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Abstract

We develop a framework in which individuals�preferences co-evolve with their

abilities to deceive others regarding their preferences and intentions. We show that

a pure outcome is stable, essentially if and only if it is an e¢ cient Nash equilibrium.

All individuals have the same deception ability in such a stable state. In contrast,

there are non-pure outcomes in which non-Nash outcomes are played, and di¤erent

deception abilities co-exist. We extend our model to study preferences that depend

also on the opponent�s type.
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1 Introduction

For a long time economists took preferences as given. The study of their origin and

formation was considered a question outside the scope of economics. Over the past two

decades this has changed dramatically. In particular, there is now a large literature on

the evolutionary foundations of preferences (for an overview, see Robson and Samuelson

2011). A prominent strand of this literature is the so-called �indirect evolutionary ap-

proach�, pioneered by Güth and Yaari (1992).1 This approach has been used to explain

the existence of a variety of �non-standard�preferences that do not coincide with material

payo¤s, e.g. altruism, spite, and reciprocal preferences.2 Typically, the non-materialistic

preferences in question convey some form of commitment advantage that induces oppo-

nents to behave in a way that bene�ts individuals with non-materialistic preferences, as

described by Schelling (1960) and Frank (1987). Indeed, Heifetz, Shannon, and Spiegel

(2007) show that this kind of result is generic.

A crucial feature of the indirect evolutionary approach is that preferences are explicitly

or implicitly assumed to be at least partially observable.3 Consequently the results are

vulnerable to the existence of mimics who signal that they have, say, a preference for

cooperation, but actually defect on cooperators, thereby earning the bene�ts of having

the non-standard preference without having to pay the cost (Samuelson 2001). The e¤ect

of varying the degree to which preferences can be observed has been investigated by Ok

and Vega-Redondo (2001), Ely and Yilankaya (2001), Dekel, Ely, and Yilankaya (2007),

and Herold and Kuzmics (2009). They con�rm that the degree to which preferences are

observed decisively in�uences the outcome of preference evolution. However, the degree

to which preferences are observed is still exogenous in these models. In reality we would

expect both the preferences, and the ability to observe or conceal them to be the product

of an evolutionary process.4

1The term was coined in Güth (1995).
2For example, Bester and Güth (1998), Bolle (2000), and Possajennikov (2000) study combinations of

altruism, spite, and sel�shness. Ellingsen (1997) �nds that preferences that induce aggressive bargaining
can survive in a Nash demand game. Fershtman and Weiss (1998) study evolution of concerns for social
status. Sethi and Somanthan (2001) study the evolution of reciprocity in the form of preferences that are
conditional on the opponent�s preference type. In the context of the �nitely repeated Prisoner�s Dilemma,
Guttman (2003) explores the stability of conditional cooperation. Dufwenberg and Güth (1999) study
�rm�s preferences for large sales. Güth and Napel (2006) study preference evolution when players use the
same preferences in both ultimatum and dictator games. Koçkcesen and Ok (2000) investigate survival
of more general interdependent preferences in aggregative games. Friedman and Singh (2009) shows that
vengefulness may survive if observation has some degree of informativeness.

3Gamba (2013) is an interesting exception. She assumes play of a self-con�rming equilibrium, rather
than a Nash equilibrium, in an extensive form game. This allows for evolution of non-materialistic
preferences even when they are completely unobservable.

4On this topic, Robson and Samuelson (2011) write: �The standard argument is that we can observe
preferences because people give signals �a tightening of the lips or �ash of the eyes �that provide clues as
to their feelings. However, the emission of such signals and their correlation with the attendant emotions
are themselves the product of evolution. [...] We cannot simply assume that mimicry is impossible, as
we have ample evidence of mimicry from the animal world, as well as experience with humans who make
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This paper studies the missing link between evolution of preferences and evolution of

how preferences are concealed and detected. In our model the ability to observe prefer-

ences, as well as the ability to deceive and induce false beliefs about preferences, is endoge-

nously determined by evolution, jointly with the evolution of preferences. The main model

deals with preferences de�ned over action pro�les. We later extend it to interdependent

preferences that depend on the opponent�s preferences.

As in standard evolutionary game theory we assume an in�nite population of indi-

viduals who are uniformly randomly matched to play a symmetric normal form game.5

Each individual has a type, which is a tuple, consisting of a preference component and a

cognitive component. The preference component is identi�ed with a utility function. In

the main model we restrict attention to the standard case of utility functions that are

de�ned over action pro�les, which we refer to as type-neutral preferences. In an extension

we allow for type-interdependent preferences, which are represented by utility functions

that are de�ned over both action pro�les and the opponent�s type. The cognitive com-

ponent is simply a natural number, representing the level of cognitive sophistication of

the individual. The cost of increased cognition is strictly positive. The cognitive levels

of the individuals in a match determine the probability that one individual observes the

opponent�s preferences and is able to deceive the opponent.

When both individuals are of the same cognitive level they are assumed to play a Nash

equilibrium of the complete information game induced by their preferences, just as in the

standard indirect evolutionary approach. However, when the individuals in a match are

of di¤erent cognitive levels, the one with the higher level is able to deceive the one with

the lower level. In the main model (with type-neutral preferences), the deceiver observes

the opponent�s preferences perfectly, and is allowed to choose whatever she wants the

deceived party to believe about the deceiver�s intended action choice. In the extension

with type-interdependent preferences, the deceiver is also allowed to choose whatever she

wants the deceived party to believe about the deceiver�s type. A strategy pro�le that is

consistent with this form of deception is called a deception equilibrium.

We also analyse an extension of our model in which the deceiver is not able to tailor

the attempted deception to the current opponent�s type. Instead, an individual has to

use the same attempted deception against all opponents. The same results as in the main

model hold for this less �exible form of deception.

their way by misleading others as to their feelings, intentions and preferences. [...] In our view, the
indirect evolutionary approach will remain incomplete until the evolution of preferences, the evolution
of signals about preferences, and the evolution of reactions to these signals, are all analysed within the
model.�[Emphasis added] (pp. 14�15)

5It is known that positive assortative matching is conducive to the evolution of altruistic behaviours
(Hines and Maynard Smith 1979) and non-materialistic preferences even when preferences are perfectly
unobservable (Alger and Weibull 2013). It is also known that �nite populations allow for the evolution of
spiteful behaviours (Scha¤er 1988) and non-materialistic preferences (Huck and Oechssler 1999). By as-
suming that individuals are uniformly randomly matched in an in�nite population, we avoid confounding
these e¤ects with the e¤ect of endogenising the degree of observability.
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The state of a population is described by a con�guration, consisting of a type distrib-

ution and a behaviour policy. The type distribution is simply a �nite support distribution

on the set of types. The behaviour policy speci�es a Nash equilibrium for each match

between cognitive equals, and a deception equilibrium for each match between types of

di¤erent cognitive levels. In a neutrally (evolutionarily) stable con�guration (NSC or

ESC) all incumbents earn the same, and if a small group of mutants enter they earn

weakly (strictly) less than the incumbents in any focal post-entry state. A focal post-

entry state is one in which the incumbents behave against each other in the same way as

before the mutants entered.

Consider a society that has settled upon a convention, represented by a con�guration

that induces play of the same pure outcome in all matches. For this case we are essentially

able to provide a characterisation of neutral (evolutionary) stability. For the main model,

with type-neutral preferences, we �nd that if the con�guration is an NSC, then everyone

is of the lowest cognitive type, and the induced outcome is e¢ cient. Moreover, if the

marginal cost of cognition is low enough then the outcome is also a Nash equilibrium

of the underlying game, in �tness payo¤s. Conversely, any e¢ cient strict pure Nash

equilibrium of the underlying game can be implemented in an NSC. For the extension

with type-interdependent preferences, we �nd that if the con�guration is an NSC, then

everyone is of the lowest cognitive type, and the induced outcome gives all players at

least their pure maxmin payo¤. Moreover, if the marginal cost of cognition is low enough

then the outcome is also a Nash equilibrium. Conversely, any pure Nash equilibrium in

which all players get more than the pure minmax payo¤, can be implemented in an ESC.

(Recall that the pure minmax and pure maxmin payo¤s need not coincide.)

When we consider con�gurations that induce play of more than one pure outcome,

the above characterisation breaks down in an interesting way. For both type-neutral and

type-interdependent preferences we are able to construct NSCs (even ESCs in the case

of type-interdependent preferences) in which some matches result in non-Nash outcomes,

and in which di¤erent cognitive levels co-exist. Still, even in this context the highest

types have to play e¢ ciently among themselves, and the cognitive cost determines the

size of deviations from Nash behaviour that can persist.

In the next subsection we discuss related literature. The rest of the paper is orga-

nized as follows. Section 2 presents the main model, with type-neutral preferences and

deception tailored to each opponent. In Section 3 we de�ne our stability notions. Results

for the main model are presented in Sections 4 and 5. Section 6 extends the model to

include type-interdependent preferences. Section 7 concludes. Appendix A analyses the

alternative assumption that each individual uses the same deception for all opponents.

