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Restriction on Residuals in Linear Regression 

Model with First-order Autoregressive Procedures 

Mei-Yu Lee1 

 

 

Abstract 

This paper demonstrates the impact of particular factors – such as a non-normal 

error distribution, constraints of the residuals, sample size, the multi-collinear 

values of independent variables and the autocorrelation coefficient – on the 

distributions of errors and residuals. This explains how residuals increasingly tend 

to a normal distribution with increased linear constraints on residuals from the 

linear regression analysis method. Furthermore, reduced linear requirements cause 

the shape of the error distribution to be more clearly shown on the residuals. We 

find that if the errors follow a normal distribution, then the residuals do as well. 

However, if the errors follow a U-quadratic distribution, then the residuals have a 

mixture of the error distribution and a normal distribution due to the interaction of 

linear requirements and sample size. Thus, increasing the constraints on the 

residual from more independent variables causes the residuals to follow a normal 
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2                                                  Internal Restriction on Residuals  

distribution, leading to a poor estimator in the case where errors have a 

non-normal distribution. Only when the sample size is large enough to eliminate 

the effects of these linear requirements and multi-collinearity can the residuals be 

viewed as an estimator of the errors. 

 

Mathematics Subject Classification: 37M10; 62M10; 37M05; 68U20  

Keywords: Time series; Autoregressive model; Computer simulation; 

Non-normal distribution  

 

 

1  Introduction  

It is reasonable to question why business studies always use linear regression 

models, but the engineering and quality management fields do not rely on such 

models. Researchers face a residual distribution different to the error distribution, 

and this diverges from the result of Box and Pierce (1970). Box and Pierce 

suppose that residuals that have a good fit should be the true errors and can be 

regarded as estimators of the errors in an autoregressive process. Thus, some 

residuals that are viewed as good estimators of errors include the Durbin-Watson 

test statistic (Durbin and Watson, 1950, 1951) and the LaGrange Multiplier test 

statistic (Berusch and Pagan, 1980) in the linear regression model with an 

autoregressive error process.  

In general, residuals are viewed as the highest representation of errors and are 

combined as an estimator that is used to estimate the properties of errors such as 

the serial correlation of errors or the error distribution. In the literature, Yule 

(1921) first discusses the problem of serial correlation, and then Roos (1936) 

provides basic solutions regarding how independent variables are independent by 

the use of choosing lagged time and how the trend and fluctuation can be grabbed. 

Box and Pierce (1970) also note that residual autocorrelation can be approximated 
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to the linear transformation of error autocorrelation and possesses a normal 

distribution. Therefore, the residual distribution plays an important role – residuals 

can be used to test the initially assumed error distribution. For example, the errors 

have a normal distribution if the residuals are identified as having a normal 

distribution. However, time series data may have a non-normal error distribution 

which contradicts an assumption in the linear regression model. Then, the 

autoregressive error procedure contradicts the assumption of the linear regression 

model regarding the independence of errors. 

This paper aims to explain that the distributions of the residuals are separate from 

the distributions of the errors by using a probability simulation approach. That is, 

we run a computer simulation with a random number table with a uniform 

distribution between 0 and 1 to investigate the following three points: (1) if the 

errors are distributed normally, then the residuals also have a normal distribution, 

(2) if the errors have a non-normal distribution, then the residuals also have a 

non-normal distribution, and (3) as the sample size becomes larger, the residual 

distribution approaches to the error distribution, that is, the law of large numbers 

gradually has influence over the distribution of the residuals. The second point is 

based on an example of the U-quadratic distributed errors. If the argument of Box 

and Pierce were right, then the residuals should have a U-quadratic distribution, 

and not a normal distribution. However, the calculated residuals appear to have a 

normal distribution, contradicting Box and Pierce. This paper presents computer 

simulation results showing that the normality of the residuals results from the 

number of independent variables that determine the constraints of the residuals, 

0εX =ˆT
, with 1 plus the number of independent variables. The constraints of the 

residuals, 0εX =ˆT
, are referred to as the linear requirements of the linear 

regression model and its number of constraints is the same as the degree of 

freedom (Lee, 2014a, 2014b, 2014c). The third point refers to the change in the 

residual distribution with a fixed number of independent variables and a 

U-quadratic error distribution when the sample sizes become larger. 
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The paper is structured as follows. Section 2 describes the model setting and 

simulation procedure. Section 3 gives the results of the three cases where the error 

has a normal distribution, the error has a U-quadratic distribution, and the sample 

size is changed. Section 4 concludes this paper. 

