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Abstract

Whilst the existence of a unit root implies that current shocks have qoent ef-
fects, in the long run, the simultaneous presence of a deterministic trétetates
that consequence. As such, the long-run level of macroeconomés skepends
upon the existence of a deterministic trend. This paper proposes d Kiatistical
procedure to distinguish between the null hypothesis of unit root andthatit
root with drift. Our procedure is asymptotically robust with regard to autee
lation and takes into account a potential single structural break. Empiesalts
show that most of the macroeconomic time series originally analysed lspiNe
and Plosser (1982) are characterized by their containing both a deisticamd a
stochastic trend.

Keywords: Unit Root, Deterministic Trend, Trend Regressidi,
JEL Classification: C12, C13, C22.

1 Introduction

The influential paper by Nelson and Plosser (1982) (herwin&fP) triggered a con-
siderable amount of research into the unit-root hypothasiboth the empirical and
the theoretical fronts. Since then, an impressive and &singly complex array of

unit-root tests has been available in the literature, mdnyhich were applied first to

the original NP dataset.

The significance of the debate lies in the effects of the stsiih shocks. Whenever

macroeconomic time series contain a unit root, random shioake a permanent effect
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on the series. However, in the long run, the effects of thbseks will be reduced if
the series also contains a deterministic trend.

The existence of a deterministic trend is also importanttfier limit distribution of
the unit root tests, since the distribution changes depgndn the specification of
the deterministic component. Moreover, even though thstemce of a deterministic
trend is more important for the long-run level of the serthsye is a bias towards the
accurate analysis of the existence of a unit root, i.e. whidst unit-root test procedures
include a deterministic trend regressor in their analysiny of these do not formally
assess the performance of such estimate when there is egidénnit root. Indeed,
Ventosa-Santaatia and Gmez (2007) proved that it is incorrect to carry out standard
hypothesis testing on the deterministic trend parametémated with Dickey-Fuller
(DF)-type tests when there is a unit root since the limitirgribution of its t-statistic
is neither asymptotically normal with unit variance norgance-parameter-free when
the innovations are not i.i.d.

This implies that anyone interested in estimating the datéstic rate of growth of a
macroeconomic variable may find it difficult to perform suctask; although seem-
ingly straightforward, it becomes nontrivial when the esrtontains a unit root. In this
case, there is neither a reliable nor a simple tool avaitafilewhich to carry out such
estimation.

This paper proposes a formal statistical procedure tongdjsish between the null
hypothesis of unit root without drift and that of unit rootttvidrift, with and with-
out a structural break [Note that the model under the altendypothesis of our
test corresponds to Perron’s Model B under the null hypighese Perron (1989, p.
1364)]. Our work is in line with those that developed unibirtests which also con-
sider a drift and a structural break under the null hypo)ese, for example, Perron
(1989), Perron (1997), Carrion—i—Silvestre and $a@2€06), Kim and Perron (2009),

Carrion-i Silvestre, Kim, and Perron (2009), among othex®vertheless, these do not

1This is not a common specification; for example, the populartzZival Andrews test allows for breaks



focus on the estimation and hypothesis testing on the drdtthe potential structural
break associated with it, but rather on the parameter agsdovith the autoregressive
term. Therefore, we believe that our procedure complentbete unit-root tests be-
cause it formally concentrates on examining the preseneedeterministic trend and
a single structural break once there is evidence of a sttichiend?

In the empirical section, we enter the debate concerningstdistical properties of
the macroeconomic series of NP. When characterizing thessesie utilize a longer
span—updated to 1988—in order to benefit from the asymptadipepties of our pro-
cedure. In addition, we contrast our results with those afd?g1997) and Carrion—i—Silvestre and Sans
(2006), who proposed unit-root tests that allow for a dniftl @ break under the null
hypothesis.

The article is organized as follows: in Section 2, we presariincise summary of the
best-known papers that analyse NP’s series. In Section 3enee the asymptotic
distribution of the new test under the null hypothesis, ai a® under the relevant
alternative hypothesis, and tabulate the critical valwedffferent levels. Section 4
presents a Monte Carlo exercise to evaluate the perfornrtbés test in finite sam-
ples. Section 5 presents the empirical results for the N&eégtwhilst conclusions are

drawn in Section 6.

2 Literature Review

In this section, we briefly review the main findings of welleam papers that analyze
the unit-root hypothesis for the historical time series & N
In their seminal study, NP analyzed 14 US macroeconomicsimnies using Dickey and Fuller

(1979) unit-root test and failed to reject the null hypothesf nonstationarity in all

only under the alternative hypothesis.

2All the unit-root tests so far mentioned consider a drift unithe null hypothesis, consequently, if it
cannot be rejected, the conclusion is that the series cent@th a deterministic and a stochastic trend.
Nevertheless, the procedure only focuses on the parametmiated with the autoregressive term parameter.