Appendix B contains proofs not in the main text.
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1.1 Related Literature

Ok and Vega-Redondo (2001) and Ely and Yilankaya (2001) investigate the case in which

preferences are unobservable, and all preferences de�ned over outcomes are allowed. They

show that only Nash equilibria of the game with material/�tness payo¤s can be imple-

mented by evolutionarily stable preferences. More generally, Dekel, Ely, and Yilankaya

(2007) study environments in which there is a �xed probability that a player observes

the preferences of the opponent. They con�rm the previous results for unobservable

preferences. Furthermore, they show that if preferences are perfectly, or almost per-

fectly, observable, then only e¢ cient outcomes can be supported by neutrally stable

preferences.6 Our results indicate that when deception is introduced and observation is

endogenised, then a pure pro�le has to be both Nash and e¢ cient in order to be the sole

outcome supported by neutrally stable preferences. Herold and Kuzmics (2009) expand

the framework of Dekel, Ely, and Yilankaya (2007) to include interdependent preferences,

i.e. preferences that depend on the opponent�s preference type. Under perfect or almost

perfect observability, if all preferences that depend on the opponent�s type are considered,

then any symmetric outcome above the minmax material payo¤ is evolutionarily stable.

In our setting a pure pro�le also has to be a Nash equilibrium in order to be the sole

outcome supported by evolutionarily stable preferences. Herold and Kuzmics (2009) �nd

that non-discriminating preferences (including sel�sh materialistic preferences) are typi-

cally not evolutionarily stable on their own. In contrast, certain preferences that exhibit

discrimination are evolutionarily stable.

There is a large literature in biology and evolutionary psychology on the evolution

of �theory of mind� (Premack and Woodru¤ 1979). According to the �Machiavellian

intelligence�hypothesis (Humphrey 1976), and �social brain�hypothesis (Dunbar 1998),

the extraordinary cognitive abilities of humans evolved as a result of the demands of social

interactions, rather than the demands of the natural environment: in a single-person

decision problem there is a �xed bene�t of being smart, but in a strategic situation it

may be important to be smarter than the opponent. From an evolutionary perspective,

the potential advantage of a better theory of mind has to be traded o¤ against the cost

of increased reasoning capacity. Increased cognitive sophistication in the form of higher-

order beliefs is associated with non-negligible costs (Holloway 1996, Kinderman, Dunbar,

and Bentall 1998). Our model incorporates these features.

There is a smaller literature on the evolution of strategic sophistication within game

theory; see, e.g. Stahl (1993), Banerjee and Weibull (1995), Stennek (2000), Conlisk

(2001), Abreu and Sethi (2003), Mohlin (2012), and Heller (2014). As in these papers,

we provide results to the e¤ect that di¤erent degrees of cognitive sophistication may

co-exist. The model of Conlisk (2001) is very similar to our analysis of the Rock-Paper-

6See Norman (2012) for related results in a dynamic model.
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Scissors game in Section 5.3, below.

Rtischev (2012) provides a model where agents di¤er with respect to their ability

to detect and conceal their strategies. He focuses on a leader-follower game where the

follower bene�ts from making a credible and visible commitment. The follower may pay

a cost to be transparent. If the follower is transparent, then the leader can observe

the follower�s strategy if and only if the follower has paid to be transparent and the

leader pays a cost to obtain �mindsight�. There is an equilibrium in which committed

transparent followers, uncommitted non-transparent followers, leaders mindsight, and

leaders without mindsight co-exist. Kimborough, Robalino, and Robson (2014) construct

a model to demonstrate the advantage of having a theory of mind (understood as an

ability to ascribe stable preferences to other players) over learning by reinforcement. In

novel games the ascribed preferences allow the agents with a theory of mind to draw

on past experience whereas a reinforcement learner without such a model has to start

over again. Hopkins (2014) explains why costly signalling of altruism may be especially

valuable for those agents who have a theory of mind.

Robson (1990) initiated a literature on evolution in cheap talk games by formulat-

ing the secret handshake e¤ect: evolution selects an e¢ cient ESS if mutants can send

messages that the incumbents either do not see or not bene�t from seeing. Against the

incumbents a mutant plays the same action as the incumbents do, but against other mu-

tants the mutant plays an action that is a component of the e¢ cient equilibrium. Thus

the mutants are able to invade unless the incumbents are already playing e¢ ciently. As

pointed out by Wärneryd (1991) and Schlag (1993), among others, problems arise if either

the incumbents use all available messages (so that there is no message left for the incum-

bents to coordinate on) or the incumbents follow a strategy that induces the mutants to

play an action that lowers the mutants�payo¤s below those of the incumbents. Kim and

Sobel (1995) use stochastic stability arguments, and Wärneryd (1998) uses complexity

costs, to circumvent this problem. Similarly, e¢ cient Nash equilibria are selected in our

model too. Preferences serve the function of messages and, since the set of preferences is

uncountable, there are always unused �messages�.

2 Model

We consider a large population of agents, each of which is endowed with a type that

determines her subjective preferences and her cognitive level. The agents are randomly

matched to play a symmetric two-player game. A dynamic evolutionary process of cul-

tural learning, or biological inheritance, increases the frequency of more successful types.

In the next section, we present a static solution concept to capture stable population

states in such environments.
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2.1 Underlying Game

Consider a symmetric two-player normal form game G with a �nite set A of pure actions

and a set �(A) of mixed actions (or strategies). We use the letter a (�) to describe a

typical pure action (mixed action). Payo¤s are given by � : A�A! R, where � (a; a0) is
the payo¤ to a player using action a against action a0. The payo¤ function is extended to

mixed actions in the standard way, where � (�; �0) denotes the material payo¤ to a player

using strategy �, against an opponent using strategy �0. With a slight abuse of notation

let a denote the degenerate mixed strategy that puts all weight on pure strategy a. We

adopt this convention for probability distributions throughout the paper.

Remark 1 The restriction to symmetric games is without loss of generality when dealing
with interactions in a single population. In cases in which the interaction is asymmetric,

it can be captured in our setup (as is standard in the literature; see, e.g. Selten 1980 and

Samuelson 1991) by embedding the asymmetric interaction in a larger, symmetric game

in which nature �rst randomly assigns the players to roles in the asymmetric interaction.

2.2 Types

We imagine a large (technically in�nite) population of individuals who are uniformly

randomly matched to play the game G. Each individual i in the population is endowed

with a type

� = (u; n) 2 � = U � N,

consisting of (von Neumann-Morgenstern) preferences, identi�ed with a utility function,

u 2 U and a cognitive level n 2 N. Let �(�) be the set of all �nite support probability
distributions on �. A population is represented by a �nite support type distribution

� 2 �(�). Let C (�) denote the support (carrier) of type distribution � 2 �(�).

Elements of C (�) will be called incumbents. Given a type �, we use u� and n� to refer

to its preferences and cognitive level, respectively.

In the main model we assume that the preferences are de�ned over action pro�les, as

in Dekel, Ely, and Yilankaya (2007). This means that any preferences can be represented

by a utility function of the form

u : A� A! R.

The set of all possible (modulo a¢ ne transformations) utility functions on A � A is

U = [0; 1]jAj
2

. Let BRu (�0) denote the set of best replies to strategy �0 given preferences

u, i.e. BRu (�0) = argmax�2�(A) u (�; �0).

Later, in Section 6, we analyse type-interdependent preferences, which depend also on

the opponent�s type, as in Herold and Kuzmics (2009). In contrast preferences de�ned
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solely over action pro�les will be referred to as type-neutral preferences.

There is a �tness cost to increased cognition, represented by a positive and strictly

increasing cognitive cost function k : N! R+. The �tness payo¤ of an individual equals
the material payo¤ from the game, minus the cognitive cost. Let kn denote the cost of

having cognitive level n. Hence k� = kn� denotes the cost of having type �. Without loss

of generality, we assume that k1 = 0. In many of our results we will make the additional

assumption that k2 is su¢ ciently small.

2.3 Con�gurations

A complete description of a state of the population is constituted by a type distribution

and a behaviour policy for each type in the support of the type distribution. An individ-

ual�s behaviour is assumed to be (subjectively) rational in the sense that it maximizes her

subjective preferences given the belief she has about the opponent�s expected behaviour.

However, her beliefs may be incorrect, if she is deceived by her opponent. An individual

is deceived if and only if her opponent is of a higher cognitive level.

If two individuals of the same cognitive level are matched to play, then they play

a Nash equilibrium of the game induced by their preferences. Given two preferences

u; u0 2 U , let NE (u; u0) � �(A) � �(A) be the set of mixed equilibria of the game
induced by the preferences u and u0, i.e.

NE (u; u0) = f(�; �0) 2 �(A)��(A) : � 2 BRu (�0) and �0 2 BRu0 (�)g :

If two individuals of di¤erent cognitive levels are matched to play, then the individual

with the higher cognitive level observes the opponent�s preferences perfectly, and is able to

deceive the opponent. The deceiver is allowed to choose whatever she wants the deceived

party to believe about the deceiver�s intended action choice. The deceived party best

responds given her possibly incorrect belief.

For simplicity, we assume that if the deceived party has multiple best replies, then the

deceiver is allowed to break indi¤erence, and choose which of the best replies she wants

the deceived party to play. Consequently the deceiver is able to induce the deceived

party to play any strategy that is a best reply to some belief about the opponent�s mixed

action, given the deceived party�s preferences. Dispensing with this assumption comes at

additional notational cost, but the results are qualitatively similar.

