         (21) 

 

Model 8: Collateral Constraint  

We extend the housing-collateral constraint model of Iacoviello (2004) to three assets 

(real estate, risk-free bond, and stock) with heterogeneous agents and limited asset market 

participation. The pure endowment, Lucas-tree economy is populated by two types of agents. 

The first type is forward-looking, unconstrained agents who participate actively in all three 

asset markets and the rental market to optimally allocate housing and non-housing 

consumption over time. The second type is myopic, constrained agents who can only borrow 

with collateral constraints tied to their home values and do not participate in the stock market 

and the rental market. With non-housing consumption designated to be the numeraire, the 

utility maximization problems of the two types of agents are as follows:   

Unconstrained agents: Choose non-housing consumption u
tC , housing service consumption 

u
tS , borrowing u

tB , real estate holdings u
tH  and stock holdings u

tF , for all t ≥ 0, to 

maximize discounted lifetime utility  

     
1 1

0
0

( ) 1 ( ) 1

1 1

u u
t t t

t

C S
E

 

 
 

 



  
   

              (22) 

subject to      

 
1 1 1 1

1 1 1

( ) ( ) ,

, ,  given; 0,1,2,...

u u h u s u u u u h u s u
t t t t t t t t t t t t t t t t t

u u u

C q S P H P F R B B Y P q H P d F

H B F t

   

  

         


 (23)  

where u
tY  is exogenous endowment; 1tR   is the risk-free interest rate paid on loans made 
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between t-1 and t; s
tP  is the share price of a stock (Lucas tree) that pays dividend td  per 

share; h
tP  is the unit price of a house (effectively a second Lucas tree) which bears 1 unit of 

housing service that sells for tq  in the rental market.  

Constrained agents:  For each period t ≥ 0, choose non-housing consumption c
tC , borrowing

c
tB , and real estate holdings c

tH  to maximize  

         
1 1( ) 1 ( ) 1

1 1

c c
t tC H 


 

  


 
                (24) 

subject to    

1 1 1 1 1( ) , ,  given.c h c c c c c c c
t t t t t t t t t tC P H H R B B Y H B                    (25)       

1( ) /c h c
t t t t tB mE P H R                    (26) 

where we have assumed constrained agents are all owner-occupiers. (24) says that constrained 

agents are myopic and they only care about today’s utility. (26) is a borrowing constraint that 

limits the amount of loans to a fraction m ≤ 1 of the next period’s expected value of real estate 

holdings discounted by the rate of interest. In other words, constrained agents can only 

borrow with their houses posted as collateral. The model is closed by assuming the observed 

aggregate consumption to be a geometric average of the consumption of the two types of 

agents:  

    1( ) ( ) , 0 1c u
t t tC C C     .            (27) 

Following Iacoviello’s (2004) procedure of loglinearizing first-order conditions and 

approximating expected log consumption growth by long-term interest rate, we show in the 

appendix that the returns of the three assets can be characterized by the following loglinear 

asset pricing equations:        

1 1(1 )( ) ( ) , , ,i
t t t t t t t t t tc l E r p r E p p h i f s h                   (28) 

where all variables are measured in log deviation from steady state with 1
i

tr   being the log 

return of asset i, tc  aggregate consumption, tl  long-term interest rate, tp  house price, and 

th  the housing demand of constrained agents. The parameter 11 (1 )m      can be 
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interpreted as the inverse of the down-payment needed to purchase one unit of housing. For 

the risk-free rate, 1
f f

t t tE r r  , and eq. (28) reduces to Iacoviello’s (2004) Euler equation.  

 

 

 

 

 

3. DATA AND STRUCTURAL ESTIMATION 

3.1 The data 

We use Hong Kong quarterly data from 1983 to 2013 in this study. Details about data 

source and variable definition can be found in appendix B. The main variables that are used in 

our model comparison exercise include: (1) Stock return constructed from the Hang Seng 

stock market index and its dividend yield series; (2) Housing return for private domestic units 

constructed from disaggregated price and rent information for properties classified into 5 

size-classes in 3 locations; (3) Growth rate of per capita consumption on food, non-durables 

and services; (4) The share of non-housing consumption expenditure in total consumption 

expenditure that includes an imputed housing component for owner-occupiers; (5) Wage 

growth; (6) Short (3-month) and long (10-year) risk-free rates. All variables are measured in 

real terms (2010 constant price) after inflation adjustment. Summary statistics of these 

variables can be found in Table 2.  

(Insert Table 2 here) 

A few observations are immediate and we begin our discussion with (3). According to 

Table 2, the non-housing consumption share of Hong Kong people is roughly 77%, which is 5% 

lower than the corresponding figure of the US (82%, reported in Piazessi et al., 2007, p.541), 

whereas the standard deviation is almost the same (about 0.03 for both countries). In other 

words, Hong Kong people allocate 5% more of their total consumption on housing than their 

US counterpart. It is consistent with the casual observation that, relative to the salary, the 

house price and rent are higher in Hong Kong.  

The persistence among variables varies significantly. For instance, notice also that the 

first order autocorrelation of the non-housing consumption share is almost 0.98, suggesting 

that the division between housing versus non-housing in consumption is very stable over time. 
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On the other hand, the consumption growth, which is item (4), has a very low value in the 

first order autocorrelation. As a first order approximation, the aggregate consumption can 

therefore be treated as a random walk process.15 The first order autocorrelation of the wage 

growth, which is item (5) is indeed negative. According to some previous studies such as 

Allen (1995), the wage growth tends to be correlated to the productivity growth. It would 

suggest that the productivity growth in Hong Kong is not persistent. On the other hand, the 

first order autocorrelation of the inflation rate, which is item (6), is about 0.36. The 

persistence of inflation rate seems to be consistent with other countries experience.16 

 We now turn to the asset returns, which are (1) and (2). Table 2 shows that the first 

order autocorrelation of the housing return is significant while the counterpart of the stock 

return is close to zero. It is similar to the consumption growth process, suggesting that it is 

indeed reasonable to conjecture that one can account for the stock return with consumption 

growth. Figure 2 depicts the return series. Consistent with the standard deviation and 

first-order autocorrelation statistics reported in Table 2, stock returns appear to be highly 

volatile and random-looking, whereas housing returns appear to be smoother and more 

persistent. To further our understanding of the two return series, we conduct some benchmark 

regressions and report the results in Table 3. Our choice of explanatory variables consists of 

those that typically mentioned in applied works and the press, including income growth, short 

and long interest rate, yield curve slope, and dummy variables meant to capture unexpected 

events such as natural disasters and other crises. Notice that the intercept terms in all 4 

regressions are not statistically different from one, reflecting our usage of gross rather than 

net return data. For the two stock return regressions, although the estimated coefficients of 

GDP growth and the interest rate variables are of the expected sign, none of them are 

statistically significant. The Durbin-Watson (DW) statistic indicates there is no strong 

evidence of serial correlation in the residuals, implying that stock returns are essentially 

                                                              
15 Notice that if a variable (in log form) is approximated by the random walk process, 1t t tX X U  where tU  
is a white noise, then as we regress 1 ( )t tX X residual     , where 1t t tX X X    , it is effectively 
regressing 1 ( )t tU U residual   , and the estimated  will be very small. This observation has been explored 
by many authors, starting with Hall (1978). Among others, see Campbell and Mankiw (1989) for more discussion 
on this point. 
16 Among others, see Krause et al. (2008) on the inflation dynamics of the U.S. For a discussion of some recent 
development in inflation dynamics, see Oinonen et al. (2013), among others. 
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unpredictable by its own past, or equivalently, the stock market index behaves like random 

walk. It is consistent with the notion that the Hong Kong’s stock market is rather efficient and 

arbitrage opportunities are quickly exploited, an expected result in view of Hong Kong being 

an international financial center with a well-developed stock market.17 In contrast, the two 

housing return regressions exhibit exactly the opposite pattern--statistically significant GDP 

growth and interest rate variables, plus DW way below 2—which implies strong serial 

correlation in the housing return series, suggesting market imperfections or other 

inefficiencies (such as high transaction cost and government interference) in Hong Kong’s 

property market.18 Finally, it is interesting to see that the likelihood ratio test strongly 

supports using the yield curve slope, rather than interest rates of different maturities, as the 

relevant interest rate variable to explain asset returns.    

