
MPRA
Munich Personal RePEc Archive

Testing for a Deterministic Trend when
there is Evidence of Unit-Root
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Departamento de Econom´ıa y Finanzas, Universidad de
Guanajuato.

2010

Online at http://mpra.ub.uni-muenchen.de/58780/
MPRA Paper No. 58780, posted 30. September 2014 00:02 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213963507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/58780/


Testing for a Deterministic Trend when there is
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Abstract

Whilst the existence of a unit root implies that current shocks have permanent ef-
fects, in the long run, the simultaneous presence of a deterministic trend obliterates
that consequence. As such, the long-run level of macroeconomic series depends
upon the existence of a deterministic trend. This paper proposes a formal statistical
procedure to distinguish between the null hypothesis of unit root and thatof unit
root with drift. Our procedure is asymptotically robust with regard to autocorre-
lation and takes into account a potential single structural break. Empiricalresults
show that most of the macroeconomic time series originally analysed by Nelson
and Plosser (1982) are characterized by their containing both a deterministic and a
stochastic trend.

Keywords: Unit Root, Deterministic Trend, Trend Regression,R2.
JEL Classification: C12, C13, C22.

1 Introduction

The influential paper by Nelson and Plosser (1982) (hereinafter NP) triggered a con-

siderable amount of research into the unit-root hypothesison both the empirical and

the theoretical fronts. Since then, an impressive and increasingly complex array of

unit-root tests has been available in the literature, many of which were applied first to

the original NP dataset.

The significance of the debate lies in the effects of the stochastic shocks. Whenever

macroeconomic time series contain a unit root, random shocks have a permanent effect
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on the series. However, in the long run, the effects of these shocks will be reduced if

the series also contains a deterministic trend.

The existence of a deterministic trend is also important forthe limit distribution of

the unit root tests, since the distribution changes depending on the specification of

the deterministic component. Moreover, even though the existence of a deterministic

trend is more important for the long-run level of the series,there is a bias towards the

accurate analysis of the existence of a unit root, i.e. whilemost unit-root test procedures

include a deterministic trend regressor in their analysis,many of these do not formally

assess the performance of such estimate when there is evidence of unit root. Indeed,

Ventosa-Santaulària and Ǵomez (2007) proved that it is incorrect to carry out standard

hypothesis testing on the deterministic trend parameter estimated with Dickey-Fuller

(DF)-type tests when there is a unit root since the limiting distribution of its t-statistic

is neither asymptotically normal with unit variance nor nuisance-parameter-free when

the innovations are not i.i.d.

This implies that anyone interested in estimating the deterministic rate of growth of a

macroeconomic variable may find it difficult to perform such atask; although seem-

ingly straightforward, it becomes nontrivial when the series contains a unit root. In this

case, there is neither a reliable nor a simple tool availablewith which to carry out such

estimation.

This paper proposes a formal statistical procedure to distinguish between the null

hypothesis of unit root without drift and that of unit root with drift, with and with-

out a structural break [Note that the model under the alternative hypothesis of our

test corresponds to Perron’s Model B under the null hypothesis; see Perron (1989, p.

1364)]. Our work is in line with those that developed unit-root tests which also con-

sider a drift and a structural break under the null hypothesis; see, for example, Perron

(1989), Perron (1997), Carrion–i–Silvestre and Sansó (2006), Kim and Perron (2009),

Carrion-i Silvestre, Kim, and Perron (2009), among others.1 Nevertheless, these do not

1This is not a common specification; for example, the popular Zivot and Andrews test allows for breaks
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focus on the estimation and hypothesis testing on the drift and the potential structural

break associated with it, but rather on the parameter associated with the autoregressive

term. Therefore, we believe that our procedure complementsthese unit-root tests be-

cause it formally concentrates on examining the presence ofa deterministic trend and

a single structural break once there is evidence of a stochastic trend.2

In the empirical section, we enter the debate concerning thestatistical properties of

the macroeconomic series of NP. When characterizing the series, we utilize a longer

span—updated to 1988—in order to benefit from the asymptotic properties of our pro-

cedure. In addition, we contrast our results with those of Perron (1997) and Carrion–i–Silvestre and Sansó

(2006), who proposed unit-root tests that allow for a drift and a break under the null

hypothesis.

The article is organized as follows: in Section 2, we presenta concise summary of the

best-known papers that analyse NP’s series. In Section 3, wederive the asymptotic

distribution of the new test under the null hypothesis, as well as under the relevant

alternative hypothesis, and tabulate the critical values for different levels. Section 4

presents a Monte Carlo exercise to evaluate the performanceof this test in finite sam-

ples. Section 5 presents the empirical results for the NP dataset, whilst conclusions are

drawn in Section 6.

2 Literature Review

In this section, we briefly review the main findings of well-known papers that analyze

the unit-root hypothesis for the historical time series of NP.

In their seminal study, NP analyzed 14 US macroeconomic timeseries using Dickey and Fuller

(1979) unit-root test and failed to reject the null hypothesis of nonstationarity in all

only under the alternative hypothesis.
2All the unit-root tests so far mentioned consider a drift under the null hypothesis, consequently, if it

cannot be rejected, the conclusion is that the series contains both a deterministic and a stochastic trend.
Nevertheless, the procedure only focuses on the parameter associated with the autoregressive term parameter.
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but one of the series, i.e. unemployment. Kwiatkowski, Phillips, Schmidt, and Shin

(1992) complemented existing unit-root tests by proposinga new procedure with trend

stationarity as the null hypothesis. They argued that the typical way in which this issue

is tested—unit root as the null hypothesis—causes the null hypothesis to be accepted

unless there is remarkable evidence against it; they could not actually reject the null

hypothesis of trend stationarity for unemployment, real per capita GNP, employment,