 

 

2  Model and simulation procedures 

Consider a linear regression model with k independent variables and T sample 

sizes, as 

)1()1()(T)1(T ××××
+=

Tkk
εβXY  

on the conditions of ( ) ( ) 0,0 T == εXε EE and the first-order autoregressive 

procedure is 

ttt µρεε +=+1  

where 1,,2,1 −= Tt   and 1<ρ . The estimators are ( ) YXXXβ TT 1ˆ −
=  and 

βXY ˆˆ = , then the residuals are  

( ) ( )( ) ,ˆ 11 εXXXXIεXXXXεε TTTT −−
−=−=  

and linear requirement are 0εX =ˆT  where εYY ˆˆ +=  (Baltagi 2011). 

When tŶ  is normal distribution, the regression coefficient point estimators also 

are normal distribution and tε̂  is normal distribution, Ŷ  approximates to normal 

distribution, if k is enough large. We calculate the mean-square-error (MSE) as 

( ) ( )βXYβXY ˆˆˆˆ −−=
T

MSE  

from ( ) 0ˆ =εE  and ( ) ( ) MSEE TT ×=
−1ˆˆˆˆ XXεε . Thus, the two main factors that 



Mei-Yu Lee 5  

affect the probability distribution of the residuals are the assumption of the error 

distribution and the linear requirement of 0εX =ˆT , which has k+1 constraints. 

Moreover, the sample size, multi-collinear values of independent variables and the 

autocorrelation coefficient affect the distribution of the residuals. However, as the 

distribution of the residuals in the above model is difficult to formulate, this paper 

only uses computer simulations to show how factors affect the relation between 

the errors and the residuals.  

 

 

2.1 The simulator method 

The sampling distribution of a test statistic may or may not be known. In 

particular, some sample distribution of the test statistic cannot be transferred using 

traditional mathematical techniques such as calculus or Monte Carlo methods. The 

concept of the Monte Carlo method is a good simulation method, but the use of 

continuous data isn’t possible in our computer program. To manage the 

continuous normal distribution (or U-quadratic distribution), we run a computer 

simulation using a software program that can work with any probability 

distribution transformation. The probability theory of this paper has been created 

using the basic concept of a probability distribution simulator, and the functions of 

continuous random variables can be transferred from a uniform distribution with 

parameters of 0 and 1, )1,0U(~X . Thus, we can generate the data and compute 

the coefficients and images.2 The computer simulation is based on the following 

steps. 

2 The software program is named as “White model I” that can be download from 
http://goo.gl/oUDpsp. The distributions of the Tth error and residual, the distributions of 
sum of the errors and residuals can be simulated by the software. The simulation 
technology is from C.C.C. Ltd. (http://psccc.com.tw/en/product). And the U-quadratic 
distribution formula can reference at  
http://psccc.com.tw/uploads/files/probability/1/Chapter_one_02.pdf. 

                                                 

http://goo.gl/oUDpsp
http://psccc.com.tw/en/product
http://psccc.com.tw/uploads/files/probability/1/Chapter_one_02.pdf
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(1) Generate data from a random number table of )1,0U( . Each value of the 

U-quadratic distribution can be obtained when the value is from the inverse 

function of a Normal distribution (or U-quadratic distribution).  

(2) Collect the values whose number matches the number of errors. Clearly, these 

values are i.i.d. Normal distribution (or U-quadratic distribution). That is the 

set values of tµ  from the serial correlation model where  

( ) ( ) ,,...,1,,0 2 TtVarE tt === σµµ  

and  or U-quadratic distribution, 

1,1,....,2,1,11 <−=+×= ++ ρµερε Ttttt . 

    When ρ  is known, 1+tε  can be found.  

(3) The residuals follow the point estimate requirements of the linear model. 

,,...,1,.... ,,110 TtXXY ttkktt =+×++×+= εβββ  

    If the number and values of independent variables are known, then 

kβββ ˆ,...,ˆ,ˆ
10  can be estimated, whereas ε̂  is constrained by 0εX =ˆT . 

Meanwhile, the simulator obeys the linear model method and creates the 

residual values ( ε̂ ). 