Given preferences u 2 U , let � (u) denote the set of undominated strategies. By the
minmax theorem, � (u) is also the set of actions that are best replies to at least one

strategy of the opponent (given the preferences u). Formally, we de�ne

� (u) = f� 2 �(A) : there exists �0 2 �(A) such that � 2 BRu (�0)g :
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We say that a strategy pro�le is a deception equilibrium if the strategy pro�le is optimal

from the point of view of player i under the constraint that player j has to play an

undominated strategy. Formally:

De�nition 1 Given two types �; �0 with n� > n�0 ; a strategy pro�le (~�; ~�0) is a deception
equilibrium if

(~�; ~�0) 2 arg max
�2�(A);�02�(u�0 )

u� (�; �
0) :

Let DE (�; �0) be the set of all such deception equilibria.

We are now in a position to de�ne our key notion of a con�guration, by combining a

type distribution with a behaviour policy, as represented by Nash equilibria and deception

equilibria.

De�nition 2 A con�guration is a pair (�; b) where � 2 �(U) is a type distribution, and
b : C (�)� C (�) �! �(A) is a behaviour policy such that for each �; �0 2 C (�) :

n� = n�0 =) (b� (�
0) ; b�0 (�)) 2 NE (�; �0) ; and

n� > n�0 =) (b� (�
0) ; b�0 (�)) 2 DE (�; �0) :

We interpret b� (�0) = b (�; �0) as the strategy of type � when being matched with type �0.

Note that standard arguments imply that for any type distribution � there exists a

mapping b : C (�)� C (�) �! �(A) such that (�; b) is a con�guration.

The expected �tness to an individual of type � in con�guration (�; b) is:

�� ((�; b)) =
X

�02C(�)

� (�0) � � (b� (�0) ; b�0 (�))� k�:

When all incumbent types have the same expected �tness, we say that the con�guration

is balanced, and denote this uniform expected payo¤ by �((�; b)) :

Remark 2 Our model assumes that a player may use di¤erent deceptions against di¤er-
ent types with lower cognitive levels. We note that all our results remain the same (with

minor changes to the proofs) in an alternative setup in which individuals have to use the

same mixed action in their deception e¤orts towards all opponents with lower cognitive

levels. We refer to this as uniform deception. The formal changes in the model that are

required to implement this variant are described in Appendix A.
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3 Evolutionary Stability

3.1 De�nitions

Recall that a neutrally stable strategy (Maynard Smith and Price 1973 and Maynard

Smith 1982) is a strategy that, if played by most of the population, weakly outperforms

any other strategy. Similarly, an evolutionarily stable strategy is a strategy that, if played

by most of the population, strictly outperforms any other strategy.

De�nition 3 A strategy � 2 �(A) is a neutrally stable strategy (NSS) if for every

�0 2 �(A) there is some �" 2 (0; 1) such that if " 2 (0; �"), then ~� (�0; (1� ")� + "�0) �
~� (�; (1� ")� + "�0). If the weak inequality is replaced by strict inequality for each �0 6= �;
then � is an evolutionarily stable strategy (ESS).

We extend the notions of neutral and evolutionary stability, from strategies to con-

�gurations. We begin by de�ning the type game that is induced by a con�guration.

De�nition 4 For any con�guration (�; b) the corresponding type game �(�;b) is the sym-
metric two-player game where each player�s strategy space is C (�), and the payo¤ to

strategy �, against strategy �0, is � (b� (�0) ; b�0 (�))� k�.

The de�nition of a type game allows us to apply notions and results from standard

evolutionary game theory, where evolution acts upon strategies, to the present setting

where evolution acts upon types. A similar methodology was used in Mohlin (2012). Note

that each type distribution with support in C (�) is represented by a mixed strategy in

�(�;b).

We want to capture robustness with respect to small groups of individuals, henceforth

called mutants, which introduce new types and new behaviours into the population.

Suppose that a fraction " of the population is replaced by mutants and suppose that the

distribution of types within the group of mutants is �0 2 �(�). Consequently the post-
entry type distribution is ~� = (1� ") ��+ " ��0. That is, for each type � 2 C (�)[C (�0),
~� (�) = (1� ") � � (�) + " � �0 (�). In line with most of the literature on the indirect
evolutionary approach we assume that adjustment of behaviour is in�nitely faster than

the adjustment of the type distribution.7 Thus we assume that the post-entry type

distribution quickly stabilizes into a con�guration
�
~�;~b
�
. There may exist many such

post-entry type con�gurations, all with the same type distribution, but with di¤erent

behaviour policies. We note that incumbents do not have to adjust their behaviour

against other incumbents in order to continue playing Nash equilibria, and deception

equilibria, among themselves. For this reason, we assume that the incumbents maintain

the same pre-entry behaviour among themselves. In doing so we also follow Dekel, Ely,

and Yilankaya (2007). Formally:

7Sandholm (2001) and Mohlin (2010) are exceptions.
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De�nition 5 Let (�; b) and
�
~�;~b
�
be two con�gurations such that C (�) � C (~�). We

say that
�
~�;~b
�
is focal (with respect to (�; b)) if �; �0 2 C (�) implies that ~b� (�0) = b� (�0) :

Standard �xed point arguments imply that for every con�guration (�; b) and every

type distribution ~� satisfying C (�) � C (~�) ; there exists a behaviour policy ~b such that�
~�;~b
�
is a focal con�guration.

Our stability notion requires that the incumbents outperform all mutants in all con-

�gurations that are focal relative to the initial con�guration.

De�nition 6 A con�guration (�; b) is a neutrally stable con�guration (NSC), if for
every �0 2 �(�), there is some �" 2 (0; 1) such that for all " 2 (0; �"), it holds that if�
~�;~b
�
, where ~� = (1� ") ��+ " ��0, is a focal con�guration, then � is an NSS in the type

game �(~�;~b). The con�guration (�; b) is an evolutionarily stable con�guration (ESC) if

the same conditions imply that � is an ESS in the type game �(~�;~b) for each �
0 6= �.

3.2 Remarks

We discuss four issues related to our notion of stability.

1. The main stability notion that we use in the paper is NSC. The stronger notion of

ESC is not useful in our main model because there always exist equivalent types

that have slightly di¤erent preferences (as the set of preferences is a continuum)

and induce the same behaviour as the incumbents. Such mutants would always

achieve the same �tness as the incumbents in post-entry con�gurations, and thus

ESCs will never exist. Note that the stability notions in Dekel, Ely, and Yilankaya

(2007) and Alger and Weibull (2013) are also based on neutral stability.8 In Section

6 we study a variant of the model in which the preferences may depend also on the

opponent�s types. This will allow for the existence of ESCs.

2. Observe that De�nition 6 implies internal stability with respect to small perturba-

tions in the frequencies of the incumbent types (because when �0 = �; then � is

required to be an NSS in �(�;b)). By standard arguments, internal stability implies

that any NSC is �balanced�: all incumbent types obtain the same �tness.

3. By simple adaptations of existing results in the literature, one can show that NSCs

and ESCs are dynamically stable. NSCs are Lyapunov stable: no small change

in the population composition can lead it away from � in the type game �(~�;~b), if

types evolve according to the replicator dynamic (Thomas 1985, Bomze andWeibull

1995). ESCs are also asymptotically stable: populations starting close enough to

8In their stability analysis of homo hamiltonensis preferences Alger and Weibull (2013) disregard
mutants who are behaviourally indistinguishable from homo hamiltonensis upon entry.
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� eventually converge to � in �(~�;~b) if types evolve according to a smooth payo¤-

monotonic selection dynamic (Taylor and Jonker 1978, Cressman 1997, Sandholm

2010).

4. The stability notions of Dekel, Ely, and Yilankaya (2007) and Alger and Weibull

(2013) only consider monomorphic groups of mutants (i.e. all mutants having the

same type). We also consider stability against polymorphic groups of mutants (as

do Herold and Kuzmics 2009). One advantage of our approach is that it allows us

to use an adaptation of the well-known notion of ESS, which immediately implies

dynamic stability and internal stability, whereas Dekel, Ely, and Yilankaya (2007)

have to introduce a novel notion of stability without these properties. We note that

our results remain similar with an analogous notion of stability that deals only with

monomorphic mutants, except that in this case stability of pure outcomes would

imply only a weaker notion of e¢ ciency that compares the �tness only to symmetric

pro�les, as discussed in Remark 4 below.

4 Characterisation of Stable Pure Con�gurations

In this section we consider con�gurations in which everyone plays the same pure action.

We interpret such con�gurations as representing a state of a population that has settled

on a convention, which is shared by everyone. We show that such con�gurations are

stable essentially if and only if the action pro�le is both e¢ cient and a Nash equilibrium

of the �tness game.

4.1 De�nitions

We say that a strategy pro�le is e¢ cient if it maximizes the sum of �tness payo¤s.

Formally:

De�nition 7 A strategy pro�le (�; �0) is e¢ cient in the game G = (A; �) if � (�; �0) +
� (�0; �) � � (a; a0) + � (a0; a), for each action pro�le (a; a0).

If a symmetric strategy pro�le (��; ��) is e¢ cient, then we say that the strategy ��

is e¢ cient. Similarly if a symmetric action pro�le (a; a) is a (strict) Nash equilibrium,

of the �tness game, then we say that the action a is a (strict) Nash equilibrium, of the

�tness game. A Nash equilibrium is strict if � (a; a) > � (a0; a) for all a0 2 A.
A con�guration is pure if everyone plays the same action. Formally:

De�nition 8 A con�guration (�; b) is pure if there exists a� 2 A such that b� (�0) = a�

for each �; �0 2 C (�) :
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With a slight abuse of notation we denote such a pure con�guration by (�; a�), and

we refer to a� as the outcome of the con�guration.

