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model with heavy tailed errors ∗
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Abstract

GARCH (1,1) models are widely used for modelling processes with
time varying volatility. These include financial time series, which
can be particularly heavy tailed. In this paper, we propose a log-
transform-based least squares estimator (LSE) for the GARCH (1,1)
model. The asymptotic properties of the LSE are studied under very
mild moment conditions for the errors. We establish the consistency,
asymptotic normality at the standard convergence rate of

√
n for our

estimator. The finite sample properties are assessed by means of an
extensive simulation study. Our results show that LSE is more accu-
rate than the quasi-maximum likelihood estimator (QMLE) for heavy
tailed errors. Finally, we provide some empirical evidence on two fi-
nancial time series considering daily and high frequency returns. The
results of the empirical analysis suggest that in some settings, depend-
ing on the specific measure of volatility adopted, the LSE can allow for
more accurate predictions of volatility than the usual Gaussian QMLE.
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1 Introduction

In the last three decades there has been a large amount of theoretical and em-
pirical research on modelling the conditional volatility of financial time series
data. These time series, which appear to be uncorrelated, exhibit dependence
in their squares, a notable example being the daily financial returns. The
practical motivation lies in the increasing need to explain and to model risk
and uncertainty usually associated with financial returns. One of the most
successful approaches for modelling volatility makes use of the generalized
autoregressive conditionally heteroskedasticity (GARCH) model, suggested
by Bollerslev (1986), and its numerous extensions. Indeed, its simplicity
and intuitive appeal make the GARCH model, especially the GARCH(1,1),
a good starting point in many financial applications, see e.g. Hansen and
Lunde (2005).

The main approach for the estimation of GARCH models is the quasi-
maximum likelihood estimator (QMLE) approach where the estimates are
obtained through maximization of a Gaussian likelihood function. Bollerslev
and Wooldridge (1992) derived the asymptotic distribution of the QMLE
under high level assumptions. When the errors have finite fourth moment
the consistency and asymptotic normality of the QMLE for the GARCH(1,1)
have been established by Lee and Hansen (1994) and Lumsdaine (1996).
These results were extended to the case of GARCH (p,q) by Boussama (1998),
Berkes et al. (2003) and Francq and Zaköıan (2009). However, empirical
evidence indicates that for many financial time series, the distribution of
errors is far from being Gaussian and it is usually heavy tailed (Hall and Yao
(2003), Mittnik and Rachev (2000). Hall and Yao (2003) studied the QMLE
for heavy tailed errors (without finite fourth moment). They showed that
the asymptotic distribution may be non-Gaussian and the convergence rate
is slower than

√
n. Straumann (2005) established similar results for a more

general class of GARCH type models.
In this paper, we consider a log-transform-based least squares estimator

(LSE) for the parameters of a GARCH(1,1) model. In order to establish our
asymptotic theory, we impose mild moment conditions on the errors which
account for the possibility of heavy tailed errors. In addition, we require
that the process satisfies the necessary and sufficient condition for strict
stationarity as given by Nelson (1990), which allows for mildly explosive
GARCH processes. We establish the consistency and asymptotic normality
of the proposed LSE. The finite sample efficiency of the LSE is then assessed
by means of a simulation study considering different error distributions as
well as different persistence levels of the volatility process. The results suggest
that the LSE can be more efficient than the Gaussian QMLE (GQMLE) in the
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following cases: i) in the presence of heavy tailed or skewed error distributions
ii) when the volatility persistence is close to unity. It is important to note
that both these features typically occur in the analysis of financial time series.

The paper also presents an empirical application to financial data whose
aim is to evaluate the ability of the LSE to adequately reproduce the volatility
dynamics of some commonly encountered classes of asset returns. To cover
a wide range of features typically arising in financial applications, we con-
sider two different datasets characterized by substantially different volatility
patterns namely the daily log-returns on the S&P 500 stock market index
and the 30 minutes log-returns on the US dollar/Swiss franc (USD/CHF)
exchange rate. The results indicate that the LSE can produce more accurate
predictions of volatility than the usual GQMLE. Further, in order to inves-
tigate if the LSE is able to adequately characterize the stochastic structure
of the two datasets analyzed, we compare the theoretical autocorrelation
functions of squared returns implied by the estimated volatility models to
their sample counterparts. In both cases the results are compared with those
yielded by the GQMLE.

The structure of the paper is as follows. In Section 2 we discuss the LSE
and derive its asymptotic properties. In Section 3 we conduct a simulation
study aiming at investigating the small sample properties of the estimator,
while the results of an application of the proposed estimation approach to
two financial time series are presented in Section 4. Section 5 concludes. The
mathematical proofs are presented in the Appendix.

We use the following notations throughout the paper. |A| = (tr(A′A))1/2

denotes the Euclidian norm of a vector or a matrix and ||A||r = (E(|A|r))1/r

denotes the Lr-norm of a random vector or matrix. The symbol →
D

denotes

converges in distribution. The symbol →
a.s.

(→
p

) denotes convergence almost

surely (in probability). oa.s.(1) denotes a series of random variables that
converges to zero almost surely (a.s.).

2 Least squares estimation for the GARCH

(1,1) model

The standard GARCH (1,1) model as proposed by Bollerslev (1986) is given
by

yt =
√
h0tεt (1)
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where {εt} is a sequence of independent and identically distributed (iid)
random variables with E(εt) = 0 and

h0t = ω0 + α0y
2
t−1 + β0h0t−1 (2)

The process is described by an unknown parameter vector θ0 = (ω0, α0, β0)′.
If E(ε2

t ) = 1 then h0t is the conditional variance of yt given the history of
the system. However, without any moment conditions, h0.5

0t is the conditional
scaling parameter of the observed process. Let c0 = E[ln(ε2

t )] and assume
that c0 is finite, which is implied by our assumptions below. By squaring the
terms in (1) and taking the logarithm we obtain

zt = ln(h0t) + ηt (3)

where zt = ln(y2
t )−c0 and ηt = ln(ε2

t )−c0 are zero mean iid random variables.
This nonlinear regression can be estimated via a least squares estimation.
Conditional on some initial positive value h̃1(e.g. h̃1 = ω), the objective
function is given by

Q̃n(θ) = 1
2n

∑n
t=1

˜̀
t(θ) = 1

2n

∑n
t=1 (zt − ln h̃t(θ))

2 (4)

where θ = (ω, α, β)′ and h̃t(θ) is defined recursively, for t ≥ 2 by

h̃t(θ) = ω + αy2
t−1 + βh̃t−1 (5)

The LSE of θ is defined as any measurable θ̂n of

θ̂n = arg min
θ∈Θ

Q̃n(θ) (6)

where Θ ⊂ (0,∞)× [0,∞]2. It will also be convenient to work with ht(θ) the
unobserved conditional variance

ht(θ) = ω + αy2
t−1 + βht−1(θ) (7)

where h1 is initialised from its stationary distribution. Note that h0t = ht(θ0)
and h̃0t = h̃t(θ0). For the unobserved process we construct the following
unobserved objective function

Qn(θ) = 1
2n

∑n
t=1 (zt − lnht(θ))

2 = 1
2n

∑n
t=1 `t(θ) (8)

The primary difference between the two objective functions is that Qn(θ) is
computed as if we had a sample containing the infinite past observations.
In practice, we can only use (4) for estimation. It will be shown that the

4



choice of the initial values does not matter for the asymptotic properties of
the LSE.

To show the strong consistency, the following assumptions will be made.

Assumptions

(A1) Θ ≡ {θ : 0 < ω ≤ ω ≤ ω̄, 0 ≤ α ≤ α ≤ ᾱ, 0 ≤ β ≤ β ≤ β̄ < 1},
where θ0 ∈ Θ.

(A2) γ = E ln(α0ε
2
t + β0) < 0

(A3)E|εt|2s <∞ for some s > 0.