Thus, the simulation process includes: 

  Step 1: Giving the intercept and slope value, and the data set of independent 

variables. 

  Step 2: Using the simulation method to get the error data set from the 

probability distribution with sample size, T.  

  Step 3: According to the linear model, computing the data set of dependent 

variables: εXβY += . 
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  Step 4: Calculating the point estimator values of the regression coefficient and 

getting the estimated values of dependent variables: βXY ˆˆ = . 

  Step 5: Calculating the data set of residuals. βXYε ˆˆ −= . 

tε  is simulated by the Step 1 and 2, and tε̂  is simulated by the Step 1 to 5. tε  

and tε̂  are simulated totally 32768 × 2 × 1024 times, and then generated 32768 

× 2 × 1024 values, respectively, to form the frequency distribution that can 

reach to the real tε  and tε̂  distributions. 

 

 

3  Main Results  

3.1 The errors follow normal distribution   

Section 3.1 discusses the condition that the distribution of the errors is a normal 

distribution with 6 independent variables, 15 samples and the autocorrelation 

coefficient of the errors is zero. Thus, the first column of Figure 1 is the 

distribution of the errors, which is a standard normal distribution, and the second 

column of Figure 1 illustrates the shape and coefficient of the 7th residual 

distribution where the coefficients of the mean, skewness, and kurtosis represent a 

normal distribution and are the same as the error distribution.   

The residuals can be viewed as an estimator of the errors because Figure 1 

guarantees that the distribution of the residuals is the same as the distribution of 

the errors. Thus, Figure 1 supports the conclusion of Box and Pierce (1970) when 

the errors are normally distributed. The reason is as follows: the residuals are a 

combination of the errors in the linear regression model, that is 

( ) εββXYYε +−=−= ˆˆˆ , and the autoregressive procedure takes the errors toward 

the autocorrelation with each other without changing the property between the 

residuals and the errors. At the same time, the additive property of a normal 
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distribution impacts the linear combination of the errors. Thus, the residuals show 

the normally distributed property of the errors. 

 
 
 

f(W1),F(W1), W1=error(1) f(W17),F(W17) ,W17=residual(7) 

  

    Mathematical Mean:             0.00004 
    Variance         :            0.99995 
    S.D.             :            0.99997 

    Skewed Coef.     :            -0.00034 
    Kurtosis Coef.   :              3.00023 

    Mathematical Mean:            -0.00003 
    Variance         :            0.58319 
    S.D.             :            0.76367 

    Skewed Coef.     :            0.00002 
    Kurtosis Coef.   :              3.00068 

Figure 1: The errors and residuals distributions as the errors are normal 

distribution 

 

Another reason is that the mathematical formula of the normal distribution 

includes sin and cos functions, which are cyclical functions. Therefore, the 

residuals follow the normal distribution when the error distribution is a normal 

distribution. On the other hand, if the error distribution has no properties of sin or 

cos functions, such as logistic, uniform, U-quadratic, or an exponential 

distribution, then the errors have no cyclical property and may not be shaped as 

per the normal distribution, but like other distributions instead. This paper 

confirms the proposition below. 

Proposition 1 The residuals are normally distributed when the errors are 

normally distributed because a normal distribution with a sin and cos function 

form is subjected to the additive property. 
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However, it is hard to promise that the errors will always be normally distributed 

when researchers do not have the population data. Samples should always be 

tested to classify what distributions they follow. 

 

 

3.2 The errors follow U-quadratic distribution   

The paper gives an example of non-normal error distribution that the errors, tµ , 

were U-quadratic distribution, then the computer simulation offers evidence about 

the distributions of the errors and residuals on the condition of 6 independent 

variables, 15 samples, the 1 lagged period, variance of error is 1 and the 

autocorrelation coefficient of the errors is zero. Lee (2014c) supposed that the 

values of independent variables have serious impact on the residuals, thus the 

paper simultaneously discusses the distributions of the residuals at two cases 

where the values of independent variables are separately with low and high 

multi-collinearlity in the linear regression model with the first-order 

autoregressive error procedure. The third column of Figure 2 presents the 

distribution of the first residual that is generated from the independent variables 

with the population correlation coefficient is 0.99. 