(Insert Figure 2 here) 

(Insert Table 3 here) 

3.2 Structural estimation results  

We apply GMM to estimate the 8 consumption-based models of asset prices. The 

conditional moment conditions that we use in the GMM estimation are two Euler 

equations—one for stock return and the other for housing return—derived from each model as 

shown in section 2. That is, for each model, the GMM procedure will look for one set of 

best-fitting structural parameter estimates that can explain both stock and housing returns. 

This is more demanding, but more reasonable, than estimating the two Euler equations 

separately which will give two different sets of structural parameter estimates for the same 

model. In order to facilitate comparison across models, we summarize in Table 3 the 

economic interpretation of the structural parameters in different models. The GMM 

estimation results are reported in Table 5.    

(Insert Table 4 here) 

(Insert Table 5 here)                       

We can see from the estimation results that, in general, the models are internally 

consistent—the Hansen over-identification J-statistics are all insignificant at conventional 
                                                              
17 For more discussion of the efficient market hypothesis, see Fama (1970), Malkiel (2003), among others. 
18 Among others, see Case and Shiller (1989), Chang et al. (2012, 2013) for related discussion. 
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level, suggesting valid moment conditions. The models also produce economically reasonable 

parameter estimates: the estimated parameters actually belong to the intervals of parameter 

values suggested by the macro literature. For instance, after taking into account standard 

errors, the estimated discount factors are all around (0.95,1), which is consistent with the 

macro literature theoretical discount factor. The relative risk aversion values generally belong 

to (0,10), which also matches the consumption-based asset pricing literature. For the two 

recursive utility models, which disentangle relative risk aversion and elasticity of 

intertemporal substitution, the result ˆ̂   implies that Hong Kong people prefer early 

resolution of uncertainty, a crucial condition underlying the long run risks model of Bansal 

and Yaron (2004) which has been found successful in resolving the equity premium puzzle 

and other anomalies in asset prices.19 Finally, from the estimation results of the collateral 

constraint model, it is interesting to see that the fraction of liquidity constrained households 

  is estimated to be 0.4784 (with standard error 0.13), which is higher than Iacoviello’s 

(2004) estimate of 0.26 (with standard error 0.08), but closer to the range of Campbell and 

Mankiw’s (1989) estimates in the neighborhood of 0.4.         

 

 

 

4. MODEL COMPARISON   

The previous section has shown that the 8 asset pricing models in general are not rejected 

by the data according to the GMM estimation results. Yet the models are indeed different. 

Thus, it is natural to ask which model provides a better description of the data. And since 

GMM cannot distinguish which model performs better, we need to adopt other criteria for 

model comparison.  

We employ two model comparison criteria in this section: the comparison of “prediction 

errors” based on theory-motivated loglinear reduced form equation and the 

Hansen-Jagannathan (1997) HJ-distance.20 The two criteria focus on different characteristics 

                                                              
19
  As we will explain in a later section, this finding is important for understanding why the two recursive utility 

models do so well in the model comparison exercise. 
20  We should qualify that the “prediction” throughout this paper means prediction of the next period asset price 
based on the current and previous period asset prices, and the model and parameter values estimated using the 
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of a theoretical model, and we can view them as complementary to each other. For example, 

comparing reduced form equations is more robust to specification errors and restrictive 

functional form in the theoretical models, but it is essentially a model comparison method for 

linear models, and hence may not capture the structural characteristics of the nonlinear Euler 

equations. Thus, we also apply the HJ-distance method as well which is specifically designed 

for measuring Euler equation errors with all structural characteristics preserved.  

4.1  Theory-motivated loglinear reduced form equation  

Under the assumptions of lognormality and conditional homoscedasticity,21 the Euler 

equation 1 11 ( )i
t t tE M R  can be rewritten as   

2 21
21 1 ( 2 ) 0i

t t t t m i imE m E r                             (29)   

where 
1tm 
 and 

1
i

tr 
 are the logarithm of 

1tM 
 and 

1
i
tR 

 respectively; 2 2and m i   are 

the unconditional variance of 
1tm 
 and 

1
i

tr 
, and 

im  is their unconditional covariance. 

Observe that 
1

i
t tE r 

 is the one-step ahead forecast of the log-return of asset i. Thus, the 

loglinear Euler equation (29) can in principle generate forecasts for log-return, provided that a 

forecast of the log SDF 
1tm 
 is available. In section 2 we have derived analytical expressions 

for the SDF of the 8 models and they are all loglinear in observables. For example, we show 

in (7) the SDF of the HCCAPM model is loglinear in consumption growth 
1 /t tc c

 and 

non-housing consumption share growth 
1 /t t 

, and the model’s loglinear Euler equation is   

1 0 1 1 2 1ln( / ) ln( / )i
t t t t t t t tE r E c c E                (30) 

where 
0 1 2( , , )    are complicated functions of the structural parameters. If we insert 

forecasts for log consumption growth and share growth on the right hand side, (30) will imply 

a reduced form forecasting equation for log-return. The least square residuals from such a 

forecasting equation will give log-return prediction errors. However, this is not a good 

                                                                                                                                                                                   
whole sampling period, and is therefore of the in-sample goodness-of-fit type, rather than the out-of-sample type 
forecasting.  
21  On top of its popularity in applied studies, lognormal AR assumption has some nice properties in terms of 
temporal aggregation. Among others, see Salazar and Ferreira (2011) for more details. 
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approach for the purpose of model comparison, because it is not clear whether the prediction 

errors are due to deficiency in the HCCAPM model per se or due to the poor forecasts of log 

consumption growth and share growth that we superimpose on the forecasting equation. A 

better approach, at least for model comparison purpose, is to “give the model the best chance” 

by using the observed consumption growth and share growth in place of their forecasts on the 

right-hand-side of (30). By doing so we can then attribute the log-return prediction errors to 

the HCCAPM model alone.  

We apply the methodology described in the last paragraph to each of the 8 asset pricing 

models and generate their log-return prediction errors. For benchmarking we also include a 

pure statistical AR(1) model that is not motivated by any theory. Tables 6 and 7 report the 

estimated loglinear reduced form equations of the 8 asset pricing models. The prediction 

performance of the models is compared in terms of 4 measures: mean squared errors (MSE), 

mean absolute errors (MAE), Akaike information criterion (AIC), and (Schwarz) Bayesian 

information criterion (BIC). MSE and MAE correspond to alternative loss functions which 

penalize prediction errors in different ways. In particular, MSE penalizes more heavily large 

prediction errors than small ones, whereas MAE treats large and small prediction errors in a 

more symmetrical manner. AIC and BIC penalize large model size while rewarding small 

MSE. They are especially useful in comparing the original and the housing-augmented 

version of the same asset pricing model. Since the housing-augmented version always has 

more explanatory variables in the loglinear reduced form equation than the original model 

does, it will by construction attain a smaller MSE which may mislead us into believing that 

the housing-augmented version always beats the original version.                          

