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      Abstract 

This paper is aimed at developing a new kind of non-parametrical artificial 

neural network useful to forecast exchange rates. To do this, we departure 

from the so-called Differential or Dynamic neural Networks (DNN) and 

extend the tracking procedure. Under this approach, we examine the daily 

closing values of the exchange rates of the Euro against the US dollar, the 

Japanese yen and the British pound. With our proposal, Extended DNN or 

EDNN, we perform the tracking procedure from February 15, 1999, to 

August 31, 2013, and, subsequently, the forecasting procedure from 

September 2 to September 13, 2013. The accuracy of the obtained results is 

remarkable, since the percentage of the error in the predicted values is within 

the range from 0.001% to 0.69% in the forecasting period.  
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Keywords: Exchange rates, artificial neural network, differential neural 

network, tracking and forecasting. 

 

 

 

 

 

 

mailto:fortizar62@gmail.com
mailto:aicllbuda@yahoo.com
mailto:fvenegas1111@yahoo.com.mx


2 

 

1.  Introduction 

Many financial phenomena are difficult to be modeled because they deal with many uncertainty 

sources and internal and external disturbances. The modeling of these phenomena, usually, 

depends strongly on the required inputs and the fragile assumptions of linearity and normality, 

among others. One possibility to deal with these phenomena is to consider them as a black box, 

with some humility, considering that only input and output information is supposed to be 

measurable avoiding unrealistic assumptions. Under this situation, Artificial Neural Networks 

(ANNs) provide appropriate identification properties in the presence of uncertainty or external 

disturbances. Two types of ANN are known in the specialized literature: one called passive 

neural network that uses the back-propagation technique as the learning law, and the other called 

differential neural network (DNN) that uses Lyapunov’s stability theorem to develop the 

learning law (Poznyak et al. 2001). The first one deals with the class of global optimization 

problems trying to adjust the weights of the ANN to minimize the identification error. The 

second approach exploits the feedback properties of the DNN that avoids many of the problems 

related to global extreme search, converting the learning (training) process into an adequate 

feedback design. If the mathematical model of a considered phenomenon is incomplete or only 

partially known, the DNN approach provides an effective instrument to deal with a wide 

spectrum of problems such as identification, state estimation, and trajectory tracking (Poznyak et 

al., 1999). Hence, this seems to be an appropriate solution for the control design in financial 

analysis. The main reason to use the DNN approach developed by Poznyak et al. (2001) is 

related with their continuous representation (as a nonlinear differential equation), which appears 

as a more realistic tool in order to obtain a complete dynamical description of the complex 

financial systems. 

 

According to Cabrera and Ortiz (2012), the use of ANN as a technique to simulate and 

describe the behavior of nonlinear dynamical systems has provided suitable results, with the 

advantage that its implementation and operation is relatively easy. It has also been observed that 

ANNs provide suitable results for complex input values and to identify patterns of behavior, 

which with other statistical or econometric techniques would not be possible to obtain. The use 

of artificial neural networks as a technique to estimate the behavior of nonlinear systems 

describing financial phenomena was initially proposed by Haykin (1999) and McNellis (2005). 

They exhibit several applications in using artificial neural networks in problems of financial 

nature. Other papers dealing with applications of ANNs in financial issues are, for instance: 



3 

 

Chen et al. (2001) worked on inflation forecasting and Hanias et al. (2007) carried out 

predictions of the Athens Stock Exchange Price Indicator.  

 

Also, ANNs have been used to perform predictions of currencies parities in Dunis et al. 

(2010). In their work, they modeled the trading of the EUR-USD exchange rate at the ECB. To 

do this, they used four types of neural networks to model the exchange rate between the Euro 

and the US Dollar. Their found that the best results obtained were those from Higher Order 

Neural Networks (HONN); however, the disadvantage of this technique is that it is quite 

complex from the mathematical and computational points of view. Finally, Yu et al. (2007) 

presented several alternatives derived from ANN to carry out forecasting of exchange rates of 

several currencies. Another important work to mention is that from Hu and Zhang (1997) who 

examined the effect of the number of input and hidden nodes, the size of the training sample, and 

the enhanced output sample in an ANN model. They used the daily exchange rate of the British 

Pound against the US Dollar, and found that neural networks outperform linear models, 

particularly when the forecast horizon is short. They also showed that the number of input nodes 

have a greater impact on the accuracy of the results than that of the number of hidden nodes; 

however, even using a large number of observations they fail to reduce the prediction errors. 