GNP deflator, wages and money stock. Perron (1989) extended the standard DF proce-

dure by adding dummy variables to allow for the presence of a one-time change in the

level or in the slope of the trend function under the alternative hypothesis or both. The

results showed that when the Great Depression and the first oil crisis in 1973 are treated

as points of structural change in the economy, it is possibleto reject the null hypothesis

of unit root in favor of broken-trend stationary process—he could not reject the null

hypothesis in only 3 of the 14 series: CPI, velocity and bond yield. The assumption

that the location of the break is known a priori was criticized by several authors, par-

ticularly Christiano (1992), who argued that the choice of the break date is, in most

cases, correlated with the data. As a result, formal statistical test procedures capable

of determining breakpoints endogenously were proposed to test the unit-root hypoth-

esis. Zivot and Andrews (1992) proposed a Perron—type sequential test-applying his

methodology for each possible break date in the sample—applying his methodology

for each possible break date in the sample—that maximizes theevidence against the

null hypothesis of nonstationarity. They found less support in favor of broken-trend

stationarity than had Perron, rejecting the null hypothesis in only 7 of the original 14

series. Perron (1997) reconsidered his 1989 work by allowing endogenous breakpoint

determination. Most of the results in Perron (1989) were confirmed, although mixed

results were found for real per capital GNP, money stock and GNP deflator.
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3 Identification of a deterministic trend in the presence

of a stochastic trend

Ventosa-Santaulària and Ǵomez (2007) proved that the DF-type test procedure may

fail to correctly identify the presence of a deterministic trend if the series also contains

a stochastic one.3 We propose an alternative procedure that can be used once there is

evidence in favor of unit root. Particularly, we are interested in distinguishing between:

• Driftless Unit Root:

H0 : yt = Y0 + ξyt︸︷︷︸
b

(1)

• Unit Root with drift:

Ha : yt = Y0 + µyt︸︷︷︸
a

+ ξyt︸︷︷︸
b

(2)

whereξyt =
∑t

i=1 uyi; uyi represents the innovations and obeys the (general-level)

conditions stated in Phillips (1986, p. 313) and the underbraced components are inter-

preted as (a) Deterministic Trend, and (b) Stochastic Trend.

To distinguish betweenH0 andHa, we will use the following auxiliary regression:

yt = γ + τt+ vt (3)

3.1 The case without structural breaks

If yt is a unit root with drift process, then:

3The inference drawn from the t-ratio associated with the deterministic trend is misleading because it
does not follow a standard distribution.
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Proposition 1 Let yt be generated by equation (1), and be used to estimate regression

(3). Hence, the associated R2:

1. R2 d
→ 1− Ω

∫

ω2−(
∫

ω)2
for µy = 0

2. R2 = 1−Op

(
T−1

) p
→ 1 for µy 6= 0

where Ω =
∫
ω2 − 4

(∫
ω
)2

+ 12
∫
ω
∫
rω − 12

(∫
rω

)2
. The Op

(
T−1

)
term is

12−Ωσ2

lr

µ2
y

and σ2
lr is the long-run variance of uyt.

Proposition 1 implies that underH0, R2 converges to a non-degenerate and non-

standard distribution and is always less than one, whereas under the relevant alternative

hypothesis,R2 converges in probability to one. We computed the asymptoticdistribu-

tion and estimated its shape non-parametrically (see Figure 1). The critical values are

also computed by simulating the asymptotic distribution. Actually, we simulated such

expression100, 000 times and obtained the relevant quantiles of the distribution (see

Table 1):
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R2

Null Hypothesis: Unit Root without drift

Alternative Hypothesis: Unit Root with drift

Figure 1:R2 test asymptotic distribution underH0
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Level (α) 10% 5% 2.5% 1%
Critical Values atα level: 0.84 0.89 0.92 0.94

Table 1: Asymptotic critical values for theR2 test

3.2 The case with structural breaks

All the asymptotics presented so far are made under the assumption that there are no

breaks in the series. Nevertheless, the vast literature concerning this issue favors the

hypothesis that structural breaks do occur occasionally inmost economic series. There-

fore, our previous approach is generalized to allow a one-time change in the determin-

istic rate of growth, that is, our proposal accounts for one structural break that affects

only the slope of the time trend [Perron’s Model B under the null hypothesis (Perron,

1989, p. 1364)].

In doing so, we first show that the test, as originally proposed, no longer works cor-

rectly.4 Secondly, we modify the test regression to enable it to control for a possible

break. Thirdly, we propose an algorithm that correctly identifies the break and thus

recovers the power of the test.

Assume now that the Data Generating Process (DGP) ofyt is given by equation (4):

yt = µy + θyDUyt + yt−1 + uyt (4)

= Y0 + µyt+ θyDTyt + ξyt

whereDUyt is a step dummy, that is,DUyt = 1(t > Tby ), where1(·) is the indi-

cator function,Tby is the unknown date of the break iny, λ = Tby/T , andDTyt =

∑t

j=1 DUyj is the deterministic trend structural break.

Running the test regression (3) on DGP (4) leads to erroneousinference. TheR2

4Without any loss of generality we will assume thatyt has a single break. The asymptotics for multiple
breaks are analogous.
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statistic behaves differently under the alternative hypothesis than has been previously

stated. In fact,R2 does not converge to one under the alternative hypothesis, so the

two hypotheses become indistinguishable. There is a total loss of power. This result is

summarized in Proposition 2:

Proposition 2 Let yt be generated by equation (4), and be used to estimate regression

(3). Hence, the associated R2:

R2 d
→ 1−Op (1) < 1

We may override this problem by running the test regression (5) on DGP (4) with a

correct specification of the break location:

yt = γ + τt+ πDTyt + vt (5)

The results stated in the previous section are once again valid, that is,R2 converges

to one in probability under the alternative hypothesis, as stated in Proposition 3. Note

that under the null hypothesis it is assumed that there is neither a drift nor a structural

break:

Proposition 3 Let yt be generated by equation (4), and be used to estimate regression

(5). Hence, the associated R2:

1. R2 d
→ 1−Op (1) for µy = θy = 0

2. R2 = 1−Op

(
T−1

) p
→ 1 for µy 6= 0 and θy 6= 0

3. π̂
p
→ θy for µy 6= 0 and θy 6= 0

4. tπ̂ = Op (T ) for µy 6= 0 and θy 6= 0

As proved in the appendix, the asymptotic expressions underthe null and the alternative

hypotheses are far more complicated than those obtained in Proposition 1. In particular,
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the limiting distribution under the null hypothesis depends upon the location of the

break.

Nevertheless, if we run a test regression (5) on DGP (4) with an incorrect specification

of the break location, as in equation (6), the test will fail again. LetT I
by

6= Tby , i.e.,T I
by

denote an incorrect break date.

yt = γ + θt+ τDT I
yt + vt (6)

The test statistic,R2, does not converge to one under the alternative hypothesis.This

is stated in Proposition 4.