but one of the series, i.e. unemployment. Kwiatkowski, IiRisi] Schmidt, and Shin
(1992) complemented existing unit-root tests by propoaingw procedure with trend
stationarity as the null hypothesis. They argued that thie#y way in which this issue
is tested—unit root as the null hypothesis—causes the nubhthgsis to be accepted
unless there is remarkable evidence against it; they cantichetually reject the null
hypothesis of trend stationarity for unemployment, realqapita GNP, employment,
GNP deflator, wages and money stack. Perron (1989) extehdesldndard DF proce-
dure by adding dummy variables to allow for the presence afeatome change in the
level or in the slope of the trend function under the altémeatypothesis or both. The
results showed that when the Great Depression and the ficsisis in 1973 are treated
as points of structural change in the economy, it is possibiteject the null hypothesis
of unit root in favor of broken-trend stationary process—nbaeld not reject the null
hypothesis in only 3 of the 14 series: CPI, velocity and boiedly The assumption
that the location of the break is known a priori was criticidsy several authors, par-
ticularly |Christiann [(1992), who argued that the choicelaf break date is, in most
cases, correlated with the data. As a result, formal staldest procedures capable
of determining breakpoints endogenously were proposeéstathe unit-root hypoth-
esis.| Zivot and Andrews (1992) proposed a Perron—type séigligst-applying his
methodology for each possible break date in the sample—imgphis methodology
for each possible break date in the sample—that maximizeswdence against the
null hypothesis of nonstationarity. They found less suppofavor of broken-trend
stationarity than had Perron, rejecting the null hypothésionly 7 of the original 14
series| Perron (1997) reconsidered his 1989 work by allpwimdogenous breakpoint
determination. Most of the resultslin Petron (1989) werdfiomed, although mixed

results were found for real per capital GNP, money stock aNé @eflator.



3 ldentification of a deterministic trend in the presence
of a stochastic trend

Ventosa-Santaatia and Gmez (2007) proved that the DF-type test procedure may
fail to correctly identify the presence of a deterministind if the series also contains
a stochastic ong.We propose an alternative procedure that can be used omeeishe

evidence in favor of unit root. Particularly, we are intéegsin distinguishing between:

e Driftless Unit Root:

Ho : yt:Yb‘i‘Ey:/ (1)
b

e Unit Root with drift:

Ha: ye=Yo+ pyt + Eue 2)
~ =~
a b

where¢,;, = 25:1 Uyi; Uy; FEpresents the innovations and obeys the (general-level)
conditions stated in Phillips (1986, p. 313) and the underdd components are inter-
preted as (a) Deterministic Trend, and (b) Stochastic Trend

To distinguish betweet{, and#,, we will use the following auxiliary regression:

Yy = Y+ Tt 3)

3.1 The case without structural breaks

If 4, is a unit root with drift process, then:

3The inference drawn from the t-ratio associated with themeinistic trend is misleading because it
does not follow a standard distribution.



Proposition 1 Let y; be generated by equation (T), and be used to estimate regression

(3). Hence, the associated R?:

1. R2S1- for p, =0

Q
Jw2—([w)?
2 R2=1-0,(T7Y) 51 forp, #0
where ) = wa—4(fw)2—|—12fwf7“w—12(frw)2. TheOp(T‘l) termis
12—

2 . .
T"“ and o7 isthe long-run variance of w,;.

Proposition]l implies that undek,, R? converges to a non-degenerate and non-
standard distribution and is always less than one, wherregder the relevant alternative
hypothesisR? converges in probability to one. We computed the asympttisitzibu-
tion and estimated its shape non-parametrically (see EifjurThe critical values are
also computed by simulating the asymptotic distributiontually, we simulated such
expressionl00, 000 times and obtained the relevant quantiles of the distipusee

Table[1):

13 T T T

12 Alternative Hypothesis: Unit Root with drift -

11r- b

0.9+ 4
0.8F N\ |
0.7+ 4
0.6F 4

051 Null Hypothesis: Unit Root without drift b

) 1 0z 03 o4 o 6 o7 08 o \|

Figure 1: R? test asymptotic distribution undéf,



Level («) 10% 5% 25% 1%
Critical Values atx level: 0.84 0.89 092 0.94

Table 1: Asymptotic critical values for th@? test

3.2 The case with structural breaks

All the asymptotics presented so far are made under the gggumthat there are no
breaks in the series. Nevertheless, the vast literatureecnimg this issue favors the
hypothesis that structural breaks do occur occasionaftyast economic series. There-
fore, our previous approach is generalized to allow a ame-tthange in the determin-
istic rate of growth, that is, our proposal accounts for anecsural break that affects
only the slope of the time trend [Perron’s Model B under thk imgpothesis (Perron,
1989, p. 1364)].

In doing so, we first show that the test, as originally proplpos® longer works cor-
rectly? Secondly, we modify the test regression to enable it to cbfdr a possible
break. Thirdly, we propose an algorithm that correctly iifees the break and thus
recovers the power of the test.

Assume now that the Data Generating Process (DGR) isfgiven by equatiori{4):

Yt = py + 0y DUyt +yr1 + uy (4)

where DU, is a step dummy, that iQU,; = 1(t > T;,), wherel(.) is the indi-
cator function,T}, is the unknown date of the breakin A = Ty, /T, and DTy, =
Z;Zl DU, is the deterministic trend structural break.

Running the test regressionl (3) on DGR (4) leads to errongdesence. TheR?

4Without any loss of generality we will assume thathas a single break. The asymptotics for multiple
breaks are analogous.



statistic behaves differently under the alternative higpsis than has been previously
stated. In factR? does not converge to one under the alternative hypothesities
two hypotheses become indistinguishable. There is a wdaldf power. This result is

summarized in Propositidd 2:

Proposition 2 Let ; be generated by equation (4)), and be used to estimate regression

(3. Hence, the associated R?:
R41-0,(1)<1

We may override this problem by running the test regresgro DGP [#) with a

correct specification of the break location:

yo = v+ 7t+7DTy + v (5)

The results stated in the previous section are once agah thaat is, R? converges
to one in probability under the alternative hypothesis,tated in Propositioh]3. Note
that under the null hypothesis it is assumed that there therea drift nor a structural

break:

Proposition 3 Let y; be generated by equation (4)), and be used to estimate regression
(®). Hence, the associated R?:

1. R2%51-0,(1) for pu, =6, =0

2 R*=1-0,(T7Y) 51 forpu,#0andd, #0
3 75, for p, # 0and 6, # 0
4. t: =0,(T) for pu, #0and @, #0

As proved in the appendix, the asymptotic expressions uhderull and the alternative

hypotheses are far more complicated than those obtainedgo§itio1. In particular,



the limiting distribution under the null hypothesis depgngon the location of the
break.