Preferences u 2 U are completely indi¤erent if they induce indi¤erence between all

action pro�les, i.e. if u (a; a0) = u (a00; a000) for all combinations of a; a0; a00, and a000. Pref-

erences u 2 U are said to be strategically indi¤erent if they induce a player to be in-

di¤erent between all action pro�les in which the opponent�s action is �xed; i.e. it holds

that u (a; a0) = u (a00; a0), for all actions a; a0; a00 2 A. Note that a utility function is

strategically indi¤erent if and only if it is strategically equivalent (Moulin and Vial 1978)

to the completely indi¤erent utility.

4.2 Stability Implies Nash and E¢ ciency

We will show that if (�; a�) is stable then a� must be both a Nash equilibrium (of the

underlying �tness game) and an e¢ cient action. We begin by presenting a simple lemma

that shows that if a con�guration is pure, then all incumbents must have the minimal

cognitive level, since having a higher ability does not yield any advantage when everyone

plays the same action.

Lemma 1 If (�; a�) is an NSC, and (u; n) 2 C (�), then n = 1.

Proof. Since all players earn the same game payo¤ of � (a�; a�) ; they must also incur
the same cognitive cost, or else the �tness of the di¤erent incumbent types would not

be balanced (which contradicts (�; a�) being an NSC). Moreover, this uniform cognitive

level must be level 1. Otherwise a mutant of a lower level, who strictly prefers to play a�

against all actions, would strictly outperform the incumbents in nearby post-entry focal

con�gurations.

The following proposition shows that if k2 (the cost of having cognitive level 2) is

su¢ ciently small, then any outcome of a pure NSC must be a Nash equilibrium of the

underlying game. The reason is that if the pure outcome is not a Nash equilibrium,

then the population can be invaded by mutants with cognitive level 2, who deceive the

incumbents into thinking they face other incumbents, and best reply to the incumbents�

play.

Proposition 1 Suppose

k2 < � := min
a;a0;a00 s.t. �(a;a00) 6=�(a0;a00)

j� (a; a00)� � (a0; a00)j : (1)

If (�; a�) is an NSC, then a� is a symmetric Nash equilibrium, in �tness payo¤s.

Proof. Assume to the contrary that (�; a�) is a pure NSC and a� is not a best

response to itself; i.e. there exist a0 2 A such that � (a0; a�) > � (a�; a�). Assume without
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loss of generality that a0 is a best reply against a� (in �tness terms). By Proposition 1, all

incumbents have cognitive level 1. Consider a mutant �0 = (�; 2) with cognitive level 2

and materialistic preferences. There is a focal post-entry con�guration in which mutants

play the deception equilibrium (a0; a�) against the incumbents. Observe that the mutants

obtain a strictly higher payo¤when facing an incumbent, than what two incumbents earn

against each other:

� (a0; a�)� k2 > � (a0; a�)� � � � (a�; a�) :

This implies that if the mutants are su¢ ciently rare, they outperform the incumbents in

the post-entry focal con�guration.

Next, we show that any outcome of a pure NSC is e¢ cient. The intuition is that

if the incumbents play ine¢ ciently among themselves, then they can be invaded by a

heterogeneous group of mutants (also of cognitive level 1). That is, since mutants observe

each other�s preferences they use their preferences as a �secret-handshake� to achieve

e¢ ciency; see Robson (1990).

When facing incumbents, mutants play the same as the incumbents, but they play

more e¢ cient action pro�les among themselves. If these e¢ cient action pro�les are asym-

metric, the mutants use their heterogeneity as a correlation device to induce such asym-

metric behaviour. Formally:

Proposition 2 If (�; a�) is an NSC, then a� is e¢ cient.

Proof. To obtain a contradiction assume that (�; a�) is an NSC but a� is not ef-
�cient. The ine¢ ciency implies the existence of actions a; a0 such that � (a�; a�) <

0:5 � (� (a; a0) + � (a; a0)). Let u1; u2; u3 2 U be three di¤erent mutant preferences, all

of which are strategically indi¤erent, and let �0 2 �(U) be the distribution of mutants
that assign a mass of 1

3
to each of the following three types: �1 = (u1; 1) ; �2 = (u2; 1) ;

and �3 = (u3; 1).

For each " 2 (0; 1) we have a post-entry type distribution ~� = (1� ") � �+ " � �0. Let�
~�;~b
�
be the focal con�guration in which (1) ~b� (�0) = a� if � 2 C (�) or �0 2 C (�), and

(2) for each i; j 2 f1; 2; 3g,

b�i (�j) =

8><>:
a j = i+ 1 mod 3

a0 j = i� 1 mod 3
a� i = j

:

Since Proposition 1 implies that all the incumbent types in C (�) have cognitive level 1, it

is immediate that
�
~�;~b
�
is indeed a con�guration. Moreover, each incumbent type earns
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a payo¤ of � (a�; a�), and each mutant type �i 2 C (�0) earns a strictly higher payo¤:

��i

��
~�;~b
��
=

�
1� 2 � "

3

�
� � (a�; a�) + 2 � "

3
� 0:5 � (� (a; a0) + � (a; a0)) > � (a�; a�) :

This implies that � is not an NSS in �(~�;~b), and thus (�; a
�) is not an NSC.

Remark 3 Note that our proof above shows that a con�guration that induces a pure inef-
�cient outcome is unstable in a strong sense: (1) all mutant types in �0 strictly outperform

all incumbent types, and (2) this holds for any " 2 (0; 1), and not only for small ".

Remark 4 Dekel, Ely, and Yilankaya (2007) work with a framework in which there are
no cognitive levels and no deception, and there is an exogenous probability p for each

player to privately observe her opponent�s preferences. For p = 1, they show (Proposition

2 in their paper) a result that is similar to our Proposition 2. Still, there is one key

di¤erence: in their setup stability of a pure outcome is characterised by a weaker notion of

e¢ ciency. An action is e¢ cient in the sense of Dekel, Ely, and Yilankaya (2007) (DEY-

e¢ cient) if its �tness is highest among the symmetric strategy pro�les (i.e. action a is

DEY-e¢ cient if � (a; a) � � (�; �) for all strategies � 2 �(A)). Observe that our notion
of e¢ ciency (De�nition 7) implies DEY-e¢ ciency, but the converse is not necessarily

true. The weaker notion of DEY-e¢ ciency is the one relevant in the set up of Dekel,

Ely, and Yilankaya (2007), because they consider only monomorphic groups mutants; i.e.

all mutants that enter at the same time are of the same type. A similar result would

hold also in our setup, if we imposed a similar limitation on the set of feasible mutants.

However, without such a limitation, heterogeneous mutants can correlate their play, and

our stronger notion of e¢ ciency is required to characterise stability, as established in

Proposition 2 above.

4.3 Strict Nash and E¢ ciency Implies Stability

The following proposition shows that any action that is both e¢ cient and a strict Nash

equilibrium, can be induced as the outcome of an NSC. The intuition is as follows.

Consider a monomorphic population in which all individuals have cognitive level 1 and

the e¢ cient strict Nash action is a dominant action. The action being strict Nash and

e¢ cient, implies that any group of mutants is weakly outperformed.

Proposition 3 If a� is both e¢ cient and a strict Nash equilibrium (in �tness payo¤s),

then there exists a type distribution � such that (�; a�) is an NSC.

Proof. Let a� be an e¢ cient action that is also a strict Nash equilibrium. Consider
a monomorphic con�guration (�; a�) consisting of type (��; 1) where all incumbents are

of cognitive level 1 and of the same preference type ��, which strictly prefers to play a
�
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regardless of what the opponent plays. Observe, that after any mutant�s entry, in all

focal post-entry con�gurations the incumbent �� will always play a
�
(since a

�
is strictly

dominant for ��). Since the incumbent is always playing a
�
, and (a

�
, a

�
) is a strict Nash

equilibrium of G, mutants that do not play a
�
when they are matched with �� will obtain

strictly less �tness than the incumbents if their population share is su¢ ciently small. But

for mutants that play a
�
whenever they are matched with ��, the incumbents�average

�tness is given by �(a�; a�), and since mutants cannot obtain an average �tness strictly

higher than this when they are matched among themselves (since (a�; a�) is e¢ cient),

they cannot obtain a strictly higher average �tness either. We conclude that (�; a�) is an

NSC. This argument is similar to the one used to prove Proposition 6 of Dekel, Ely, and

Yilankaya (2007).

Remark 5 Observe that the stability of a� in the proof above is strict with respect to any
mutant type who either introduces di¤erent behaviour (plays an action a0 6= a�) or is of
a di¤erent cognitive level (larger than 1). Mutants can achieve the same �tness as the

incumbent only if they are �outcome equivalent� to the incumbents: they have the same

minimal cognitive level as the incumbents and always plays action a
�
like the incumbents.

The results of this section implies as a corollary that being Nash and e¢ cient is

essentially a necessary and su¢ cient condition for an action to be the pure outcome of

an NSC. Formally:

Corollary 1

1. If action a� is both e¢ cient and a strict Nash equilibrium in �tness payo¤s, then it

is the outcome of a pure NSC.

2. If action a� is the outcome of a pure NSC and k2 < �, then it is both e¢ cient and

a Nash equilibrium in �tness payo¤s.

