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Abstract

The standalone structural exchange rate risk depends on the product of the

future foreign currency earning and the change in the exchange rate. Its Value-

at-Risk (VaR) implying an extremely high survival probability, usually exceeding

99.9%, is used in practice to determine its economic capital. This paper proposes a

new conditional method to calculate such extreme VaRs that is shown to be more

efficient than the conventional method of directly simulating from the joint distri-

bution of the future foreign currency earning and the change in the exchange rate.

The intuition of the proposed method is that, conditional on either the future for-

eign currency earning or the change in the exchange rate, the distribution of the

structural exchange rate risk is usually analytically tractable. The proposed method

can be implemented by solving a nonlinear equation via a simple one-dimensional

numerical integration and is generally applicable under the distributional assump-

tions commonly employed in practice.
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1 Introduction

The structural exchange rate risk of a financial institution arises from its foreign currency

denominated earnings or from the foreign currency capital deployed in its foreign branches

and subsidiaries. Let E0 be the current unhedged foreign currency exposure and F0 be the

current exchange rate expressed as domestic currency per unit of foreign one. Suppose the

future foreign currency earning over the relevant horizon is X and the exchange rate at

the end of the horizon is F1. The structural exchange rate risk, denoted by Z, is measured

as the change in the foreign currency exposure denominated in domestic currency, that

is, Z = (E0 +X)F1 − E0F0. In practice, it is often convenient to rewrite the structural

exchange rate risk as Z = (E0 +X)Y + F0X, where Y = F1 − F0 is the change of

the exchange rate. The value-at-risk (VaR) of Z implying an extremely high survival

probability, usually exceeding 99.9%, is calculated to determine the economic capital for

the structural exchange rate risk (Papaioannou (2006))1.

Statistical estimation of the joint distribution of the foreign currency earning X and

the change of the exchange rate Y is usually limited by data availability in practice.

Historical data on exchange rate is readily available. But a consistent history of data on

a bank’s foreign currency earning is usually not, either due to limitations of its internal

data collection or structural changes of its foreign business. In this case, expert judgment

is usually applied to determine the foreign-currency-denominated economic capital of

the bank’s foreign operation at a given confidence level. The distribution of the bank’s

foreign currency earning X is then calibrated to match the economic capital from expert

judgment. Assumption of the correlation or tail dependence between X and the change

in exchange rate Y is also made through expert judgment. Combining these assumptions

with the distribution of Y calibrated from the history of exchange rate produces the joint

distribution of X and Y . In this paper, we take these calibrated marginal and joint

distributions of X and Y as given and study how to efficiently estimate the extreme VaRs

1The confidence level of the economic capital is usually calibrated to be consistent with the default rate
of a financial institution’s target credit rating (KPMG (2004)). Jackson, Perraudin, and Sapporta (2004)
finds that the capital charges of most banks imply survival probabilities significantly higher than 99.9%,
which is consistent with the confidence level of the standalone structural exchange rate risk commonly
used among banks.
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based on them.

Theoretically the estimation of the VaR for the structural exchange rate risk is straight-

forward if its distribution admits a closed-form expression. Once the assumptions on the

distributions of the foreign currency earning X and the change of the exchange rate Y

are made, the structural exchange rate risk Z can be viewed as a product of affine trans-

formations of X and Y in the form of Z = (E0 +X) (F0 + Y ) − E0F0. The cumulative

distribution function (CDF) of Z at the extreme probabilities can be used to solve for the

VaRs. Unfortunately the distribution of such a product of two random variables X and

Y is often not available in closed form when X and Y follow the distributions commonly

used in practice.

For the case of X and Y being normal variables, Craig (1936) first provides the dis-

tribution of the product of two independent normal variables, whose CDF is proportional

to the difference of two integrals over the domain (0,∞) and (−∞, 0) respectively. The

convergence speed of numerical computation of the CDF is slow. See Seijas-Macias and

Oliveira (2012) for the details. The product of two correlated Student’s t variables is

studied in Wallgren (1980), in which the two Student’s t variables are constructed in a

particular way as two correlated normal variables with the same variance divided by the

same χ2 distributed scalar. The resulting CDF is expressed as an integral and can be

found in Kotz and Nadarajah (2004).