Proposition 4 Let yt be generated by equation (4), and be used to estimate regression

(6). Hence, the associated R2:

R2 d
→ 1−Op (1) < 1

Finally, if we include a break in the test regression and apply it to a series generated by

a DGP that does not have one, such test still works. Asymptotically, it does not matter

if a non-existent break is included:

Proposition 5 Let yt be generated by equation (1), and be used to estimate regression

(6). Hence, the associated R2:

1. R2 d
→ 1−Op (1) < 1 for µy = θy = 0

2. R2 p
→ 1 for µy 6= 0 and θy = 0

3. π̂ = Op

(
T− 1

2

)
for µy = θy = 0

4. T− 1

2 tπ̂
d
→ Ψ for µy = θy = 0

where Ψ is an unknown-nuisance-parameter-free distribution.

Given that our test statistic,R2, is asymptotically maximized when the break date is

correctly specified and there is no loss of power when we search for an inexistent break,
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it is possible to design a “break-finder” algorithm by running equation (6) sequentially

and allowing the break location to change along the sample. Eventually, if there is

indeed a break,R2 will be maximized wheneverT I
by

falls in the correct location and

will thus be equal toTby . More precisely, the break date is obtained by maximizing

(minimizing) theR2 (sum of squared residuals, SSR):

T̂by = arg maxTby∈[εT,(1−ε)T ]R
2(T̂by )

whereT̂by is the estimated break date andε = 0.05 is the trimming parameter.

It is important to note that, under the alternative hypothesis, we have not yet established

that our estimation method provides a consistent estimate of the break point. Neverthe-

less, we can make use of Perron and Zhu (2005) (PZ, hereinafter) results to assert that

this requirement is met since our estimation procedure matches one of their cases [our

DGP under the alternative hypothesis corresponds to PZ’s model I.a; refer to equation

(1) and assumption 2, pp. 69-70].5 PZ’s findings allow us to ensure that, under the

alternative hypothesis, our test consistently estimates the break date.6

Under the null hypothesis there is no break but the auxiliaryregression includes one

(located atT I
by

). The asymptotic distribution under the null hypothesis isa function

of the—known—location of the break relative to the total sample (̂λ = T̂by/T ). New

critical values that allow us to carry out hypothesis testing for given values of̂λ are

thus tabulated in Table 2. These were computed for differentbreak locations,̂λ =

0.10, 0.15, 0.20, 0.25, . . . , 0.85, 0.90.

We also computed the distribution oftπ̂√
T

. It contains no unknown nuisance parameters,

5PZ prove that a break fraction estimated by minimizing the SSR converges in probability—at a rate of
Op(T 1/2)—to the true break fraction, whenever there is such a break [see Theorem 3 (1), p. 75]. Moreover,
they prove that the estimate associated to the trend break converges—at a rate ofOp(T 1/2)—to the true
parameter if and only if, the break fraction is correct, whichit is, given PZ’s previous result (refer to theorem
6 1(a), pp. 79). This implies that the break date estimate’s rate of convergence is fast enough to be considered
as known

6Kim and Perron (2009) and Carrion-i Silvestre, Kim, and Perron (2009) also minimized the SSR; in
both cases the argument is analogous: the test statistic is a function of the estimated break point and it
has the same limit distribution as if the true break point wouldhave been employed.
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λ̂
LEVEL

10% 5% 2.5% 1%
0.10 0.87 0.91 0.93 0.95
0.15 0.88 0.91 0.94 0.96
0.20 0.88 0.92 0.94 0.96
0.25 0.89 0.92 0.94 0.95
0.30 0.89 0.93 0.95 0.96
0.35 0.89 0.93 0.95 0.96
0.40 0.90 0.93 0.95 0.96
0.45 0.90 0.93 0.95 0.96
0.50 0.90 0.93 0.95 0.96
0.55 0.90 0.93 0.95 0.96
0.60 0.90 0.93 0.95 0.96
0.65 0.89 0.92 0.94 0.96
0.70 0.89 0.92 0.94 0.96
0.75 0.88 0.92 0.94 0.96
0.80 0.88 0.92 0.94 0.96
0.85 0.87 0.91 0.94 0.96
0.90 0.87 0.91 0.93 0.96

Table 2: Break location and asymptotic critical values for theR2 test.

Note: the critical values are obtained from the simulation ofthe asymptotic distribution of the test statistic
under the null hypothesis. Number of replications:20, 000; the simulation of the Brownian motions is made
exactly as in Perron (1989, p. 1375). Matlab code available upon request to the authors.

such asσ2
lr. Nevertheless, there is a known nuisance parameter—the estimated break

location (̂λ)—that alters this distribution. Therefore, we obtained critical values for

different break locations with which to test the null hypothesis: π̂ = 0;7 these critical

values8 appear in Table 3.

An example of the distribution oftπ̂√
T

under the null hypothesis of non-significance is

shown in Figure 2. The specified break location isλ̂ = 0.45.

7Thet-ratio associated with this parameter must be normalized byT
1

2 in order to attain the asymptotic
distribution underH0. Under the alternative hypothesis, thet-ratio diverges at rateT , so the square-root nor-

malization factor does not impede its divergence; in fact, under the alternative hypothesis,tπ̂√
T

= Op

(

T
1

2

)

.
8The test is double-tailed; notice that the—non-standard—distribution appears to be symmetric. Note

also that the break date can be treated as known (under the alternative hypothesis) because of the same
arguments stated for theR2 statistic.
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Level
λ̂ 10% 5% 2.5% 1%

0.10 ±0.66 ±0.78 ±0.88 ±1.01
0.15 ±0.84 ±1.00 ±1.15 ±1.33
0.20 ±0.98 ±1.18 ±1.36 ±1.58
0.25 ±1.13 ±1.36 ±1.58 ±1.85
0.30 ±1.22 ±1.48 ±1.72 ±2.02
0.35 ±1.30 ±1.59 ±1.85 ±2.16
0.40 ±1.37 ±1.66 ±1.93 ±2.31
0.45 ±1.41 ±1.71 ±2.01 ±2.39
0.50 ±1.42 ±1.72 ±2.02 ±2.39
0.55 ±1.41 ±1.70 ±2.01 ±2.38
0.60 ±1.31 ±1.66 ±1.95 ±2.32
0.65 ±1.31 ±1.61 ±1.87 ±2.20
0.70 ±1.24 ±1.50 ±1.74 ±2.00
0.75 ±1.11 ±1.33 ±1.55 ±1.83
0.80 ±0.98 ±1.15 ±1.37 ±1.60
0.85 ±0.83 ±1.00 ±1.15 ±1.33
0.90 ±0.67 ±0.79 ±0.90 ±1.04

Table 3: Asymptotic critical values fortπ̂√
T

.