Nevertheless, if we run a test regressidn (5) on DGP (4) witimeorrect specification
of the break location, as in equatién (6), the test will fgiim. LetT; # Tp,,i.e., T}

denote an incorrect break date.

Yy = ~y+0t+ TDTyIt + vy (6)

The test statisticR?, does not converge to one under the alternative hypoth&his.

is stated in Propositidd 4.

Proposition 4 Let y; be generated by equation (4)), and be used to estimate regression

(6). Hence, the associated R?:
RR451-0,(1)<1

Finally, if we include a break in the test regression and yjipb a series generated by
a DGP that does not have one, such test still works. Asynugatibtj it does not matter

if a non-existent break is included:

Proposition 5 Let y; be generated by equation (I)), and be used to estimate regression

(). Hence, the associated R?:
1. RR31-0,(1)<1 forp,=0,=0

2. R?51 for 41, # 0 and 6, = 0
3 #=0,(T%) for 1, = 0, = 0
4. T3t S0 for p, =6, =0

where ¥ is an unknown-nuisance-parameter-free distribution.

Given that our test statistidz?, is asymptotically maximized when the break date is

correctly specified and there is no loss of power when we bdar@n inexistent break,



it is possible to design a “break-finder” algorithm by rurgequation[(b) sequentially
and allowing the break location to change along the sampientgally, if there is
indeed a breakR? will be maximized WheneveTlfy falls in the correct location and
will thus be equal tdl}, . More precisely, the break date is obtained by maximizing

(minimizing) theR? (sum of squared residuals, SSR):

Tby = argmaxr, eler,(1—e)T) R? (Tby)

whereTby is the estimated break date ane- 0.05 is the trimming parameter.

Itis important to note that, under the alternative hypathesge have not yet established
that our estimation method provides a consistent estinfakedreak point. Neverthe-
less, we can make uselof Perron and Zhu (2005) (PZ, heranadteilts to assert that
this requirement is met since our estimation procedure meatone of their cases [our
DGP under the alternative hypothesis corresponds to PZdehi@; refer to equation
(1) and assumption 2, pp. 69-70]PZ’s findings allow us to ensure that, under the
alternative hypothesis, our test consistently estimdtedteak daté.

Under the null hypothesis there is no break but the auxilkagression includes one
(located aﬂ}fy). The asymptotic distribution under the null hypothesisa iinction
of the—known—Ilocation of the break relative to the total saer(pl = Tby /T). New
critical values that allow us to carry out hypothesis tegfior given values of\ are
thus tabulated in Tablgl 2. These were computed for diffebesak locations) =
0.10,0.15,0.20, 0.25, . . ., 0.85,0.90.

We also computed the distribution % It contains no unknown nuisance parameters,

5PZ prove that a break fraction estimated by minimizing the SSRerges in probability—at a rate of
Op(Tl/Q)—to the true break fraction, whenever there is such a breskTheorem 3 (1), p. 75]. Moreover,
they prove that the estimate associated to the trend brealeig@s—at a rate oj)p(Tl/Q)—to the true
parameter if and only if, the break fraction is correct, whitdh, given PZ’s previous result (refer to theorem
6 1(a), pp. 79). This implies that the break date estimategsafatonvergence is fast enough to be considered
as known

8Kim and Perron[(2009) arld_Carrion-i Silvestre, Kim. and Per{@009) also minimized the SSR; in
both cases the argument is analogous: the test statisticuectidn of the estimated break point and it
has the same limit distribution as if the true break point wdwdde been employed.
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Q LEVEL

A 10% 5% 55% 1%
0.10 0.87 0,01 0.03 0.5
0.15 0.88 0.91 0.94 0.96
0.20 0.88 0.92 0.94 0.96
0.25 0.89 0.92 0.94 0.95
0.30 0.89 0.93 0.95 0.96
0.35 0.89 0.93 0.95 0.96
0.40 0.90 0.93 0.95 0.96
0.45 0.90 0.93 0.95 0.96
0.50 0.90 0.93 0.95 0.96
0.55 0.90 0.93 0.95 0.96
0.60 0.90 0.93 0.95 0.96
0.65 0.89 0.92 0.94 0.96
0.70 0.89 0.92 0.94 0.96
0.75 0.88 0.92 0.94 0.96
0.80 0.88 0.92 0.94 0.96
0.85 0.87 0.91 0.94 0.96
0.90 0.87 0.91 0.93 0.96

Table 2: Break location and asymptotic critical values Far B2 test.

Note: the critical values are obtained from the simulatiothef asymptotic distribution of the test statistic
under the null hypothesis. Number of replicatio8; 000; the simulation of the Brownian motions is made
exactly as in Perron (1989, p. 1375). Matlab code availapuequest to the authors.

such aw?.. Nevertheless, there is a known nuisance parameter—thmeagstl break
location @)—that alters this distribution. Therefore, we obtainedical values for

different break locations with which to test the null hypegfs: @ = 0; these critical

value$ appear in Tablg]3.