Figure 2 shows that the first column is the error distribution which is U-quadratic 

distribution, the second column is the distribution of the first residual with low 

multi-collinearity and the third column is the distribution of the first residual with 

high multi-collinearity. The distributions of the first residual in the second and 

third columns are as similar as normal distribution while the distribution of the 

errors is U-quadratic distribution. The residual distributions in Figure 2 are 

different from the error distribution, thus, the residuals cannot be regarded as an 

estimator of the errors when the errors are non-normal distribution, moreover, the 

serial correlation test for autocorrelation of the errors is not suitable to use the 

mathematic combination of the residuals because the difference between the 
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distributions of the errors and residuals. The researchers should first investigate 

the distribution of the data to classify what distribution the data is or they always 

obtain the result that the errors follow normal distribution from the residuals.   

 

f(W1),F(W1), W1=error(1) f(W11),F(W11) ,W11=residual(1) 
with low multi-collinearity 

f(W11),F(W11) ,W11=residual(1) 
with high multi-collinearity 

   

Mathematical Mean:             0.00071 
Variance         :             0.99998 

S.D.            :             0.99999 
Skewed Coef.    :            -0.00125 

Kurtosis Coef.    :             1.19053 

Mathematical Mean:             -0.00004 
Variance         :             0.07704 
S.D.             :             0.27757 

Skewed Coef.     :             0.00041 
Kurtosis Coef.    :              2.82251 

    Mathematical Mean:        -0.00005 
    Variance         :         0.58928 

    S.D.             :        0.76764 
    Skewed Coef.     :        -0.00003 
    Kurtosis Coef.   :          2.31065 

Figure 2: The error and residual distributions when error follows U-quadratic 

distribution (T=15) 

 

The main difference between Figure 1 and Figure 2 is the assumption of the error 

distribution, but the residuals show a normal distribution in Figure 2. There must 

be some special factors not yet discovered, independent of the error distribution 

which has the property of sin and cos functions or the property of addition from 

the normal distribution. Lee (2014b) discovered that the number of independent 

variables from 1 to 6 causes the residual distribution to tend towards a normal 

distribution in the linear regression model with an autoregressive procedure. 

Therefore, the paper supposes that errors are not restricted, but that the residuals 

are restricted by 0εX =ˆT  which has k+1 constraints. This linear requirement of 

the residuals in the linear regression model distorts the error distribution away 
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from the original distribution to a normal distribution.  

The linear requirement of the residuals can produce two sources in ANOVA table 

when the number of independent variables is k and the sample size is T. The first 

source is the sum of squares in regression (SSR) whose degree of freedom is k. 

The second source is the sum of squares of error (SSE) whose degree of freedom 

is T-k-1. These two sources decide the shape of the residual distribution. As k 

becomes larger, the residuals are restricted by more constraints, similar to a linear 

combination of random variables. If more random variables are added to the linear 

combination, the new random variable tends toward the normal distribution. The 

residuals that are restricted by more constraints also represent similar states such 

that the distribution of the residuals tends toward a normal distribution.  

If we consider the collinear values of independent variables, then the collinear 

effect affects the convergence to a normal distribution when the error distribution 

is a U-quadratic distribution. The three columns of Figure 2 show that the 

residuals with convergence to normality are weakened by high multi-collinear 

values of independent variables when the number of independent variables is fixed. 

The coefficients of Figure 2 express the variance of the residuals, ( )ε̂S . MSE 

increases as the values of independent variables change from low to high 

multi-collinearity. The shape of the distribution in the third column of Figure 2 

shows that the distribution of the first residual has a flat region around its mean 

and has more left-skewness and less centralization. Thus, the high 

multi-collinearity causes a big problem with the residuals, and so the distribution 

of the first residual is not the same as the shape of the distribution in the second 

column of Figure 2.  

The multi-collinearity of the independent variables results in the calculation and 

combination of the residuals becoming more complex. Moreover, the variance and 

distribution of the residuals are both disturbed by the collinearity when the errors 

follow a non-normal distribution. When the errors are asymmetric, the residuals 



12                                                  Internal Restriction on Residuals  

are delayed in their convergence to normality. To address this, the linear 

regression model adds more independent variables to accelerate the residuals’ 

convergence to normality because more and more independent variables can 

restrict the residuals and weaken the collinear effect. Meanwhile, the degree of 

freedom also decreases.3 This paper proposes a second proposition as follows. 

Proposition 2. 