Table 8 reports the four prediction performance measures for the models, separately in 

two panels for stock return and housing return. A qualitative summary of the models’ ranking 

can be found in Table 11. The following observations emerge from the prediction 

performance comparison:    

 (a) Considering the cases of HCCAPM vs. CCAPM, H-Habit vs. Habit, and H-Recursive 

vs. Recursive, AIC and BIC indicate that the inclusion of housing always improve the 

prediction of housing return but not necessarily so for predicting stock return. In fact, for 
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Habit and CCAPM, the inclusion of housing worsens the prediction of stock return.22 This 

means that the Piazzesi et al. (2007) insight of composition risk (as captured by nonhousing 

consumption share growth) is an important source of risk in pricing housing return, but not 

necessarily so in pricing stock return. To put it in another way, there may be asset-specific 

factors in explaining different asset returns.23    

(b)  Among the 8 structural models considered, the two recursive utility models are the 

best in predicting stock return, irrespective of prediction performance criteria. This implies 

that breaking the tight link between risk aversion and the elasticity of intertemporal 

substitution (EIS) is important for structural modeling of stock return data.     

(c) For both stock and housing returns, AIC and BIC indicate that the two recursive utility 

models always beat their non-recursive utility counterparts, given the same risk factors in the 

SDF, i.e. H-Recursive vs. HCCAPM, Recursive vs. CCAPM. This corroborates the GMM 

estimation results of the two recursive utility models in Table 5 that the risk aversion 

parameter σ and the reciprocal of EIS ρ are statistically different from each other.      

(d) Adding labor income risk on top of consumption growth and composition risk does not 

improve prediction performance, for both stock and housing returns. We can see this clearly 

by comparing the AIC and BIC of the labor income model vs. HCCAPM, since the latter is a 

special case of the former.   

(e) The collateral constraint model is the best in predicting housing return, irrespective of 

prediction performance criteria, but its ranking drops to the middle range in stock return 

prediction. This suggests that taking into account financial market imperfection should play 

an important role in structural modeling of housing return data. On the other hand, as far as 

modeling stock return is of concern, the role of market imperfection may be secondary to a 

more realistic specification of agents’ attitude towards risk and uncertainty as in the recursive 

utility model.      

                                                              
22
  Recall that the share of housing vs non-housing consumption is very persistent in the Hong Kong data (Table 2). 

It is then not surprising that the composition risk is not that important, at least for the Hong Kong data. 
23  Consistent with this hypothesis, Chang et al. (2011) find that while innovations in term spread are important in 
explaining both REIT return and housing return in the U.S. in a VAR setting, they have virtually zero impact on the 
U.S. stock return. To the extent that there are asset-specific factors in explaining returns, it is conceivable that an 
asset pricing model which performs well in forecasting stock return may not do so for housing return. More 
discussion on this to be followed. 
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(Insert Tables 6 - 8 here) 

We have shown that the 8 models are indeed different in terms of their ability in 

explaining the stock and housing returns. It is natural to ask whether such differences are 

statistically significant, after allowing for the randomness in the data. To address this issue, 

we apply the multiple forecast comparison procedure proposed by Mariano and Preve (2012) 

which is a special case of the more general model confidence set (MCS) procedure of Hansen, 

Lunde and Nason (2011). The Mariano-Preve procedure is based on (1) an equal predictive 

ability (EPA) chi-squared test which is a multivariate generalization of the Diebold-Mariano 

(1995) test for comparing two forecasting models, and (2) an elimination rule that removes 

the weakest model in the event that the null hypothesis of EPA is rejected. Let M0 be a 

collection of N models under comparison. The goal is to select a subset M* of models that are 

statistically indistinguishable (i.e. they form an MCS). The Mariano-Preve procedure iterates 

around the following steps:     

Step 0. Sort the N models by the (observed) performance criterion (MSE, for example) 

and label them from #1 to #N, with #1 being the best. Initially set M = M0. 

Step 1. Test the null hypothesis of EPA for the models in M.  

Step 2. If the EPA hypothesis accepted, define M* = M; otherwise, eliminate the worst 

model from M and repeat the procedure from Step 1.  

After M* has been found, one can apply the algorithm again to the complement M1 = M0/ M* 

to check if a second MCS can be found. By this algorithm the N models will be classified into 

J model confidence sets ordered from the best to the worst: * * *
1 2 JM M M  .   

Table 9 reports the results of the Mariano-Preve procedure based on the performance 

criteria of MSE and MAE, for stock and housing returns, respectively. A qualitative summary 

of the conclusion can be found in Table 11. In Table 9 panel A, the models are compared 

according to their stock return prediction performance under the MSE criterion. When all 9 

models are under comparison, the null hypothesis of model equivalence is strongly rejected 

by the MP test whenever the two recursive utility models (i.e. model #1 and #2) are included 

together with other models, whereas the null hypothesis of models #1 and #2 being equivalent 

is marginally accepted (p-value = 0.0564). This suggests a two-set classification scheme: {#1 
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and #2} ≻ {#3 to #9}, that is, the two recursive utility models belong to one MCS and the 

remaining 7 models belong to another. The remaining two columns in Table 9 panel A show 

that no further sub-divisions can be found. In the middle column, when only model #1 is 

excluded from the comparison, the null hypothesis of model equivalence is always strongly 

rejected, confirming that model #2 is indeed different from models #3 - #9. In the last column, 

when both models #1 and #2 are excluded from the comparison, the null hypothesis of model 

equivalence can no longer be rejected, confirming that models #3 - #7 indeed belong to one 

MCS. Exactly the same two-set classification scheme emerges from Table 9 panel B in which 

the models are compared according to their stock return prediction performance under the 

MAE criterion. In summary, we can conclude that, the two recursively utility models are 

significantly better than the remaining 7 models in stock return prediction after taking random 

errors into consideration. 

Table 9 panel C compares the housing return prediction performance of the models under 

the MSE criterion. When all 9 models are under comparison, the null hypothesis of model 

equivalence is always strongly rejected, suggesting that model #1 (collateral constraint model) 

stands out from the crowd, i.e. {#1} ≻ {#2 to #9}. When model #1 is excluded from the 

comparison, the null hypothesis of model equivalence is rejected at more or less 5% 

significance level sequentially until only models #2 and #3 remain, suggesting that the set {#2 

to #9} can be subdivided into two: {#2 and #3} ≻ {#4 to #9}. The last column in panel C 

confirms that the set {#4 to #9} cannot be subdivided anymore, as none of the model 

equivalence tests is statistically significant. A slightly different classification emerges from 

Table 9 Panel D in which the models are compared according to their housing return 

prediction performance under the MAE criterion. The results indicate unambiguously a 

two-set classification scheme: {#1} ≻ {#2 to #9}. In summary, we can conclude that the 

collateral constraint model is significantly better than the remaining 8 models in housing 

return prediction under both MSE and MAE criteria, even after allowing for random errors. 

Under the criterion of MSE, the H-habit and H-Recursive model form another MCS whose 

housing return prediction performance is second to that the collateral constraint model.    

(Insert Table 9 here) 
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Finally, in order to better understand the nature of the prediction errors, in Figures 3 and 

4 we plot the time series of the absolute prediction errors for each model. Notice that we 

intentionally use the same scale across models to facilitate a “visual comparison”. It is clear 

from Figure 3 that the Recursive Utility model and its housing-augmented counterpart 

produce much smaller prediction errors, which confirms the previous tables that they indeed 

outperform other models in stock return prediction. In Figure 4 it can be seen that the 

collateral constraint model produce smaller absolute prediction errors, again confirming the 

findings reported in previous tables.  