An example of the distribution % under the null hypothesis of non-significance is

shown in FiguréR. The specified break location is 0.45.

"Thet-ratio associated with this parameter must be normalize@i’)yin order to attain the asymptotic
distribution undef{(. Under the alternative hypothesis, theatio diverges at raté, so the square-root nor-

malization factor does notimpede its divergence; in facteutite alternative hypothesié\/% =0yp (T% ) .

8The test is double-tailed; notice that the—non-standarigtsibution appears to be symmetric. Note
also that the break date can be treated as known (under greatlve hypothesis) because of the same
arguments stated for thig? statistic.
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Level

A 10% 5% 25% 1%
0.10 | £0.66 +0.78 £0.88 +1.01
0.15 | £0.84 £1.00 =+£1.15 +1.33
020 | £0.98 +£1.18 +£1.36 +1.58
025 | £1.13 +£1.36 +£1.58 +1.85
0.30 | £1.22 +£1.48 +£1.72 +£2.02
0.35 | £1.30 £1.59 +£1.85 =+2.16
0.40 | £1.37 +£1.66 +£1.93 +£2.31
045 | £1.41 +1.71 +2.01 =+2.39
050 | £1.42 +£1.72 +£2.02 +2.39
055 | £1.41 +£1.70 +£2.01 +2.38
0.60 | £1.31 +£1.66 +£1.95 +£2.32
0.65 | £1.31 £1.61 +£1.87 =£2.20
0.70 | £1.24 £1.50 £1.74 =£2.00
0.75 | £1.11 +£1.33 +£1.55 =+1.83
0.80 | £0.98 +£1.15 +£1.37 =+1.60
0.85 | £0.83 £1.00 =+£1.15 =+£1.33
0.90 | £0.67 +£0.79 £0.90 +1.04

Table 3: Asymptotic critical values fo\/f%.
Note: the critical values are obtained from the simulatiothef asymptotic distribution of the test statistic

under the null hypothesis[= 0]. Number of replications20, 000; the simulation of the Brownian motions
is made exactly as in Perron (1989, p. 1375). Matlab codeablailipon request to the authors.

0.5 T

0.451 = = = Sample distribution

0.4r- = Asymptotic Distribution

0.35[

0.3

0.251-

0.21-

0.15f

0.1

0.05[

6 -4 -2 0 2 4 6

Figure 2: Asymptotic distribution % under the null hypothesis
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4 Finite-sample properties of the test

We present a Monte Carlo study to analyze the finite-samfdetafeness of the test. In
each case, the number of replications,i800. Firstly, we evaluate the test performance
when no structural breaks are present in the data and thethlgadoes not search
for breaks. Figur€l3 shows the effect of autocorrel&tion the behavior of the test
statistic for different values of the drift. This figure shewhat autocorrelation has
only a marginal effect (for d0% level); the power of the test decreases slightly as
p approaches one. As the sample size increases, ffom 75 to T' = 500, the
area with low power shrinks, although the gain in power setenie relatively small.
Furthermore, there is a logical loss of power around the-zaheed drift, where the

null hypothesis is actually true.

10% Critical Value

-R2

10% Critical Value

Figure 3: R? test-statistic in the presence of autocorrelation and iféerént values of
the drift; (a)T = 75 obs. and (b)" = 500 obs.

More accurate Monte Carlo exercises are shown in Tables Bandvhich the rejec-
tion rates of the null hypothesis for some selected paramatees, sample sizes and

statistical significance levels, are shown, these being0.0, 0.25, 0.5,0.7 and 0.9; T

9The underlying error sequence is assumed telB& 1), wherep ranges from-0.95 t0 0.95.
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=100, 150, 250, 500, 1,000; ang 1%, and 5%, respectively.

Results show that the test is proficient for samples as smeatine hundred obser-
vations. Where the DGP is a unit root without drift [Panels ¢a)lables % andl5],
rejection rates are as low as the significance levels for lwes of the autocorrelation
coefficient (less than 0.5). In these cases, autocorraldigiortions may be assumed
to be unimportant. For values of the autocorrelation cdefiicabove 0.70, level dis-
tortions are important for sample sizes below 250. Where {8 3 a unit root with
drift [Panels (b)], the power of the test decreases whentiffteagproaches to zero and
autocorrelation is above 0.50. Although our test is asytigatly immune to autocor-
relation, the Monte Carlo experiments show that such immgusinot perfect in finite

samples, yet does work well for low levels of autocorrelatio

Secondly, we compare our test with that of Dickey and Fullé8() (hereinafter DF81).
DF81 specified a procedure to test the joint null hypothekimd root and the non-
significance of the deterministic regressors, in particies drift.

A comparison between DF81 and our test is not straightfatysince theR? test pre-
supposes that there is already evidence of unit root andséscan testing the signifi-
cance of the deterministic components. However, our tegtsae/e as a complement
when DF81 rejects the null hypothesis, as in those casesdrdked by Panels (b) of
Tabled® anfll7. When the underlying process is a unit root witt) BF81 systemati-
cally rejects the null hypothesis because it is half falee [Banels (b) of Tablé$ 6 and
[.