Example 1 For coordination games, like the following Stag Hunt game

S H

S 3; 3 0; 1

H 1; 0 2; 2

;

the above propositions imply that there is an NSC in which (S; S) is the outcome of every

match, and no other pure pro�le can be the unique outcome in an NSC.

5 Multiple Outcome Con�gurations

Move beyond the focus on populations that have settled on a convention, in the form

of a con�guration that induces a unique pure outcome, we now allow for more diverse
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populations, as represented by con�gurations inducing many di¤erent pure or mixed

outcomes. In this setting general results are much harder to come by. However, we

show that stability still implies a limited form of e¢ ciency: the types with the highest

cognitive level in the population have to play e¢ ciently in any NSC. In contrast a NSC no

longer implies Nash equilibrium play. We demonstrate this by a counterexample, based

on Rock-Paper-Scissors.

5.1 E¢ ciency among the Highest-Level Types

The following result states that any type that has the highest level of cognition in the

population must play an e¢ cient action when meeting itself, provided that there is at

least one action that is never played in the current con�guration.

Proposition 4 Let (��; b�) be an NSC in which at least one action is never played.

De�ne �n = max�2C(��) n�. If �0 = (u�0 ; �n) then b
�
�0
(�0) is e¢ cient.

Proof. Assume that �� = b��0 (�0) is not e¢ cient. Thus there are actions a
0; a00 such

that 0:5 � (� (a0; a00) + � (a00; a0)) > � (�; �). Let A+ and A� be the set of actions that

are sometimes and never played in (��; b�), respectively. We consider three mutually

exclusive and jointly exhaustive cases.

Case 1 : Suppose that there is an e¢ cient pro�le (a0; a00) consisting of unused actions

a0; a00 2 A�. (Note that we allow for a0 = a00.) Let �1; �2; and �3 be three mutant types,
all of cognitive level �n, but with three di¤erent kinds of preferences, u1; u2; and u3, such

that for some � 2 R++,

ui
�
a+; â+

�
= 0 for all a+; â+ 2 A+;

ui
�
a�; â�

�
= 0 for all a�; â� 2 A�;

ui
�
a�; a+

�
= �1 for all a� 2 A�, and a+ 2 A+;

ui
�
a+; a�

�
= ��i for all a+ 2 A+ and a� 2 A�:

Note that u1; u2; and u3 cannot be obtained from each other as a¢ ne transformations.

Moreover, we can always �nd an � such that these three types are not among the incum-

bents.

Let the type distribution of the mutants be �0 =
�
1
3
; 1
3
; 1
3

�
. Fix an incumbent of the

highest level �0 = (u�0 ; �n). For any " > 0 there is a focal post entry-con�guration
�
~�;~b
�
,

where ~� = (1� ") � �� + " � �0, such that (1) in any match with an incumbent � 2 C (��)
each of the types �1; �2; and �3 play the same pro�le as �0 does when facing the incumbent
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� 2 C (��), and (2) in matches between mutants, it holds that for each i; j 2 f1; 2; 3g,

b�i (�j) =

8><>:
a0 j = i+ 1 mod 3

a00 j = i� 1 mod 3
�� i = j

:

Thus, against an incumbent � 2 C (��) the mutants earn exactly the same as �0. Against
any of the mutants the type �0 earns � (��; ��), while the mutants earn

��i

��
~�;~b
��
=

�
1� 2 � "

3

�
� � (��; ��) + 2 � "

3
� 0:5 � (� (a; a0) + � (a; a0)) > � (��; ��) ;

against �0. This implies that � is not an NSS in �(~�;~b), and thus (�
�; b�) is not an NSC.

Case 2 : Suppose that there is an e¢ cient pro�le (a0; a00) consisting of used actions

a0; a00 2 A+. (Note that we allow for a0 = a00.) We can use exactly the same construction
as in case 1.

Case 3 : Suppose that there is an e¢ cient pro�le (a0; a00) consisting of one used action

a0 2 A+, and one unused action a00 2 A�. (Hence a0 6= a00.) We need to modify the

construction of preferences used above. Let �1; �2; and �3 be three mutant types, all of

cognitive level �n, but with three di¤erent kinds of preferences, u1; u2; and u3, such that

for some � 2 R++,

ui
�
a+; â+

�
= 0 for all a+; â+ 2 A+;

ui
�
a�; â�

�
= 0 for all a�; â� 2 A�;

ui (a
0; a00) = ui (a

00; a0) = 0;

ui
�
a�; a+

�
= �1 for all a� 2 A�, and a+ 2 A+; such that

�
a�; a+

�
=2 f(a0; a00) ; (a00; a0)g,

ui
�
a+; a�

�
= ��i for all a+ 2 A+ and a� 2 A�; such that

�
a�; a+

�
=2 f(a0; a00) ; (a00; a0)g:

If there are at least two actions being used in (��; b�), so that jA+j � 2, then the subjective
payo¤ matrix for preferences ui contain all of the values 0, �1, and ��i. In this case
u1; u2; and u3 cannot be obtained from each other as a¢ ne transformations. Moreover,

we can always �nd an � such that these three types are not among the incumbents. If

there is only one action that is being used in (��; b�), so that A+ = fa0g, then we have a
pure outcome con�guration. Hence it is without loss of generality to assume that there

are at least two actions being used in (��; b�), so that jA+j � 2.
Let the type distribution of the mutants be �0 =

�
1
3
; 1
3
; 1
3

�
. The rest of the proof is as

in case 1.

The condition that there must be an action that is not played in the stable con�g-

uration in order for the highest types to play e¢ ciently is reminiscent of the condition,

in the evolutionary cheap talk literature (Wärneryd 1991, and Schlag 1993) that there
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must be a message that is not sent in an ESS in order for ESS to imply e¢ ciency. The

similarity is not a coincidence, since the preferences are e¤ectively used as messages in

our setting.

5.2 Cognitive Cost and Nash Behaviour

We can say something about how the cognitive cost function relates to the size of devia-

tions from Nash equilibrium.

Observation 1 Let �n = max�2C(�) n�. If (��; b�) is an NSC then, for all �0 2 C (��),X
�002C(��)

���00 max
a
[� (a; b��00 (�

0))� � (b��0 (�00) ; b��00 (�0))] � k�n+1 � kn(�0): (2)

Proof. The payo¤ to type �0 is

��0 (�
�; b�) =

X
�002C(��)

���00� (b
�
�0 (�

00) ; b��00 (�
0))� kn(�0):

Let u� denote preferences that coincide with material �tness, and consider a mutant
~� = (u�; �n+ 1). The payo¤ to type ~� is at leastX

�002C(��)

���00 max
a
[� (a; b��00 (�

0))� � (b��0 (�00) ; b��00 (�0))]� k�n+1:

To ensure that ~� is unable to invade, (2) must hold.

To interpret this observation note that the left-hand side of (2) measures the average

distance between the actual behaviour of type �0 and the behaviour that would constitute

a best response for �0, in terms of �tness. The distance is measured in terms of the loss of

�tness payo¤. If type �0 plays a best response against all opponents then the left-hand side

is zero. Thus we see that if there are large deviations from playing a Nash equilibrium,

then the highest types must pay a large cognitive cost for a con�guration to be neutrally

stable.

5.3 Application: Rock-Paper-Scissors

Consider the Rock-Paper-Scissors game, with the payo¤ matrix

R P S

R 0; 0 �1; 1 1;�1
P 1;�1 0; 0 �1; 1
S �1; 1 1;�1 0; 0

:
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The following results shows that for any cognitive cost function the environment admits

a heterogeneous NSC in which players of di¤erent cognitive levels co-exist, and non-Nash

pro�les are played in all matches of two individuals of di¤erent types: types with a higher

cognitive level deceive, and defeat, those with a lower cognitive level. Individuals of the

same cognitive level play the unique Nash equilibrium. This means that higher-level

types will obtain the payo¤ 1 more often than lower-level types, and lower-level types

will obtain the payo¤ �1 more often than higher-level types. In the NSC this payo¤

di¤erence is o¤set exactly by the higher cognitive cost paid by higher types. Moreover,

the cognitive cost is increasing so that at some point the cost of cognition outweighs any

payo¤ di¤erences that may arise from the underlying game. This implies that there is an

upper bound on the cognitive sophistication in the population.

Proposition 5 Let G be a Rock-Paper-Scissors game. Let u� denote the (materialistic)
preference such that u� (a; a0) = � (a; a0) for all pro�les (a; a0). Suppose that there is an

N such that

kN � 2 < kN+1,

and suppose that9

1 > kn+1 � kn for all n � N .

There exists an NSC (��; b�), such that C (��) � f(u�; n)gNn=1, and �� is mixed (i.e.
C (��) > 1). The behaviour of the incumbent types is as follows:

b�� (�
0) =

8><>:
(0; 1; 0) if n� > n�0�
1
3
; 1
3
; 1
3

�
if n� = n�0

(1; 0; 0) if n� < n�0

:

Proof. Under the described behavioural policy we have

� (b� (�
0) ; b�0 (�)) =

8><>:
1 if n� > n�0

0 if n� = n�0

�1 if n� < n�0

:

Start by restricting attention to the set of types f(u�; n)g1n=1. That is, for the moment
we use f(u�; n)g1n=1 instead of � as the set of all types. All de�nitions can be amended
accordingly. Lemma 3 in Appendix B implies that there is an NSC (��; b�), such that

C (��) � f(u�; n)gNn=1, and �� is mixed. Lemma 3 establishes that the type game between
the types f(u�; n)gNn=1 behaves much like an N -player version of a Hawk-Dove game: it
has a unique symmetric equilibrium that is in mixed strategies and that is neutrally or

evolutionarily stable, depending on whether the payo¤matrix of the type game is negative

9If we de�ne � as in (1) then we have � = 1, in Proposition 5. Thus the condition that � > kn+1� kn
for all n in Proposition 5, may be viewed as an extension of the condition k2 < � in Proposition 1.
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semi-de�nite, or negative de�nite, with respect to the tangent space.

