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RAWLSIAN ALLOCATION IN QUEUEING AND
SEQUENCING PROBLEM

PARIKSHIT DE

Abstract. In this paper we analyze the implication of a par-
ticular kind of allocation rule called Rawlsian allocation rule on
queueing and sequencing problems. We find that in case of queue-
ing problems, Efficient allocation rules are Rawlsian but the con-
verse is not true. For a particular class of Rawlsian allocation rule
we characterize the unique class of transfer rule that ensures non-
manipulability. Also in case of a situation where there is private
information in multiple dimension, we find that a the particular
kind of Rawlsian allocation rule equipped with a suitable transfer
rule works as a panacea.

Keywords: Queueing problems, Sequencing problems, Strate-
gyproofness, Rawlsian allocation.

JEL Classification: C72,D82

1. Introduction

A queueing or sequencing environment captures a situation where a
finite set of agents wish to avail a service provided by a single server.
The nature of service can be homogeneous or heterogeneous and so be
the processing times for the service. The server can serve exactly one
agent at a time, as a result agents are served sequentially. Agents who
are waiting incurs a waiting cost. According to Maniquet [11] queueing
model captures many economic situations.

Queueing or sequencing models are extensively analyzed from incen-
tive and axiomatic point of view. When there is private information
from the agents’ point of view then we have an incentive problem. For
example, if the planner’s objective is to ensure efficiency of allocation
then there is a mismatch between individual objective and that of plan-
ner’s. Our approach of analysis is also from incentive point of view,
where we assume agents have quasi-linear preferences, waiting costs are
linear with time. To justify our assumptions, we mention some of the
important works in this literature.
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2 PARIKSHIT DE

With quasi-linear preferences, it is possible to design mechanisms
that satisfy strategyproofness and efficiency of decision. This is due to
Hölmstrom’s[8] on the uniqueness of the class of Vickrey-Clarke-Gorves
(VCG) mechanisms.1 Suijs[7] and Mitra[3] showed that linearity of cost
structure is a crucial assumption to ensure ‘first best’,that is, efficiency
of decision, dominant strategy incentive compatibility and budget bal-
ancedness.

Analyzing queueing and sequencing problem under the criterion of
efficiency of decision is well-studied in the existing literature. Some re-
cent works like Mishra and Mitra [1] has shown some deviation in this
respect. These papers are addresses a few questions form incentive
view point by finding necessary restrictions on the possible allocation
rules. One question can be asked in this aspect: What is the impli-
cation of Rawlsian allocation rule in this context? Or can we have a
strategyproof, Rawlsian mechanism? We have partially answered this
question in this paper.

As we move on by increasing the level of private information, we
find that a particular class of Rawlsian allocation actually makes our
way to resolve the problem of individual manipulability. Thus we show
although it is impossible to have a mechanism that induces efficiency of
decision along with strategyproofness in multidimensional private in-
formation setup, it is still possible to guarantee strategyproofness with
a subclass of Rawlsian allocation rule.

This paper has been arranged in the following way. In Section 2 we
formally introduce the model and add necessary definitions. In Section
3 we use several examples to motivate and illustrate the situations.
Then we state and prove our characterization results. Lastly, with
Section 4, we draw our conclusions.

2. Model

Consider the set of agents N = {1, . . . , n} with a single machine.
Each individual has a some work to be executed by the machine. The
nature of this work may be homogeneous or heterogeneous . The ma-
chine can process exactly one job at a time. Let ∀i ∈ N, si ∈ <++

where si denotes the processing time of ith agent. Each agent is identi-
fied with a waiting cost θi ∈ <++, the cost of waiting per unit of time.
The profile of waiting costs of the set of all agents is typically denoted
by θ = (θ1, . . . , θn) ∈ <n++. For any i ∈ N, θ−i denotes the profile
(θ1 . . . θi−1, θi+1, . . . θn) ∈ <n−1

++ . An allocation of n jobs can be done in
many ways. Let Σ(N) denote the set of all possible queue of structure