 

In a more recent paper, Singh and Kumar (2010) analyzed the accuracy in the forecast on the 

calculation of stock prices using ANN. They compared the results with several econometric 

techniques. Surprisingly, the results were better using the ANN. Later, Kishore and Prasad 

(2011) proposed an ANN model that allows them to obtain appropriate results in forecasting 

stock prices for one day and also for two months. Finally, Bilbrey and Riley (2011) developed an 

ANN model to simulate trading strategies in the stock market. It is also important to bring up the 

work of Zhang and Berardi (2001) that used neural networks to obtain predictions on the 

exchange rate between the British pound and the US dollar. They established a systematic 

partition for constructing neural network ensembles. They found that the models formed by sets 

of different neural structures can consistently improve the predictions obtained with the use of a 

single network. They also showed that the networks based on different sets of data partitions are 

more efficient than those developed with the training data set to carry out the prediction of 

values outside the sample.  
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A prominent feature in the papers mentioned above is that all of them use discrete artificial 

neural networks as a prediction technique. These ANNs have some limitations in their use either 

as monitoring in the dynamic system behavior or as forecasting mechanisms. Another common 

limitation of these technics is the amount of data required to establish a period of learning for the 

neural network, usually a discrete neural network requires at least 500 historical data (two years) 

to establish a pattern of appropriate learning (McNellis 2005). Furthermore, the speed of 

response to changes in the trend behavior of the system is relatively low, which may cause a 

delay in the perception of the system behavior and, consequently, on the forecasted values. To 

offset these limitations of discrete ANNs in the late 90’s a class of continuous ANN called 

Differential or Dynamic Neural Networks (DNN) were introduced by Poznyak et al. (2001). In 

this type of networks learning rules are based on the use of Lyapunov stability theory, which 

among other things allows obtaining the error convergence more accelerated with a less number 

of iterations than those from ANN. This has allowed the learning process in the network to be 

reduced significantly; as we mentioned before, a discrete ANN requires at least 500 data to 

establish one appropriate learning pattern. In the case of DNN, this number is fifteen times 

smaller; in such a way that the learning period is shorter and then it can be exploited further the 

potential of network’s monitoring and forecasting (Ortiz et al. 2012a). 

 

The DNNs have been also applied in biotechnology, especially on fermentation processes as 

in Cabrera (2007), or in the assessment for drugs dose in cancer treatment in Aguilar (2006). 

Also in the case of financial applications, we can find very recent work in Ortiz et al. (2012) 

considering the use of the DNNs to carry out monitoring and forecasting of the daily values of 

stock indices and prices of stock in Spain and Mexico. Finally, in Ortiz et al. (2012a) a model for 

monitoring the exchange rate values of the US dollar against the Mexican peso is developed by 

using a model based on DNN. 

 

Due to the inherent nonlinearity and the incomplete description of the financial phenomena, 

the DNN may provide an interesting possibility to be explored. However, the control function 

design could be a very inefficient process, especially if the performance index optimization is 

used for tracking the error minimization (Isidori, 1999). In order to amend this limitation, this 

paper develops a new non-parametric dynamic neural network, based on an identification 

scheme, where the error convergence between the states of the mathematical model and the 

actual states (financial time series) is the main objective. In this paper, we provided a new 

procedure for identification (tracking) extending the DNN approach (from now on called 
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Extended DNN or EDNN). The proposal is useful to analyze, describe and predict values of 

daily closing prices of the Euro exchange rate versus the US dollar, the Japanese yen and the 

British pound. The time series for monitoring or description are considered from February 15, 

1999, to August 31, 2013, and for prediction are carried out from September 2 to September 13, 

2013. The results have shown remarkable accuracy for tracking and predicting the daily closing 

values over two weeks out of sample time.  

 

This paper is organized as follows: section 2, we, briefly, describe the methodology of 

Differential Neural Networks and the concept of the identifier of states for one-dimensional 

financial time series; in section 3, we show the results and provide a short discussion of them; 

through section 4, we present the conclusions remarking the benefits of our proposal extending 

the framework of DNN.  

 

2.  Methodology description 

In this section, the theoretical foundations of differential neural networks and the functional form 

of the identifier system of states are presented. The learning laws for one dimension neural 

network are established through theorem 2.1.  