It remains to show that types not in f(u�; n)g1n=1 are unable to invade. Suppose a
mutant of type (u0; n0) enters. Incumbents of level n > n0 will give the mutant a belief

that induces the mutant to play some action a0 and then play action a0+1mod 3, which is

the incumbents�best response to a0. Thus, against incumbents of level n > n0 the mutant

earns �1. Against incumbents of level n < n0, the mutant will earn at most 1. Against
incumbents of level n0 the mutant earns at most 0. Against itself the mutant (or a group

of mutants for that matter) will earn 0. Thus any mutant of level n0 earns weakly less

than the incumbents of level n0, in any focal post-entry con�guration.

Remark 6 Our analysis is similar to that of Conlisk (2001). Like us, he works with
a hierarchy of cognitive types (though in his case it is �xed and �nite), where higher

cognitive types carry higher cognitive costs. He stipulates that when a high type meets a

low type the high type gets 1 and the low type gets �1. If two equals meet both get 0.
He shows that there is a neutrally stable equilibrium of this game between types (using

somewhat di¤erent arguments than we do), and explores comparative static e¤ects of

changing costs. However, unlike in our model, in Conlisk�s model all individuals have the

same materialistic preferences and the payo¤s earned from deception are not derived from

an underlying game.

6 Type-Interdependent Preferences

In this section we describe an extension of our baseline model, such that the preferences

may depend not only on action pro�les, but also on the opponent�s type.

6.1 Changes to the Baseline Model

We brie�y describe how to amend the model to handle type-interdependent preferences.

Our construction is similar to that of Herold and Kuzmics (2009).

When the preferences of a type depend on the opponent�s type, we can no longer work

with the set of all possible preferences, because it would create problems of circularity

and cardinality.10 Instead, we must restrict attention to a pre-speci�ed set of feasible

preferences. We begin by de�ning �ID as an arbitrary set of labels. Each label is a

pair � = (u; n) 2 �ID, where n 2 N and u is a type-interdependent utility function that
10The circularity comes from the fact that each type contains a preferences component, which is

identi�ed with a utility function de�ned over types (and action pro�les). To see that this creates a
problem if the set of types is unrestricted, let �� be the set of types and suppose that the corresponding
set of preferences, U�, contains all mappings u : A�A��� ! R. The cardinality of this set is jU j � j��j,
but if U� is indeed the set of all mappings u : A � A � �� ! R, then we must have jU�j = jU j � j��j.
Since j��j � jU�j this is a contradiction. See also footnote 10 in Herold and Kuzmics (2009).
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depends on the played action pro�le as well as the opponent�s label,

u : A� A��ID ! R.

Each label � = (u; n) may now be interpreted as a type. The de�nition of u extends to

mixed actions in the obvious way. We use the label u also to describe its associated utility

function u. Thus u (�; �0; �0) denotes the subjective payo¤ that a player with preferences

u earns when she plays strategy � against an opponent with type �0 who plays strategy

�0.

Let UID denote the set of all preferences that are part of some type in �ID, i.e.

UID = fu : 9n 2 N s.t. (u; n) 2 �IDg. For each type-neutral preference u 2 U we can

de�ne an equivalent type-interdependent preference u 2 UID, which is independent of
the opponent�s type; that is, u0 (�; �0; �0) = u00 (�; �0; �00) for each u0; u00 2 UID. Let UN
denote the set of all such type-interdependent versions of the type-neutral preferences of

the baseline model. All of our results allow, but do not require, that UN � UID.
Next, we amend the de�nitions of Nash equilibrium, undominated strategies, and

deception equilibrium. The best-reply correspondence now takes both strategies and

types as arguments: BRu (�0; �0) = argmax�2�(A) u (�; �0; �0). Accordingly we adjust the

de�nition of the set of Nash equilibria,

NE (�; �0) = f(�; �0) 2 �(A)��(A) : � 2 BRu (�0; �0) and �0 2 BRu0 (�; �)g ;

and the set of undominated strategies

� (�) = f� 2 �(A) : there exists �0 2 �(A) and �0 2 �ID such that � 2 BRu (�0; �0)g :

Finally, we adapt the de�nition of deception equilibrium. Given two types �; �0 with

n� > n�0 ; a strategy pro�le (~�; ~�0) is a deception equilibrium if

(~�; ~�0) 2 arg max
�2�(A);�02�(�0)

u� (�; �
0; �0) :

Let DE (�; �0) be the set of all such deception equilibria. The rest of our model remains

unchanged.

6.2 Pure Maxmin and Minimal Fitness

The pure maxmin and minmax values give a minimal bound to the �tness of an NSC.

Given a game G = (A; �) ; de�ne M
¯
( �M) as its pure maxmin (minmax) value:

M
¯
= max

a12A
min
a22A

� (a1; a2) ;
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�M = min
a22A

max
a12A

� (a1; a2) :

The pure maxmin value M
¯
is the minimal �tness payo¤ a player can guarantee herself in

the sequential game in which she plays �rst, and the opponent replies in an arbitrary way

(i.e. not necessarily in a way that maximizes the opponent�s �tness.) The pure minmax

value �M is the minimal �tness payo¤ a player can guarantee herself in the sequential

game in which her opponent plays �rst an arbitrary action, and she best-replies to the

opponent�s pure action. It is immediate that M
¯
� �M; and that the minmax value in

mixed actions is between these two values.

Let aM
¯
be a maxmin action of a player; an action aM

¯
guarantees that the player�s

payo¤ is at least M
¯
,

aM
¯
2 argmax

a12A
min
a22A

� (a1; a2) :

The following simple lemma (which holds also in the baseline model with type-neutral

preferences) shows that the maxmin value is a lower bound on the �tness payo¤ obtained

in an NSC. The intuition is that if the payo¤ is lower, then a mutant of cognitive level

1, with preferences such that the maxmin action aM
¯
is dominant, will outperform the

incumbents.

De�nition 9 Given a pure action a� 2 A; let ua� 2 UN be the (type-neutral) preferences
in which the player obtains a payo¤ of 1 if she plays a� and a payo¤ of 0 otherwise (i.e.

a� is a dominant action regardless of the opponent�s preferences).

Lemma 2 Assume that (uaM¯ ; 1) 2 �ID. Let (�; b) be an NSC. Then �(�; b) � M
¯
.

Proof. Assume to the contrary that �(�; b) <M
¯
. Consider a monomorphic group of

mutants with type (uaM¯ ; 1) : The fact that aM
¯
is a maxmin action implies that

�(uaM¯ ;1)

��
~�;~b
��
� M
¯

in any post-entry type distribution. Furthermore, due to continuity it holds that��
�
~�;~b
�
<M
¯

for any � 2 C (�) in all su¢ ciently close focal post-entry con�guration. This contradicts
� being an NSS in �(~�;~b), and thus it contradicts (�; b) being an NSC.

6.3 Characterisation of Pure Stable Con�gurations

In this subsection we show that, essentially, a pure action can be an outcome of an

ESC if and only if it is a Nash equilibrium that yields each player a payo¤ above her

minmax/maxmin value.

We �rst observe that the proofs of Lemma 1 and Proposition 1 hold with minor

adaptations also in the type-interdependent setup. Thus, if (�; a�) is a pure NSC, then:
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(1) all incumbents have cognitive level 1, and (2) a� is a symmetric Nash equilibrium,

provided that k2 < �.

Let a �M be a minmax action, i.e. an action that guarantees that the opponent�s payo¤

is at most �M ;

a �M 2 arg min
a22A

max
a12A

� (a1; a2) :

De�nition 10 Given any two actions ~a; ~a0 2 A; let u~a~a0 be the discriminating preferences
de�ned by the following utility function: For all a0,

u~a~a0 (a; a
0; �0) =

8><>:
1 if u�0 = u~a~a0 and a = ~a

1 if u�0 6= u~a~a0 and a = ~a0

0 otherwise

:

In words, the preferences u~a~a0 are such that ~a is a dominant action against an opponent

with the same preferences, and ~a0 is the dominant action against all other opponents.

The following result shows that any action a� that is both a symmetric Nash equilib-

rium and yields a payo¤ above the minmax value can be implemented as the unique pure

outcome of an ESC. (Recall that � is used to denote that probability distribution � puts

all weight on �, i.e. � (�) = 1.)

Proposition 6 Assume that
�
ua�a �M ; 1

�
2 �ID. If action a� is a symmetric Nash equilib-

rium and � (a�; a�) > �M; then
��
ua�a �M ; 1

�
; a�
�
is an ESC.

Proof. Suppose that all incumbents are of type
�
ua�a �M ; 1

�
. Note that in all focal

post-entry con�gurations the incumbent
�
ua�a �M ; 1

�
always plays either a

�
or a �M .