1See Vickery[12], Clarke[9], Groves[10].
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agents in N . An allocation rule is a mapping σ : <n+ → Σ(N) that spec-
ifies for each profile θ ∈ <n++ an allocation(rank) vector σ(θ) ∈ Σ(N).
Agent i’s position is denoted by σi(θ) which is an input of the vector
σ(θ). Given σ(θ) ∈ Σ(N),∀i ∈ N,Pi(σ(θ)) = {j ∈ N |σj(θ) < σi(θ)}
denotes the set of predecessors of i and similarly P ′i (σ(θ)) = {j ∈
N |σj(θ) > σi(θ)} denotes the set of successors of i. Agent i’s wait-
ing time is denoted by Si(σ(θ)) and corresponding waiting cost is
Si(σ(θ))θi. A transfer rule is a mapping t : <n+ → <n that specifies for
each profile θ ∈ <n++ a transfer vector t(θ) = (ti(θ), . . . , tn(θ)) ∈ <n.
We assume that the utility function of each agent i ∈ N is quasi-liner
and is of the form Ui(σ(θ), ti(θ), θi) = −Si(σ(θ)θi + ti(θ), where ti(θ) is
the monetary transfer of agent to i.

2.1. Queueing situation. In the existing literatures the structure of
queueing problem is specified by the following situations:{i} ∀i, j ∈
N, si = 12: {ii} ∀i ∈ N,Si(σ(θ)) = (σi(θ) − 1). So utility of a general
agent i is Ui(σ(θ), ti(θ), θi) = −(σi(θ)− 1)θi + ti(θ). A queueing game
is denoted by Ω = 〈N,<n++〉.

2.2. Sequencing. The literature puts no such restrictions over pro-
cessing time in case of sequencing problems. So there is heterogene-
ity in processing time . In Sequencing problem ∀i ∈ N,Si(σ(θ)) =

(si +
∑

j∈Piσ(θ)

sj). A sequencing game is denoted by Ω = 〈N,<n++,<n++〉.

Definition 1. ∀θ ∈ <n++, a queue σ(θ) ∈ Σ(N) is efficient if σ(θ) ∈
arg min

σ(θ)∈Σ(N)

∑n
i=1 Si(σ(θ))θi.

The implication of efficiency is that agents are ranked according to
the non-increasing order of their waiting costs (that is, if θi ≥ θj under
a profile θ, then Si(σ(θ)) ≤ Si(σ(θ))). Moreover, there are profiles
for which more than one rank vector is efficient. For example, if all
agents have the same waiting cost, then all rank vectors are efficient.
Therefore, we have an efficiency correspondence. In this paper we
consider a particular efficient rule (that is, a single valued selection
from the efficiency correspondence). For our efficient rule, we use the

following tie breaking rule: if i < j and θi
si

=
θj
sj

then Si(σ(θ)) <

Si(σ(θ)). This tie breaking rule guarantees that, given a profile θ ∈
<n++, the efficient rule selects a single rank vector from Σ(N).

2as long as the processing time of agents are homogeneous,we are in the regime of
queueing games since we can always normalize the processing time
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Definition 2. A mechanism(σ, t) is efficient (EFF) if for all announced
profile

θ ∈ <n++, σ(θ) ∈ arg min
σ∈Σ(N)

n∑
i=1

Si(σ(θ))θi.

Efficiency here basically implies minimization of aggregate waiting
cost.

A mechanism is (σ, t) constitutes of an allocation rule σ and a trans-
fer rule t. We are interested in strategy proof mechanism for the queue-
ing/sequencing problem.

A Rawlsian allocation is in general perceived as an allocation which
is best when seen from point of minimum valued agent. In queueing
or sequencing since the valuation is negative (because it is cost), so it
turns out to be an allocation which minimizes the burden of the agent
who is incurring maximum cost. The definition of Rawlsian allocation
is as follows:

Definition 3. A mechanism (σ, t) is Rawlsian (RA) if for all announced
profile

θ ∈ <n++, min
σ(θ)∈Σ(N)

max
j∈N

Sj(σ(θ))θj.