(A4) limr→0r
−(1+δ) Pr(ε2

t ≤ r) <∞ for some δ > 0.

Remark 1 : The first assumption allows for the possibility that the process
is a pure ARCH or even an iid. process. Nelson (1990) showed that As-
sumption A2 is sufficient and necessary for strict stationarity of (1) and (2).
Note that by Jensen’s inequality Assumption A2 holds if α0 + β0 ≤ 1 and
E(ε2

t ) = 1. But the condition does not require that α0 + β0 ≤ 1. Thus, we
are allowing for the possibility of mildly explosive GARCH, in addition to
integrated GARCH. However, this conclusion does not necessarily hold if εt
has infinite second moment. Nelson (1990) shows that when εt is standard
Cauchy, γ = 2E ln(β0.5

0 + α0.5
0 ), so that the set of parameter values which

allows for strict stationarity is smaller than the set α0 +β0 < 1. Assumption
A3 is a mild moment condition which allows for heavy tailed errors. Assump-
tion A4 implies that the distribution of the error term is not concentrated
around zero, and one sufficient condition is that the density of εt is bounded.
This condition is necessary for both consistency and asymptotic normality.
A similar condition also appears in Berkes et al.(2003). Assumptions A3 and
A4 imply that zt, ηt are finite a.s. and the scaling factor c0 is finite (see
Lemma 1(iii) in the Appendix for details).

Remark 2 : The method underlying the proofs basically consists of two main
stages. In the first stage it is assumed that the process is initiated from its
stationary distribution and we establish the finiteness of various moments of
the first and second derivative of the objective function. This part is justified
by the second stage in which we show that the choice of the initial values
does not matter for the asymptotic properties of the estimator. Our first
result is given as follows.
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Theorem 1: Under Assumptions A1-A4, θ̂n →
a.s.

θ0

The next theorems establish the asymptotic normality for our estimator. For
GQMLE the former result is obtained under the assumption that E(ε4

t ) <∞.
For the LSE, we consider the additional assumption:

(A5) θ0 ∈ Θ0, where Θ0 denote the interior of Θ.

Remark 3 : Assumption A5 is needed to establish the asymptotic normality,
otherwise when the parameters are on the boundary other methods should
be used. For example, under the null hypothesis that α = 0, the conditional
volatility process is degenerate which implies that β is unidentifiable and
the null value of α is on the boundary, so its distribution cannot be normal.
Andrews (2001) and Francq and Zakoian (2007) study in detail the distri-
bution of the QMLE in that case. This issue is beyond the scope of this paper.

We can now derive the LSE asymptotic distribution.

Theorem 2: Under Assumptions A1-A5,
√
n(θ̂n − θ0)→

D
N(0,Ω), where

Ω = κJ−1, J = E (Jt) , Jt = 1
h20t

∂h0t
∂θ

∂h0t
∂θ′

and κ = E(η2
t ).

Remark 4 : Let Ĵt and η̂2
t be the sample counterparts of Jt and η2

t where θ̂n
is used and the variance is conditional on some initial fixed value. Under
Lemma 7, it is straightforward to show that Ω̂n = 1

n

∑n
t=1 η̂

2
t Ĵt, is a strongly

consistent estimate of Ω. Further, for the QMLE, it was shown that the
covariance matrix estimate converges in probability to the true quantity (see
e.g. Francq and Zakoian (2009)). It is worth nothing that the methods used
in the Appendix can easily be applied to prove almost sure convergence to
the true asymptotic covariance matrix also in the context of quasi-likelihood
estimation.

Remark 5 : An important use of the asymptotic normality shown in Theorem
2 is to construct a Wald statistic to test the null hypothesis,

H0 : Rθ0 = r

where R is a given k × 3 matrix and r is a given k × 1 vector. This test
statistic may be defined as

Wn =
(
Rθ̂n − r

)′ (
RΩ̂nR

′
)−1 (

Rθ̂n − r
)
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and we reject H0 for large values of Wn. The following theorem gives the
limiting distribution of Wn under the null hypothesis.

Theorem 3: Under Assumptions A1-A5, Wn →
D
χ2
k,

Remark 6 : Other scale measures can be used as our objective function. Thus,
instead of using the LSE one may use the Lq estimator in which the scale
measure is based on the q−th absolute moment (q ≥ 1) of the fitted residu-
als. For example, for q = 1 the least absolute deviations estimator (LADE)
was proposed by Peng and Yao (2003). They showed that the LADE is lo-
cally asymptotically Gaussian with convergence rate

√
n provided that the

second moment of the error term is finite (see also Huang et al. (2008)).
Another more general class of scale measures is the “regular scale about the
origin”, introduced by Sakata and White (2001), which allows for more ro-
bust estimation. The choice of a specific scale measure could be motivated
by efficiency or robustness considerations. Further, the unique features of
each estimation method should be considered before deriving its asymptotic
properties for the GARCH case.

Remark 7 : Our estimator can be treated as an alternative to the common
GQMLE in cases where the error distribution does not have finite fourth mo-
ment. For example, we can consider the Cauchy distribution or the Student
t distribution with ≤ 4 degrees of freedom.

Remark 8 : When the fourth order moment is assumed to be finite, the
GQMLE is

√
n consistent for the true parameter values. However, in the

presence of extreme non-normality, this estimator can fail to produce asymp-
totically efficient estimates. Hence, a two-step estimation procedure can be
applied to gain efficiency. In the first step the GQMLE is used to obtain a
consistent estimate of the scaling parameter and in the second step the LSE
is used to estimate the model parameters. The issue of efficiency will be
examined in the simulation study in the next section.

Remark 9 : In our setting, we assume that the scaling factor c0 is known.
This assumption is standard1. It simplifies the discussion and implies that
the practitioner has some a-priori knowledge or can formulate some reason-
able assumptions about the distribution of the errors. Further, our empirical

1For stochastic volatility models, a similar approach to ours was considered by Ruiz(1994)
and Harvey et al.(1994), where it was assumed that the error term is Gaussian which
implies that scaling constant was set to -1.27.
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results, shown in the next section, clearly indicate that our findings are not
sensitive to the choice of the scaling factor.

Remark 10 : If we treat c0 as unknown, (α0, ω0) can be estimated2 up to
a scale parameter. However, other GARCH estimation methods considered
in the literature, R-estimation (Andrews (2012), M-estimation (Mukherjee
(2008)), LAD-estimation (Peng and Yao (2003)), are also not used to di-
rectly estimate θ0 = (ω0, α0, β0)′. Instead, those methods are used to esti-
mate (ω0/d, α0/d, β0)′ where d > 0 is unknown when the error distribution
is unknown. Another approach is to assume that ω0 is known, see Linton el
al. (2010).

Remark 11 : Estimating θ0 when c0 is unknown is more complicated and
requires modifying our estimation procedure. In what follows we describe in
general, a possible estimation procedure for this case. However, investigating
the asymptotic and empirical properties of the proposed estimator is left
for future work. Note that from (1)-(2) and letting h̄0t = h0t/ω0 = 1 +
(α0/ω0)y2

t−1 + β0h̄0t−1, we have

ln(y2
t ) = c0 + ln(h̄0t) + ζt (9)

where c0 = E[ln(ω0ε
2
t )] and {ζt} is a sequence of mean zero iid variables.

As mentioned above, this nonlinear regression can be estimated via a least
squares estimation. Thus, the unknown parameters ψ0 = (c0, α0/ω0, β0) are
estimated by minimizing the following modified objective function

Q̃n(ψ) = 1
2n

∑n
t=1 (ln(y2

t )− c− ln ˜̄ht(θ))
2 (10)

where ψ = (c, θ′)′ , θ = (α/ω, β)′ and h̄t(θ) = 1 + (α/ω)y2
t−1 + βh̄t−1(θ). In

order to fully identify θ0, we can use a standard two-step estimation proce-
dure, see e.g. White (1994). In the first step, we apply the modified LSE to
obtain a consistent estimate for the normalized series {yt

/
h̄0.5

0t } which should
resemble

√
ω0εt for large samples. In the second step, given the identified

rescaled error distribution, θ0 can be identified 3 via the maximum likelihood
method (Rekkasa and Wong (2008); Francq and Zakoian (2013)).