Note: the critical values are obtained from the simulation ofthe asymptotic distribution of the test statistic
under the null hypothesis [π̂ = 0]. Number of replications:20, 000; the simulation of the Brownian motions
is made exactly as in Perron (1989, p. 1375). Matlab code available upon request to the authors.
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Asymptotic Distribution

Figure 2: Asymptotic distribution oftπ̂√
T

under the null hypothesis
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4 Finite-sample properties of the test

We present a Monte Carlo study to analyze the finite-sample effectiveness of the test. In

each case, the number of replications is1, 000. Firstly, we evaluate the test performance

when no structural breaks are present in the data and the algorithm does not search

for breaks. Figure 3 shows the effect of autocorrelation9 on the behavior of the test

statistic for different values of the drift. This figure shows that autocorrelation has

only a marginal effect (for a10% level); the power of the test decreases slightly as

ρ approaches one. As the sample size increases, fromT = 75 to T = 500, the

area with low power shrinks, although the gain in power seemsto be relatively small.

Furthermore, there is a logical loss of power around the zero-valued drift, where the

null hypothesis is actually true.

−5
0
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−0.5
0
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−1
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−0.6
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µ
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−R
2

10% Critical Value

10% Critical Value

y y

yy

Figure 3:R2 test-statistic in the presence of autocorrelation and for different values of
the drift; (a)T = 75 obs. and (b)T = 500 obs.

More accurate Monte Carlo exercises are shown in Tables 4 and5, in which the rejec-

tion rates of the null hypothesis for some selected parameter values, sample sizes and

statistical significance levels, are shown, these being:ρ = 0.0, 0.25, 0.5, 0.7 and 0.9; T

9The underlying error sequence is assumed to beAR(1), whereρ ranges from−0.95 to 0.95.
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= 100, 150, 250, 500, 1,000; andα= 1%, and 5%, respectively.

Results show that the test is proficient for samples as small as one hundred obser-

vations. Where the DGP is a unit root without drift [Panels (a)of Tables 4 and 5],

rejection rates are as low as the significance levels for low values of the autocorrelation

coefficient (less than 0.5). In these cases, autocorrelation distortions may be assumed

to be unimportant. For values of the autocorrelation coefficient above 0.70, level dis-

tortions are important for sample sizes below 250. Where the DGP is a unit root with

drift [Panels (b)], the power of the test decreases when the drift approaches to zero and

autocorrelation is above 0.50. Although our test is asymptotically immune to autocor-

relation, the Monte Carlo experiments show that such immunity is not perfect in finite

samples, yet does work well for low levels of autocorrelation.

Secondly, we compare our test with that of Dickey and Fuller (1981) (hereinafter DF81).

DF81 specified a procedure to test the joint null hypothesis of unit root and the non-

significance of the deterministic regressors, in particular, the drift.

A comparison between DF81 and our test is not straightforward, since theR2 test pre-

supposes that there is already evidence of unit root and focuses on testing the signifi-

cance of the deterministic components. However, our test may serve as a complement

when DF81 rejects the null hypothesis, as in those cases illustrated by Panels (b) of

Tables 6 and 7. When the underlying process is a unit root with drift, DF81 systemati-

cally rejects the null hypothesis because it is half false [see Panels (b) of Tables 6 and

7].

Furthermore, the Monte Carlo experiment reveals that the level distortions caused by

the presence of autocorrelation are more severe in the DF81 test [see Panel (a) of Table

6] than in theR2 test [see Panels (a) of Tables 4 and 5]. Of course, Dickey-Fuller’s

auxiliary regression can be adapted to control for autocorrelation; however, there is the

issue of selecting the number of lags to consider. We therefore applied Ng and Perron

(1995) lag’s selection strategy (see Table 7). Controllingfor autocorrelation definitively

14



Panel (a)
DGP Parameters Sample Size

µy ρy,1 100 150 250 500 1,000
0.00 0.011 0.009 0.010 0.010 0.010
0.25 0.013 0.011 0.011 0.011 0.010

U.R. No Drift 0 0.50 0.015 0.015 0.013 0.011 0.010
0.70 0.029 0.020 0.014 0.013 0.013
0.90 0.082 0.054 0.035 0.019 0.016

Panel (b)

U.R. With Drift

0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000

3 0.50 1.000 1.000 1.000 1.000 1.000
0.70 0.999 1.000 1.000 1.000 1.000
0.90 0.707 0.776 0.891 0.984 0.999
0.00 0.993 0.999 1.000 1.000 1.000
0.25 0.928 0.984 0.999 1.000 1.000

0.75 0.50 0.660 0.823 0.948 0.998 1.000
0.70 0.315 0.415 0.606 0.869 0.986
0.90 0.139 0.128 0.123 0.170 0.280
0.00 0.993 0.999 1.000 1.000 1.000
0.25 0.932 0.983 0.999 1.000 1.000

-0.75 0.50 0.659 0.815 0.953 0.998 1.000
0.70 0.320 0.425 0.612 0.869 0.988
0.90 0.139 0.122 0.120 0.163 0.290
0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000

-3 0.50 1.000 1.000 1.000 1.000 1.000
0.70 0.999 1.000 1.000 1.000 1.000
0.90 0.697 0.771 0.889 0.983 0.999

Table 4: Rejection rates of theR2 test. The case with no break (level:α = 0.01)

decreases the level distortions, however, it reduces the power of the test for high values

of ρ (above 0.50) and for low absolute values of the drift.10

Thirdly, we assess the performance of the test when it searches for a single break in

the series. Tables 8 and 9 show the rejection rates of the nullhypothesis when two

different DGPs are analyzed at the1% and5% levels. Panel (a) of each table—when

the DGP is unit root without drift—demonstrates that the testperforms satisfactorily,

10The Matlab code of the Monte Carlo experiment is available upon request to the authors.
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Panel (a)
DGP Parameters Sample Size

µy ρy,1 100 150 250 500 1,000
0.00 0.049 0.049 0.052 0.047 0.048
0.25 0.053 0.054 0.052 0.049 0.051

U.R. No Drift 0 0.50 0.065 0.060 0.055 0.054 0.052
0.70 0.087 0.074 0.064 0.057 0.054
0.90 0.178 0.131 0.100 0.076 0.067

Panel (b)

U.R. With Drift

0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000

3 0.50 1.000 1.000 1.000 1.000 1.000
0.70 1.000 1.000 1.000 1.000 1.000
0.90 0.850 0.916 0.970 0.999 1.000
0.00 0.999 1.000 1.000 1.000 1.000
0.25 0.991 0.999 1.000 1.000 1.000