In the absence of a closed-form expression for the distribution of the structural ex-

change rate risk, the Monte Carlo simulation method is a convenient alternative. Draws

of X and Y from their joint distribution can be used to produce simulations of Z, whose

tail percentiles are valid estimates of the VaRs. Nevertheless, for the extreme VaRs such

as the 99.99% VaR, which is commonly used for economic capital calculation, this direct

simulation method is vastly inefficient. Depending on the parameters of the joint distri-

bution of X and Y , an impractically large number of simulations would be required to

produce a stable estimate of the extreme VaRs whose numerical error across independent

runs are within acceptable range.

In this paper, I propose an alternative method, termed conditional method, to calculate

3



the extreme VaRs of the structural exchange rate risk that is shown to be more efficient

than the direct simulation method. The intuition of the proposed method is to use the fact

that, conditional on either the foreign currency earning X or the change of exchange rate

Y , the structural exchange rate risk Z becomes an affine function of the other random

variable. This conditional distribution of Z usually has a closed-form expression and

can be used to eliminate the need of simulations via a simple one-dimensional numerical

integration. The details of the proposed conditional method can be found in Section

2. A numerical example is provided in Section 3 to compare the efficiency of the direct

sampling method and the proposed conditional method. Section 4 concludes.

Though this conditional method focuses on the standalone structural exchange rate

risk, the analysis of this paper could be incorporated into an integrated structural ex-

change rate risk framework in which the co-movement of the exchange rate risk with

other risk factors such as market, interest rate and operational risks are integrated.

2 Estimating the Extreme Value-at-Risks

Denote the marginal and joint densities of the foreign currency earning X and the change

in exchange rate Y by fX(x), fY (y) and fXY (x, y) respectively. For a given probability

p, the corresponding VaR, denoted by z∗, satisfies Prob(Z < z∗) = p. Let fZ(z) be the

marginal density of Z. It follows that the VaR z∗ is the solution to the equation:

∫ z∗

−∞
fZ(z)dz = p (1)

Let fZ(z|x) be the density of Z conditional on X = x. By the law of total probability,

we have the equation:

fZ(z) =

∫ +∞

−∞
fZ(z|x)fX(x)dx (2)

Inserting Equation (2) into Equation (1) produces
∫ z∗

−∞

∫ +∞
−∞ fZ(z|x)fX(x)dxdz = p.
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Changing the order of the integrals results in the equation:

∫ +∞

−∞

(∫ z∗

−∞
fZ(z|x)dz

)
fX(x)dx = p (3)

Since Z becomes an affine function of Y conditional on X = x, it follows that

∫ z∗

−∞
fZ(z|x)dz = Prob(Z < z∗|X = x)

= Prob (F0x+ (E0 + x)Y < z∗|X = x)

=



Prob
(
Y < z∗−F0x

E0+x

∣∣∣X = x
)

if x > −E0

1− Prob
(
Y < z∗−F0x

E0+x

∣∣∣X = x
)

if x < −E0

1 if x = −E0, z
∗ > −F0E0

0 if x = −E0, z
∗ ≤ −F0E0

(4)

Given the joint distribution fXY (x, y), the conditional distribution fY (y|x) usually has a

closed-form expression. For example, when X and Y are jointly normally distributed, it

is well known that the conditional distribution fY (y|x) is normal as well. On the other

hand, if X and Y follow a bivariate Student’s t distribution, the conditional distribution

fY (y|x) is Student’s t (Roth (2013)). Therefore the conditional CDF Prob (Y < y|X = x)

is available in close form. Denote this conditional CDF by FY (y|x) and insert it into

Equations (3) and (4). We have the equation:

∫ +∞

−∞

(
FY

(
z∗ − F0x

E0 + x

∣∣∣∣x) I{x>−E0} +

(
1− FY

(
z∗ − F0x

E0 + x

∣∣∣∣x)) I{x<−E0}

)
fX(x)dx

=p (5)

where I{x>−E0} = 1 if x > −E0 and 0 otherwise, I{x<−E0} = 1 if x < −E0 and 0 otherwise.