2The β parameter is invariant to rescaling of the error term.
3A simple way to identify the parameters would be to assume that E(ε2t ) = 1, which implies
that the average of the squared rescaled errors converge to ω0.
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3 Simulation evidence

In this section, we investigate the finite sample properties of the LSE by
means of a simulation study and compare the performance of the LSE with
that of the GQMLE for a wide range of processes.

We note that for θ̃n, the GQMLE,
√
n(θ̃n − θ0) ∼ N(0, κNJ

−1) where
κN = E(ε4

t ) − 1. This relationship implies that the variability of the LSE
relative to the GQMLE is captured by the efficiency ratio λ = κN/κ. The
larger this quantity is, the more efficient the LSE is relative to the GQMLE.
This relative efficiency depends on the distribution of the error term. The
efficiency ratio for error distributions that have been used in the simulation
study and have finite fourth moment are shown in Table 1. The results imply
that the LSE can be substantially more efficient than the GQMLE when the
distribution of the error term deviates from normality.

Table 1: : Efficiency of the LSE relative to GQMLE for different error dis-
tributions.

Distributions κ κN λ
Normal 4.92 2 0.41
t5 6.47 19.12 2.96
χ2

1 − 1 4.67 64.55 13.81

In the simulation study, in order to reflect a wide range of situations
commonly encountered in practical financial modelling, we have considered
different levels of persistence for the volatility model as well as different dis-
tributions for the errors. In particular, three different volatility parameteri-
zations are used corresponding to three different levels of persistence in the
volatility model: High (H), Medium (L) and Low (L). The selected volatility
models have been summarized in Table 2. For each model in the table, the
value of ω0 in the volatility model was determined in order to constrain the
variance of each of the DGP to be equal to 1.

Table 2: : Volatility models used for the simulation study.
α0 β0

H 0.09 0.90
M 0.10 0.80
L 0.20 0.60

The error term was assumed to follow: standard normal, standardized
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Student’s t, with 3 and 5 degrees of freedom, and standardized χ2
1. It is

worth noting that E(ε4
t ) < ∞ for all the distributions except for the t3. In

this case the asymptotic normality of the GQMLE is not expected to hold
(Straumann (2005), p. 178).

Then, considering four different sample sizes,T = 500, 1000, 2000, 5000,
a set of 1000 pseudo-random time series was simulated from each of the
DGP’s obtained matching the assumed error distributions with the volatil-
ity models summarized in Table 2. Next, a GARCH(1,1) model was fitted
to each of the simulated series by using the GQMLE and the LSE, respec-
tively. In particular, two different versions of the LSE have been used 4.
First, assuming knowledge of the underlying error distribution, the LSE was
implemented using the correct scaling factor c0. This can be easily approxi-
mated by simulating a very large sample5 from the assumed distribution for
error term. Then, c̃0, a simulated approximation of c0 can be obtained by
taking the sample average of the natural logarithms of the squared simulated
values. Furthermore, we also considered a two-stage LSE. In the first stage
the GQMLE is used to obtain ĉ0, a consistent estimate of the scaling fac-
tor. In the second stage the model is re-estimated by our method using the
estimated scaling factor.

In order to assess the quality of the estimates, we have focused on the
simulated values of bias and Mean Square Error (MSE). For the sake of
brevity and ease of exposition, the results obtained for the two stage LSE
have been omitted since they did not turn out to be significantly different
from those obtained for the estimator based on the correct scaling factor
(c̃0). Also, to simplify the presentation of the results, we omit reporting the
bias and MSE values for the constant term ω0. However this set of results is
available from the authors upon request.

A different situation appears for the High persistence GARCH model. In
this case the GQMLE, differently from the LSE, is characterized by non-
regular behaviour. Even in the case of normal errors, for large sample sizes,
the value of the MSE is surprisingly higher than that registered for the LSE.
This is probably due to the fact that the chosen DGP is very close to the
border of the weak stationarity region. In the case of t5 errors the LSE is
by far more efficient than the QMLE if a sufficiently large sample size is
considered (T ≥ 2000). In the remaining cases the LSE is performing better
than the QMLE, in terms of MSE, for all the sample sizes considered.

4The GQMLE was computed by using the MATLAB function fminunc to maximize the
associated quasi likelihood function with respect to the unknown parameters. For the
LSE, the relevant sum of squares was minimized using the MATLAB function lsqnonlin.
5In the simulation study a sample of length 10000 was used to approximate the scaling
factor c0.
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It is interesting to note that, in general, the bias tends to be positive for
the ARCH coefficient α while it is always negative for the GARCH coefficient
β. This result is not surprising since it is in line with previous findings in the
literature (see e.g. Straumann, 20056). Furthermore, we must note that the
overall behaviour observed in the cases of Low and Medium volatility per-
sistence (see tables 3-6) is substantially different from that registered for the
High persistence case (see tables 7-8). For the Low and Medium persistence
models, in line with the results in Table 1, the GQMLE is performing sub-
stantially better than the LSE in the Gaussian case while, in non-Gaussian
settings, the overall performance of the LSE model tends to improve over its
competitor.

4 An application to financial data

In this section we present the results of an application of the proposed es-
timator to two time series of financial returns. First, we consider a time
series of daily (percentage) log-returns on the S&P 500 index from January
5, 1971 to May 30, 2006 for a total of 8937 observations (Figure 1). Second,
we consider a time series of 30 minutes returns on the USD/CHF exchange
rate from April 1, 1996 to March 30, 2001 for a total of 62495 observations
(Figure 2). In the latter case the data have been standardized in order to
account for the presence of some observations exactly equal to zero. In order
to remove any serial correlation structure, the S&P 500 series has been pre-
filtered fitting an AR(2) model to the raw returns. Differently, the USD/CHF
intraday exchange rate returns series has been pre-filtered in two steps: i) an
AR(1) model has been fitted to the standardized returns to account for serial
correlation ii) we have corrected for intraday seasonal patterns in volatility
dividing the filtered returns by the corresponding seasonal factors. These
have been calculated by simply averaging the squared returns in the various
intraday intervals and taking square roots.

The performance of the LSE in reproducing the volatility of returns has
been compared with that of the classical GQMLE. To evaluate the sensitivity
of the LSE to different choices of the scaling factor, we consider estimating c0

under different distributional assumptions for the error series: a standardized
t5, a standard normal and a Cauchy random variable with location and scale
parameters equal to 0 and 1, respectively. In order to assess the relative
performance of the estimators considered, we use the squared returns as a

6Note that the model considered by Straumann (2005) is slightly different from the
GARCH(1,1) we consider since it includes an additional parameter which accounts for
the presence of leverage effects.
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Table 3: : Simulated bias (x 100) over 1000 pseudo-random replicates for the
Low persistence volatility process with ω0 = 0.20, α0 = 0.20, β0 = 0.60.

GQMLE LSE (c̃0)
Error Dis-
tribution

α β α β

T=500
Normal 0.1520 -2.8439 1.6772 -7.8704
t5 0.6734 -4.1621 1.3123 -6.1606
t3 4.7444 -6.5784 2.2778 -6.2961
χ2

1 1.3163 -5.7422 1.3898 -4.1527

T=1000
Normal 0.0341 -1.3305 0.7641 -3.2013
t5 0.2991 -2.5013 0.6677 -1.6520
t3 2.1055 -4.3241 1.0071 -2.0541
χ2

1 1.6215 -3.6119 0.4695 -0.9259

T=2000
Normal 0.1050 -0.5921 0.5958 -1.9491
t5 0.0945 -1.3977 0.4892 -1.3129
t3 1.2401 -2.5547 0.5408 -1.3392
χ2

1 0.6412 -1.9104 0.4328 -0.5639

T=5000
Normal 0.0132 -0.4075 0.2277 -0.8376
t5 0.0775 -0.8912 0.2779 -0.8582
t3 1.5100 -1.2480 0.2603 -0.3487
χ2

1 0.7095 -1.2712 0.4327 -0.6224
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Table 4: : Simulated Mean Square Error (x 100) over 1000 pseudo-random
replicates for the Low persistence volatility process with ω0 = 0.20, α0 = 0.20,
β0 = 0.60.