Furthermore, the Monte Carlo experiment reveals that thel idistortions caused by
the presence of autocorrelation are more severe in the ¥sS8]see Panel (a) of Table
[B] than in theR? test [see Panels (a) of Tablgs 4 &nd 5]. Of course, Dickelgul
auxiliary regression can be adapted to control for autetation; however, there is the
issue of selecting the number of lags to consider. We thexefpplied Ng and Perron

(1995) lag’s selection strategy (see Tdble 7). Controfiimgutocorrelation definitively

14



Panel (a)
DGP Parameters Sample Size

Ly  pya 100 150 250 500 1,000
0.00 0.011 0.009 0.010 0.010 0.010
0.25 0.013 0.011 0.011 0.011 0.010
U.R. No Drift 0 0.50 0.015 0.015 0.013 0.011 0.010
0.70 0.029 0.020 0.014 0.013 0.013
0.90 0.082 0.054 0.035 0.019 0.016

Panel (b)

0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000
3 0.50 1.000 1.000 1.000 1.000 1.000
0.70 0.999 1.000 1.000 1.000 1.000
0.90 0.707 0.776 0.891 0.984 0.999
0.00 0.993 0.999 1.000 1.000 1.000
0.25 0.928 0.984 0.999 1.000 1.000
0.75 050 0.660 0.823 0.948 0.998 1.000
0.70 0.315 0.415 0.606 0.869 0.986
0.90 0.139 0.128 0.123 0.170 0.280
0.00 0.993 0.999 1.000 1.000 1.000
0.25 0.932 0.983 0.999 1.000 1.000
-0.75 0.50 0.659 0.815 0.953 0.998 1.000
0.70 0.320 0.425 0.612 0.869 0.988
0.90 0.139 0.122 0.120 0.163 0.290
0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000
-3 0,50 1.000 1.000 1.000 1.000 1.000
0.70 0.999 1.000 1.000 1.000 1.000
0.90 0.697 0.771 0.889 0.983 0.999

U.R. With Drift

Table 4: Rejection rates of th@? test. The case with no break (level:= 0.01)

decreases the level distortions, however, it reduces tepaf the test for high values

of p (above 0.50) and for low absolute values of the dfift.

Thirdly, we assess the performance of the test when it searfdr a single break in
the series. Tabldg 8 andl 9 show the rejection rates of thengpbthesis when two
different DGPs are analyzed at th% and5% levels. Panel (a) of each table—when

the DGP is unit root without drift—demonstrates that the sforms satisfactorily,

10The Matlab code of the Monte Carlo experiment is availablenupguest to the authors.
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Panel (a)
DGP Parameters Sample Size

Ly  pya 100 150 250 500 1,000
0.00 0.049 0.049 0.052 0.047 0.048
0.25 0.053 0.054 0.052 0.049 0.051
U.R. No Drift 0 0.50 0.065 0.060 0.055 0.054 0.052
0.70 0.087 0.074 0.064 0.057 0.054
0.90 0.178 0.131 0.100 0.076 0.067

Panel (b)

0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000
3 0.50 1.000 1.000 1.000 1.000 1.000
0.70 1.000 1.000 1.000 1.000 1.000
0.90 0.850 0.916 0.970 0.999 1.000
0.00 0.999 1.000 1.000 1.000 1.000
0.25 0.991 0.999 1.000 1.000 1.000
0.75 050 0.868 0.949 0.994 0.999 1.000
0.70 0.540 0.670 0.832 0.972 0.999
0.90 0.270 0.247 0.261 0.337 0.527
0.00 0.999 1.000 1.000 1.000 1.000
0.25 0.988 0.999 1.000 1.000 1.000
-0.75 0.50 0.857 0.948 0.993 0.999 1.000
0.70 0.537 0.664 0.831 0.973 0.999
0.90 0.258 0.246 0.258 0.346 0.523
0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000
-3 0,50 1.000 1.000 1.000 1.000 1.000
0.70 1.000 1.000 1.000 1.000 1.000
0.90 0.863 0.914 0.972 0.999 1.000

U.R. With Drift

Table 5: Rejection rates of thig? test. The case with no break (level:= 0.05)

particularly when the inference is drawn based on a 1% leggdction rates under the
null hypothesis are fairly low even for small samples whetoaorrelation is low. Panel
(b) of each table—when the DGP is unit root with drift—showshhigjection rates of
the null hypothesis in both cases, i.e. when the DGP has rakpa:d when it does.
Nevertheless, it is noticeable that positive autocori@iatmay have a considerable
negative effect on the power of the test in relatively smathples, i.e., those with

fewer thanl50 observations.
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Panel (a) No lags included
DGP Parameters Sample Size

Ly  pya 100 150 250 500 1,000
0.00 0.034 0.038 0.045 0.041 0.048
0.25 0.058 0.055 0.060 0.066 0.062
U.R. No Drift 0 0.50 0.138 0.141 0.149 0.152 0.158
0.70 0.289 0.292 0.311 0.302 0.301
0.90 0.606 0.591 0.587 0.586 0.583

Panel (b) No lags included
0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000
3 0.50 1.000 1.000 1.000 1.000 1.000
0.70 1.000 1.000 1.000 1.000 1.000
0.90 0.995 0.999 1.000 1.000 1.000
0.00 1.000 1.000 1.000 1.000 1.000
0.25 0.999 1.000 1.000 1.000 1.000
U.R. With Drift  0.75 050 0.980 0.998 1.000 1.000 1.000
0.70 0.880 0.949 0.992 1.000 1.000
0.90 0.703 0.725 0.796 0.884 0.965
0.00 1.000 1.000 1.000 1.000 1.000
0.25 0.999 1.000 1.000 1.000 1.000
-0.75 050 0.981 0.998 1.000 1.000 1.000
0.70 0.873 0.949 0.993 1.000 1.000
0.90 0.698 0.738 0.782 0.885 0.969
0.00 1.000 1.000 1.000 1.000 1.000
-3 025 1000 1.000 1.000 1.000 1.000
0.50 1.000 1.000 1.000 1.000 1.000
0.70 1.000 1.000 1.000 1.000 1.000
0.90 0.995 0.999 1.000 1.000 1.000