 

2.1 Differential Neural Network (DNN) 

In this subsection we describe the DNN as a coupled system consisting of a neural identifier and 

a controlled tracker. Through this structure is possible to register the different states of a 

dynamic system and then to reconstruct all them through a dynamic estimation model; see figure 

1. The estimated states are then used by the controlled tracker to introduce them into a feedback 

function to produce a new input in order to track the reference model trajectories.  
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Figure 1.  Block structure for DNN. 

 

 
 

Source: Author’s own elaboration. 

 

In general, the DNN structure corresponds to a structure of an ANN with a Hopfield’s 

multilayer form, whose dynamics can be described by the following continuous nonlinear 

differential equation (Poznyak et al. 1999 and 2001): 

(1)                                   
1, 1, 2, 2, 1,

ˆ ˆ ˆ ˆ
t t t t t t t t t t

x Ax W V x W V x u       ,   

with 0x  known, and 

(2)                                             

2,

1
1, 2,

,

,

,

,  0,  

,   and 

t t t

n p m
t t t

p n n
t t

y Cx

x y t u

C



  

 

   

 

. 

where ˆ
t

n
x   is the estimated state vector, n nA   is a Hurwitz matrix, t

y is the output vector 

at any time t, C is the transformation matrix from the state tx  to the output state t
y , and 

1, 2,
 and 

t t
   are both white noise that cannot be measured (but bounded) on the dynamics of 

states and the output, respectively. Hence, the white noise processes are characterized by 

,  , 1, 2,j t j    for some value  , and are associated with the errors of measuring of 

available values of variables, like days off, Sundays and Saturdays (Ortiz et al., 2012).  
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The matrix 1,

n k

t
W


  contains the feedback weights of a nonlinear state, and 

2,

n r

t
W


  is the input weight matrix. Both matrices are the external weight matrices of the 

DNN. Function :( ) n k
   is a vector field which is constructed with classical sigmoid 

activation functions. In this way, it will have only elements with a behavior that grows 

monotonically as a sigmoid function (Ortiz et al., 2012). That is,  

(3)                                          

1

1

1 exp .

n

j j j j j

j

t a b c x





 
  
  
  

     

In the case of the transformation function :( ) n r s



 , it is constructed a sigmoidal 

activation function in each element of this diagonal matrix, thus its mathematical description is 

given by: 

 (4)                               

 

1

,

1

1 exp

1, , ; 1, , ;  1, , ;  1, .

n

i j j i kl l

j

t a b c x

i r j s k n l m







 

   

  
  
  


 

We require that each component of activation function satisfies the following conditions: 

(5)                                               

   

   

ˆ ˆ

ˆ ˆ .

x x l x x

x l x xx





 

 

  

 
 

The function   :
t

s q
u  is the control action or external power; its values come from the 

data base. It is assumed to be bounded in such a way that  
2

t
u u  . In this research, we 

consider  t tu u   as the identity function. In Figure 2, it is shown a typical structure of a 

Differential Neural Network. 
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Figure  2. Typical structure of a DNN 

 

Source: Author’s own elaboration. 

  

2.2 Identifier of DNN 

The identifier design requires a positive-definite Hurwitz matrix Q, such that the Riccati´s 

differential equation has a positive solution: 

(6)                                                       0.
T

A P PA PRP Q             

For the identifier design, we use the system class described by 

(7)                                                   ˆ ˆ , ,t t tx xf u t . 

This equation represents the nonlinear system class that we will use to describe the dynamic 

evolution for the foreign exchange rates. Also, we suppose that there is a differential neural 

network to match exactly the system described before, given by 

 

(8)                                        * *

1, 2,t t t tt t tAx W x W x ux      .   

where 
*

1,tW  and 
*

2,tW  are unknown matrices with constant entries. The differential neural network 

to estimate the nonlinear system is given by 
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(9)                                                   1, 2,
ˆ ˆ ˆ .

t t t t t tt Ax W x W x ux         

 

The error between the nonlinear system values and the estimate states given by the differential 

neural network estimator is denoted by: 

(10)                                                         ˆ
tt tx x   . 