                           (Insert Figure 3 and 4 here) 

Now, based on these graphs and drawing on our knowledge about the history of Hong 

Kong’s economy during the sample period, we provide the following remarks for the stock 

return prediction:  

(1) Except for the Recursive utility model, all other models have relatively bigger absolute 

prediction errors in the four time periods: the years of 1987, 1993, 1998, 2008. These four 

time periods were all related to some large economic or political issues in Hong Kong. For 

instance, on the “Black Monday,” i.e. 19th October, 1987, stock markets around the world, 

including the Hong Kong one, crashed and shed a huge value in a very short time.24 In 1993, 

there was what investment world called the “Morgan shock”, which refers to the famous 

investment bank Morgan Stanley as the leading investment bank landed in Hong Kong and 

created huge volatility to Hong Kong’s stock market. In 1998, after the political handover of 

Hong Kong to mainland China, the Asia Financial Crisis occurred. A “Storm of Hedge Fund” 

created by George Solos made Hong Kong’s stock market very volatile.25 In 2008, the global 

financial crisis again shocked Hong Kong’s stock market. The appearance of larger absolute 

prediction errors during these four time periods means that these consumption-based asset 

pricing models, except for the recursive utility model, are unable to capture stock price 

volatility due to “rare disasters”.  

(2) Notice that among all the models we consider, only the recursive utility model and its 

housing-augmented counterpart would separate the elasticity of intertemporal substitution and 
                                                              
24 See Carlson (2006) for a detailed review of the event. 
25 Among others, see Sheng (2009) for a detailed discussion. 



 

24 

the degree of risk aversion. For a small open economy like Hong Kong, “large external 

shocks” or “rare disasters” would have significant impact to the asset markets. In this case, 

the timing of uncertainty resolution matters, and only recursive utility models can possibly 

capture that and this could be the reason why they outperform other models.26  

(3) Figure 4 shows that the collateral constraint model outperforms other models in predicting 

housing return. It means that collateral constraint is important (Kiyotaki and Moore, 1997). It  

is also consistent with the general modelling results of Chen and Leung (2008), Funke and 

Paetz (2013). In Hong Kong, the Hong Kong Monetary Authority (HKMA) enforces all banks 

to issue mortgages with at least 30% downpayment, which is significantly higher than many 

advanced economies. “Subprime loans” do not exist in Hong Kong. And given that the 

income-to-house price ratio is relatively low in Hong Kong (Leung and Tang, 2014), it is not 

surprising that many households are not able to participate in the housing market, except with 

strong family support or extraordinary investment return. In reviewing the Hong Kong 

experience in combating financial crises, a former official in the HKMA, Dr. Dong He, admits 

that maintaining a high down-payment ratio is an intended policy measure. He (2013) writes 

that “…The financial policy framework in Hong Kong emphasizes the importance of limiting 

the degree of leverage on the balance sheets of both the private and public sectors so that 

households, firms, and the government can weather financial cycles… the external shock of 

the Asian financial crisis prompted a collapse of the property market: housing prices dropped 

by 66 percent, output contracted by 9 percent in total over five quarters and remained more or 

less flat for seven years… What is more interesting was the very low mortgage delinquency 

ratio that peaked at 1.4 percent despite the 66 percent correction in property prices. There was 

no banking crisis and there was no need to bail out banks. This is in sharp contrast to the 

banking and financial crisis in the United States and Europe after Lehman’s collapse, where 

housing prices dropped less significantly but the delinquency ratios increased more sharply… 

A range of factors had contributed to the relatively low mortgage delinquency ratio in Hong 

Kong after the bubble burst,… But an important factor was the macroprudential measure that 

capped the loan-to-value (LTV) ratio of mortgages at 70 percent. This provided banks with a 
                                                              
26 See Epstein and Zin (1989, 1991) for the proof and more discussion on how the formulation of recursive utility 
function is related to the timing of uncertainty resolution. 
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significant cushion to absorb property-price correction, and a substantial equity stake that 

maintained incentives for borrowers to service loans as long as they were able to do so.”27  

 

4.2  Hansen-Jagannathan distance    

The Hansen and Jagannathan (1997) (HJ) distance provides a measure of the 

misspecification errors of a SDF model.28 It is defined as the minimized value δ of the 

following constrained least squares problem:  

  2 2Choose  to minimize  ( )   subject to  ( )m E y m E mx q         (31) 

where y is the SDF of the candidate model, x is a vector of asset payoffs, and q is a vector of 

the corresponding asset prices. Hansen and Jagannathan (1997) show that (31) has a 

closed-form solution and there are two alternative expressions for the (squared) HJ-distance. 

The first expression is      

     2 2 2[ ( ' ) 2 ' ]E y y x q       where 1( ') ( )Exx E xy q          (32) 

In practice, (32) is approximated by replacing the population moments by sample moments, 

given time series data { , , , 1,2,..., }.t t ty x q t T  The second expression is  

 2 1( ) '( ') ( )Exy Eq Exx Exy Eq              (33) 

which can be interpreted as a weighted average of the pricing errors ( ).E xy q   

In our empirical work we use stock and housing return data so that both x and q are 2 x 1 

vectors, with q being a vector of 1’s. For each asset pricing model we calculate its SDF series 

with unknown structural parameters replaced by the GMM estimates reported in Table 5. To 

account for random errors coming from the GMM parameter estimates and the data, we apply 

the Hansen, Lunde and Nason (2011) MCS procedure with a model equivalence chi-squared 

test constructed from (32) (see Appendix C for details). The iterative process follows exactly 

the same steps as in the Mariano-Preve procedure that we described above, with the only 

difference being the use of our own HJ-distance model equivalence test in step 1. The results 

are reported in Table 10 and a qualitative summary can be found in Table 11. The following 
                                                              
27  For an assessment of the real impact of LTV ratio on the Hong Kong housing price, see Wong et al. (2014), 
among others. 
28
  The HJ distance method does not apply to the collateral constraint model because this model does not have the 

basic form of SDF pricing kernel in its Euler equation. 
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observations emerge from the HJ-distance comparison:    

   (a) From the HJ-distance ranking, we see that the two recursive utility models occupy the 

top two spots and the small values of their HJ-distance compared with the rest suggest that 

they belong to a class of their own. This is confirmed by the Hansen-Lunde-Nason MCS 

procedure reported in the last two columns in Table 10. The iterative process of sequential 

testing and elimination of weak models unambiguously establishes the following two-set 

classification scheme: {Recursive, H-Recursive} ≻ {CCAPM, Habit, H-Habit, Labor income,  

HCCAPM}.  

(b) A pairwise comparison of Recursive vs. H-Recursive, CCAPM vs. HCCAPM, and 

Habit vs. H-Habit suggests that the inclusion of housing can generate more “pricing errors” 

which inflate the HJ-distance. This is an interesting phenomenon which may appear to be 

contradictory to the result of housing return prediction by reduced form equation reported in 

section 4.1. We provide a potential explanation in next section when we discuss the 

fundamental difference between the methodologies of the two model comparison approaches.       

(Insert tables 10 and 11 here) 

4.3  Discussion  

(a)  More about the two model comparison methods and their results 

While it is natural to expect different model rankings when different approaches are 

employed, it is instructive to discuss the methodological differences of the two model 

comparison methods. First, since the loglinear reduced form equation method is only based on 

linearized Euler equations, inevitably some structural information of the underlying 

theoretical model will be lost. On the other hand, the reduced form equation can be 

interpreted as a loglinear approximation of a large family of models, and hence will be less 

susceptible to specification errors and potentially unrealistic restrictions implied by 

theoretical model.29 In contrast, HJ-distance preserves all the structural characteristics of the 

Euler equation, including those that come from specification errors and over-simplified 

assumptions in the theoretical model. This means that if the theoretical models are considered 

                                                              
29  For instance, if the income tax schedule is highly nonlinear, the population is very heterogeneous in terms of 
income and the consumption insurance among agents are very imperfect, then imposing a representative agent 
model with linear tax schedule can potentially lead to misspecification error.    
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literally to be “correct”—in the sense that they are indeed the data generating mechanism--it 

is easier and arguably more appropriate to interpret the results based on HJ-distance. In that 

sense, the HJ-distance method is analogous to a “constrained model comparison” while the 

loglinear reduced form equation method is the “unconstrained” counterpart. Along this line 

we can provide an interpretation of the seemingly conflicting roles of housing in the reduced 

form approach and the HJ-distance approach that we find in the previous two sections. The 

positive role of housing in the reduced form equation approach indicates that, without the 

burden of structural restrictions, the inclusion of housing in the theoretical model is an 

improvement in the sense that composition risk arises as an important risk factor that helps 

price housing return. The negative role of housing in the HJ-distance approach implies, 

however, the way we introduce housing into the theoretical model may be too restrictive and 

calls for refinement. Thus, we see the two approaches as complementary as they pinpoint 

different aspects of the implications of a theoretical model.    