Against a mutant (�; 1) with cognitive level 1, an incumbent plays a
�
if and only if

u (�) = ua�a �M . The fact that � (a
�; a�) > �M implies that any mutant � 6=

�
ua�a �M ; 1

�
earns a

strictly lower payo¤ against the incumbents in any post-entry con�guration. As a result,

if the frequency of mutants is su¢ ciently small, then they are strictly outperformed.

Against a mutant (�; n) with cognitive level n > 1, an incumbent may play either

a
�
or a �M . Since a� is a symmetric Nash equilibrium and � (a�; a�) > �M the mutants

earn at most � (a�; a�) in matches against incumbents. Consequently, as the fraction of

mutants vanishes the average �tness of mutants is weakly less than � (a�; a�)�kn, and the
average �tness of the incumbents is � (a�; a�). Since k is strictly increasing this implies

that
��
ua�a �M ; 1

�
; a�
�
is an ESC.

The results of this section imply the following corollary, which characterises pure

outcomes of stable con�gurations in terms of being Nash equilibria that yield payo¤s

above the pure maxmin/minmax values.
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Corollary 2

1. If action a� is a Nash equilibrium and � (a�; a�) > �M; then it is the pure outcome

of an ESC.

2. If action a� is a pure outcome of an NSC and k2 < �, then a� is a symmetric Nash

equilibrium and � (a�; a�) �M
¯
:

6.4 Application: In-Group Cooperation and Out-Group Ex-

ploitation

The following table represents a family of Hawk-Dove games. When both players play D

(Dove) they earn 1 each and when they both play H (Hawk) they earn 0. When a player

plays H against an opponent playing D, she obtains an additional gain of g > 0 and the

opponent incurs a loss of l 2 (0; 1).11

H D

H 0; 0 1 + g; 1� l
D 1� l; 1 + g 1; 1

: (3)

It is natural to think of mutual play of D as the cooperative outcome. We de�ne prefer-

ences that induce players to cooperate with their own kind and to seek to exploit those

who are not of their own kind.

De�nition 11 Let un denote the preferences such that:
(1) If u�0 = un and n�0 = n then un (D; a0; �0) = 1 and un (H; a0; �0) = 0 for all a0.

(2) If u�0 6= un or n�0 6= n then un (H;D; �0) = 2 , un (H;H; �0) = 1, and un (D;D; �0) =
un (D;H; �0) = 0.

Thus, facing someone who is of the same type, an individual with un-preferences

strictly prefers cooperation, in the sense of playing D. When facing someone who is

not of the same type, an individual with un-preferences prefers the exploitative outcome

(H;D), and after that she prefers the destructive outcome (H;H) over the remaining

outcomes.

Under natural assumptions on the cognitive cost function we can construct an ESC in

which only individuals with preferences from fuig1i=1 are present. Individuals of di¤erent
cognitive levels co-exist, and non-Nash pro�les are played in all matches between equals.

11If g = l < 1 then we may interpret the game as a mini-version of the Nash demand game, representing
a simple bargaining interaction: the players have to agree how to divide a resource that is worth two
�tness points. If both play D, they divide the resource equally. Playing H (bargaining aggressively)
against someone playing D, yields a gain of g > 0, and imposes an equal loss on the opponent. If both
players are aggressive they do not reach an agreement, and so the resource is lost.
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When individuals of the same type meet, they play mutual cooperation (D;D). When

individuals of di¤erent types meet, they play (H;D) or (D;H).

Proposition 7 Let G be the game represented in (3), where g > 0 and l 2 (0; 1). Suppose
that there is an N such that kN � l + g < kN+1, and suppose that g > kn+1 � kn for all
n � N.
(i) If g > l then there exists an ESC (��; b�), such that C (��) � f(un; n)gNn=1, and ��

is mixed (i.e. C (��) > 1), and the behaviour of an incumbent � 2 C (��) facing another
incumbent �0 2 C (��) is given by

b�� (�
0) =

(
D if n� � n�0
H if n� < n�0

: (4)

(ii) If g = l then there exists an NSC (��; b�), such that C (��) � f(un; n)gNn=1, and
�� is mixed (i.e. C (��) > 1), and the behaviour among incumbents is given by (4).

(iii) If g < l then there does not exist any NSC (��; b�), such that C (��) � f(un; n)g1n=1.

Proof. The proof is similar to the proof of Proposition 5. Under the described

behavioural policy we have, for �; �0 2 f(un; n)g1n=1,

� (b� (�
0) ; b�0 (�)) =

8><>:
1 + g if n� > n�0

1 if n� = n�0

1� l if n� < n�0

:

Start by restricting attention to the set of types f(un; n)g1n=1. That is, for the moment,
let f(un; n)g1n=1, instead of �ID, be the set of all types. All de�nitions can be amended
accordingly. Under this restriction on the set of types, the desired results (i)�(iii) follow

from Lemma 3 in Appendix B. For example, to see that Lemma 3 implies part (i) for the

restricted type set, note that g > l implies that 2w < t + s, and g > kn+1 � kn implies
that t�w > kn+1� kn, in the language of Lemma 3. The arguments for (ii) and (iii) are
analogous.

Next, allow for a larger set of types �ID, such that f(un; n)g1n=1 � �ID. The fact that
part (iii) of Proposition 7 holds for the restricted set of types implies that it also holds

for any larger set of types. It remains to prove parts (i) and (ii) for the full set of types.

We prove only part (i). The proof of part (ii) is very similar.

Consider a population consisting exclusively of types from the set f(un; n)g1n=1, and
assume that the type distribution of these incumbents, together with the behaviour policy

(4), would have constituted an ESC if the type set had been restricted to f(un; n)g1n=1.
Suppose a mutant of type (u0; n0) =2 f(un; n)g1n=1 enters. If it is the case that type (un; n0)
is not among the incumbents, then by the de�nition of an ESC, it must earn strictly

less against the incumbents than what the incumbents earn against each other. Thus it
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is su¢ cient to show that the mutant of type (u0; n0) earns less than what a mutant or

incumbent of type (un; n0) would earn.

Against incumbents of level n > n0 a mutant of type (u0; n0) earns at most 1� l, and
a mutant or incumbent of type (un; n0) earns 1� l. Against incumbents of level n = n0 a
mutant of type (u0; n0) earns at most 1 � l, and a mutant or incumbent of type (un; n0)
earns 1. Against incumbents of level n < n0 a mutant of type (u0; n0) earns at most

1 + g, and a mutant or incumbent of type (un; n0) earns 1 + g. In all cases, any mutant

(u0; n0) =2 f(un; n)g1n=1 earns strictly less than what a mutant or incumbent of type (un; n0)
earns. Hence if mutants are su¢ ciently rare they will earn strictly less than incumbents

in any focal post-entry con�guration.

7 Conclusion

We have developed a model in which preferences co-evolve with the ability to detect

others�preferences and misrepresent one�s own preferences. We do this by allowing for

heterogeneity with respect to costly cognitive ability. The Nash assumption that has char-

acterised the indirect evolutionary approach is complemented by a more Machiavellian

notion of deception equilibrium.

We obtain particularly clean results for populations represented by pure con�gura-

tions, in in which the same pure outcome is played in all matches. For type-neutral

preferences, a pure con�guration is essentially a neutrally stable con�guration (NSC),

if and only if the induced action pro�le is both e¢ cient and a Nash equilibrium. For

type-interdependent preferences, being a Nash equilibrium is still a necessary and su¢ -

cient condition for stability, but instead of e¢ ciency the critical condition is that payo¤s

are above the pure minmax and maxmin payo¤s. The results are di¤erent in the case of

con�gurations that induce play of a non-pure outcome. Regardless of whether preferences

are type-neutral or type-interdependent, we are able to construct stable con�gurations in

which some matches result in non-Nash outcomes, and in which di¤erent cognitive levels

coexist.

Our model assumes a very powerful form of deception. This allows us to derive

sharp results that clearly demonstrate e¤ects of endogenising observation, and introducing

deception. We expect similar but weaker e¤ects to be present when deception takes a

weaker form. Speci�cally, we think that the �Bayesian�deception is an interesting model

for future research: each incumbent type is associated with a signal, agents with high

cognitive levels can mimic the signals of types with lower cognitive levels, and agents

maximise their preferences given the received signals and the correct Bayesian inference

about the opponent�s type.

In a companion paper (Heller and Mohlin 2014) we study environments in which play-

ers are randomly matched, and make inferences about the opponent�s type by observing
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her past behaviour (rather than observing the type directly as is standard in the �indi-

rect evolutionary approach�). In future research, it would be interesting to combine both

approaches and allow the observation of the past behaviour to be in�uenced by deception.

Most papers taking the indirect evolutionary approach study the stability of prefer-

ences de�ned over material outcomes. Moreover, it is common to restrict attention to

some parameterised class of such preferences. Since we study preferences de�ned on the

more abstract level of action pro�les (or the joint set of action pro�les and opponent�s

types in the case of type-interdependent preferences) we do not make predictions about

whether some particular kind of preferences over material outcomes, from a particular

family of utility functions, will be stable or not. It would be interesting to extend our

model to such classes of preferences. Furthermore, with preferences de�ned over material

outcomes it would be possible to study co-evolution of preferences and deception not only

in isolated games, but also when individuals play many di¤erent games using the same

preferences. We hope to come back to these questions and we invite others to employ

and modify our framework in these directions.
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A Appendix: Uniform Deception

In this section we describe how to adapt our model in a way that requires players to

use the same mixed action in their deception e¤orts towards all opponents with lower

cognitive levels. We implement this change by replacing the de�nition of con�guration

with a new notion of con�guration with uniform deception.