The dynamics for this error must be stable, but we need to prove this statement to ensure the 

stability for the error function. In this case, the Lyapunov function is assumed to be 

 

(11)                                          1 1
1, 1, 2, 2,1 2

T TT
t t t tt t tV P tr W K W tr W K W      , 

where the matrices 1,tW  and 2,tW  are defined by 

  

1, 1, 1

2, 2, 2 .

t t

t t

W W W

W W W





 

 

 

In this paper the proof will be based on a nonlinear system and a neural network both for the 

one-dimensional case. Therefore, we state the following: 

 

Theorem 1. Consider the following non-linear system 

(12)                                                      ( , , )t t tx f x u t , 

and the equation of the identifier of the neural network  

(13)                                            1, 2,
ˆ ˆ ˆ ˆ

t t t t t t tx x x xa u       , 

whose weights are adjusted by the following learning laws: 

(14)                                                 
 

   

1, 1

2, 2

ˆ

ˆ

t t t

t t t t

x

x

K p

K p u

 

  

  

  
 

where K1 and K2 are positive values, p>0 is the solution for Riccatti’s equation given by (6) for 

the one-dimensional given by 

 

0ap pa prp q     

 

(15)                                                 22 0ap p r q   . 

 

We also assume that the mappings       and      satisfy the following sector conditions: 
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 

   

   

2
2 2 2

2 22 2

22 2 2

,  

,  

t t t t

t t t t

t t t t

D Z x C x

u D u

Z u C x u

   

 

 

  

   

  

  

 



 

where 

   

   

:

:

t tt t t

tt t t t

x x

x x

  

  

 

 
 

 ,  ,  ,D  ,D  ,Z ,Z
,C C  are known positive constants. Moreover, we assume that  

   
2 2

1 1
1 21 2and             

where 1 2and    are positive constants and the control input function     is bounded,  

 
2

tu u  . 

 Then the weights dynamics are bounded  

 

1, 2,, ,t tL L     

and converge 

1,

2,

lim 0,

lim 0.

t t

t t












 

We may conclude that 

lim 0t
t

   

 
 

Proof:  Suppose that the system (12) has a complete description given by 

(13)                                          1 2t t t t tx ax x x u         

and selected the Lyapunov function by 

(16)                                               
2 2

2
1, 2,

1 2

1 1
t tt tV p

K K
     . 

After computing the derivative of this function, we obtain 

 (17)                                        1, 1, 2, 2,

1 2

2 2
2 tt t t t ttV p

K K
   

  

     , 

and the error function derivative is 

                 
           1, 2, 1 2

ˆ

ˆ ˆ .

t t t

t t t t t t t t t t

x

x x

x

ax u ax x x u            

  

       

                                                      

Therefore, we obtain 
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(18)                            

       

           

     

       

         

1, 1 1

2, 2 2

1 2

1, 2, 1

2 1 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ .

t t t t t t t

t t t t t t t

t t t

t t t t t t t

t t t t t

x x x x

x x x

x x x

x

a x

u u u

x x u

a u

u x x u

     

        

    

      

       

 

 

 



  

     

  

 

     

 

 

Finally 

       1, 2, 1 2
ˆ ˆ

t t t t t t t t t tx xa u u                 

where:  

       1, 1, 1 ;t t       2, 2, 2 ;t t          ˆ ;t t tx x        ˆ
t t tx x    .  

 Thus, in equation (17)  the term t  may be replaced for the first term in equation (18): 

       1, 2, 1 2
ˆ ˆ2 2t t t t t t t t t t t tx xp p a u u                    , 

Equivalently, 

     

 

2

1, 2,

1 2

ˆ ˆ2 2 2

2

t t t t t t t t t

t t t t

x xp ap p u

p u

    

     

        

    

 

If we now use the inequality 

(19)                                         1
T

T T T TX Y X Y X X Y Y      

in the term 12 ttp    for the scalar case, them 

 
2

1 2

1 1 1 12 .t t t tp p           

Similarly, 

      
22

1

2 2 2 22 t t t t t tp u p u           . 