0.75 0.50 0.868 0.949 0.994 0.999 1.000
0.70 0.540 0.670 0.832 0.972 0.999
0.90 0.270 0.247 0.261 0.337 0.527
0.00 0.999 1.000 1.000 1.000 1.000
0.25 0.988 0.999 1.000 1.000 1.000

-0.75 0.50 0.857 0.948 0.993 0.999 1.000
0.70 0.537 0.664 0.831 0.973 0.999
0.90 0.258 0.246 0.258 0.346 0.523
0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000

-3 0.50 1.000 1.000 1.000 1.000 1.000
0.70 1.000 1.000 1.000 1.000 1.000
0.90 0.863 0.914 0.972 0.999 1.000

Table 5: Rejection rates of theR2 test. The case with no break (level:α = 0.05)

particularly when the inference is drawn based on a 1% level;rejection rates under the

null hypothesis are fairly low even for small samples when autocorrelation is low. Panel

(b) of each table—when the DGP is unit root with drift—shows high rejection rates of

the null hypothesis in both cases, i.e. when the DGP has no break, and when it does.

Nevertheless, it is noticeable that positive autocorrelation may have a considerable

negative effect on the power of the test in relatively small samples, i.e., those with

fewer than150 observations.
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Panel (a) No lags included
DGP Parameters Sample Size

µy ρy,1 100 150 250 500 1,000
0.00 0.034 0.038 0.045 0.041 0.048
0.25 0.058 0.055 0.060 0.066 0.062

U.R. No Drift 0 0.50 0.138 0.141 0.149 0.152 0.158
0.70 0.289 0.292 0.311 0.302 0.301
0.90 0.606 0.591 0.587 0.586 0.583

Panel (b) No lags included
0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.000 1.000 1.000 1.000 1.000

3 0.50 1.000 1.000 1.000 1.000 1.000
0.70 1.000 1.000 1.000 1.000 1.000
0.90 0.995 0.999 1.000 1.000 1.000
0.00 1.000 1.000 1.000 1.000 1.000
0.25 0.999 1.000 1.000 1.000 1.000

U.R. With Drift 0.75 0.50 0.980 0.998 1.000 1.000 1.000
0.70 0.880 0.949 0.992 1.000 1.000
0.90 0.703 0.725 0.796 0.884 0.965
0.00 1.000 1.000 1.000 1.000 1.000
0.25 0.999 1.000 1.000 1.000 1.000

-0.75 0.50 0.981 0.998 1.000 1.000 1.000
0.70 0.873 0.949 0.993 1.000 1.000
0.90 0.698 0.738 0.782 0.885 0.969
0.00 1.000 1.000 1.000 1.000 1.000

-3 0.25 1.000 1.000 1.000 1.000 1.000
0.50 1.000 1.000 1.000 1.000 1.000
0.70 1.000 1.000 1.000 1.000 1.000
0.90 0.995 0.999 1.000 1.000 1.000

Table 6: Rejection rates of Dickey-Fuller’s (1981) joint test: the case with no break.
Lags not included, level:α = 0.05

5 Empirical results for Nelson and Plosser series

The purpose of this section is twofold. Firstly, we use our new test to review the

statistical properties of the NP series. We apply the popular Zivot and Andrews (1992)

test, since our test is properly used only after a unit-root test has been employed. If the

former fails to reject the null hypothesis of nonstationarity, then our test can be used.11

11Although Zivot and Andrews’s (1992) test does not allow for astructural break under the null hypothesis
of unit root, Vogelsang and Perron (1998) argue on pp. 1092-1093 that: “asymptotic results—[assuming a
break under the null hypothesis]—were shown to provide poor approximations to finite sample distribu-
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Panel (a) Lag selection strategy: Ng and Perron (1995)
DGP Parameters Sample Size

µy ρy,1 100 150 250 500 1,000
0.00 0.047 0.050 0.056 0.048 0.050
0.25 0.051 0.042 0.048 0.050 0.052

U.R. No Drift 0 0.50 0.054 0.047 0.048 0.049 0.052
0.70 0.055 0.051 0.052 0.049 0.054
0.90 0.062 0.056 0.061 0.059 0.052

Panel (b) Lag selection strategy: Ng and Perron (1995)
0.00 0.999 1.000 1.000 1.000 1.000
0.25 0.997 1.000 1.000 1.000 1.000

3 0.50 0.985 0.999 1.000 1.000 1.000
0.70 0.893 0.986 1.000 1.000 1.000
0.90 0.206 0.312 0.613 0.983 1.000
0.00 0.988 1.000 1.000 1.000 1.000
0.25 0.936 0.996 1.000 1.000 1.000

U.R. With Drift 0.75 0.50 0.589 0.849 0.991 1.000 1.000
0.70 0.192 0.329 0.631 0.964 1.000
0.90 0.073 0.079 0.091 0.149 0.310
0.00 0.988 0.999 1.000 1.000 1.000
0.25 0.938 0.995 1.000 1.000 1.000

-0.75 0.50 0.585 0.848 0.993 1.000 1.000
0.70 0.195 0.336 0.628 0.965 0.999
0.90 0.074 0.077 0.094 0.138 0.320
0.00 0.999 1.000 1.000 1.000 1.000
0.25 0.997 1.000 1.000 1.000 1.000

-3 0.50 0.986 0.999 1.000 1.000 1.000
0.70 0.897 0.984 1.000 1.000 1.000
0.90 0.207 0.313 0.608 0.979 1.000

Table 7: Rejection rates of Dickey-Fuller’s (1981) joint test: the case with no break.
Lag selection strategy: Ng and Perron (2005), level:α = 0.05

Secondly, we contrast our results with those obtained by unit-root tests which include

a break under the null hypothesis: Perron (1997) and Carrion–i–Silvestre and Sansó

(2006) [hereinafterP97 andCS06, respectively].P97 andCS06 proposed models

that differ on whether or not there is a break under the null hypothesis and the type of

break. The specific models that they selected in their empirical applications inhibits the

tions for trend breaks of the magnitudes typically encountered in practice. Indeed, for typical shifts in slope
the asymptotic distributions obtained assuming no break under the unit-root null hypothesis provide adequate
approximations of finite sample distributions.”
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Panel (a)
DGP Break ρy,1 Sample Size