Table 6: Rejection rates of Dickey-Fuller's (1981) joinsttethe case with no break.
Lags not included, levelkx = 0.05

5 Empirical results for Nelson and Plosser series

The purpose of this section is twofold. Firstly, we use ouwvnest to review the
statistical properties of the NP series. We apply the popiileot and Andrews (1992)
test, since our test is properly used only after a unit-rest has been employed. If the

former fails to reject the null hypothesis of nonstatiotyathen our test can be usétl.

11Although Zivot and Andrews’s (1992) test does not allow fetraictural break under the null hypothesis
of unit root,| Vogelsang and Perran (1998) argue on pp. 1@@B that: “asymptotic resultsfassuming a
break under the null hypothesis}—were shown to provide poor approximations to finite sampl&itis
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Panel (a) Lag selection strategy: Ng and Perron (1995)
DGP Parameters Sample Size

Ly  pya 100 150 250 500 1,000
0.00 0.047 0.050 0.056 0.048 0.050
0.25 0.051 0.042 0.048 0.050 0.052
U.R. No Drift 0 0.50 0.054 0.047 0.048 0.049 0.052
0.70 0.055 0.051 0.052 0.049 0.054
0.90 0.062 0.056 0.061 0.059 0.052

Panel (b) Lag selection strategy: Ng and Perron (1995)

0.00 0.999 1.000 1.000 1.000 1.000
0.25 0.997 1.000 1.000 1.000 1.000
3 0.50 0.985 0.999 1.000 1.000 1.000
0.70 0.893 0.986 1.000 1.000 1.000
0.90 0.206 0.312 0.613 0.983 1.000
0.00 0.988 1.000 1.000 1.000 1.000
0.25 0.936 0.996 1.000 1.000 1.000
U.R. With Drift 0.75 0.50 0.589 0.849 0.991 1.000 1.000
0.70 0.192 0.329 0.631 0.964 1.000
0.90 0.073 0.079 0.091 0.149 0.310
0.00 0.988 0.999 1.000 1.000 1.000
0.25 0.938 0.995 1.000 1.000 1.000
-0.75 050 0.585 0.848 0.993 1.000 1.000
0.70 0.195 0.336 0.628 0.965 0.999
0.90 0.074 0.077 0.094 0.138 0.320
0.00 0.999 1.000 1.000 1.000 1.000
0.25 0.997 1.000 1.000 1.000 1.000
-3 050 0.986 0.999 1.000 1.000 1.000
0.70 0.897 0.984 1.000 1.000 1.000
0.90 0.207 0.313 0.608 0.979 1.000

Table 7: Rejection rates of Dickey-Fuller's (1981) joinsttethe case with no break.
Lag selection strategy: Ng and Perron (2005), leuek 0.05

Secondly, we contrast our results with those obtained biyroot tests which include
a break under the null hypothesi|s: Perron (1997)land Caiiri@ilvestre and Safis

(2006) [hereinafter”97 and C'S06, respectively]. P97 and C'S06 proposed models
that differ on whether or not there is a break under the nyloliyesis and the type of

break. The specific models that they selected in their eogbigipplications inhibits the

tions for trend breaks of the magnitudes typically encowtén practice. Indeed, for typical shifts in slope
the asymptotic distributions obtained assuming no breaknthdeinit-root null hypothesis provide adequate
approximations of finite sample distributions.”
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Panel (a)
DGP Break py1 Sample Size
100 150 200 250 500
0.00 0.028 0.016 0.018 0.022 0.016
0.25 0.036 0.036 0.030 0.032 0.024
U.R. No Drift NO 050 0.058 0.038 0.032 0.024 0.026
0.70 0.068 0.040 0.042 0.030 0.028
0.90 0.280 0.168 0.090 0.064 0.034
Panel (b)
0.00 0.978 0.996 1.000 1.000 1.000
0.25 0.828 0.958 0.994 1.000 1.000
NO 050 0.552 0.728 0.866 0.988 1.000
0.70 0.334 0.400 0.508 0.762 0.970
0.90 0.314 0.236 0.166 0.176 0.236
0.00 0.994 0.998 1.000 1.000 1.000
0.25 0.928 0.996 1.000 1.000 1.000
YES 050 0.694 0.842 0.962 0.998 1.000
0.70 0.424 0.492 0.662 0.908 0.994
0.90 0.342 0.288 0.248 0.262 0.400

U.R. With Drift

Table 8: Rejection rates of thR? test. The case with breakLevel: a = 0.01;
trimming: ¢ = 0.05)

@ In all cases, there is a grid search for a break; = 2.7, o0, = 5, and, if the DGP contains a break:

0y = 1.05, A = 0.5.

comparison with the results of our tédtTherefore, we compute their results choosing
those models that allow us to make the fairest comparisdnauit test:® In particular,

we apply Perron’s model'Bto all the series under analysis; this model is referred as
the “changing growth model”. Under the null hypothesis, étmpits a change in the
trend function without any change in the level at the timehef break. We also apply
the model that S06 denominate®s ;1 (). This particular specification allows a slope
shift under the null hypothesis.