GQMLE LSE (c̃0)
Error Dis-
tribution

α β α β

T=500
Normal 0.3758 1.8616 0.9682 5.3519
t5 1.2075 3.3092 1.0069 4.6324
t3 20.9969 5.8684 1.3078 4.4953
χ2

1 3.1462 5.6772 0.8740 3.0159

T=1000
Normal 0.1770 0.7460 0.4717 2.1371
t5 0.5562 1.8335 0.4830 1.8687
t3 4.1587 4.0998 0.6168 1.9349
χ2

1 1.7442 3.2239 0.4064 1.0868

T=2000
Normal 0.0907 0.3216 0.2242 1.0220
t5 0.2837 0.8548 0.2332 0.8009
t3 2.4501 2.8793 0.3100 0.8990
χ2

1 0.6925 1.7321 0.1893 0.4337

T=5000
Normal 0.0350 0.1270 0.0866 0.3420
t5 0.1122 0.3376 0.0982 0.3065
t3 2.3541 1.6481 0.1176 0.2966
χ2

1 0.2847 0.6921 0.0804 0.1763

13



Table 5: : Simulated bias (x 100) over 1000 pseudo-random replicates for the
Medium persistence volatility process with ω0 = 0.10,α0 = 0.10, β0 = 0.80.

GQMLE LSE (c̃0)
Error Dis-
tribution

α β α β

T=500
Normal 0.0819 -4.3154 2.0268 -18.9382
t5 0.9619 -6.2946 2.2417 -14.2595
t3 4.0729 -11.2138 2.5491 -13.5762
χ2

1 2.4365 -9.4596 1.5899 -7.5517

T=1000
Normal 0.0669 -1.8689 1.2244 -10.0284
t5 0.4380 -3.1592 1.1640 -7.0427
t3 1.6529 -6.5714 1.2531 -5.2478
χ2

1 1.1753 -4.5431 0.6193 -2.4494

T=2000
Normal 0.0489 -0.9953 0.7294 -3.3948
t5 0.3451 -1.6849 0.5889 -2.0423
t3 2.2618 -2.9461 0.5049 -1.7278
χ2

1 0.7206 -2.3926 0.1515 -0.6626

T=5000
Normal 0.0058 -0.3597 0.3141 -1.2743
t5 0.1450 -0.6466 0.2254 -0.8282
t3 1.4510 -2.0021 0.2324 -0.5920
χ2

1 0.2104 -0.7452 0.1319 -0.3485
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Table 6: : Simulated Mean Square Error (x 100) over 1000 pseudo-random
replicates for the Medium persistence volatility process with ω0 = 0.10,α0 =
0.10, β0 = 0.80.

GQMLE LSE (c̃0)
Error Dis-
tribution

α β α β

T=500
Normal 0.2022 1.8818 0.5225 11.4787
t5 0.5860 2.8612 0.5130 7.9819
t3 7.4474 5.5943 0.7750 7.9700
χ2

1 1.9106 4.8282 0.3737 4.1705

T=1000
Normal 0.0814 0.6311 0.2662 5.4332
t5 0.3151 1.3267 0.2441 3.6226
t3 1.8726 2.9159 0.2570 2.5763
χ2

1 0.5817 2.1179 0.1246 1.0478

T=2000
Normal 0.0393 0.2548 0.1130 1.3540
t5 0.1139 0.5641 0.1061 0.8534
t3 2.6353 1.6702 0.1128 0.6794
χ2

1 0.2732 0.9862 0.0564 0.2240

T=5000
Normal 0.0163 0.0831 0.0419 0.2913
t5 0.0477 0.1737 0.0353 0.1521
t3 1.0281 0.9039 0.0410 0.1307
χ2

1 0.0844 0.2784 0.0213 0.0707
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Table 7: : Simulated bias (x 100) over 1000 pseudo-random replicates for the
High persistence volatility process with ω0 = 0.01,α0 = 0.09, β0 = 0.90.

GQMLE LSE (c̃0)
Error Dis-
tribution

α β α β

T=500
Normal 0.9561 -2.3596 1.1684 -8.7027
t5 2.6349 -4.3835 1.5388 -5.8657
t3 5.9734 -7.9647 2.0560 -7.3836
χ2

1 5.1557 -7.4965 1.3561 -3.6250

T=1000
Normal 1.3435 -1.8156 0.5509 -2.1848
t5 2.4439 -2.7361 0.6940 -1.7094
t3 4.4315 -4.8574 0.6724 -1.8669
χ2

1 5.3084 -3.6914 0.4448 -0.7459

T=2000
Normal 1.4091 -1.3727 0.2109 -0.5496
t5 2.0595 -1.6655 0.1693 -0.4252
t3 3.1710 -3.0927 0.2558 -0.4894
χ2

1 3.7968 -2.6326 0.2052 -0.2945

T=5000
Normal 1.6350 -1.5051 0.1300 -0.2902
t5 1.9663 -1.2381 0.0633 -0.1555
t3 2.9075 -2.0648 0.1768 -0.2310
χ2

1 2.4037 -1.0823 0.1242 -0.1656
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Table 8: : Simulated Mean Square Error (x 100) over 1000 pseudo-random
replicates for the High persistence volatility process with ω0 = 0.01,α0 = 0.09,
β0 = 0.90.

GQMLE LSE (c̃0)
Error Dis-
tribution

α β α β

T=500
Normal 0.4972 0.4333 0.2831 5.2575
t5 1.0339 0.9597 0.3238 2.9953
t3 18.5386 2.8339 0.5464 4.1824
χ2

1 4.2910 2.4702 0.2873 1.8381

T=1000
Normal 0.3060 0.1981 0.1177 0.7986
t5 0.7952 0.4527 0.1193 0.5341
t3 10.1927 1.4221 0.1322 0.6742
χ2

1 9.7875 0.7489 0.0708 0.1113

T=2000
Normal 0.2468 0.1437 0.0504 0.0639
t5 0.6320 0.2137 0.0418 0.0453
t3 2.7973 0.5827 0.0487 0.1306
χ2

1 3.4428 0.6729 0.0263 0.0240

T=5000
Normal 0.2346 0.1520 0.0167 0.0203
t5 0.9340 0.2495 0.0150 0.0156
t3 2.5498 0.5194 0.0193 0.0180
χ2

1 9.7692 0.2160 0.0103 0.0096
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Figure 1: S&P 500 daily returns from 5.01.1971 to 30.05.2006.
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Figure 2: 30 minutes returns on the USD/CHF exchange rate from 1.04.1996
to 30.03.2001.
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proxy of volatility and then refer to the following well-known loss functions:
the Mean Square Error (MSE), the QLIKE, the Mean Absolute Error (MAE)
and its equivalent formulation in terms of standard deviations (MAE-SD).
A discussion of these loss functions and their properties can be found in
Patton (2011). For MSE and QLIKE, the expected loss is minimized if
the volatility estimate used to compute the loss function coincides with the
true conditional variance. Differently, for MAE and MAE-SD, optimality is
achieved in correspondence of the true conditional median of the squared
returns.