Definition 4. In a mechanism (σ, t), the allocation rule σ is Non-
increasing in Own Type (NOT) if:
∀θ−i ∈ <n−1

++ ,∀i ∈ N,Si(σ(θi, θ−i)) is non-increasing in θi .

Definition 5. A mechanism(σ, t) is strategy-proof (SP) if ∀i ∈ N, ∀θi, θ′i ∈
<++ and∀θ−i ∈ <n−1

++ we have,
−Si(σ(θi, θ−i))θi + ti(θi, θ−i) ≥ −Si(σ(θ′i, θ−i))θi + ti(θ

′
i, θ−i).

It means for any agent truthful reporting is weakly dominates false
reporting irrespective of other players report.

Definition 6. A mechanism (σ, t) satisfies budget balancedness (BB) if
∀θ ∈ <n++,

∑n
i∈1 ti(θ) = 0.

The profile θ and θ′ are S-variants if ∀i ∈ N \ S, θi = θ′i.

Definition 7. A mechanism (σ, t) is weak group strategyproof(WSP) if
for all S-variants θ, θ′ Ui(σ(θ), ti(θ), θi) ≥ Ui(σ(θ′), ti(θ

′), θi) for at least
one i ∈ S.

This implies as long as all the group member are not strictly better
off by deviating from their true profile, such group will not be formed.

Definition 8. A mechanism (σ, t) is pair-wise group strategyproof (PWSP)
if for all S-variants θ, θ′ where |S| = 2,
Ui(σ(θ), ti(θ), θi) ≥ Ui(σ(θ′), ti(θ

′), θi) for at least one i ∈ S .
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This implies pair of agents deviates from their true profile by jointly
misreporting if an only if they are both strictly better off from the
situation when they truthfully reports.

3. Result

Before going further into the detail of the implications of Rawlsian
allocation let us fix the idea regarding what Rawlsian allocation in gen-
eral is and what is it in case of queueing and sequencing problems:

Example 1. What do we mean by Rawlsian allocation rule?

Consider the set of three agents N = {1, 2, 3} and allocation set
A = {a, b, c}. The table below describes the valuation of every agents
under the three different allocations:

XXXXXXXXXXXXAgent
Alternative

a b c

1 17 8 13
2 12 15 7
3 9 10 9

Min(value) 9 8 7

Maximum of minimum (value) = 9. Hence the corresponding alloca-
tion ‘a’ is the Rawlsian allocation.

The example above depicts a very general situation and shows how
to Rawlsian allocation in that general situation. But what happens
when we specifically deal with queueing or sequencing setup?

Consider a profile θ = (θ1, θ2, θ3) such that θ1 ≥ θ2 ≥ θ3 and s =
(s1, s2, s3). The following table describes all possible allocations and
each agents processing cost under each of this allocations:

HH
HHHHAgnt

Alt
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

1 s1θ1 s1θ1 (s1 +
s2)θ1

(s1 +
s2 +
s3)θ1

(s1 +
s3)θ1

(s1 +
s2 +
s3)θ1

2 (s1 +
s2)θ2

(s1 +
s2 +
s3)θ2

s2θ2 s2θ2 (s1 +
s2 +
s3)θ2

(s1 +
s2 +
s3)θ1

3 (s1 +
s2 +
s3)θ3

(s1 +
s3)θ3

(s1 +
s2 +
s3)θ3

(s2 +
s3)θ3

s3θ3 s3θ3

Max(cost)
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For more illustrations we use several examples below.

Example 2. A queueing problem: Consider N = {1, 2, 3} ; θ =
(θ1, θ2, θ3) where θ1 = 5, θ2 = 4, θ3 = 3 and s = (s1, s2, s3) where
s1 = 1, s2 = 1 and s3 = 1.

The following table describes all possible allocations and each agents
processing cost under each of this allocations:

H
HHH

HHAgnt
Alt

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

1 5 5 10 15 10 15
2 8 12 4 4 12 8
3 9 6 9 6 3 3
Max(cost) 9 12 10 15 12 15

Minimum of maximum(cost) = 9. Hence the corresponding allocation
‘(1,2,3)’ is the Rawlsian allocation. Note that cost = -value.