  

(b)  Why recursive utility model fits Hong Kong data well? 

 An interesting observation from the model ranking exercise is that the two recursive 

utility models (RUM) have salient advantage in explaining Hong Kong data. We discuss this 

result from the following perspectives. 

Technically speaking, RUM provides a generalization of the standard expected utility 

model in which risk aversion and intertemporal elasticity of substitution (IES) are constrained 

to be reciprocal to each other implying that people are indifferent to the timing of resolution 

of uncertainty. By disentangling the tight link between risk aversion and IES, RUM makes 

possible the fluctuations in the long-run growth prospects of the economy and the 

time-varying level of economic uncertainty to drive asset prices, as has been demonstrated in 

the growing literature of long-run risks models (Bansal and Yaron, 2004; Hansen, Heaton and 

Li, 2008; Bansal, 2007, for survey). This literature has shown that RUM in conjunction with 

long-run risks is significantly better than the expected utility model in explaining asset market 

data and resolving various well-documented asset price anomalies and puzzles. A necessary 

condition for the long-run risks model to work is that people prefer early resolution of 
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uncertainty (i.e. risk aversion larger than the reciprocal of IES) which is exactly what we find 

in our GMM structural estimation reported in Table 4.   

How RUM works with long-run risks can be understood heuristically as follows. Recall 

that in the expected utility CCAPM and its variants, including their housing-augmented 

versions, the Bellman equations are formulated in such a way that the current period utility is 

separable from the expectation of future utility. Thus, a revision of the expectation about the 

future will not have any direct effect on the marginal utility of consumption in the current 

period; it will affect the consumption-saving decision through an investment calculation. In 

the case of RUM, however, the Bellman equation is in a non-separable form. It means that, 

for instance, if there is a social or political event which leads to a revision of the expectation 

about the future, the current period marginal utility of consuming, say, an ice-cream cone, 

could become less (or more) tasty. It is true even when that event does not change the current 

period budget constraint. In that sense, the worries (or optimism) about the future would have 

a direct impact on the consumption decision today. Economic agent may be more (or less) 

willing to defer consumption and invest more today, which tends to drive up the risk premium 

of assets. Therefore, social events that are interpreted by the representative agent as a change 

in the long-run risk would affect the expected value of future utility and hence the asset 

prices.  

It begs the question: what is the source of long-run risks in Hong Kong? As a small open 

economy that relies on international trade in goods and services, Hong Kong’s long-run 

growth prospects can be easily influenced by changes in fundamentals originating from 

surrounding countries especially China. Political uncertainty is another major source of 

long-run risks in Hong Kong. Many studies support the view that political risk plays an 

important role in Hong Kong’s asset market.30 More recently, Chan (2006) argue that there 

are different levels of political risk pertaining to Hong Kong. First, since Hong Kong’s return 

to China and the 1997 Asian Financial Crisis (which occur almost at the same time), there has 

been an increase in populism which may signal the demise of Hong Kong’s traditional policy 

                                                              
30 For instance, Chau (1997) argues that political risk is important in explaining house prices before 1994. Based 
on media coverage in the New York Times and the Wall Street Journal, Kim and Mei (2001) find that reports of 
political issues are closely related to “jump components” in the Hong Kong stock price index during 1989 to 1993.  
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of “big market, small government”—a fundamental change that is expected to adversely 

affect Hong Kong’s long-term growth. In addition, the political institutions in Hong Kong 

have not yet provided a platform acceptable to different social groups for a discussion for 

compromise.31 As a result, tremendous tension has been brewing among different social 

groups and stakeholders, a long-run risk factor that rational investors are well aware of and 

naturally take into consideration. It is therefore hardly a surprise that a model like RUM 

capable of capturing such kind of risks will do well in explaining Hong Kong’s asset market 

data.    

  

5. CONCLUSION     

To assess the capacity for the consumption-based asset pricing models to simultaneously 

explain aggregate stock and housing returns in Hong Kong, we develop, estimate and 

compare eight variants of consumption-based asset pricing models with the asset market data 

from Hong Kong. They include the canonical CCAPM, Habit formation model and Recursive 

utility model; their Housing-augmented variants including HCCAPM, H-Habit formation 

model and H-Recursive utility model; Labor income model as well as Collateral constraint 

model.  

Our empirical results are several folds. First, no model is rejected by the data. Thus, all 

consumption-based asset pricing models considered in this paper captures some important 

aspects of the asset return movements. On the other hand, to understand the most important 

driving force in the asset markets, we still need to assign some relative rankings on these 

models. We rank the models by two performance criteria: the average size of prediction errors 

from loglinear reduced form equation and the Hansen-Jagannathan (HJ) distance. Statistical 

significance of the model rankings is taken into consideration by classifying the models into a 

number of model confidence sets a la Hansen et al. (2011). In case of the reduced form 

equation comparison, we include several conventional metrics, such as AIC, BIC, MAE, MSE. 

We even incorporate the recently developed Mariano-Preve procedure to scientifically verify 

whether models with similar MAE and MSE figures.  

                                                              
31 Among others, see Chan (2009), Bush (2014a, 2014b) for more discussion on this. 
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The following conclusions can be drawn from the model comparison exercise. (i) 

Composition risk (as captured by non-housing consumption share growth) is always relevant 

in explaining housing return but not necessarily so for stock return, suggesting that it is to a 

large extent an asset-specific risk factor. (ii) The collateral constraint model outperforms all 

other models in predicting housing return but otherwise only moderate in predicting stock 

return, whereas the recursive utility model and its housing-augmented variant are the best in 

stock return prediction and in HJ-distance comparison. This suggests that taking into account 

financial market imperfection should play an important role in modeling housing return, but 

its role may be secondary to a more realistic specification of agents’ attitude towards risk and 

uncertainty in modeling stock return. (iii) Recursive utility model, with or without housing, 

has salient advantage in explaining Hong Kong’s asset market data across different model 

comparison criteria. We interpret this as an example of the empirical success of the recursive 

utility cum long-run risk model (Bansal and Yaron, 2004), in view of the prevalence of 

external fundamental shocks and political risks in Hong Kong. (iv) Adding labor income risk 

on top of the standard consumption growth and composition risks yields no improvement, for 

both asset returns and across model comparison criteria. 