The volatility of each of the two series, S&P 500 and USD/CHF exchange
rate returns, has been modelled as a GARCH(1,1) whose parameters have
been estimated by QML and by the LSE (Table 9). For the S&P 500, the
estimates of the ARCH coefficient α obtained by the LSE are substantially
lower than that yielded by the GQMLE while the opposite applies to the
GARCH parameterβ. Furthermore, it is interesting to analyze the behaviour
of the different estimators under the four loss functions considered (Table 8).
For the MSE, all the estimators yield very similar performances. The only
exception is given by the LSE constructed under the assumption of Cauchy
errors which is characterized by a value of the MSE much higher than was
observed for its competitors.

A different picture arises if we consider the QLIKE criterion. For the
daily S&P 500 returns series, except for the Cauchy case, the performance of
LSE is quite close to that of the GQMLE. The gap substantially increases in
the case of the 30 minutes USD/CHF exchange rate returns. For the other
two loss functions considered, MAE and MAE-SD, and for both datasets, the
LSE is always outperforming the QMLE. The LSE performance is optimized
if we estimate the scaling constant c0 under the assumption of Cauchy errors
with location and scale parameters equal to 0 and 1, respectively. However,
in general, it is worth noting that the performance of the LSE appears to be
quite robust to the choice of the scaling factor c0.

The message we get from these results is that, if one is interested in the
conditional variance of returns as a measure of volatility, no clear advantage
derives from using the LSE instead of the usual GQMLE. Differently, if the
focus is on an alternative measure of volatility, such as the conditional median
of squared returns, the use of the LSE can potentially allow for substantial
accuracy gains.

Finally, in order to evaluate the ability of the different estimators to
correctly reproduce volatility persistence, we have compared the sample au-
tocorrelation of squared returns with the autocorrelation function implied
by each of the estimated models (Figure 1 and Figure 2). For this exer-
cise, however, we haven’t considered the LSE obtained under the assumption
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Table 9: GARCH(1,1) parameter estimates under different estimators (* x
10−4). Key to table: LS-D is the Least Squares estimator under distribution
D (N=Normal, C=Cauchy, t5= Student’s with 5 df.)

S&P 500 USD/CHF
ω α β ω α β

QML 0.0007* 0.0658 0.9271 0.0448 0.0832 0.8752
LS-N 0.0036 0.0395 0.9486 0.0615* 0.1293 0.8302
LS-t5 0.0030 0.0322 0.9478 0.0499* 0.1030 0.8312
LS-C 0.0013 0.0131 0.9386 0.0208* 0.0374 0.8259

Table 10: Evaluation of volatility estimates for the daily S&P 500 and 30
min. USD/CHF returns by means of different loss functions: MAE, MSE
and MSE-LOG. Key to table: LS-D is the Least Squares estimator under
distribution D (N=Normal, C=Cauchy, t5= Student’s with 5 df.)

S&P 500 USD/CHF
MSE QLIKE MAE MAE-

SD

MSE QLIKE MAE MAE-

SD

QML 34.63 0.72 1.06 0.53 14.69 0.90 1.19 0.60
LS-N 34.53 0.74 0.99 0.49 14.77 1.45 1.08 0.53
LS-t5 34.56 0.82 0.93 0.46 14.76 1.73 1.02 0.50
LS-C 35.41 2.60 0.89 0.44 15.58 5.50 0.95 0.47
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of Cauchy errors since in this case the autocorrelation function of squared
returns cannot be defined. Also, for the USD/CHF exchange rate returns
series, the set of model coefficients estimated using LSE violate the condition
for the existence of a finite fourth moment which is

(3α2 + 2αβ + β2) < 1

For this reason, it has been necessary to approximate the corresponding
autocorrelation function by means of the formula proposed by Ding and
Granger (1996) for conditionally Gaussian GARCH(1,1) models

ρ(k) = (α + β)k−1

(
α +

β

3

)
, k ≥ 1

where ρ(k) is the lag k autocorrelation function of a squared GARCH(1,1)
process. For the daily S&P 500 returns series, it is evident how the LSE
is interpolating the decay of the sample autocorrelation function of squared
returns much better than the QML approach. Differently, for the 30 minutes
USD/CHF exchange rate returns series, the autocorrelation patterns implied
by the t5-LSE and QMLE result quite close while the normal LSE drastically
overestimates the value of the autocorrelation function of squared returns.

5 Conclusions and future work

In this paper, we suggest using LSE for the estimation of a GARCH (1,1)
model. The estimator is based on the log transformation of the squared data.
We establish the consistency and asymptotic normality of the proposed esti-
mator. Our results have been obtained under mild regularity conditions that
allow for heavy tailed error distributions that can be of particular interest
in financial applications. Its finite sample properties have been investigated
via a simulation study, which shows that, in the presence of extreme non-
normality, the proposed LSE can allow for some efficiency gains with respect
to the QMLE. We also provide empirical evidence that applying the LSE can
yield better volatility forecasts than the standard QMLE. Our estimates also
fit quite well the autocorrelation function of the squared returns.

When working with high frequency returns, an important issue is the ro-
bustness of the estimation procedure, since these data are typically charac-
terized by a high fraction of very small returns, which, after the log transfor-
mation, can produce large negative values. Therefore, our estimator, which
is based on the L2 scale measure, may not be optimal in the presence of
outlying observations. In order to overcome this problem, an estimator that
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Figure 3: Implied autocorrelation function of squared returns versus sample
autocorrelations for the S&P500 series (lags from 1 to 100) : QML and
alternative LSE.
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Figure 4: Implied autocorrelation function of squared returns versus sample
autocorrelations for the USD/CHF series (lags from 1 to 100) : QML and
alternative LSE.
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employs a more robust scale measure such as the S-estimator can be used.
In addition, our results can be extended to the GARCH (p,q) case as well as
to other GARCH “type” models. The investigation of these issues is left for
future work.
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Appendix

Throughout the Appendix, K will denote a generic positive number that may
vary in different uses. To simplify the notation we set

ḣit(θ) =
∂ht(θ)

∂θi
, ḧijt(θ) =

∂ht(θ)

∂θi∂θj
, ˙̃hit(θ) =

∂h̃t(θ)

∂θi
, ¨̃hijt(θ) =

∂h̃t(θ)

∂θi∂θj

Let ∇`t(θ) = ∂`t(θ)
∂θ

, ∇`it(θ) = ∂`t(θ)
∂θi

and ∇2`t(θ) = ∂`t(θ)
∂θ∂θ′

, ∇2`ijt(θ) = ∂`t(θ)
∂θi∂θj

denote the first and second derivatives of `t(θ) (and their elements), respec-
tively.

5.1 A. Proofs of theorems

Proof of Theorem 1:

We use similar arguments as in Theorem 5.3.1 of Straumann (2005, p.101)
showing strong consistency by contradiction. Suppose that θ̂n 6→θ0 a.s. so for
some arbitrary γ > 0, the compact set F = {ω ∈ Ω| lim supn→∞ ||θ̂n− θ0|| ≥
γ, θ̂n ∈ Θ} has a positive probability. Since the set N = Θ∩{θ : |θ̂n−θ0| ≥
γ} is compact, there exists a non-null subset F̄ ⊂ F such that for everyω ∈ F̄ ,
one can find inN, a convergent subsequenceθ̂ni

(ω)→ θ ∈ N. By definition of
the LSE

lim inf
n→∞

1
ni

∑ni

t=1
˜̀
t(θ0) ≥ lim inf

n→∞
inf
θ∈N

1
ni

∑ni

t=1
˜̀
t(θ)

= lim inf
n→∞

1
ni

∑ni

t=1
˜̀
t(θ̂ni

)

From Lemma 5,

lim inf
n→∞

1
ni

∑ni

t=1 `t(θ0) ≥ lim infn→∞
1
ni

∑ni

t=1 `t(θ̂ni
) (11)

The inequality above and Lemmas 4(ii)-(iii) imply that with positive prob-
ability E`t(θ0) ≥ E infθ∈N `t(θ). This result contradicts Lemma 4(i) which
states that in the limit Qn(θ) is uniquely minimized at θ0. Since γ > 0 is
arbitrary, the strong consistency follows.