Example 3. A sequencing problem: Consider N = {1, 2, 3} ; θ =
(θ1, θ2, θ3) where θ1 = 10, θ2 = 5, θ3 = 1 and s = (s1, s2, s3) where
s1 = 1, s2 = 2 and s3 = 3.

The following table describes all possible allocations and each agents
processing cost under each of this allocations:

HHH
HHHAgnt
Alt

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

1 10 10 30 60 40 60
2 15 30 10 10 30 25
3 6 4 6 5 3 3
Max(cost) 15 30 30 60 40 60

Minimum of maximum(cost) = 15. Hence the corresponding allocation
‘(1,2,3)’ is the Rawlsian allocation.

Example 4. Another sequencing problem : Consider θ = (100, 5, 3)
and s = (1, 2, 3)

HHH
HHHAgnt
Alt

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

1 100 100 300 600 400 600
2 15 30 10 10 30 25
3 18 12 18 15 3 3
Max(cost) 100 100 300 600 400 600
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Minimum of maximum(cost) = 100. Hence corresponding allocation
rules ‘(1,2,3) and (1,3,2)’ are Rawlsian allocations. But note that
‘(1,2,3)’ is the only efficient allocation rule for this example.

Example 5. What will be a Rawlsian/Efficient allocation if θ = (15, 75, 18)
and s = (3, 5, 6)?

Here a Rawlsian allocation is the queue arrangement where 2nd
agent(75) is in 1st position, 3rd agent(18) is in 2nd position and 1st
agent(15)is in first position.
But to find Efficient allocation rule in this case, we calculate ( waiting cost

processing time
)

for each agent and then rank them in decreasing order of magnitude.
So 2nd agent (75;5) is in 1st position, 1st agent (15;3) is in and position
and 3rd agent (18;6) is in 3rd position of the queue.

Notice that if processing time is homogeneous across agents then
Efficient allocation rule is also Rawlsian. But the converse is not true.

Remark 1. (i) In all these queueing or sequencing examples the al-
locations, where agents are ranked according to the decreasing value
of their waiting costs, are in fact always Rawlsian while the ranking
in the above specified manner is not necessary to ensure a Rawlsian
allocation(see Example 4).

(ii) To decide over efficient allocation rule we need both the informa-
tions: agents waiting time and processing time. But to allocate agents
in Rawlsian method information on processing time is not necessary.

(iii) Efficient allocation rule tries to minimize the aggregate servic-
ing cost while Rawlsian allocation minimizes the burden of maximum
cost bearer.

3.1. Unidimensional private information case: Here we have pri-
vate information regarding agents waiting cost but each agents pro-
cessing time (of their own work that is to be executed by the server) is
publicly known.

Proposition 1. Sufficient condition for an allocation to be Rawlsian
is that the agents must be ordered in the queue with decreasing value of
their waiting cost.

Proof. Take any θ ∈ <n++(privately known) such that θ1 ≥ θ2 . . . ≥
θn(note that this we can do without loss of generality) and also s =
(s1, s2, . . . , sn) ∈ <n++(publicly known) . The above proposition claims
that σ∗(θ) = (1, 2, . . . , n) is a Rawlsian allocation.
With |N | = n agents we can have n! different allocations among which
σ∗(θ) is the one.
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H
HHH

HHAgnt
Alt

σ∗(θ) =
(1, 2, . . . , n)

(...) (...) (...) σ(θ) (...)

1 s1θ1

2 (s1 + s2)θ2

3 (s1 + s2 + s3)θ3
...

i (
∑

j∈Pi(σ∗(θ))

sj +

si)θi
...

n (
∑

j∈Pn(σ∗(θ))

sj +

sn)θn

Max(cost) (
∑

j∈Pi(σ∗(θ))

sj +

si)θi

The above table there are n! coloumns each one devoted for on of the
every possible n! allocations and there are |N | = n rows devoted to
each of the players. To find Rawlsian allocations we need to find the
maximum entry for each of the coloumn and then we select minimum
of all these maximum costs/entries. Then the allocation for which we
get the maxmin entry is the Rawlsian one.