To numerically approximate the integral in Equation (5), one could use the simple

rectangle rule2. Let {xi}ni=0 be a grid of points on the real line. The VaR z∗ can be

2More sophisticated methods such as the Gauss-Hermite quadrature method could be applied to
approximate the integral in Equation(5) and is likely to be more numerically efficient than the simple
rectangle rule.
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estimated by solving the equation3:

n∑
i=1

(
FY

(
z∗ − F0xi

E0 + xi

∣∣∣∣xi

)
I{xi>−E0} +

(
1− FY

(
z∗ − F0xi

E0 + xi

∣∣∣∣xi

))
I{xi<−E0}

)
f(xi)(xi − xi−1)

=p (6)

To decide the starting point x0 and the ending point xn of the grid, one could apply the

Chebyshev’s inequality Prob
(
|X − µx| ≥ σx√

π

)
≤ π, where µx is the mean of X, σx is the

standard deviation of X and π is a small number indicating the user-selected tolerance

level of the approximation error. If x0 = µx − σx√
π
and xn = µx +

σx√
π
, the Chebyshev’s

inequality guarantees that this grid covers more than (1−π)×100% of the possible values

of X. Combined with a sufficiently small step size xi − xi−1, the grid should approximate

the integral in Equation(5) reasonably well in practical applications.

In the above discussion, the foreign currency earning X is used as the conditioning

variable. Alternatively, the change in exchange rate Y could be conditioned on as well. In

practice, the variable that has the smaller variance should be preferred to be conditioned

on. The proposed method depends crucially on the use of the conditional CDF FY (y|x)

and hence is termed “conditional” method. Compared with the direct simulation method,

the conditional method avoids the randomness of simulation that usually induces large

numerical error for estimates of extreme VaRs. Relative to the method of analytically

deriving the distribution of the structural exchange rate risk Z, the conditional method

has the advantage of being simple and general so long as the conditional distribution of

the foreign currency earning X or the change of exchange rate Y is available in closed

form.

3 A Numerical Example

In this section, a numerical example is studied to compare the proposed conditioning

method for estimating extreme VaRs. The foreign currency earning X is assumed to

3Note the singular case when xi = −E0. This singular case can be handled by moving the grid point
slightly above or below −E0.
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follow a standard normal distribution N(0, 1)(σx = 1). The change of exchange rate Y

is assumed to follow the normal distribution N(0, 0.122)(σy = 0.12) and is based on the

annual change of historical USD per Euro from January 1999 to August 2014. Hence this

example could be viewed as the 1-year structural Euro risk for a hypothetical US based

bank. The correlation between X and Y is assumed to be ρ = −0.5 considering that

appreciation of Euro is likely to be associated with higher Euro earning for the US bank.

The current USD per Euro F0 is 1.3 and the the current Euro exposure E0 is e1 unit.

Given this setup, the 0.05% and 0.01% VaRs that imply survival probabilities of 99.95%

and 99.99% respectively are estimated.

Even for this simple setup in the above example, the distribution of the structural

USD risk Z = F0X + (E0 +X)Y is rather involved4. We focus on the comparison of the

proposed conditional method with the direct simulation method.

For the direct simulation method, we generate n simulations from the bivariate normal

distribution of X and Y and calculate the resulting 0.0005-th and 0.0001-st percentiles

of the resulting sample of Z as an estimate of the VaRs. We repeat this simulation inde-

pendently for 1,000 times. The VaR estimates across the 1,000 independent repetitions

provide an assessment of the numerical stability of the direct simulation method. We

compare two different simulation sizes n = 1 million and 10 millions. Table 1 provides

the resulting mean and 95% confidence interval of the estimated 0.05% and 0.01% VaRs

across the 1,000 independent repetitions.