Proof of Theorem 2: By Theorem 1, θ̄n → θ0 a.s. so for n sufficiently
large θ̄n ∈ Θ0 a.s. and the results of Lemmas 6-7 can be applied. Using a
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mean-value expansion of Q̃n(θ̂n) =
∑n

t=1
˜̀
t(θ̂n) around θ0, we have

0 = n−0.5
∑n

t=1
∇˜̀

t(θ̂n) (12)

= n−0.5
∑n

t=1
∇˜̀

t(θ0) +
(

1
n

∑n
t=1∇2 ˜̀

t(θ̄n)
)√

n(θ̂n − θ0)

= n−0.5
∑n

t=1
∇˜̀

t(θ0)

+
[(

1
n

∑n
t=1∇2 ˜̀

t(θ̄n)− 1
n

∑n
t=1∇2`t(θ̄n)

)
+
(

1
n

∑n
t=1∇2`t(θ̄n) + J

)
− J

]
√
n(θ̂n − θ0)

where θ̄n lies on the chord between θ̂n and θ0.
Lemma 6 and the asymptotic equivalence lemma (e.g. see White (1994),

p.172) imply that 1√
n

∑n
t=1 ∂

˜̀
t(θ0)

/
∂θ →

D
N(0, H) where H = κJ and J is a

positive definite matrix. Next, Lemmas 7(i)-(ii) imply that the first and sec-
ond terms, inside the square brackets in (12), converge a.s. to zero. Hence,
to complete the proof it suffices to solve (12) and apply Slutsky’s theorem.

Proof of Theorem 3: The result follows immediately from Theorems 1-2
and Lemma 7.

B. Lemmata

Lemma 1: Under Assumptions A1-A4, for some p ∈ (0, 1)

i) (y2
t , h0t) are strictly stationary and ergodic and E (hp0t) <∞, E (|yt|2p) <∞

ii)infθ∈Θ `t(θ), `t(θ), ∇`it(θ) and∇2`ijt(θ) are strictly stationary and ergodic.

iii) E (η2
t ) <∞

Proof :

i) Under Assumption A2, the result follows directly from (1)-(2) and Theo-
rem 4 of Nelson (1990).

ii) From (7)-(8) and Theorem 2.7 of Stinchcombe and White (1992), we have
that infθ∈Θ `t(θ) is measurable functions of yt−j for all j ≥ 0, and thus are
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strictly stationary and ergodic (see Stout (1974), Theorem 3.5.8). The same
result follows for `t(θ) and its derivatives by Lemma 2(ii) of Lee and Hansen
(1994).

iii) Let w = ε2
t , F (x) = Pr(w ≤ x) and f(x) be the density function, since

ηt = w − c0, the result follows if
∫ +∞

0
[ln(w)]2f(w)dw <∞. By integration

by parts

1∫
0

[ln(w)]2f(w)dw = [ln(1)]2F (1)−
1∫
r

ln(w)

w
F (w)dw −

r∫
0

ln(w)

w
F (w)dw

The first integral on the RHS is bounded for any r > 0. Hence, by Assump-
tion A4, when r > 0 is small enough, there exists some δ > 0 such that the
second integral is bounded by K

∫ r

0
wδ ln(w)dw. This integral is finite for any

δ > 0. For w ≥ 1 we get
∫ +∞

1
[ln(w)]2f(w)dw <

∫ +∞
1

w2sf(w)dw ≤ E|εt|2s,
since ln(w) < ws/2 for any s > 0, and the desired result follows by Assump-
tion A3.

Lemma 2: Under Assumptions A1-A4, for some p ∈ (0, 1)

i) E
(

supθ∈Θ

∣∣∣ht(θ)− h̃t(θ)∣∣∣p) = O(β̄t) and E| supθ∈Θ h̃t(θ)|p < ∞.

ii) E
(

supθ∈Θ0

∣∣∣ḣit(θ)− ˙̃hit(θ)
∣∣∣p) = O(β̄t) for all i.

iii) E
(

supθ∈Θ0

∣∣∣ḧijt(θ)− ¨̃hijt(θ)
∣∣∣p) = O(β̄t) for all i, j.

Proof : i) By iterating (7) and using the fact α0y
2
t−1−i ≤ h0t, we get

ht(θ) = ω + αy2
t−1 + βht−1(θ) (13)

=
∑t−1

i=0
(ω + αy2

t−1−i)β
i + βth1(θ)

=
∑∞

i=0
(ω + αy2

t−1−i)β
i

=
ω

1− β
+ α

∑∞

i=0
βiy2

t−1−i

≤ ω̄

1− β
+

ᾱ

α0

∑∞

i=0
β̄ih0t
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Hence, the cr inequality ((a + b)q ≤ aq + bq for all a, b > 0, q ∈ [0, 1]) and
Lemma 1(i) imply that for some p ∈ (0, 1),

E| sup
θ∈Θ

ht(θ)|p ≤ K +KEhp0t < ∞ (14)

Now, without loss of generality, set h̃1 = 0.5(ω̄ + ω), by iterating (5) we
obtain

h̃t(θ) = ω + αy2
t−1 + βh̃t−1(θ) =

∑t−1

i=0
(ω + αy2

t−1−i)β
i + βth̃1 (15)

Hence
h̃t(θ)− ht(θ) = ω + αy2

t−1 + βh̃t−1(θ) = βt(h̃1 − h1(θ)) (16)

and by (16),

E sup
θ∈Θ0

∣∣∣ht(θ)− h̃t(θ)∣∣∣p ≤ βt(h̃p1 + E sup
θ∈Θ0

|h1(θ)|p) ≤ Kβ̄t (17)

Further, by Lemma 1(i) and the cr inequality

E(ω̄ + ᾱy2
t−1−i)

p <∞ (18)

and

E

(
sup
θ∈Θ

∣∣∣h̃t(θ)∣∣∣p) ≤∑t−1

i=0
E(ω̄ + ᾱy2

t−1−i)
pβ̄ip + β̄pth̃p1 <∞

ii) We start by showing that for some p ∈ (0, 1) and all i,

E

(
sup
θ∈Θ0

∣∣∣ḣit(θ)∣∣∣p) <∞ (19)

By (13) and the fact that y2
t−1−i ≤ α−1

0 h0t,

∂ht(θ)

∂ω
≤ 1

1− β
(20)

∂ht(θ)

∂α
=

∑∞

i=0
βiy2

t−1−i ≤
1

α

[∑∞

i=0
αβiy2

t−1−i

]
≤ 1

α
ht(θ) (21)

∂ht(θ)

∂β
=

∑∞

i=1
iβi(ω + αy2

t−1−i) (22)

≤
∑∞

i=1
iβi
(
ω +

α

α0

h0t

)
≤ ω̄

∑∞

i=1
iβ̄i +

ᾱ

α0

∑∞

i=0
β̄ih0t
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The term in (20) is bounded and admits moments of any order. As for
(21)-(22), the result follows directly from the cr inequality and Lemma 1(i).
In view of (16), almost surely,

sup
θ∈Θ0

∣∣∣ḣit(θ)− ˙̃hit(θ)
∣∣∣ ≤ tβ̄(t−1)(h̃1 + sup

θ∈Θ0

h1(θ)) + β̄t sup
θ∈Θ0

|ḣi1(θ)| ≤ Kβ̄t

the desired result follows by (14), (19) and the cr inequality.

iii) From (20)-(22) and direct calculations we get,

∂2ht
∂ω2

=
∂2ht
∂α2

=
∂2ht
∂ω∂α

= 0,
∂2ht
∂ω∂β

1

β
≤
∑∞

i=1
iβ̄i (23)

which are bounded and admit moments of any order. We also find

∂2ht
∂α∂β

≤ α
∑∞

i=1
iβiy2

t−1−i ≤
ᾱ

α0

∑∞

i=1
iβih0t (24)

∂2ht
∂β2

=
1

β

∑∞

i=2
i(i− 1)(ω + αy2

t−1−i)β
i (25)

So, similar to Lemma 2(ii) we can show that for some 0 < p < 1,

E

(
sup
θ∈Θ0

∣∣∣ḧijt(θ)∣∣∣p) <∞ (26)

for all i, j. In view of (16), almost surely,

sup
θ∈Θ0

∣∣∣ḧijt(θ)− ¨̃hijt(θ)
∣∣∣ ≤ t(t− 1)β̄(t−2)[h̃1 + sup

θ∈Θ0

h1(θ)]

+ tβ̄(t−1) sup
θ∈Θ0

|ḣj1(θ)|+ tβ̄t−1 sup
θ∈Θ0

|ḣi1(θ)|

+ β̄t sup
θ∈Θ0

|ḧij1(θ)|

and by (14), (19), (26) and the cr inequality the desired result follows.