We suppose that the maximum entry for the coloumn with allocation

σ∗(θ) is due to agent i and the cost is (
∑

j∈Pi(σ∗(θ))

sj + si)θi. Consider

A∗i = {Pi(σ∗(θ)) ∪ i} ⊂ N . Since any general allocation rule σ(θ)
involves each of the n agents, so ∀σ(θ) ∈

∑
(N) define (an ordered

set) set B(σ(θ)) = σ(θ) \ {j|j /∈ A∗i } such that |B(σ(θ))| = |A∗i | and
all the elements of B(σ(θ)) are also elements of A∗i and vice versa
only difference between B(σ(θ)) and A∗i is they are ordered set and
unordered set respectively. We denote the collection of all such B(σ(θ))
as

∑
B(σ(θ)). Let us define the function ξ :

∑
B(σ(θ)) → A∗i where

ξ(B(σ(θ))) = l(say) and l ∈ A∗i is the last element of the ordered set

B(σ(θ)). So the total cost for l in σ(θ) is at least (
∑

j∈Pi(σ∗(θ))

sj + si)θl.

Since θi = minA∗i , (
∑

j∈Pi(σ∗(θ))

sj + si)θi ≤ (
∑

j∈Pi(σ∗(θ))

sj + si)θl.

Hence the above proposition is proved.
�
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Now the allocation where agents are placed in the queue by decreas-
ing values of their waiting costs then the allocation is Rawlsian one.
We call this specific kind of Rawlsian allocation as RA∗. Now the next
relevant question is , what is the transfer rule that induces RA∗ to be
strategyproof(SP).

In our earlier work “Incentive and normative analysis on sequencing
problem.” [4], we have uniquely characterized the necessary transfer
rule that induces any non-increasing in own type (NOT) allocation
rule into SP. So to apply our earlier result in this setup, we need to
show RA∗ is NOT.

Lemma 1. RA∗ is NOT.

Proof. Consider a profile (θi, θ−i) ∈ <n++ 3 θ1 ≥ θ2 ≥ . . . ≥ θi ≥ . . . ≥
θn. So Pi(σ(θ)) = {1, 2, . . . , i − 1} . Now let θ′i > θi. So there can be
two possibles cases.
Case(i) θ′i > θi 3 θ′i ≤ min

j∈Pi(σ(θ))
θj:

Then Pi(σ(θ)) = Pi(σ(θ′i)). Hence Si(σ(θi, θ−i)) = Si(σ(θ′i, θ−i).

Case(i) θ′i > θi 3 θ′i > min
j∈Pi(σ(θ))

θj:

Then Pi(σ(θ)) ⊆ Pi(σ(θ′i)) and Pi(σ(θ)) 6= Pi(σ(θ′i. Hence Si(σ(θi, θ−i)) >
Si(σ(θ′i, θ−i).
Hence the Lemma is proved.

�

Consider a sequencing problem Ω = 〈N,<n++,<n++〉. So for any pro-
file θ ∈ <n++(where θis are privately known) such that θ1 ≥ θ2 . . . ≥ θn
and s = (s1, s2, . . . , sn) ∈ <n++(where si s are publicly known). Con-
sider the allocation rule σ∗θ is RA∗ and the transfer rule is:

(1) ∀i ∈ N, ti(θ) = hi(θ−i)−
∑

j∈P ′i (σ∗(θ))

sjθj.

Proposition 2. RA∗ is SP if and only if the transfer rule is given by
equation 2.

Proof. RA∗ is non-increasing in own type allocation rule (by Lemma
1). Hence we can apply Theorem (1) of our earlier work [4], which
proves the above Proposition.3 �

Remark 2. A mechanism (σ, t) is EFF and SP if and only if ∀θ ∈ <n++

the allocation rule minimizes the aggregate cost and ∀i ∈ N,
ti(θ) = hi(θ−i) − si

∑
j∈P ′i (σ∗(θ)) θj. But a mechanism (σ(, t) is RA∗

and SP if and only if ∀θ ∈ <n++ σ(θ) = σ∗(θ) and ∀i ∈ N, ti(θ) =
hi(θ−i)−

∑
j∈P ′i (σ∗(θ)) sjθj.