We employ the NP series updated1t@88 by Herman van Dijk that can be found in

the JBES 1994 dataset archives; we expect the longer spaake tine results more

12\\/e previoulsly warned that a comparison between our testiayntbat test is not straightforward, given
that our test assumes that there is evidence of unit root atsittee significance of the drift, whil§t97 and
C'S06 test the unit root hypothesis.

B3We used the test statistics, (3) of P97 and©5 1 (\) of C'S06; both allow for a change in the time
trend [Model B in Perron’s (1989) notation]. The Matlab caslavailable upon request.

14see equations (3a) and (3b) in Perron (1997).
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Panel (a)
DGP Break py1 Sample Size
100 150 200 250 500
0.00 0.102 0.064 0.106 0.076 0.098
0.25 0.132 0.128 0.126 0.096 0.120
U.R. No Drift NO 050 0.156 0.136 0.100 0.120 0.110
0.70 0.222 0.172 0.130 0.114 0.112
0.90 0.450 0.344 0.270 0.194 0.136
Panel (b)
0.00 0.998 1.000 1.000 1.000 1.000
0.25 0.952 0.994 1.000 1.000 1.000
NO 050 0.762 0.904 0.976 1.000 1.000
0.70 0.548 0.626 0.718 0.934 1.000
0.90 0.544 0.438 0.366 0.374 0.462
0.00 1.000 1.000 1.000 1.000 1.000
0.25 0.988 0.996 1.000 1.000 1.000
YES 050 0.860 0.964 0.996 1.000 1.000
0.70 0.618 0.734 0.870 0.992 1.000
0.90 0.516 0.470 0.458 0.452 0.590

U.R. With Drift

Table 9: Rejection rates of thB? test. The case with breakLevel: a = 0.05;
trimming: ¢ = 0.05)

¢ In all cases, there is a grid search for a break; = 2.7, 0, = 5, and, if the DGP contains a break:
0y = 1.05, A = 0.5.

reliable. The data are annual and all the series are in hdtgs except for that of
bond yield.

The results in TableZ10 show that for all variables except @&4€P, nominal GNP
and real per capita GNP, there is insufficient evidence tecteje null hypothesis
of unit root. Therefore, these three variables can be censithroken-trend stationary
series. The remaining variables in Tablé 10 are appropratdidates for the procedure
developed in this paper, since there is evidence in favomdfroot. We are able to
reject the null hypothesis of driftless unit root for all teeries except CPI, velocity,

bond yield and stock prices.

For the remainder—industrial production, employment, deflamominal wages, real
wages and money stock—there is evidence to affirm that thesgoserned by a de-

terministic trend (the drift) in the long run. Moreover, dast detected two significant
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Series R Break R? Break P97 CS06
location location | t%(3) ©Os5,1(N\)
Real GNP -5.542** 1934 — — 1930 1978+
Nominal GNP -5.734*** 1930 — — 1939 1928***
Real per capita GNP~ -5.860*** 1939 — — 1930 1937
Industrial Production  -4.939 1919 0.988*** 1901 1897 1917%**
Employment -4.748 1930 0.972** 1906 1904 1943%**
GNP deflator -3.813 1930 0.921* 1965*** | 1953 1918***
CPI -2.284 1931 0.726 — 1953 1871***
Wages -4.889 1930 0.967** 1940 1943 1920***
Real Wages -3.653 1972 0.978**  1973** 1971 1973***
Money Stock -4.451 1929 0.986*** 1970 1970 1978**
Velocity -4.030 1930 0.927 — 1936 1928***
Bond Yield -4.191 1954 0.857 — 1954 1931**
Stock Prices -4.476 1954 0.873 — 1942*  1928***

Table 10: Extended NP data set

@ Zivot and Andrews’s (1992)-statistic associated with autoregressive term, Model (C).

Trimming: e = 0.05; Breaks allowed: level and trend; lags selected by the Akéilkormation Criterion.
The symbols *, **, and *** denote rejection of the null hypotis at 10%, 5%, and 1% level, respectively.
structural breaks in the deterministic trend of real wa@®§3) and deflatof1965).
Results in the Monte Carlo section show that the test loses qmower in the pres-
ence of positive autocorrelation for sample sizes belov Notwithstanding, the test
still has enough power to reject the null hypothesis in allfour cases. Furthermore,
the combined results d?97 andC'S06 tests for the series, industrial production, em-
ployment, GNP deflator, wages, real wages and money stonkheanterpreted and
reconciled as follows. For all these series, I test does not reject the null hypoth-
esis of unit root, whereas th@&S06 test does reject the null; th@S06 test rejects the
null because one or more of the constraints related to tipe slothe slope shift are not
met, and not necessarily because of the absence of a unifliteete results imply the
presence of a unit root and the absence of a drift/drift anftl fmong others. Since
our test also rejects the null hypothesis, we can concluaealhthese series contain
both, a deterministic and a stochastic trend. Moreoveigdbsghe deterministic trend,
our test shows that the GNP deflator and real wages also hamectusal break in the
deterministic rate of growth. The application of our tegtHer refines the results of
those of P97 andC'S06 tests. For example, the modek ; () of C'S06 tests under

the null the joint validity of several parameter restriase—besides unit root; there-
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fore, if the null hypothesis is rejected, it is not possildeell which of the constraints
are not true. By using our test, it is possible to draw infeeeabout the deterministic
components, specifically, the deterministic trend or thecstiral break associated with

it.