Lemma 37: Under Assumptions A1-A4, for all r ≥ 1

7Note that this lemma extends Lemma 4 of Lumsdaine (1996) and Lemmas 8 and 10 of
Lee and Hansen (1994), since our results apply to moments of any order.
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i)
∥∥∥supθ∈Θ0 h−1

t (θ)ḣit(θ)
∥∥∥
r
<∞ for all i

ii)
∥∥∥supθ∈Θ0 h−1

t (θ)ḧijt(θ)
∥∥∥
r
<∞ for all i, j

iii)
∥∥∥supθ∈Θ0 h̃−1

t (θ) ˙̃hit(θ)
∥∥∥
r
< ∞ for all i, and

∥∥∥supθ∈Θ0 h̃−1
t (θ)¨̃hijt(θ)

∥∥∥
r
< ∞

for all i, j.

Proof : i) Eq. (20) and (21) imply that the derivative of ht with respect
to ω and α (divided by ht) are bounded and hence admits moments of any
order. However, this is not true for the derivative with respect to β. From
(13) we get ht(θ) ≥ ω + (ω + αy2

t−1−i)β
i for all i ≥ 1. Using the fact that

x/(1+x) < xp/r for all x ≥ 0 and any p ∈ (0, 1),r ≥ 1 (this idea of exploiting
this inequality is due to Boussama (2000)), we get

∂ht
∂β

1

ht
≤ 1

β

∑∞

i=1
i

(ω + αy2
t−1−i)β

i

ω + (ω + αy2
t−1−i)β

i
(27)

≤ 1

β

∑∞

i=1
i

[
(ω + αy2

t−1−i)β
i

ω

]p/r
≤ 1

βωp/r

∑∞

i=1
iβ̄ip/r(ω̄ + ᾱy2

t−1−i)
p/r

Therefore, by (18) and Minkowski’s inequality we get∥∥∥∥ sup
θ∈Θ0

∂ht
∂β

1

ht

∥∥∥∥
r

≤ K
∑∞

i=1
iβ̄i
[
E
(
ω̄ + ᾱy2

t−1−i
)p]1/r

<∞

ii) From (23)-(25), we observe that the relevant second derivatives satisfy

∂2ht
∂β2

1

ht
≤ 1

β

∑∞

i=2
i(i− 1)

(ω + αy2
t−1−i)β

i

ω + (ω + αy2
t−1−i)β

i
(28)

and
∂2ht
∂α∂β

≤
∑∞

i=1
iβi

(ω + αy2
t−1−i)

ω + (ω + αy2
t−1−i)β

i
,

(the other derivatives are naturally bounded). Using the same arguments as
in part (i) of the lemma the desired results follow.

iii) The proof is similar to part (i)-(ii) of the lemma, hence omitted.
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Lemma 4: Under Assumptions A1-A5,

i) E(`t(θ0)) ≤ E(`t(θ)) with equality if and only if θ 6= θ0.

ii) For any compact set N ⊆ Θ,

lim inf
n→∞

inf
θ∈N

1
n

∑n
t=1 `t(θ) ≥ E infθ∈N `t(θ).

iii) limn→∞
1
n

∑n
t=1 `t(θ0) = E`t(θ0).

iv) E
(
|supθ∈Θ lnht(θ)|2

)
<∞ and E(z2

t ) <∞

Proof :

i) Note that

E(`t(θ))− E(`t(θ0)) = 1
2
E [(zt − lnht(θ))

2 − η2
t ] (29)

= 1
2
E [ln(h0t − ln(ht(θ))]

2 + E [ln(h0t/ht)] E(ηt)

= 1
2
E [ln (ht(θ0)/ht(θ))]

2 ≥ 0

with equality if and only if ht(θ0) = ht(θ)a.s.

ii) For any compact set N ⊆ Θ we have,

lim inf
n→∞

inf
θ∈N

1
n

n∑
t=1

`t(θ) ≥ lim infn→∞
1
n

n∑
t=1

infθ∈N `t(θ) (30)

Further, note E`t(θ) <∞ is well defined and belongs to < ∪ {+∞}. Hence,
by Lemma 1(ii), we can apply the ergodic theorem (see Billingsley (1995)
p.284) to the stationary and ergodic sequence {infθ∈N `t(θ)}t to obtain

lim inf
n→∞

inf
θ∈N

1
n

∑n
t=1 `t(θ) ≥ lim inf

n→∞
1
n

∑n
t=1 infθ∈N `t(θ) (31)

≥ E

(
inf
θ∈N

`t(θ)

)
iii) Note that E`t(θ0) = E(η2

t ) < ∞ by Lemma 1(iii). The desired result
follows from Lemma 1(ii), and the ergodic theorem.
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iv) Notice, that since 0 < ω ≤ ht(θ) for any p > 0,

ln(ω) ≤
∣∣∣∣sup
θ∈Θ

lnht(θ)

∣∣∣∣ ≤ K +

∣∣∣∣sup
θ∈Θ

ht(θ)

∣∣∣∣p/2
By (14) we obtain that E

(
|supθ∈Θ lnht(θ)|2

)
< ∞. This result and Lemma

1(iii) also imply that E(z2
t ) is finite.

Lemma 5: Under Assumptions A1-A4,

sup
θ∈Θ

∣∣∣ 1
n

∑n
t=1

(
˜̀
t(θ)− `t(θ)

)∣∣∣ →
a.s.

0

Proof :
Let At(θ) = ˜̀

t(θ) − `t(θ). To prove this result, it suffices to check that
E supθ∈Θ |At(θ)|q, is bounded by a summable sequence in t, for some q ≥ 0.
Indeed then (by Markov inequality) for all λ > 0,∑∞

t=1
P(sup

θ∈Θ
|At(θ)| > λ) ≤

∑∞

t=1
E sup
θ∈Θ
|At(θ)|q/λq <∞ (32)

so that the Borel-Cantelli lemma implies that supθ∈Θ |At(θ)| converges to
zero a.s. This convergence and the Cesaro lemma imply the desired result.

Now, since h̃t, ht ≥ ω > 0, an application of the mean-value theorem
lead to

| ln h̃t(θ)− lnht(θ)| ≤ K|h̃t(θ)− ht(θ)| (33)

So, from (4), (8) and the cr inequality, for some p ∈ (0, 1)

E sup
θ∈Θ
|˜̀t(θ)− `t(θ)|p/4 ≤ E sup

θ∈Θ

[∣∣∣ln h̃t(θ)− lnht(θ)
∣∣∣p/4

×
∣∣∣ln h̃t(θ)− lnht(θ) + 2 (zt + lnht(θ))

∣∣∣p/4]

≤ E

[
sup
θ∈Θ

∣∣∣h̃t(θ)− ht(θ)∣∣∣p/2 ∣∣∣∣1 + zt + sup
θ∈Θ

lnht(θ)

∣∣∣∣p/4
]

≤ KE

(
sup
θ∈Θ

∣∣∣h̃t(θ)− ht(θ)∣∣∣p) = O
(
β̄t
)

The second inequality holds by (33). The third inequality holds by the cr
and Cauchy-Schwarz inequalities and Lemma 4(iv). The last equality holds
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by Lemma 2(i).