And given the assumptions 

   
2 2

1 1

1 1 1 2 2 2 and            

and 

 2

tu u  , 

we obtain 

 

 

2
1 2

1 1 1 1

2 2

1

2 t t t t

t t

p p

p D

    



     

   
 

and 



12 

 

      

   

22
1

2 2 2 2

2 2 2

2

2

.

t t t t t t

t t t

p u p u

p D u

     

 

     

   

 

Thus 
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Finally, the derivate of  Liapunov function is given by 

     

 

1, 1, 2, 2,

1 2

2

1, 2,

2 2 2 2 2 2 2

1 2 1, 1, 2, 2,

1 2

ˆ ˆ

2 2
2

2 2

2 2

t t t t t t t

t t t t t t t

t t t t t t t t t

x x

V p
K K

ap p u

p D p D u
K K

 

   

    

      

    

      

         

 

and  
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If we now consider in the expression  

(21)                        

  

   

2 2 2 2

1 2 0 0

2 2 2
1 2 0 0

2 2

0

2

2

2

t t t

t t

t

V ap p D p D u q q

ap p D D u q q

ap p r q q

 

 

  

  

        

       

    

 
 

  

, 

where  2

1 2 0  and  tr q D D u q        , then equation (21) takes the form: 

                                             2 2

02t tV ap p r q q     , 

with 0 0.q   Finally, by using the solution for the Riccati’s equation in (15), we obtain 
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 (22)                                                    2

0 ,t tV q         

then the system is asymptotical stable. QED 

 

 

2.3 Extended DNN, data periods and intervals for estimation 

We use data from the European Central Bank of daily market closing exchange rates: Euro-US 

dollar, Euro-Yen and Euro-Pound from January 4, 1999 to September 13, 2013. Upon this data, 

we establish three different periods to work with the Extended DNN (EDNN) for each exchange 

rate. The first period is the learning or training period, this period includes 30 values, near 1.5 

months of data, from January 4, 1999, to February 12, 1999. The second period runs from 

February 15, 1999, to August 31, 2013. This is the period in which the EDNN describes all daily 

closing values of the exchange rate of Euro with respect to the three currencies (the identification 

process). The range of third and final period is from September 2 to September 13, 2013. This is 

the period where the forecasting takes place of daily closing values of Euro with respect to the 

three currencies. 

 

3.  Discussion of Empirical Results 

In this section, we show the obtained results from the extended DNN on the basis of equations 

(1) to (4). In order to program the algorithm, we used the MatLab® platform and the Simulink 

Toolbox. For the numerical calculations of the Dormand-Prince algorithm, we solve ordinary 

differential equations with a variable step (Dormand, 1980). The estimated states and the actual 

data are displayed together in order to compare the evolution, these are plotted in the figures 

below. 

 

 

3.1 Identification process 

As mentioned before, the network was trained from the dynamics of a 30-day period of the series 

of daily market closing values of the exchange rate of Euro-US Dollar, covering the period from 

January 4, 1999, to February 12, 1999. We compute the initial weight matrices in a process of 

trial and error. Then, we selected the best choice for setting the initial weight matrix, generating 

the set of error values described in equation (10) of the learning law (14), and repeating this in 

each iteration. Subsequently, we follow the same process for the other two exchange rates, Euro-

Yen and Euro-Pound, respectively.  



14 

 

 

    The identification of the evolution of actual daily closing values of the foreign exchange rate 

Euro versus US dollar, yen and pound and the identification of the calculated EDNN daily 

closing values of foreign exchange rates are shown in Figures 3 to 11. In these Figures, it is 

possible to distinguish the precision with which the EDNN conducts the identification of each 

series.  We will differentiate through “zooms” how the network narrows its values to converge 

quickly to the actual values of the series for each case. The first zoom focuses on hundreds of 

days, the second zoom considers less days, and the third one takes into account only a few days. 

This allows us clearly to see how the network values approach to the actual behavior of the 

examined exchange rates. 

 

 

Figure 3. Observed daily closing values of the exchange rate Euro-US Dollar  

versus the estimated values with EDNN (first zoom). 

 

Source: Author’s own elaboration. 
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Figure 4. Observed daily closing values of the exchange rate Euro-US Dollar 

versus the estimated values  with EDNN (second zoom). 

 

Source: Author’s own elaboration. 

 

Figure 5. Observed daily closing values of the exchange rate Euro-US Dollar versus the 

estimated values with EDNN (third zoom). 

 

Source: Author’s own elaboration. 
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Figure 6. Observed daily closing values of the exchange rate Euro-Japanese Yen versus the 

estimated values with EDNN (first zoom). 

 

Source: Author’s own elaboration. 

 

Figure 7. Observed daily closing values of the exchange rate Euro-Japanese Yen versus the 

estimated values with EDNN (second zoom). 

 

Source: Author’s own elaboration. 
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Figure 8. Observed daily closing values of the exchange rate Euro-Japanese Yen versus the 

estimated values with EDNN (third zoom). 