(1) A larger number of independent variables, k, brings faster convergence 
to normality on the residuals when the errors have a non-normal 
distribution. 

(2) Higher multi-collinear values of independent variables cause slower 
convergence to normality for the residuals. 

(3) Higher multi-collinear values and a smaller number of independent 
variables cause the distribution of the residuals to follow neither a 
non-normal distribution nor the error distribution, but a mixture of the 
error distribution and a normal distribution according to the constraints 
of the residuals.  

The multi-collinear property and constraints on the residuals have opposite effects, 

simultaneously disturbing the distribution of the residuals which becomes a mixed 

distribution between a normal distribution and the error distribution.  

 

 

3.3 Sample size is changed 

The sample size effect plays a very important role in time series models that can 

represent the law of large numbers. Thus, the residuals may be regarded as a good 

estimator of the errors. The simulation case only changes the sample size from 9 

3 In fact, the multicollinear case of the computer simulation implies that only the number 
of independent variables is more than 20 and the degree of freedom is more than 2, then 
the residuals and coefficients of regression model with first-order autoregressive error 
process will have normal distributed point estimators when the low multicolliearity of 
independent variables exists and the errors follow independently identically distribution 
with symmetric at zero. 
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to 107 on the condition of 6 independent variables. The population variance is 1, 

the autocorrelation coefficient is zero, the values of independent variables are 

from the front T of the data set, and the simulated setting follows section 3.2. The 

residuals gradually revealed the property of the errors when the sample sizes 

increased from 9 to 107. Without loss of generalization, this paper only shows the 

shapes and coefficients of distributions for the thT×5.0  residual in Figure 3 and 

Table -1, which are in Appendix A.  

 

 
T=14, the 7th residual T=60, the 30th residual 

  

    Mathematical Mean:             -0.00003 
    Variance         :              0.50400 
    S.D.             :              0.70993 
    Skewed Coef.     :             -0.00030 
    Kurtosis Coef.   :              2.47090 

    Mathematical Mean:              0.00014 
    Variance         :              0.86864 
    S.D.             :              0.93201 
    Skewed Coef.     :             -0.00019 
    Kurtosis Coef.   :              1.63269 

Figure 3: the thT5.0  residual’s distribution 

 

Figure 3 explores the distributions of the thT5.0  residual at T = 14 and 60. The 

second column of Figure 3 has a less regular distribution shape than the first 

column at T = 14. Meanwhile, the shape of the 30th residual at T = 60 tends toward 

a U-quadratic distribution more than the distribution of the 7th residual at T = 14. 

Figure 3 clearly shows that the larger sample sizes cause the thT5.0  residual to 

tend towards the error distribution. Thus, the sample size effect can limit the effect 
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of the linear requirements on the residuals. At the same time, it allows the 

distribution of the residuals to represent more properties of the errors. The 

coefficients in Table Ａ-1 show that the thT5.0  residual has a mean of around 

zero, skewed coefficients, larger variances, and decreasing kurtosis when the 

sample sizes increased from 9 to 107. In comparison with the first column in 

Figure 2, the coefficients in Table Ａ-1 approach the coefficients in the first 

column in Figure 2 when the sample sizes increased, especially for the variance 

and kurtosis coefficients. The coefficients that change with different sample sizes 

also show that the distribution of the residuals can be an estimator of the errors if 

the sample size effect is sufficiently larger than the effect of constraints on the 

residuals. The interaction between the sample size and the linear requirement 

causes the different shape and coefficients of the distribution of the thT5.0  

residual. The residuals become more centralized when the linear requirement has 

more constraints. Nevertheless, the residuals are affected by the error distribution 

and are more likely to tend toward the error distribution when the number of 

constraints is not large enough. In other words, the residual distribution is vastly 

different from the error distribution because the residuals are affected by the linear 

requirement of linear regression models, the error distribution, sample sizes, and 

the values of independent variables. It is generally assumed that errors are 

normally distributed, which is a symmetric distribution. However, the residuals 

can be an estimator of the errors when k+1 is greater than 20, T ranges from 23 to 

23+(k-19), and there is little or no multi-collinearity. 

 

 

3.4 Autocorrelation coefficient of the errors is 0.7 

The above statements are on the condition of zero autocorrelation of the errors. 