When the simulation size n = 1 million, a single run of the direct simulation method

is likely to produce 0.05% VaR estimate ranging from -$4.81 units to -$4.73 units based

on its 95% confidence interval, while the true 0.05% VaR is about -$4.77 units. For the

more extreme 0.01% VaR, the possible estimates in a single run of the direct simulation

method could diverge even further, from -$5.60 units to -$5.42 units based on its 95%

confidence interval. When the simulation size n increases to 10 millions, which is a rather

4To apply the result in Craig (1936) which is for the product of two independent normal vari-
ables, we can define W = −ρσy

σx
X + Y , which is independent of X by construction, and rewrite

Z =
(
F0 +

ρσy

σx
E0

)
X + E0W + XW +

ρσy

σx
X2. Even though we know the CDF of XW based on

Craig (1936), the resulting CDF of Z is clearly complicated and is not available in closed form.
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Table 1: Results of Direct Simulation Method
Panel (a): Simulation Size = 1 Million

0.05% VaR 0.01% VaR
Mean -4.7713 -5.5117
95% Confidence Interval (-4.8109, -4.7309) (-5.6007, -5.4241)

Panel (b): Simulation Size = 10 Million
0.05% VaR 0.01% VaR

Mean -4.7723 -5.5113
95% Confidence Interval (-4.7852, -4.7593) (-5.5405, -5.4840)

large simulation sample rarely used in practice, the 0.01% VaR estimate could still show

about $0.06 units of variation based on its 95% confidence interval.

For the proposed conditional method, we select the change of exchange rate Y as the

conditioning variable since its variance is smaller than that of the foreign currency earning

X. It follows that X|Y = y ∼ N
(
µx|y, σ

2
x|y

)
, where µx|y = ρσx

σy
y and σx|y =

√
1− ρ2σx.

Armed with the conditional distribution of X, Equation (5) can be adaptd to solve for

the VaRs. Nevertheless, in the case of a bivariate normal distribution for X and Y ,

the distribution of the structural exchange rate risk Z conditional on Y = y is directly

available as N
(
µz|y, σ

2
z|y

)
, where µz|y = E0y+(F0+y)ρσx

σy
y and σz|y = |F0+y|

√
1− ρ2σx.

This conditional distribution of Z can be directly inserted into Equation(3) to estimate

the VaRs.

To solve Equation(6), we set the convergence criterion of the equation solver to be

that the left side of Equation(6) is within the range of p±1e-6. The grid of the numerical

integration is selected to be from -12 to 12, which results in π = 0.01%. That is, more than

1 − π = 99.99% of the possible values of Y is covered by this grid. The grid step size is

0.01, which results 2,401 grid points in the numerical integration. The resulting estimate

of the 0.05% and 0.01% VaRs is -$4.7723 units and -$5.5118 units respectively, very

close to the corresponding average VaR estimates across 1,000 independent repetitions

by the direct simulation method. Changing the grid step size to be 0.001 or the grid

coverage probability to be π = 0.001% has little impact on the VaR estimates, resulting

in differences within $1e-4 units.
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4 Conclusion

Given the distributions of the foreign currency earning X and the change of exchange rate

Y , this paper proposes a conditional method to estimate VaRs of the structural exchange

rate risk that imply extremely high survival probabilities of usually more than 99.9%.

Compared with the direct simulation method that directly calculates the tail percentiles

of simulations from the joint distribution of X and Y , the conditional method produces

numerically more stable estimate of the extreme VaRs by solving a non-linear equation

via a simple one-dimensional numerical integration. The proposed conditional method is

generally applicable as long as the CDF of either X or Y conditional on the other variable

has a closed-form expression. The bivariate normal and Student’s t distributions fall into

this category.
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