6 Concluding remarks

This work aims to complement unit-root literature by prdpgsa new and simple
methodology that provides a correct assessment of thendieistic trend when there
is evidence of unit root. Our procedure contributes by iasigg the degree of preci-
sion in the inference drawn from unit-root tests that coasdtift and break under the
null hypothesis. For these tests, it is impossible to evaludether both the drift and
the break are simultaneously present whenever the nullrgtationarity cannot be re-
jected, whereas our methodology provides a simple andftelegpproach to executing
this task.

The importance of such an assessment relies on the factxisting unit-root tests

fail to correctly estimate the existence of the determimisend under the null hypoth-
esis of unit root; therefore, the literature lacks a rebkataol with which to estimate
the deterministic rate of growth of a series when a stooh&stnd exists. The pro-
cedure is simple and its implementation straightforwandthiermore, it facilitates the
interpretation of the dynamics of the macroeconomic andhiirz time series.

The new procedure is shown to be asymptotically robust weiglard to autocorrelation,
and to have reasonable power for sample sizes of practitakest. We considered
the possibility of a single structural break in the deteiistio trend and derived the
asymptotic distribution of both th&?2 statistic as well as thestatistic associated with
the structural break parameter estimated under the nutithggis of no break.

The empirical results show that most of the NP series exténgeo 1988—with the

exception of CPI, velocity, bond yield and stock prices—adnaracterized by their
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containing a deterministic trend. The results of Perro®{)2est using his “changing
growth” model are in line with ours since there is not enougtence against the unit-
root hypothesis in all cases but one. For these variablesestuclarifies that there is a

deterministic trend besides the unit root.
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A Appendix

Proof of Propositions 1-5.We present a guide on how to obtain the order in probability
of one combination of DGP and specification, namely DGP (1) specification (4).

The expressions needed to compute the asymptotic valiié afe:

SDue = YoT+py Y t+> &
—_——
o0 ()
Zytt = K)Zt+ﬂyzt2+25y,t71t
—_——
Op(Tg)

Syio= YPT+m > P+ Y & +2Vouy Yt
——

O,(T?)

2Yy Z Sy,t—1 + 24y Z Sy,t—1t
1
Yot o= 5 (T?+7)

Y2 o= é(2T3+3T2+T)

where¢, ; = >'_, u,; and all other summations range franto 7. The orders in
probability can be found in Phillips (1986), Phillips andri2wf (1986) and Hamilton
(1994). These expressions were writterMathematica 4.1 code; the software com-
putes the asymptotics of the classical OLS form{fédX )~ X'Y as well as the asymp-

totic value of the variance estimatar? = 7' 51, 42 where.

T Yt
Xt Xt

X'X =

25



and,

Y
y o= | =
2yt
The code in this casde is represented below. To understand it, a brief glossary is
required:
Character| Represents
A Yo
K fhy
B Zgy,tfl
c 2
D D &yt
St St
St2 S t?

Table 11: glossary of the Mathematica Code

ClearAll; St= 1 « (T2 + T); St2= 3 * (2* T3 + 3+ T2 + T);
Sy=AxT+ K x St+ B« T'5;

SY2=A2xT+ K?xSt2+ C+xT?2+2x Ax K xSt+ 2% Ax B+ T
+2% K % D % T?5;

Syt= A x St+ K % St2+4 D % T?5;

T St
Mx = (

st s
iMx = InverséMx|;

R1 = ExtracfiMx, {1, 1}]; R2 = Extrac{iMx, {1,2}];
R3 = ExtracfiMx, {2, 1}]; R4 = Extrac{iMx, {2, 2}];

R40= FactofR4];
R4num= Numerato[R40;
R4den= DenominatojR4Q;

15As indicated previously, the proof was achieved with thedfitMathematica 4.1 software. The corre-
sponding code for the other results is available upon réques
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K15 = ExponenjR4num T7;

K16 = ExponenjR4denT];

R4num2= Limit[ExpandR4nunyT*%|, T — oo];
R4den2= Limit[ExpandR4denyTX16], T — oc;
R42= FactofExpand(R4num2Raden3 + L ]J;

P10= FactofExpandR1x Sy+ R2x Syil];

P20= FactofExpandR3x Sy+ R4 x Syil];
P21num= NumeratojP2(;

K3 = ExponenfP21numT;

Bnum = Limit[ExpandP21numT*3), T — oo;
P22den= DenominatojP2Q;

K4 = ExponenfP22denT];

Bden= Limit[ExpandP22def(T**], T — oo;
Bpar = FactofExpand(Bnumy/Bden) * %.;]];

P40= Factor[Expand[Sy2+ P1G = T + P2¢ * St2

—2 % P10 Sy — 2 x P20* Syt + 2 * P10x P20« S{] ;
P41num= Numerato[P4d;

K7 = ExponenfP41numT;

U2num= FactofLimit [ExpandP41numTX"], T — oo||;
P42den= DenominatofP4d;

K8 = ExponenfP42denT];

U2den= FactofLimit[ExpandP42defTK8], T — oo||;
Su2= FullSimplify[FactofExpand(U2nunyu2den * Zg]]];
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P50= FactofExpandP4Q/(Sy2+ T * (3)2 — 2 * (3¥) * Sy)]};
P51num= NumeratofP5(;

K1 = ExponenfP51numT7;

Rcnum= FactofLimit[ExpandP51numTK], T — oo]];
P52den= DenominatojP50;

K2 = ExponenfP52denT];

Rcden= FactofLimit[ExpandP52defTK2], T — oo]];

Rc = FullSimplify[FactofExpand(RcnumnyRcder) = %;;]]]
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