Clearly, future research can be extended in different directions. First, the analysis can be 

carried out with data from other Asian cities. We can also consider models with 

wealth-varying elasticities of intertemporal substitution, more heterogeneity among agents 

and how we can account for the intra-city variations of house prices, the time series 

movements in the asset markets with the economy.32  

 

  

                                                              
32  Among others,  see Atkeson and Ogaki  (1996), Guvenen  (2006), Ogaki and Park  (1997), Ogaki and Reinhart 

(1998). 
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Table 1: A summary of various consumption-based asset pricing models 

Models Description 

CCAPM Representative-agent Lucas-tree model with time- and state-separable utility    

HCCAPM Housing-augmented two-good version of CCAPM 

Habit Formation model CCAPM with external habit formation 

H-Habit Formation model HCCAPM with external habit formation 

Recursive Utility model CCAPM with Epstein-Zin-Weil recursive utility 

H-Recursive Utility model HCCAPM with Epstein-Zin-Weil recursive utility 

Labor income model Home production-augmented version of HCCAPM  

Collateral constraint model Heterogeneous-agent model with some agents subject to housing-collateral constraint 

 

 

Table 2: Summary statistics (1983:1 – 2013:4)   

Key variables Mean Std Error Min Max 
1st order 

autocorrelation 

Stock return  1.0363 0.1418 0.5773 1.5247 -0.0868 

Housing return  1.0299 0.0655 0.8349 1.2348 0.4334 

Non-housing consumption share  0.7729 0.0391 0.7032 0.8302 0.9784 

Consumption growth 1.0081 0.0195 0.9553 1.0797 0.0051 

Wage growth  1.0072 0.0159 0.9557 1.0481 -0.2811 

Inflation  1.0102 0.0148 0.9714 1.0393 0.3616 

Short (3-month) interest rate 0.0001 0.0159 -0.0386 0.0411 0.3276 

Long (10-year) interest rate  0.0052 0.0160 -0.0371 0.0444 0.3363 

Notes: (i) All variables are measured in real terms (2010 constant price). (ii) The two asset returns, consumption 

growth, wage growth and inflation are measured in gross rate (= 1 + net rate) per quarter. (iii) The two interest 

rates are measured in net rate per quarter.        
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Table 3: Benchmark regression 

 Stock Return Housing Return  

(1) (2) (3) (4) 

Constant 1.0119** 1.0152** 0.9754** 0.9744** 

(0.0338) (0.0332) (0.0156) (0.0153) 

GDP growth 0.1679 0.1094 0.6935** 0.7104** 

(0.3799) (0.3651) (0.1759) (0.1689) 

2008 crisis -0.1791** -0.1824** -0.0416 -0.0407 

(0.0684) (0.0679) (0.0316) (0.0314) 

Short interest rate 

(3-month) 

-3.2616 

(5.3613)  

-5.4189* 

(2.4826) 

 

Long interest rate  

(10-year) 

3.7952 

(5.3310) 
 

5.2654* 

(2.4686) 

 

Yield curve slope 

(Long rate – short rate)  

3.6323 

(5.3036) 

 

 

5.3123* 

(2.4529) 

LR test 

[p-value] 
 

0.3618 

[0.5474] 

 0.1396 

[0.7085] 

2R  0.0877 0.0841 0.2321 0.2310 

DW 2.1476 2.1437 1.2423 1.2008 

Sample size 91 91 91 91 

Notes: (i) Standard errors in parentheses. (ii) * 5% significant level; ** 1% significant level. (iii) Models 2 and 4 

are restricted version of models 1 and 3 with the coefficients of short interest rate and long interest rate constrained 

to be the same but of opposite sign. The likelihood ratio (LR) tests indicate that the restricted models are not 

rejected at conventional significant level.   

 

 

 

Table 4: Structural parameters 

Models Interpretation Appear in: 

β Discount factor All models 

ρ

Double as relative risk aversion and inverse of 

elasticity of intertemporal substitution  

CCAPM, HCCAPM, Habit, H-Habit, Labor income, and 

collateral constraint model.  

Inverse of elasticity of intertemporal substitution  Recursive utility and H-Recursive utility model  

ϕ 
Inverse of intratemporal elasticity of substitution of 

housing and non-housing consumption service 

HCCAPM, H-Habit, H-Recursive utility, and Labor income 

model 

σ Relative risk aversion  Recursive utility and H-Recursive utility model  

v Leisure share in utility function  Labor Income model 

λ Fraction of constrained households Collateral constraint model 

ω Inverse of down payment to buy 1 unit of housing Collateral constraint model 

θ Long-run inverse elasticity of housing demand  Collateral constraint model 
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Table 5: System GMM estimation of structural parameters 

 CCAPM HCCAPM 
Habit  

Formation  

H-Habit 

Formation   

Recursive  

Utility  

H-Recursive 

Utility  

 

Labor 

Income 

Collateral 

constraint 

model 

 (1) (2) (3) (4) (5) (6) (7) (8) 

β 0.9855** 0.9793** 0.9798** 0.9775** 1.0113** 1.0327** 0.9904**  

  (0.0058) (0.0059) (0.0044) (0.0037) (0.0062) (0.0148) (0.0044)  

ρ  1.3977**  1.3965** 0.7561**  1.2618**  0.3512  0.4941 3.4582** 4.5087** 

  (0.4394) (0.5264) (0.1748)  (0.1671)  (0.7253)  (0.2569) (0.7437) (0.8849) 

σ         1.2594** 1.4397**   

          (0.2537) (0.1992)   

ϕ   0.9143**   0.8488**   -0.2749 0.4468**  

    (0.1195)   (0.0978)   (0.1893) (0.1538)  

 v        0.5098**  

         (0.0849)  

λ 
      

 0.4784** 

(0.1320) 

ω 
      

 -2.0749* 

(0.9814) 

θ 
      

 -0.0502 

(0.2344) 

J-statistic 16.27 18.22 16.26 18.18  11.92  15.66 18.12 23.61 

[p-value] [0.57] [0.74] [0.57] [0.74] [0.68] [0.61] [0.92] [0.16] 

Sample size 123 123 123 123 123 123 123 89 

IV t to t-2 t to t-2 t to t-2 t to t-2 t-1 to t-2 t-1 to t-2 t to t-2 t-1 to t-2 

Notes: (i) Standard errors in parentheses. (ii) * 5% significant level; ** 1% significant level. (iii) Both stock and 

housing return equations are included in the GMM system. (iv) The instruments for models (1) – (7) include a 

constant, stock return, housing return, and variables appearing in the model’s stochastic discount factor, with time 

indices indicated in row “IV”. (v) The instruments for model (8) include a constant and up to two lags of all 

variables appearing in the two loglinear Euler equations.    
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Table 6: Loglinear reduced form regression for stock return   

 
CCAPM HCCAPM Habit H-Habit Recursive H-Recursive Labor Income 

Collateral 

Constraint 

Constant 
0.0079 

(0.0131) 

0.0065 

(0.0132) 

0.0106 

(0.0141) 

0.0077 

(0.0146) 

-0.0225** 

(0.0045) 

-0.0250** 

(0.0041) 

0.0035 

(0.0140) 

0.0566 

(0.0293) 

Consumption  
2.2868** 

(0.6328) 

2.2879** 

(0.6327) 

2.2895** 

(0.6346) 

2.2759** 

(0.6397) 

-1.0661** 

(0.2365) 

-1.0955** 

(0.2125) 

2.1344** 

(0.6738)  

Non-housing 

consumption share  

1.1627 

(1.1395)  

0.9865 

(1.2675)  

1.8727** 

(0.3417) 

1.3193 

(1.1655)  

Lagged consumption 
  

-0.3475 

(0.6425) 

-0.1623 

(0.6876)    

-1.3565* 

(0.5767) 

Lagged Non-housing 

consumption share 
   

0.3061 

(1.1975) 
    

Wealth return 
    

2.9659** 

(0.0948) 

2.9936** 

(0.0853)   

Wage   
      

0.5636 

(0.8372)  

Lagged completions
      

 
0.0593 

(0.0951) 

Lagged interest rate 

(10-year)       
 

-6.4821 

(5.0817) 

Lagged interest rate 

(3-month)         

7.1095 

(5.0997) 

Housing price 
       

0.4092 

(0.2575) 

Lagged housing 

price         

-0.5991* 

(0.2530) 