3For details of the proof see Incentive and normative analysis on sequencing
problem.[4]
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Remark 3. In case of queueing games Ω = 〈N,<n++〉 the transfer rule
along with RA∗ that guarantees SP is of the following form:

(2) ∀i ∈ N, ti(θ) = hi(θ−i)−
∑

j∈P ′i (σ∗(θ))

θj.

which is basically an alternative representation of VCG4mechanism.
Note that the above equation is directly follows if in equation 2 we as-
sume ∀i ∈ N, si = 1. In other words, for queueing games a mechanism
(σ, t) which is RA∗+SP, is also EFF+SP and this is not necessarily
true for sequencing games as RA∗ 6= EFF in that case.

Proposition 3. In case of queueing problems RA+SP+BB mechanism
is possible.

Proof. Note that RA∗ is a Rawlsian allocation (by Proposition 1). In
case of queueing games RA∗= EFF. Hence by the result of Mitra 2001
[2], the proposition is proved. �

3.2. Multidimensional private information case: Here we have
situations where the sequencing problem is Ω = 〈N,<n++,<n++〉. Any
profile θ ∈ <n++( where θi s are privately known) such that θ1 ≥ θ2 . . . ≥
θn and s = (s1, s2, . . . , sn) ∈ <n++(also sis are privately known).

What is non-manipulability or strategyproofness (SP) in this set-up?

Definition 9. A mechanism (σ, t) is strategy-proof(SP) if ∀i ∈ N,
∀θi, si, θ′i, s′i ∈ <++ and ∀θ−i, s−i ∈ <n−1

++ , we have
Ui(σ(θ, s), ti(θ, s); θi, si) ≥ Ui(σ(θ, s), ti(θ, s

′); θ′i, s
′
i).

In this situation it is impossible to have EFF + SP mechanism. Can
RA∗ helps achieve SP in such situation? The answer is ‘yes!’.

The idea is as follows: When we use RA∗ as allocation rule, we
are basically allocating agents on the basis of waiting costs only. So
incomplete information about the other dimension that is, processing
time have no role to play. Now if we use the transfer rule ti(θ, s) given
by equation 2 an agent by his own can not do better in terms of transfer
by manipulating his processing time, since it has no contribution in the
transfer function.So only channel with which an agent can manipulate
is his waiting cost. But we have seen (by Proposition 2) for any given
s ∈ <n++ and θ( − i) ∈ <n−1

++ truthful revelation is weakly dominant
strategy when the transfer rule is given by equation 2. So he has no
incentive to manipulate his private informations.

4See Vickery[12], Clarke[9], Groves[10].
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Proposition 4. When there is private information in multiple(2) di-
mension RA∗ allocation rule induces a mechanism(σ∗, t) in SP if ∀θ, s ∈
<n++,∀θ−i ∈ <n−1

++ and ∀i ∈ N ; ti(θ, s) = hi(θ−i)−
∑

j∈P ′i (σ∗(θ))

sjθj.

The proof is fairly obvious hence omitted.

4. Conclusion

This paper is exclusively on the backdrop of queueing and sequenc-
ing games. In this particular context we have highlighted the situa-
tion when Efficient allocation is indifferent from Rawlsian allocation,
when one implies another,etc. Thereafter we completely character-
ize a particular class of Rawlsian allocation rule called RA∗. Having
well-acquainted with the fact that when there is private information
in more than one dimension it is impossible to induce Efficiency along
with strategyproofness we ventilate on a secondary solution, that is,
we can replace Efficiency by RA∗ and then look for strategyproofness
and we show such a mechanism a possible.

Although we offer kind of a secondary alternative mechanism to en-
sure non-manipulability by any agent on his own, such mechanism can
not sustain non-manipulability by group. Hence the next question is,
do we have a group-strategyproof mechanism where the allocation rule
is RA∗? We plan to look into this aspect in future.
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