100 150 200 250 500

U.R. No Drift NO

0.00 0.028 0.016 0.018 0.022 0.016
0.25 0.036 0.036 0.030 0.032 0.024
0.50 0.058 0.038 0.032 0.024 0.026
0.70 0.068 0.040 0.042 0.030 0.028
0.90 0.280 0.168 0.090 0.064 0.034

Panel (b)

U.R. With Drift

NO

0.00 0.978 0.996 1.000 1.000 1.000
0.25 0.828 0.958 0.994 1.000 1.000
0.50 0.552 0.728 0.866 0.988 1.000
0.70 0.334 0.400 0.508 0.762 0.970
0.90 0.314 0.236 0.166 0.176 0.236

YES

0.00 0.994 0.998 1.000 1.000 1.000
0.25 0.928 0.996 1.000 1.000 1.000
0.50 0.694 0.842 0.962 0.998 1.000
0.70 0.424 0.492 0.662 0.908 0.994
0.90 0.342 0.288 0.248 0.262 0.400

Table 8: Rejection rates of theR2 test. The case with breaka (Level: α = 0.01;
trimming: ε = 0.05)
a In all cases, there is a grid search for a break;µy = 2.7, σy = 5, and, if the DGP contains a break:
θy = 1.05, λ = 0.5.

comparison with the results of our test.12 Therefore, we compute their results choosing

those models that allow us to make the fairest comparison with our test.13 In particular,

we apply Perron´s model B14 to all the series under analysis; this model is referred as

the “changing growth model”. Under the null hypothesis, it permits a change in the

trend function without any change in the level at the time of the break. We also apply

the model thatCS06 denominatedΘ5,1(λ). This particular specification allows a slope

shift under the null hypothesis.

We employ the NP series updated to1988 by Herman van Dijk that can be found in

the JBES 1994 dataset archives; we expect the longer span to make the results more

12We previoulsly warned that a comparison between our test and any root test is not straightforward, given
that our test assumes that there is evidence of unit root and tests the significance of the drift, whilstP97 and
CS06 test the unit root hypothesis.

13We used the test statistics,t∗α(3) of P97 andΘ5,1(λ) of CS06; both allow for a change in the time
trend [Model B in Perron’s (1989) notation]. The Matlab codeis available upon request.

14See equations (3a) and (3b) in Perron (1997).
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Panel (a)
DGP Break ρy,1 Sample Size

100 150 200 250 500

U.R. No Drift NO

0.00 0.102 0.064 0.106 0.076 0.098
0.25 0.132 0.128 0.126 0.096 0.120
0.50 0.156 0.136 0.100 0.120 0.110
0.70 0.222 0.172 0.130 0.114 0.112
0.90 0.450 0.344 0.270 0.194 0.136

Panel (b)

U.R. With Drift

NO

0.00 0.998 1.000 1.000 1.000 1.000
0.25 0.952 0.994 1.000 1.000 1.000
0.50 0.762 0.904 0.976 1.000 1.000
0.70 0.548 0.626 0.718 0.934 1.000
0.90 0.544 0.438 0.366 0.374 0.462

YES

0.00 1.000 1.000 1.000 1.000 1.000
0.25 0.988 0.996 1.000 1.000 1.000
0.50 0.860 0.964 0.996 1.000 1.000
0.70 0.618 0.734 0.870 0.992 1.000
0.90 0.516 0.470 0.458 0.452 0.590

Table 9: Rejection rates of theR2 test. The case with breaka (Level: α = 0.05;
trimming: ε = 0.05)
a In all cases, there is a grid search for a break;µy = 2.7, σy = 5, and, if the DGP contains a break:
θy = 1.05, λ = 0.5.

reliable. The data are annual and all the series are in natural logs except for that of

bond yield.

The results in Table 10 show that for all variables except real GNP, nominal GNP

and real per capita GNP, there is insufficient evidence to reject the null hypothesis

of unit root. Therefore, these three variables can be considered broken-trend stationary

series. The remaining variables in Table 10 are appropriatecandidates for the procedure

developed in this paper, since there is evidence in favor of unit root. We are able to

reject the null hypothesis of driftless unit root for all theseries except CPI, velocity,

bond yield and stock prices.

For the remainder—industrial production, employment, deflator, nominal wages, real

wages and money stock—there is evidence to affirm that these are governed by a de-

terministic trend (the drift) in the long run. Moreover, ourtest detected two significant
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Series ZAa Break R2 Break P97 CS06
location location t∗α(3) Θ5,1(λ)

Real GNP -5.542** 1934 — — 1930 1978***
Nominal GNP -5.734*** 1930 — — 1939 1928***
Real per capita GNP -5.860*** 1939 — — 1930 1937
Industrial Production -4.939 1919 0.988*** 1901 1897 1917***
Employment -4.748 1930 0.972*** 1906 1904 1943***
GNP deflator -3.813 1930 0.921** 1965*** 1953 1918***
CPI -2.284 1931 0.726 — 1953 1871***
Wages -4.889 1930 0.967*** 1940 1943 1920***
Real Wages -3.653 1972 0.978*** 1973** 1971 1973***
Money Stock -4.451 1929 0.986*** 1970 1970 1978***
Velocity -4.030 1930 0.927 — 1936 1928***
Bond Yield -4.191 1954 0.857 — 1954 1931**
Stock Prices -4.476 1954 0.873 — 1942* 1928***

Table 10: Extended NP data set
a Zivot and Andrews’s (1992)t-statistic associated with autoregressive term, Model (C).
Trimming: ε = 0.05; Breaks allowed: level and trend; lags selected by the Akaike Information Criterion.
The symbols *, **, and *** denote rejection of the null hypothesis at 10%, 5%, and 1% level, respectively.

structural breaks in the deterministic trend of real wages(1973) and deflator(1965).

Results in the Monte Carlo section show that the test loses some power in the pres-

ence of positive autocorrelation for sample sizes below200. Notwithstanding, the test

still has enough power to reject the null hypothesis in all but four cases. Furthermore,

the combined results ofP97 andCS06 tests for the series, industrial production, em-

ployment, GNP deflator, wages, real wages and money stock, can be interpreted and

reconciled as follows. For all these series, theP97 test does not reject the null hypoth-

esis of unit root, whereas theCS06 test does reject the null; theCS06 test rejects the

null because one or more of the constraints related to the slope or the slope shift are not

met, and not necessarily because of the absence of a unit root. These results imply the

presence of a unit root and the absence of a drift/drift and shift, among others. Since

our test also rejects the null hypothesis, we can conclude that all these series contain

both, a deterministic and a stochastic trend. Moreover, besides the deterministic trend,

our test shows that the GNP deflator and real wages also have a structural break in the

deterministic rate of growth. The application of our test further refines the results of

those ofP97 andCS06 tests. For example, the modelΘ5,1(λ) of CS06 tests under

the null the joint validity of several parameter restrictions—besides unit root; there-
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fore, if the null hypothesis is rejected, it is not possible to tell which of the constraints

are not true. By using our test, it is possible to draw inference about the deterministic

components, specifically, the deterministic trend or the structural break associated with

it.