However, nonzero autocorrelation cases are usually seen in the data. We discuss 

the case where the autocorrelation coefficient of the errors is 0.7 and other 
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conditions are as the same as section 3.2. There are also two cases of low and high 

multi-collinear values of independent variables. We show the shapes and 

coefficients of distribution of first and 15th errors and residuals in Figure 4 and 

Figure 5, respectively.  

 

the 1st error the 1st residual 
Low multi-collinearity 

the 1st residual 
High multi-collinearity 

   

    Mathematical Mean:    0.00006 
    Variance         :    0.99999 
    S.D.             :    0.99999 
    Skewed Coef.     :   -0.00012 
    Kurtosis Coef.   :     1.19049 

    Mathematical Mean:   -0.00004 
    Variance         :    0.52980 
    S.D.             :    0.72787 
    Skewed Coef.     :   -0.00005 
    Kurtosis Coef.   :     2.17951 

     Mathematical Mean:  -0.00005 
    Variance         :   0.25373 
    S.D.             :    0.50372 
    Skewed Coef.     :   -0.00013 
    Kurtosis Coef.   :    2.62116 

Figure 4: The first error and residual distributions when error follows U-quadratic 

distribution and autocorrelation coefficient is 0.7 

 

The distribution of the first error follows a U-quadratic distribution, but the first 

residuals that are affected by the degree of multi-collinearity show different 

shapes for the distribution of the residuals in Figure 4. The distribution of the first 

residuals cannot represent the property of the first error and greater multi-collinear 

values of independent variables cause more centralized distributions of the first 

residuals. 

Another important view from coefficients in Figure 4 is that the coefficients are 

similar to each other among the three columns, but the population distribution of 

the first column and sampling distributions of the second and third columns have 

completely different shapes from each other. On the other hand, the coefficients 
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may highlight questionable results that are used to pass hypothesis testing when 

researchers only investigate the means and variances of residuals. Comparing the 

three columns, the linear requirement and multi-collinearity push the first residual 

towards centralization. Higher multi-collinear values of independent variables 

induce more centralized residuals. 

This study also ran the distributions of the 15th error and residuals which are 

divided into two parts including low and high multi-collinearity in Figure 5.4 The 

distribution of the 15th error is not the same as the U-quadratic distribution, but is 

more centralized as per the normal distribution because of the nonzero 

autocorrelation coefficient. Meanwhile, the distributions of the 15th residual are 

more similar to the distribution of the 15th error in Figure 5 than the first residual 

in Figure 4. The means and variances at the first and third columns in Figure 5 

highlight that the 15th residual is very similar to the 15th error. However, the 

diagrams and kurtosis coefficients show that there is a vast difference between the 

15th residual and the 15th error. 

Comparing Figure 4 and Figure 5, the coefficients of the errors show similar 

coefficients, except for the kurtosis coefficients. The diagrams of the first column 

from Figure 4 and Figure 5 are from the U-quadratic shape to the opposite of the 

U-quadratic shape because of the non-zero autocorrelation coefficient. The 

diagrams of low multi-collinear residuals show bulging from the first residual to 

the 15th residual, and the diagrams of high multi-collinear residuals are similar. 

This highlights that the nonzero autocorrelation coefficient and multi-collinearity 

interact on the residuals. Higher multi-collinearity decreases the effect of the 

autocorrelation coefficient on the residuals 

 

 

4 We also simulate the case of -0.7 autocorrelation coefficient in Appendix B.  
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the 15th error the 15th residual 
Low multi-collinearity 

the 15th residual 
High multi-collinearity 

   

    Mathematical Mean:   -0.00008 
    Variance         :    0.99992 

    S.D.             :   0.99996 
    Skewed Coef.     :   0.00025 
    Kurtosis Coef.   :    2.38056 

    Mathematical Mean:   -0.00003 
    Variance         :    0.60125 
    S.D.             :    0.77540 

    Skewed Coef.     :   -0.00008 
    Kurtosis Coef.   :     2.56853 

    Mathematical Mean:    0.00004 
    Variance         :    0.83748 

    S.D.             :   0.91514 
    Skewed Coef.     :   0.00026 
    Kurtosis Coef.   :     2.61272 

Figure 5: The 15th error and residual distributions when error follows U-quadratic 

distribution and autocorrelation coefficient is 0.7 

 

 

4  Conclusion 

The purpose of this paper is to explain why residuals cannot perfectly represent 

errors. This paper confirms that residuals that require specific conditions can be 

viewed as an estimator of the errors, but it may not be appropriate to assume a 

normal distribution because of the properties of the data. However, if the errors 

are normally distributed, the residuals can be a good estimator of the errors 

because of the properties of a normal distribution.  