Lemma 6: Under Assumptions A1-A5,

i)
∣∣∣n−1/2

∑n
t=1

(
∇˜̀

t(θ0)−∇`t(θ0)
)∣∣∣ → 0 a.s.

ii) n−1/2
∑n

t=1∇`t(θ0)→
D
N (0, κJ) where J is positive definite and κ = E(η2

t )
.

Proof :

i) We use the proof idea of Lemma 8 in Robinson and Zaffaroni (2006). Let.
Bt = ∇`it(θ0)−∇˜̀

it(θ0), the gradients of (4) and (8) are given by

∇˜̀
it(θ0) = (zt − ln h̃0t)

˙̃h0it

h̃0t

, ∇`it(θ0) = (zt − lnh0t)
ḣ0it

h0t

= ηt
ḣ0it

h0t

(34)

where ḣ0it = ḣit(θ0), ˙̃h0it = ˙̃hijt(θ0). Hence,

Bt = ∇`it(θ0)−∇˜̀
it(θ0) = ηt

(
ḣ0it

h0t

−
˙̃h0it

h̃0t

)
+

˙̃h0it

h̃0t

ln

(
h̃0t

h0t

)
and

n−1/2
∑n

t=1
Bt ≤ n−1/2K

∑n

t=1
ηt

(
ḣ0it − ˙̃h0it

)
+

˙̃h0it

h̃0t

(
h0it − h̃0it

)
(35)

Next, by application of the cr and Cauchy-Schwarz inequalities, we get that∑∞
t=1 |Bt| has some finite p > 0 moment and thus by Loeve (p. 121) is a.s.

finite. Further Lemma 2(i)-(ii) implies that a.s. |Bt| ≤ Kβ̄t, ∀t. Hence, by
Kronecker lemma (35) tends to zero a.s. as n → ∞ and the desired result
follows

ii) From (34)

E (∇`it(θ0)|Ft−1) =
ḣ0it

h0t

E (ηt|Ft−1) =
ḣ0it

h0t

E (ηt) = 0

where Ft = σ(yt, yt−1, . . .) and

‖∇`it(θ0)∇`jt(θ0)‖ ≤ E
(
η2
t

) ∥∥∥∥∥ ḣ0it

h0t

∥∥∥∥∥
2

∥∥∥∥∥ ḣ0jt

h0t

∥∥∥∥∥
2

<∞
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by applying the Cauchy-Schwarz inequality and Lemmas 1(iii) and 3(i).
Thus, we have shown that the second moment of each element of the gradient
is finite hence E |∇`t(θ0)∇`t(θ0)′| <∞. These results and Lemma 1(ii) imply
that{∇`t(θ0),Ft} is a stationary, ergodic and martingale difference sequence
with finite variance

var(∇`t(θ0)) = E(η2
t )E

(
1

h2
0t

∂h0t

∂θ

∂h0t

∂θ′

)
= κJ

Next, by using similar arguments used in Lemma 5 in Lumsdaine (1996) we
can show that J is a positive definite matrix. Thus, Theorem 23.1 of Billings-
ley (1968) and the Cramér-Wold device imply that n−1/2

∑n
t=1∇2`t(θ0) →

D

N(0, κJ).

Lemma 7: Under Assumptions A1-A5,

i) supθ∈Θ0

∣∣∣ 1
n

∑n
t=1

(
∇2 ˜̀

t(θ)−∇2`t(θ)
)∣∣∣ → 0 a.s.

ii) If θ̃n →
a.s.

θ0, 1
n

∑n
t=1∇2`t(θ̃n) →

a.s.
−J

Proof :

i) First, let Ct(θ) = ∇2`ijt(θ) − ∇2 ˜̀
ijt(θ). Using similar arguments as

in Lemma 5, it suffices to check that E supθ∈Θ0 |Ct(θ)|q is bounded by a
summable sequence in t, for some q ≥ 0. Second, given (4) and (8) the
second derivatives are

∇2 ˜̀
ijt(θ) = (zt − ln h̃t)

¨̃hijt

h̃t
− (zt − ln h̃t + 1)

˙̃hit
˙̃hjt

h̃2
t

(36)

and

∇2`ijt(θ) = (zt − lnht)
ḧijt
ht
− (zt − lnht + 1)

ḣitḣjt
h2
t

(37)

Third, note

ḣit
˙̃hjt
h2
t

−
˙̃hit

˙̃hjt

h̃2
t

≤ K

{
ḣit
ht

[
˙̃hit − ḣit

]
+

˙̃hjt

h̃t

[
˙̃hjt − ḣjt

]}
(38)
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Finally, using (36)-(38) we obtain

sup
θ∈Θ0

Ct(θ) ≤ sup
θ∈Θ0

{(
1 + ηt + ln

(
h0t

ht

))(
ḧijt
ht
−

¨̃hijt

h̃t

)
+
h̃ijt

h̃t
ln

(
h̃t
ht

)

+

(
ḣitḣjt
h2
t

−
˙̃hit

˙̃hjt

h̃2
t

)
+

˙̃hit
˙̃hjt

h̃2
t

ln

(
h̃t
ht

)}

≤ K sup
θ∈Θ0

{
1 + ηt + ln

(
h0t

ht

)}{(
h̃ijt
ht

+
˙̃hit

h̃t

˙̃hjt

h̃t

)(
ht − h̃t

)

+
ḣit
ht

(
˙̃hit − ḣit

)
+

˙̃hjt

h̃t

(
˙̃hjt − ḣjt

)
+
(
ḧijt − ¨̃hijt

)}

By applying Holder and Minkowski inequalities with Lemmas 2, 3 and 4(iv),
we get for some q ∈ (0, 1) that E supθ∈Θ0 |Ct(θ)|q = O(β̄t) and the desired
result follows.

ii) From (37), E (∇2`t(θ0)) = −J and

E sup
θ∈Θ0

∣∣∇2`ijt(θ)
∣∣ ≤ E sup

θ∈Θ0

∣∣∣∣∣
(

1 + ηt + ln

(
h0t

ht

))(
ḧijt
ht

+
ḣitḣjt
h2
t

)∣∣∣∣∣
≤

{
1 + ||ηt||2 +

∥∥∥∥ sup
θ∈Θ0

ln

(
h0t

ht

)∥∥∥∥
2

}{∥∥∥∥∥ sup
θ∈Θ0

ḧijt
ht

∥∥∥∥∥
2

+

∥∥∥∥∥ sup
θ∈Θ0

ḣit
ht

∥∥∥∥∥
4

∥∥∥∥∥ sup
θ∈Θ0

ḣjt
ht

∥∥∥∥∥
4

}
<∞

The second inequality holds by applying the Cauchy-Schwarz and Minkowski
inequalities. The last inequality holds by Lemma 1(iii), Lemmas 3 and 4(iv).
From the ergodic theorem (see e.g., Billingsley (1995)),

sup
θ∈Θ0

∣∣ 1
n

∑n
t=1∇2`t(θ)− E (∇2`t(θ))

∣∣ →
a.s.

0

Hence, given ε > 0∣∣∣ 1
n

∑n
t=1∇2`t(θ̃n)− E

(
∇2`t(θ̃n)

)∣∣∣ < 1
2
ε
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a.s. for n sufficiently large. Since E (∇2`t(θ)) is continues∣∣∣E(∇2`ijt(θ̃n)
)
− E

(
∇2`ijt(θ0)

)∣∣∣ < 1
2
ε

a.s. for n sufficiently large since θ̃n → θ0 a.s. and the desired result follows
from an application of the triangle inequality, since ε is arbitrary.
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