 

Source: Author’s own elaboration. 

 

Figure 9.  Observed daily closing values of the exchange rate Euro-British Pound versus the 

estimated values with EDNN (first zoom). 

 

Source: Author’s own elaboration. 
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Figure 10. Observed daily closing values of the exchange rate Euro-British Pound versus the 

estimated values with EDNN (second zoom). 

 

          Source: Author’s own elaboration. 

                    

Figure 11. Observed daily closing values of the exchange rate Euro-British Pound versus the 

estimated values with EDNN (third zoom). 

 

Source: Author’s own elaboration. 
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3.2 Forecasting Process 

In this section, we show how the EDNN produces forecasts of daily closing values of the foreign 

exchange rates for a period of two weeks with a remarkable accuracy. The period considered for 

forecasting in the three series is September 2 to September 13, 2013. Figure 12 shows the Actual 

exchange rate Euro-US dollar versus the forecasting values with EDNN. 

 

Figure 12. Actual daily closing values of the exchange rate Euro-US Dollar versus  

the forecasted values with EDNN. 

 

    Source: Author’s own elaboration. 

 

In figure 13, we observe the relative error between the daily market closing values of the 

exchange rate Euro-US Dollar versus those forecasted with the EDNN. We observe the 

remarkable precision in the predicted values. In the worst case, the percentage error of the 

forecasting is less than 0.13% in the fourth day and the percentage error of the best prediction 

value was near of 0.002. Figure 14 shows the actual exchange rate Euro-Japanese Yen versus the 

forecasted values with EDNN.  

 

 

 

 

 

 



20 

 

 

Figure 13. Percentage error between the actual daily market closing values versus those 

forecasted with EDNN. 

 

Source: Author’s own elaboration. 

 

Figure 14. Actual Foreign Exchange Rate Euro-Japanese Yen versus 

the forecasted values with EDNN. 

 

Source: Author’s own elaboration. 
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    Figure 15 shows the percentage error between the actual daily market closing values of the 

exchange rate Euro-Japanese Yen versus those predicted by the EDNN. We observe that 

percentage error ranges from 0.035% to 0.192%.  The Figure 16 shows the Actual Foreign 

Exchange Rate Euro-Japanese Yen vs. forecasting with EDNN. 

 

Figure 15. Percentage error between the actual daily market closing values of the exchange rate 

Euro-Japanese Yen versus those forecasted by using the EDNN approach. 

 

   Source: Author’s own elaboration. 

 

Figure 16.  Actual Foreign Exchange Rate Euro-British Pound vs. forecasting with EDNN. 

 

    Source: Author’s own elaboration. 
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    In case of the British Pound series case, Figure 17 shows the percentage error between the 

actual daily market closing values versus those forecasted by the EDNN. We can see the 

precision range is remarkable, near 0.001% in the best forecasting, and 0.071% in the worst case 

of the predicted values. 

 

Figure 17.  Percentage error between the actual daily market closing values of the foreign 

exchange rate Euro-British Pound vs. those forecasting by using the EDNN approach. 

 

Source: Author’s own elaboration. 

 

4.  Conclusions 

The main objective of this paper was to highlight the power of the EDNN in carrying out the 

processes of identification or tracking (monitoring) of financial variables. In this work, we used 

proposed an EDNN to reproduce past values of financial variables and to predict their future 

values. The EDNN provide a significant reduction of the network´s learning period.  

 

In carrying out the forecast with EDNN for the daily closing values of these exchange rates 

for 2 weeks, the results were remarkable because the relative error of forecasts during the first 

week of prediction (September 2 to 6, 2013) ranges from 0.002% to 0.128% for the Euro-US 

Dollar; 0.69% to 0.11% for the Euro-Japanese Yen; and 0.001% to 0.04% for the Euro-British 
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Pound. In the second week (September 9 to 13, 2013), it ranges from 0.01% to 0.026% for the 

Euro-US Dollar; 0.035% to 0.192% for the Euro-Japanese Yen; and 0.012% to 0.31% for the 

Euro-British Pound.  

 

Finally, we also wish to highlight, on the basis of the obtained results, that the description of 

the EDNN reached acceptable estimates, including sudden changes of the values in a short 

period of time; see Figures 7 and 10. We believe that this methodology is appropriate to perform 

this kind of predictions, since the obtained results in the description and forecast were 

remarkable, since the error rates are very close to zero.  
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