This paper also shows, via computer simulation results, how a non-normal 

distribution, linear requirements, multi-collinearity, sample size, and the 

autocorrelation coefficient affect the distributions of the errors and the residuals. 

First, residuals are restricted, but errors are not. Hence, the values of the residuals 

are constrained by a linear requirement from the regression analysis, and this 

causes the residuals to not perfectly represent errors. Second, this paper supposes 

that the linear requirement, sample sizes, and the values of independent variables 
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interact in the linear regression model. Thus: (1) the constraints of the linear 

requirements are high enough that the residuals follow a normal distribution when 

the sample sizes are fixed, regardless of the error term assumed. (2) If the error 

term is assumed to follow a normal distribution, then the residuals follow a normal 

distribution. (3) Larger sample sizes result in the residuals revealing properties of 

the error term when the linear requirement is fixed. 
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Appendix A. 

Section 3.3 shows how the change of sample size affects the distribution of each 

residual. However, each different sample size case has T residuals, the paper 

shows the coefficients of the 0.5Tth residual whose 0.5Tth is half T. The 

coefficients of Table Ａ-1 almost have the same means of the 0.5Tth residual and 

cannot let readers know what the difference among those distributions of the 

0.5Tth residual from different sample sizes. Thus, the paper put the coefficients of 

the 0.5Tth residual in Appendix and the graphs of distribution of the 0.5Tth residual 

in the main content. 

 
Table Ａ-1. The coefficients of the 0.5Tth residual in different sample sizes 

T 9 10 12 
0.5Tth 5 5 6 

Coefficients 

    Mathematical Mean: 0.00002 
    Variance  :         0 .12050 
    S . D .    :           0 . 3 4 7 1 2 
    Skewed Coef. :      0.00008 
    Kurtos is  Coef. :     2.61692 
    M AD     :         0 . 2 8 1 6 4 
    R a nge   :          2 . 1 8 5 9 5 
    M e d ia n  :          0 . 1 0 4 1 0 
    I Q R     :         - 1 . 0 9 2 4 0 

    Mathematical Mean:  0.00010 
    Variance :           0.66584 
    S.D.   :             0.81599 
    Skewed Coef. :       0.00007 
    Kurtosis Coef. :       2.14263 
    MAD    :          0.69024 
    Range  :            4.36179 
    Median :            0.05433 
    IQR    :           -1.67194 

    Mathematical Mean:   0.00003 
    Variance :           0.41115 
    S.D.   :             0.64121 
    Skewed Coef. :      -0.00049 
    Kurtosis Coef. :       2.52345 
    MAD    :          0.52335 
    Range  :            4.03883 
    Median :            -0.59530 
    IQR    :           -0.01178 

T 14 16 18 
0.5Tth 7 8 9 

Coefficients 

    Mathematical Mean:   0.00003 
    Variance :           0.50400 
    S.D.   :             0.70993 
    Skewed Coef. :       -0.00030 
    Kurtosis Coef.:       2.47090 
    MAD    :          0.58384 
    Range   :            4 .96694 
    Median :           -0.49846 
    IQR    :            0.60169 

    Mathematical Mean:   0.00015 
    Variance :           0.69658 
    S.D.   :             0.83462 
    Skewed Coef. :      0.00016 
    Kurtosis Coef.:       2.09787 
    MAD    :          0.71287 
    Range   :            5 .26536 
    Median :           1.13480 
    IQR    :            1 .81239 

    Mathematical Mean:  -0.00007 
    Variance :           0.67610 
    S.D.   :             0.82225 
    Skewed Coef. :       -0.00021 
    Kurtosis Coef. :       2.15551 
    MAD    :          0.69899 
    Range  :            5.76724 
    Median :            0.51382 
    IQR    :            0.72251 

T 20 30 40 
0.5Tth 10 15 20 

Coefficients 

    Mathematical Mean:  -0.00001 
    Variance :           0.57802 
    S.D.   :             0.70280 
    Skewed Coef. :       0.00022 
    Kurtosis Coef. :       2.35887 
    MAD    :          0.63243 
    Range  :            5.39457 
    Median :           -0.87208 
    IQR    :           -0.44459 