2R  0.0966 0.1043 0.0988 0.1052 0.9004 0.9204 0.1077 0.1808 

DW 2.2857 2.2806 2.2823 2.2875 1.9947 2.1148 2.2917 2.4519 

Sample size 124 124 124 124 124 124 124 90 

Notes: (i) Standard errors in parentheses. (ii) * 5% significant level; ** 1% significant level. 
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Table 7: Loglinear reduced form regression for housing return   

 
CCAPM HCCAPM Habit H-Habit Recursive H-Recursive Labor Income 

Collateral 

Constraint 

Constant 
0.0153** 

(0.0055) 

0.0181** 

(0.0050) 

0.0073 

(0.0056) 

0.0125* 

(0.0053) 

0.0109* 

(0.0053) 

0.0139** 

(0.0048) 

0.0194** 

(0.0052) 

0.0220** 

(0.0067) 

Consumption  
1.5388** 

(0.2662) 

1.5365** 

(0.2391) 

1.5308** 

(0.2515) 

1.5085** 

(0.2342) 

1.0550** 

(0.2837) 

1.0908** 

(0.2541) 

1.6039** 

(0.2545)  

Non-housing 

consumption share  

-2.3649** 

(0.4307)  

-2.1491** 

(0.4641)  

-2.2713** 

(0.4086) 

-2.4336** 

(0.4402)  

Lagged consumption 
  

1.0063** 

(0.2546) 

0.6046* 

(0.2518)    

-0.0712 

(0.1323) 

Lagged Non-housing 

consumption share 
   

0.5461 

(0.4384) 
    

Wealth return 
    

0.4279** 

(0.1137) 

0.3943** 

(0.1021)   

Wage   
      

-0.2475 

(0.3162)  

Lagged completions
      

 
0.0069 

(0.0218) 

Lagged interest rate 

(10-year)       
 

0.3483 

(1.1660) 

Lagged interest rate 

(3-month)         

-1.1515 

(1.1701) 

Housing price 
       

1.0057** 

(0.0591) 

Lagged housing 

price         

-1.0548** 

(0.0581) 

2R  0.2150 0.3715 0.3047 0.4108 0.2972 0.4411 0.3747 0.8307 

DW 1.2251 1.4201 1.3014 1.4425 1.4373 1.6493 1.4330 1.8063 

Sample size 124 124 124 124 124 124 124 90 

Notes: (i) Standard errors in parentheses. (ii) * 5% significant level; ** 1% significant level. 

  



 

42 

Table 8: Model comparison by (in-sample) prediction performance   

Panel A: Stock return prediction 

  MSE ൈ 102 MAE ൈ 102 AIC BIC 

CCAPM 1.8173 9.8751 -3.9755 -3.9300 

HCCAPM 1.8018 9.8865 -3.9680 -3.8997 

Habit 1.8129 9.8626 -3.9618 -3.8936 

H-Habit 1.8001 9.8990 -3.9366 -3.8229 

Recursive utility 0.2001 3.4366 -6.1652 -6.0970 

H-Recursive utility 0.1601 3.1276 -6.3725 -6.2815 

Labor income 1.7951 9.8203 -3.9556 -3.8646 

Collateral constraint 1.4180 8.9541 -4.1004 -3.9059 

AR(1) 1.9893 10.4980 -3.8851 -3.8396 

 Panel B: Housing return prediction 

  MSE ൈ 103 MAE ൈ 102 AIC BIC 

CCAPM 3.2159 4.1514 -5.7074 -5.6619 

HCCAPM 2.5746 3.9403 -5.9137 -5.8454 

Habit 2.8484 3.9589 -5.8126 -5.7444 

H-Habit 2.4135 3.7650 -5.9460 -5.8323 

Recursive utility 2.8792 3.8570 -5.8018 -5.7336 

H-Recursive utility 2.2896 3.7987 -6.0148 -5.9238 

Labor income 2.5615 3.9504 -5.9026 -5.8117 

Collateral constraint 0.7465 2.1729 -7.0445 -6.8501 

AR(1) 3.3280 4.4327 -5.6731 -5.6276 
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Table 9: Mariano-Preve multiple (in-sample) forecast comparison 

Panel A: Comparing stock return prediction performance based on MSE 

    All 9 models Exclude model 1 Exclude model 1 - 2 

Model 

MSE 

ൈ 102   

2  (df)   

[p-value]    

2  (df)   

[p-value]    

2  (df)  

[p-value] 

1. H-Recursive 0.1601 Model 1-9 27.19 (8) Model 2-9 26.05 (7) Model 3-9 8.61 (6) 

2. Recursive 0.2001   [6.52e-4]   [4.91e-4]   [0.196] 

3. Collateral 1.4180 Model 1-8 27.02 (7) Model 2-8 25.87 (6) Model 3-8 6.11 (5) 

4. Labor income 1.7951   [3.30e-4]   [2.34e-4]   [0.295] 

5. H-Habit 1.8001 Model 1-7 27.01 (6) Model 2-7 25.52 (5) Model 3-7 5.18 (4) 

6. HCCAPM 1.8018   [1.44e-4]   [1.10e-4]   [0.268] 

7. Habit 1.8129 Model 1-6 26.34 (5) Model 2-6 24.88 (4) Model 3-6 5.10 (3) 

8. CCAPM 1.8173   [0.76e-4]   [0.53e-4]   [0.164] 

9. AR(1) 1.9893 Model 1-5 23.00 (4) Model 2-5 21.22 (3) Model 3-5 3.78 (2) 

      [1.26e-4]   [0.94e-4]   [0.150] 

    Model 1-4 22.33 (3) Model 2-4 21.16 (2) Model 3-4 2.02 (1) 

      [0.55e-4]   [0.25e-4]   [0.154] 

    Model 1-3 17.46 (2) Model 2-3 14.45 (1)     

      [1.61e-4]   [1.43e-4]     

    Model 1-2 3.63 (1)         

      [0.0564]         

 

Panel B: Comparing stock return prediction performance based on MAE 

    All 9 models Exclude model 1 Exclude model 1 - 2 

Model 

MAE 

ൈ 102   

2  (df)   

[p-value]   

2  (df)   

[p-value]    

2  (df)  

[p-value] 

1. H-Recursive 3.1276 Model 1-9 45.97 (8) Model 2-9 44.93 (7) Model 3-9 5.34 (6) 

2. Recursive 3.4366   [2.4e-7]   [1.4e-7]   [0.499] 

3. Collateral 8.9541 Model 1-8 45.36 (7) Model 2-8 44.47 (6) Model 3-8 2.02 (5) 

4. Labor income 9.8203   [1.2e-7]   [0.6e-7]   [0.845] 

5. Habit 9.8626 Model 1-7 40.42 (6) Model 2-7 39.14 (5) Model 3-7 1.60 (4) 

6. CCAPM 9.8751   [3.8e-7]   [2.2e-7]   [0.808] 

7. HCCAPM 9.8865 Model 1-6 40.26 (5) Model 2-6 39.11 (4) Model 3-6 1.06 (3) 

8. H-Habit 9.8990   [1.3-7]   [0.7e-7]   [0.784] 

9. AR(1) 10.4980 Model 1-5 39.91 (4) Model 2-5 39.09 (3) Model 3-5 1.04 (2) 

      [0.4e-7]   [0.2e-7]   [0.591] 

    Model 1-4 39.61 (3) Model 2-4 38.91 (2) Model 3-4 1.05 (1) 

      [0.1e-7]   [0.0e-7]   [0.305] 

    Model 1-3 34.32 (2) Model 2-3 32.37 (1)     

      [0.4e-7]   [0.1e-7]     

    Model 1-2 2.88 (1)         

      [0.089]         
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Table 9 (con’t) 