De�nition 12 A con�guration with uniform deception is a pair (�; b) where � 2 �(U)
is a type distribution, and b : C (�)� C (�) �! �(A) is a behavioural policy such that

1. For each type � 2 C (�) ; there exists ~� (�) that satis�es

~� (�) 2 arg max
�2�(A)

0@ X
�02C(�); n�0<n�

� (�0) � max
�02BRu(�)

u� (�; �
0)

1A ; and
2. For each �; �0 2 C (�) :

n� = n�0 =) (b� (�
0) ; b0� (�)) 2 NE (�; �0) ; and

n� > n�0 =) b�0 (�) 2 BRu�0 (~� (�)) :

We interpret ~� (�) as the strategy that lower levels are deceived into believing is being

played by type �; and we interpret b� (�0) as the strategy of type � when being matched

with type �0.

We restrict our de�nition of a neutrally stable con�guration to a con�guration with

uniform deceptions:

De�nition 13 A con�guration (�; b) is a neutrally stable con�guration (NSC) with uni-
form deception, if for every �0 2 �(�), there is some �" 2 (0; 1) such that if

�
~�;~b
�
, where

~� = (1� ") � �+ " � �0, is a focal con�guration with uniform deceptions, then � is an NSS

in the type game �(~�;~b).

An analogous change can be made to the setup of interdependent preferences. All

other details of the model are unchanged. It is relatively straightforward to see that all

our results hold also in this setup of uniform deceptions, with minor adaptations to the

proofs.
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B Appendix: Result on Stable Heterogeneous Pop-

ulations

Consider a con�guration (�; b), consisting of a type distribution with (�nite) support

C (�) � f(u; n)g1n=1, and behaviour policies such that

� (b� (�
0) ; b�0 (�)) =

8><>:
t if n� > n�0

w if n� = n�0

s if n� < n�0

: (5)

Thus t is the payo¤ that a player of type � earns when deceiving an opponent of type �0,

and s is the payo¤ earned by the deceived party. When two individuals of the same type

meet they earn w. Our �rst lemma concerns the type game �(�;b) that is induced by a

con�guration (�; b), such that C (�) � f(u; n)g1n=1 and with behaviour policies given by
(5). Although we have normalised k1 = 0 in the main text, we do not omit reference to

k1 in what follows. This is done to simplify the proofs.

Lemma 3 Suppose t � w � s. Suppose that there is an N such that

kN � k1 � t� s < kN+1 � k1, (6)

and suppose that

t� w > kn+1 � kn for all n � N . (7)

Consider the type game �(�;b) induced by a con�guration (�; b) with a type distribution

such that C (�) � f(u; n)g1n=1, and with behaviour policies given by (5).
(i) If 2w < s + t then �(�;b) has a unique ESS �� 2 �(C (�)), which is mixed, i.e.

C (��) > 1, and in which no type above N is present, i.e. C (��) � f(u; n)gNn=1.
(ii) If 2w = s+ t then �(�;b) has an NSS �� 2 �(C (�)), which is mixed, i.e. C (��) >

1, and in which no type above N is present, i.e. C (��) � f(u; n)gNn=1.
(iii) If 2w > s+ t then �(�;b), admits no NSS and hence no ESS.

We now prove this result, starting with the following lemma:

Lemma 4 (u;N + 1) earns strictly less than (u; 1) at all population states, and (u;N)
earns at least as much as (u; 1) at least at some population state.

Proof. Since s � w � t this follows from t� kN+1 < s� k1 and s� k1 � t� kN .
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For this reason it is su¢ cient to consider the type distributions with support in

f(u; n)gNn=1. The payo¤s for a type game with all these types present are

(u; 1) (u; 2) (u; 3) : : : (u;N � 1) (u;N)

(u; 1) w � k1 s� k1 s� k1 : : : s� k1 s� k1
(u; 2) t� k2 w � k2 s� k2 : : : s� k2 s� k2
(u; 3) t� k3 t� k3 w � k3 : : : s� k3 s� k3
...

...
...

...
. . .

...
...

(u;N � 1) t� kN�1 t� kN�1 t� kN�1 : : : w � kN�1 s� kN�1
(u;N) t� kN t� kN t� kN : : : t� kN w � kN

,

or in matrix form

A =

0BBBBBBBBB@

w � k1 s� k1 s� k1 : : : s� k1 s� k1
t� k2 w � k2 s� k2 : : : s� k2 s� k2
t� k3 t� k3 w � k3 : : : s� k3 s� k3
...

...
...

. . .
...

...

t� kN�1 t� kN�1 t� kN�1 : : : w � kN�1 s� kN�1
t� kN t� kN t� kN : : : t� kN w � kN

1CCCCCCCCCA
.

Inspecting the matrix A we make the following observation:

Lemma 5 Consider the game with payo¤ matrix A. Suppose (7) holds.

1. (u; n+ 1) is the unique best response to n for all n 2 f1; ::; N � 2g.

2. If t� kN > s� k1 then (u;N) is the unique best reply to (u;N � 1).

3. If t� kN = s� k1 then (u;N) and (u; 1) are the only two best replies to (u;N � 1).

4. (u; 1) is the unique best response to (u;N).

Proof. Condition (7) implies that t�kN+1 > w�kN , and the de�nition of N implies

t� kN+1 < s� k1. Taken together this implies that w � kN < s� k1, which means that
(u; 1) is the unique best response to (u;N).

The de�nition of N entails t � kN � s � k1. If t � kN > s � k1 then (u;N) is the
unique best reply to (u;N � 1). If t � kN = s � k1 then (u;N) and (u; 1) are the only
two best replies to (u;N � 1). Furthermore, (7) implies that (u; n+ 1) is the unique best
response to (u; n) for all n 2 f1; ::; N � 2g.

It is an immediate consequence of the above lemma that all Nash equilibria of A

are mixed; i.e. that they have more than one type in their support. Next, we examine

the stability properties of such equilibria. If A is negative de�nite with respect to the
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tangent space, i.e. if v � Av < 0 for all v 2 Rd0 = fv 2 Rd :
Pd

i=1 vi = 0g, v 6= 0,
then A has a unique ESS, which is also the unique Nash equilibrium of the game; see

Hofbauer and Sigmund (1988), p. 72. If A is negative semi-de�nite with respect to the

tangent space, i.e. if v �Av � 0 for all v 2 Rd0, then A has an NSS, which need not be

unique. Moreover, the set of Nash equilibria coincides with the set of NSS and constitutes

a nonempty convex subset of the simplex (Hofbauer and Sandholm 2009, Theorem 3.2).

One can show:

Lemma 6 If 2w � (�) s+t then A is positive (negative) semi-de�nite w.r.t. the tangent

space.

Proof. Let

K =

0BBBB@
�k1 �k1 : : : �k1
�k2 �k2 : : : �k2
...

...
. . .

...

�kN �kN : : : �kN

1CCCCA ; B =

0BBBB@
w s : : : s

t w : : : s
...

...
. . .

...

t t : : : w

1CCCCA ,

so that

A = B+K.

Note that v0Kv = 0 for all v 2 RN0 , v 6= 0, so that v0Av < 0 for all v 2 RN0 , v 6= 0, if and
only if v0Bv < 0 for all v 2 RN0 , v 6= 0. Moreover, note that v0Bv < 0 for all v 2 RN0 ,
v 6= 0, if and only if v0�Bv < 0 for all v 2 RN0 , v 6= 0, where

�B =
1

2

�
B+BT

�
:

One can transform the problem to one of checking negative de�niteness with respect to

RN�1 rather than the tangent space RN0 ; see, e.g. Weissing (1991). This is done with the
N � (N � 1) matrix P de�ned by

pij =

8><>:
1 if n = j and n; j < N

0 if n 6= j and n; j < N
�1 if n = N

.

We have

P0�BP =

�
w � 1

2
(s+ t)

�
(I+ 110) ,

where 1 is an N � 1-dimensional vector with all entries equal to 1, and I is the identity
matrix. The matrix P0�BP has one eigenvalue (of multiplicity N � 1) that is equal to
2w� (s+ t). Finally, note that this eigenvalue is non-negative if and only if 2w � (s+ t).
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It follows that if 2w � s + t then the game with payo¤ matrix A admits an NSS. If

2w > s+ t then the game does not have a mixed NSS. We are now able to prove Lemma

3.

Proof of Lemma 3. (i) If 2w < s+ t then by Lemma 6 A is negative de�nite w.r.t.

the tangent space, implying that it has a unique ESS. Lemma 5 implies that there can be

no pure Nash equilibria (and hence no pure ESS). ThusA has a unique Nash equilibrium,

which is mixed.

By Lemma 4, type (u;N + 1), and higher types of higher levels earn strictly less than

(�; 1). Thus regardless of whether (�; 1) is in the support of the ESS of A, type (u;N + 1)

and types of higher levels earn strictly less than the strategies in the support of the ESS

of A.

(ii) If 2w = s+ t then A is both positive and negative semi-de�nite w.r.t. the tangent

space. In this case A does not have an ESS but it does have a set of NSSs, all of which

are Nash equilibria. Moreover, we know that A has no pure NE, and so all NSS are

mixed. Again Lemma 4 rules out higher-level types.

(iii) If 2w < s + t then A is positive de�nite w.r.t. the tangent space, implying that

it has no NSC.
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