6 Concluding remarks

This work aims to complement unit-root literature by proposing a new and simple

methodology that provides a correct assessment of the deterministic trend when there

is evidence of unit root. Our procedure contributes by increasing the degree of preci-

sion in the inference drawn from unit-root tests that consider drift and break under the

null hypothesis. For these tests, it is impossible to evaluate whether both the drift and

the break are simultaneously present whenever the null of nonstationarity cannot be re-

jected, whereas our methodology provides a simple and reliable approach to executing

this task.

The importance of such an assessment relies on the fact that existing unit-root tests

fail to correctly estimate the existence of the deterministic trend under the null hypoth-

esis of unit root; therefore, the literature lacks a reliable tool with which to estimate

the deterministic rate of growth of a series when a stochastic trend exists. The pro-

cedure is simple and its implementation straightforward; furthermore, it facilitates the

interpretation of the dynamics of the macroeconomic and financial time series.

The new procedure is shown to be asymptotically robust with regard to autocorrelation,

and to have reasonable power for sample sizes of practical interest. We considered

the possibility of a single structural break in the deterministic trend and derived the

asymptotic distribution of both theR2 statistic as well as thet-statistic associated with

the structural break parameter estimated under the null hypothesis of no break.

The empirical results show that most of the NP series extended up to 1988—with the

exception of CPI, velocity, bond yield and stock prices—are characterized by their
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containing a deterministic trend. The results of Perron (1997) test using his “changing

growth” model are in line with ours since there is not enough evidence against the unit-

root hypothesis in all cases but one. For these variables, our test clarifies that there is a

deterministic trend besides the unit root.
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A Appendix

Proof of Propositions 1-5.We present a guide on how to obtain the order in probability

of one combination of DGP and specification, namely DGP (1) and specification (4).

The expressions needed to compute the asymptotic value ofR2 are:

∑
yt = Y0T + µy

∑
t+

∑
ξy,t−1

︸ ︷︷ ︸
Op

(

T
3

2

)

∑
ytt = Y0

∑
t+ µy

∑
t2 +

∑
ξy,t−1t

︸ ︷︷ ︸
Op

(

T
5

2

)

∑
y2t = Y 2

0 T + µ2
y

∑
t2 +

∑
ξ2y,t−1︸ ︷︷ ︸

Op(T 2)

+2Y0µy

∑
t+ ...

2Y0

∑
ξy,t−1 + 2µy

∑
ξy,t−1t

∑
t =

1

2

(
T 2 + T

)

∑
t2 =

1

6

(
2T 3 + 3T 2 + T

)

whereξy,t =
∑t

i=1 uy,i and all other summations range from1 to T . The orders in

probability can be found in Phillips (1986), Phillips and Durlauf (1986) and Hamilton

(1994). These expressions were written inMathematica 4.1 code; the software com-

putes the asymptotics of the classical OLS formula(X ′X)−1X ′Y as well as the asymp-

totic value of the variance estimator:σ̂2
u = T−1

∑T
t=1 û

2
t where.

X ′X =




T
∑

t

∑
t

∑
t2



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and,

Y =




∑
yt

∑
ytt




The code in this case15 is represented below. To understand it, a brief glossary is

required:

Character Represents
A Y0

K µy

B
∑

ξy,t−1

C
∑

ξ2y,t−1

D
∑

ξy,t−1t

St
∑

t

St2
∑

t2

Table 11: glossary of the Mathematica Code

ClearAll;St= 1
2 ∗ (T 2 + T );St2= 1

6 ∗ (2 ∗ T 3 + 3 ∗ T 2 + T );ClearAll;St= 1
2 ∗ (T 2 + T );St2= 1

6 ∗ (2 ∗ T 3 + 3 ∗ T 2 + T );ClearAll;St= 1
2 ∗ (T 2 + T );St2= 1

6 ∗ (2 ∗ T 3 + 3 ∗ T 2 + T );

Sy= A ∗ T +K ∗ St+B ∗ T 1.5;Sy= A ∗ T +K ∗ St+B ∗ T 1.5;Sy= A ∗ T +K ∗ St+B ∗ T 1.5;

Sy2= A2 ∗ T +K2 ∗ St2+ C ∗ T 2 + 2 ∗A ∗K ∗ St+ 2 ∗A ∗B ∗ T 1.5Sy2= A2 ∗ T +K2 ∗ St2+ C ∗ T 2 + 2 ∗A ∗K ∗ St+ 2 ∗A ∗B ∗ T 1.5Sy2= A2 ∗ T +K2 ∗ St2+ C ∗ T 2 + 2 ∗A ∗K ∗ St+ 2 ∗A ∗B ∗ T 1.5

+2 ∗K ∗D ∗ T 2.5;+2 ∗K ∗D ∗ T 2.5;+2 ∗K ∗D ∗ T 2.5;

Syt= A ∗ St+K ∗ St2+D ∗ T 2.5;Syt= A ∗ St+K ∗ St2+D ∗ T 2.5;Syt= A ∗ St+K ∗ St2+D ∗ T 2.5;

Mx = (
T St

St St2
);Mx = (

T St

St St2
);Mx = (

T St

St St2
);

iMx = Inverse[Mx];iMx = Inverse[Mx];iMx = Inverse[Mx];

R1= Extract[iMx , {1, 1}];R2= Extract[iMx , {1, 2}];R1= Extract[iMx , {1, 1}];R2= Extract[iMx , {1, 2}];R1= Extract[iMx , {1, 1}];R2= Extract[iMx , {1, 2}];

R3= Extract[iMx , {2, 1}];R4= Extract[iMx , {2, 2}];R3= Extract[iMx , {2, 1}];R4= Extract[iMx , {2, 2}];R3= Extract[iMx , {2, 1}];R4= Extract[iMx , {2, 2}];

R40= Factor[R4];R40= Factor[R4];R40= Factor[R4];

R4num= Numerator[R40];R4num= Numerator[R40];R4num= Numerator[R40];