Panel C: Comparing housing return prediction performance based on MSE 

    All 9 models Exclude model 1 Exclude model 1 - 3 

Model 

MSE  

ൈ 103   

2  (df)   

[p-value]   

2  (df)  

[p-value]    

2  (df)  

[p-value] 

1. Collateral 0.7465 Model 1-9 34.99 (8) Model 2-9 14.15 (7) Model 4-9 8.93 (5) 

2. H-Recursive 2.2896   [2.68e-5]   [0.048]   [0.111] 

3. H-Habit 2.4135 Model 1-8 31.91 (7) Model 2-8 12.36 (6) Model 4-8 6.18 (4) 

4. Labor income 2.5615   [4.21e-5]   [0.054]   [0.185] 

5. HCCAPM 2.5746 Model 1-7 30.12 (6) Model 2-7 11.44 (5) Model 4-7 2.19 (3) 

6. Habit 2.8484   [3.72e-5]   [0.043]   [0.534] 

7. Recursive 2.8792 Model 1-6 28.22 (5) Model 2-6 11.42 (4) Model 4-6 2.18 (2) 

8. CCAPM 3.2159   [3.29e-5]   [0.022]   [0.335] 

9. AR(1) 3.3280 Model 1-5 28.21 (4) Model 2-5 7.58 (3) Model 4-5 0.18 (1) 

      [1.12e-5]   [0.055]   [0.669] 

    Model 1-4 28.09 (3) Model 2-4 7.16 (2)     

      [0.34e-5]   [0.027]     

    Model 1-3 27.77 (2) Model 2-3 0.63 (1)     

      [0.09e-5]   [0.426]     

    Model 1-2 22.17 (1)         

      [0.24e-5]         

 

Panel D: Comparing housing return prediction performance based on MAE 

    All 9 models Exclude model 1 

Model 

MAE  

ൈ 102   

2  (df)   

[p-value]   

2  (df)  

[p-value]  

1. Collateral 2.1729 Model 1-9 47.62 (8) Model 2-9 11.04 (7) 

2. H-Habit 3.7650   [0.12e-6]   [0.136] 

3. H-Recursive 3.7987 Model 1-8 35.33 (7) Model 2-8 8.69 (6) 

4. Recursive 3.8570   [9.67e-6]   [0.191] 

5. HCCAPM 3.9403 Model 1-7 35.25 (6) Model 2-7 7.66 (5) 

6. Labor income 3.9504   [3.85e-6]   [0.175] 

7. Habit 3.9589 Model 1-6 33.52 (5) Model 2-6 4.54 (4) 

8. CCAPM 4.1514   [2.95e-6]   [0.337] 

9. AR(1) 4.4327 Model 1-5 33.13 (4) Model 2-5 4.21 (3) 

      [1.12e-6]   [0.239] 

    Model 1-4 32.91 (3) Model 2-4 0.12 (2) 

      [0.33e-6]   [0.939] 

    Model 1-3 32.64 (2) Model 2-3 0.04 (1) 

      [0.08e-6]   [0.834] 

    Model 1-2 32.11 (1)     

      [0.01e-6]     
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Table 10: Hansen-Jagannathan (HJ) distance with Hansen-Lunde-Nason MCS procedure  

 

    All 7 models Exclude model 1-2 

Model 

Sq. HJ  

ൈ 103   

2  (df)   

[p-value]   

2  (df)   

[p-value]  

1. Recursive 0.0158 Model 1-7 26.40 (6) Model 3-7 0.82 (4) 

2. H-Recursive 0.3875   [1.87e-4]   [0.935] 

3. CCAPM 1.6383 Model 1-6 24.79 (5) Model 3-6 0.81 (3) 

4. Habit 1.7827   [1.52e-4]   [0.846] 

5. H-Habit 2.1687 Model 1-5 20.22 (4) Model 3-5 0.30 (2) 

6. Labor income 2.9191   [4.51e-4]   [0.860] 

7. HCCAPM 3.1801 Model 1-4 19.22 (3) Model 3-4 0.21 (1) 

  [2.45e-4]   [0.641] 

Model 1-3 18.42 (2)   

      [0.99e-4]   

    Model 1-2 0.022 (1)   

      [0.879]   
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Table 11: Ranking of models  

Panel A: Stock return (in-sample) prediction 

 Criteria Ranking of Models 

MSE 
H-Recursive ≻ Recursive ≻ Collateral ≻ Labor Income ≻ HCCAPM ≻

H-Habit ≻ Habit ≻ CCAPM ≻ AR(1) 

MSE with Mariano-Preve multiple 

forecast comparison 

{H-Recursive, Recursive} ≻ {Collateral, Labor Income, HCCAPM, 

H-Habit, Habit, CCAPM, AR(1)} 

MAE 
H-Recursive ≻ Recursive ≻ Collateral ≻ Labor Income ≻ Habit ≻ 

CCAPM ≻ HCCAPM ≻ H-Habit ≻ AR(1) 

MAE with Mariano-Preve multiple 

forecast comparison 

{H-Recursive, Recursive} ≻ {Collateral, Labor Income, Habit, 

CCAPM, HCCAPM, H-Habit, AR(1)} 

AIC 
H-Recursive ≻ Recursive ≻ Collateral ≻ CCAPM ≻ HCCAPM ≻ 

Habit ≻ Labor income ≻ H-Habit ≻ AR(1) 

BIC 
H-Recursive ≻ Recursive ≻ CCAPM ≻ Collateral ≻ HCCAPM ≻ 

Habit ≻ Labor income ≻ AR(1) ≻	H-Habit  

Panel B: Housing return (in-sample) prediction 

 Criteria Ranking of Models 

MSE 
Collateral ≻ H-Recursive ≻	H-Habit ≻ Labor income ≻ HCCAPM ≻ 

Habit ≻ Recursive ≻ CCAPM ≻ AR(1) 

MSE with Mariano-Preve multiple 

forecast comparison  

{Collateral} ≻ {H-Recursive,	H-Habit} ≻ {Labor income, HCCAPM, 

Habit, Recursive, CCAPM, AR(1)} 

MAE 
Collateral ≻ H-Habit ≻ H-Recursive ≻ Recursive ≻ HCCAPM ≻ 

Labor income ≻ Habit ≻ CCAPM ≻ AR(1) 

MAE with Mariano-Preve multiple 

forecast comparison  

{Collateral} ≻ {H-Habit, H-Recursive, Recursive, HCCAPM, Labor 

income, Habit, CCAPM, AR(1)} 

AIC 
Collateral ≻ H-Recursive ≻	H-Habit ≻	HCCAPM ≻ Labor income ≻

Habit ≻ Recursive ≻ CCAPM ≻ AR(1) 

BIC 
Collateral ≻ H-Recursive ≻	HCCAPM ≻ H-Habit ≻ Labor income ≻

Habit ≻ Recursive ≻ CCAPM ≻ AR(1) 

Panel C: Hansen-Jagannathan (HJ) distance 

 Criteria Ranking of Models 

HJ 
Recursive ≻ H-Recursive ≻ CCAPM ≻ Habit ≻ H-Habit ≻ Labor 

income ≻ HCCAPM 

HJ with Hansen-Lunde-Nason MCS 

procedure 

{Recursive, H-Recursive} ≻ {CCAPM, Habit, H-Habit, Labor income,  

HCCAPM} 

Notes: (1) A ≻ B means A outperforms B. (2) {A, B} means A and B belong to the same model confidence set and 

their performance are indistinguishable.   
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Figure 1: Housing price and stock growth  

 

 

 

 

Figure 2: Stock and housing returns  
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Figure 3: Stock returns absolute (in-sample) prediction errors  
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Figure 4: Housing returns absolute (in-sample) prediction errors  
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