    Mathematical Mean:  -0.00011 
    Variance :           0.74874 
    S.D.   :             0.86530 
    Skewed Coef. :       0.00018 
    Kurtosis Coef. :       1.97507 
    MAD    :          0.75134 
    Range  :            5.66672 
    Median :           -0.36794 
    IQR    :           -0.17231 

    Mathematical Mean:  -0.00011 
    Variance :           0.90912 
    S.D.   :             0.95348 
    Skewed Coef.:        0.00022 
    Kurtosis Coef.:       1.50373 
    MAD    :          0.88326 
    Range  :            4.90625 
    Median :            -0.30457 
    IQR    :           -0.51299 

T 80 107  
0.5Tth 40 50  

Coefficients 

    Mathematical Mean:   0.00004 
    Variance :           0.97787 
    S.D.   :             0.98888 
    Skewed Coef. :      -0.00034 
    Kurtosis Coef.:      1.26972 
    M AD    :          0 . 94699 
    R a nge   :           3 . 91584 
    M ed ian :           0 . 88092 
    IQR     :          -2 . 35631 

    Mathematical Mean:   0.00028 
    Variance :           0.92229 
    S.D.   :             0.96036 
    Skewed Coef.:       -0.00034 
    Kurtosis Coef.:       1.46089 
    MAD    :          0.89520 
    Range   :            4 .92764 
    Median :           1.02281 
    IQR    :           -0 .48487 
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Appendix B.  

The paper also simulates the situation that the autocorrelation of the errors is -0.7. 

The residuals have the smaller mean and variance and more negative skewness on 

the condition of high multicollinearity. 

 

the 1st error the 1st residual 
Low multi-collinearity 

the 1st residual 
High multi-collinearity 

   
    Mathematical Mean:   -0.00000 

    Variance         :    0.99996 

    S.D.             :    0.99998 

    Skewed Coef.     :    0.00008 

    Kurtosis Coef.   :     1.19052 

    Mathematical Mean:   -0.00005 

    Variance         :    0.92580 

    S.D.             :    0.96219 

    Skewed Coef.     :   -0.00003 

    Kurtosis Coef.   :     2.13261 

    Mathematical Mean:   -0.00016 

    Variance         :    0.49797 

    S.D.             :    0.70567 

    Skewed Coef.     :   -0.00069 

    Kurtosis Coef.   :     2.66838 

Figure B-1. The first error and residual distributions when error follows U-quadratic 

distribution and autocorrelation coefficient is -0.7 

 

With comparison of the autocorrelation coefficients of the errors that are 0.7 and 

-0.7, the means of the first error and the 15th error have less means when 

autocorrelation coefficient is -0.7. Second, the probability distribution of the first 

error in Figure B-1 is as the same as in the left side of Figure 4, so does the 15th 

error in Figure B-2 and Figure 5. Third, the low multi-collinearity situation shows 

that the first residual has larger variance and less centralization in Figure B-1 than 

in Figure 4. However, the 15th residual is more centralized in Figure B-2 than in 

Figure 5. Finally, the high multi-collinearity situation explores that the first 

residual in Figure B-1 has larger variance and more centralization than in Figure 4,. 

However, the 15th residual has smaller variance and less centralization in Figure 

B-2 than in Figure 5. 
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the 15th error the 15th residual 

Low multi-collinearity 
the 15th residual 

High multi-collinearity 

   
    Mathematical Mean:   -0.00024 

    Variance         :    0.99998 

    S.D.             :    0.99999 

    Skewed Coef.     :    0.00036 

    Kurtosis Coef.   :     2.38057 

    Mathematical Mean:   -0.00012 

    Variance         :    1.08709 

    S.D.             :    1.04264 

    Skewed Coef.     :    0.00057 

    Kurtosis Coef.   :     2.68820 

    Mathematical Mean:   -0.00017 

    Variance         :    0.82336 

    S.D.             :    0.90739 

    Skewed Coef.     :    0.00021 

    Kurtosis Coef.   :     2.27220 

Figure B-2. The 15th error and residual distributions when error follows U-quadratic 

distribution and autocorrelation coefficient is -0.7 

 