R4den= Denominator[R40];R4den= Denominator[R40];R4den= Denominator[R40];

15As indicated previously, the proof was achieved with the aidof Mathematica 4.1 software. The corre-
sponding code for the other results is available upon request.
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K15 = Exponent[R4num, T ];K15 = Exponent[R4num, T ];K15 = Exponent[R4num, T ];

K16 = Exponent[R4den, T ];K16 = Exponent[R4den, T ];K16 = Exponent[R4den, T ];

R4num2= Limit [Expand[R4num/TK15], T → ∞];R4num2= Limit [Expand[R4num/TK15], T → ∞];R4num2= Limit [Expand[R4num/TK15], T → ∞];

R4den2= Limit [Expand[R4den/TK16], T → ∞];R4den2= Limit [Expand[R4den/TK16], T → ∞];R4den2= Limit [Expand[R4den/TK16], T → ∞];

R42= Factor[Expand[(R4num2/R4den2) ∗ T K15

T K16 ]];R42= Factor[Expand[(R4num2/R4den2) ∗ T K15

T K16 ]];R42= Factor[Expand[(R4num2/R4den2) ∗ T K15

T K16 ]];

P10= Factor[Expand[R1∗ Sy+ R2∗ Syt]];P10= Factor[Expand[R1∗ Sy+ R2∗ Syt]];P10= Factor[Expand[R1∗ Sy+ R2∗ Syt]];

P20= Factor[Expand[R3∗ Sy+ R4∗ Syt]];P20= Factor[Expand[R3∗ Sy+ R4∗ Syt]];P20= Factor[Expand[R3∗ Sy+ R4∗ Syt]];

P21num= Numerator[P20];P21num= Numerator[P20];P21num= Numerator[P20];

K3 = Exponent[P21num, T ];K3 = Exponent[P21num, T ];K3 = Exponent[P21num, T ];

Bnum= Limit [Expand[P21num/TK3], T → ∞];Bnum= Limit [Expand[P21num/TK3], T → ∞];Bnum= Limit [Expand[P21num/TK3], T → ∞];

P22den= Denominator[P20];P22den= Denominator[P20];P22den= Denominator[P20];

K4 = Exponent[P22den, T ];K4 = Exponent[P22den, T ];K4 = Exponent[P22den, T ];

Bden= Limit [Expand[P22den/TK4], T → ∞];Bden= Limit [Expand[P22den/TK4], T → ∞];Bden= Limit [Expand[P22den/TK4], T → ∞];

Bpar= Factor[Expand[(Bnum/Bden) ∗ T K3

T K4 ]];Bpar= Factor[Expand[(Bnum/Bden) ∗ T K3

T K4 ]];Bpar= Factor[Expand[(Bnum/Bden) ∗ T K3

T K4 ]];

P40= Factor
[
Expand

[
Sy2+ P102 ∗ T + P202 ∗ St2P40= Factor

[
Expand

[
Sy2+ P102 ∗ T + P202 ∗ St2P40= Factor

[
Expand

[
Sy2+ P102 ∗ T + P202 ∗ St2

−2 ∗ P10∗ Sy− 2 ∗ P20∗ Syt+ 2 ∗ P10∗ P20∗ St]] ;−2 ∗ P10∗ Sy− 2 ∗ P20∗ Syt+ 2 ∗ P10∗ P20∗ St]] ;−2 ∗ P10∗ Sy− 2 ∗ P20∗ Syt+ 2 ∗ P10∗ P20∗ St]] ;

P41num= Numerator[P40];P41num= Numerator[P40];P41num= Numerator[P40];

K7 = Exponent[P41num, T ];K7 = Exponent[P41num, T ];K7 = Exponent[P41num, T ];

U2num= Factor[Limit [Expand[P41num/TK7], T → ∞]];U2num= Factor[Limit [Expand[P41num/TK7], T → ∞]];U2num= Factor[Limit [Expand[P41num/TK7], T → ∞]];

P42den= Denominator[P40];P42den= Denominator[P40];P42den= Denominator[P40];

K8 = Exponent[P42den, T ];K8 = Exponent[P42den, T ];K8 = Exponent[P42den, T ];

U2den= Factor[Limit [Expand[P42den/TK8], T → ∞]];U2den= Factor[Limit [Expand[P42den/TK8], T → ∞]];U2den= Factor[Limit [Expand[P42den/TK8], T → ∞]];

Su2= FullSimplify[Factor[Expand[(U2num/U2den) ∗ T K7

T K8 ]]];Su2= FullSimplify[Factor[Expand[(U2num/U2den) ∗ T K7

T K8 ]]];Su2= FullSimplify[Factor[Expand[(U2num/U2den) ∗ T K7

T K8 ]]];
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P50= Factor[Expand[P40/(Sy2+ T ∗ (Sy
T
)2 − 2 ∗ (Sy

T
) ∗ Sy)]];P50= Factor[Expand[P40/(Sy2+ T ∗ (Sy

T
)2 − 2 ∗ (Sy

T
) ∗ Sy)]];P50= Factor[Expand[P40/(Sy2+ T ∗ (Sy

T
)2 − 2 ∗ (Sy

T
) ∗ Sy)]];

P51num= Numerator[P50];P51num= Numerator[P50];P51num= Numerator[P50];

K1 = Exponent[P51num, T ];K1 = Exponent[P51num, T ];K1 = Exponent[P51num, T ];

Rcnum= Factor[Limit [Expand[P51num/TK1], T → ∞]];Rcnum= Factor[Limit [Expand[P51num/TK1], T → ∞]];Rcnum= Factor[Limit [Expand[P51num/TK1], T → ∞]];

P52den= Denominator[P50];P52den= Denominator[P50];P52den= Denominator[P50];

K2 = Exponent[P52den, T ];K2 = Exponent[P52den, T ];K2 = Exponent[P52den, T ];

Rcden= Factor[Limit [Expand[P52den/TK2], T → ∞]];Rcden= Factor[Limit [Expand[P52den/TK2], T → ∞]];Rcden= Factor[Limit [Expand[P52den/TK2], T → ∞]];

Rc= FullSimplify[Factor[Expand[(Rcnum/Rcden) ∗ T K1

T K2 ]]]Rc= FullSimplify[Factor[Expand[(Rcnum/Rcden) ∗ T K1

T K2 ]]]Rc= FullSimplify[Factor[Expand[(Rcnum/Rcden) ∗ T K1

T K2 ]]]
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