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Analysis of the Lead-Lag Relationship on South
Africa capital market

Marcel Resovsky, Marek Grof, Denis Horvath, Vladimir Gazda

Abstract

Despite the efficient market hypothesis (EHM), lead-lag relationships can be
observed mainly between financial derivatives and underlying asset prices,
prices of large and small companies, etc. In our paper, we examined the lead-
lag relationship between prices of open ended funds and an all-share index as
a representative of the capital market. Along with more traditional methods
of using cross correlations, partial correlation and Toda-Yamamoto causality
tests, we also analysed the speed of adjustment of assets to their intrinsic
values and identified the most prevalent lag using rolling time windows. The
analysis was performed using data from the South Africa capital market.

Keywords: lead-lag relationship, open ended fund, all-share index, causal-
ity, efficient market hypothesis

1 Introduction

The efficient market hypothesis (EMH) belongs without dispute to one of the
most influential theories in the field of financial economics. Its main criticism
stems from its assumptions that are considered not to be very realistic (see Fama,
1970, p. 387). Roughly speaking, it is not a theory, which can be accepted as a
strict scientific truth because it is not empirically falsifiable nor verifiable. Despite
this fact, a lot of attempts have been made to find some supportive arguments for
the theory, all the while counter-examples have been presented in order to evade
or devalue the theory. On the other hand, a wide variety of methodological tools
and frequently used techniques have been inspired by the EMH idea, stating that
all available information clears the market and the current price of the underlying
assets is also the best predictor of its future price. Repeated observations (calendar
anomalies — French, 1980; Lakonishok and Smidt, 1988; etc.; size effects — Keim,
1983 represent just some of the introductory seminal work boosting research in the
end of the 20th century) contradicted this idea and became the subject of extensive
research. On the other hand, appearance of these effects appealed to investors,
allowing them to gain extra profits, which again cleared the market and quickly
eliminated the arbitrage opportunities (Malkiel, 2003; Basher and Sadorsky, 2006



are some good examples of the research in this domain). The contradictory dis-
cussion could be interpreted as a demonstration of the Goodhart’s law in financial
economics. Discovering new examples by extending the spectrum of non-trivial
market price predictors, empirical research has in part falsified the EMH. Among
the more recent examples is the so called lead-lag relationship, bringing the evi-
dence of market frictions, where prices of particular assets can lead (or lag behind)
other ones. If we focus solely on the stock markets, we can mention the work of
Conover and Peterson (1999), in which the effect between option and stock prices
is studied. Similarly, the work of De Medeiros et al. (2009) describes the lead-lag
relationship between the U.S. and Brazilian stock markets, Lo and MacKinlay
(1990) and Hou (2007) presented a study of large firms stock’s returns leading the
market. In our work, we focus our attention solely on the existence of the lead-lag
relationships between price returns of 8 open ended funds and logarithmic price
changes of an all-share index on the South Africa capital market (it is not the
ambition of this paper to provide further policy or strategy implications of this
relationship).

The paper is organised as follows. In Section 2 we present the collection of data
records and we summarise the primary statistical facts of the time-series we plan
to manipulate. In Section 3 we present some empirical facts supporting the hy-
pothesised lead-lag relationship between price returns of open ended funds and
logarithmic price changes of the all-share index, which implies deviation from the
efficient market hypothesis. In Section 4, vector autoregression is applied to test
the lead-lag causality. Section 5 presents new results regarding the application of
the model of intrinsic value. The rolling-window approach to the lead-lag relation-
ship is discussed in Section 6.

2 Data description and summary statistics

The data used has been obtained from the Bloomberg database. It contains daily
time series of the prices of eight selected open ended funds (further denoted as
Funds) on the South Africa capital market and daily times series of prices of
FTSE/JSE All Share Index (denoted as Index) from January 2, 2009 to November
15, 2013. The studied assets, time period and market it self were chosen at random.
The time series consisted of 1221 observations. The real time progress of Fund
prices and prices of the Index is depicted in Figure 1. The descriptive statistics of
the corresponding log-returns
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is shown in Table 1.

Inspecting the statistics we came to the conclusion that the mean returns of Funds
do not predominate over the returns of the Index and vice versa, however in two
cases Funds present higher mean returns than the Index. In addition, the standard
deviations of the returns of five Funds are smaller than the one for the Index. If




Index F1 F2 F3 F4 F5 F6 F7 F8
Mean 0.06 0.02 0.06 0.06 0.06 0.06 0.06 0.02 0.09
Median 0.09 0.03 010 0.08 0.08 010 0.09 0.06 0.12
1. Quar. -0.57 -0.82 -0.55 -0.48 -0.42 -0.63 -0.52 -0.29 -0.33
3. Quar. 0.70 1.02 072 066 059 080 071 0.38 0.56
St. dev. 112 147 113 093 087 1.22 1.03 065 0.77

Skew. -0.01 -0.22 -0.20 -0.22 -0.19 -0.14 -0.23 -0.40 -0.26
Kurt. 146 081 192 126 176 140 126 437 1.21
AR(1) 0.02 -0.01 -0.03 0.03 0.02 -0.01 0.03 0.04 0.07

Table 1: Descriptive statistics of the log-price returns. Comparison of the Funds
and Index. The values are multiplied by 100.

we look at the time-dynamic behaviour using the autocorrelation coefficients, we
see they are rather small which implies a low level of short-term memory.

3 Lead-Lag relationship — analysis

In this section we would like to answer the question whether there are some signif-
icant lead-lag relations between the returns of Funds and log-price changes of the
Index. To demonstrate it, we follow the methodology of Chiao et al. (2004) and
Chordia and Swaminathan (2000). Here, we tackle estimation of the cross corre-
lations between the log-price changes of Index and lagged/led returns of Funds.
The results presented as histograms are shown in Figure 2. We see that the cross-
correlations of the returns of Funds lagged by one period are significant for all
Funds. Similar results have been reported by Chordia and Swaminathan (2000),
who inspected the lead-lag relationship between size based portfolios. As the figure
shows, spikes at lag = 1 dominate over the spikes at other lags. Now, the question
whether the significant correlation is just a demonstration of relationship between
the current Index and Fund returns and short-term memory of the Index log-price
changes becomes pertinent. Although, as it is seen in Table 1, the short-term
memory seems not to play a significant role. This preliminary finding stimulated
our interest to explore partial correlations (pcor) listed in Table 2. What is quite
striking is the dominance

peor(ryy, 1y _131y) > cor(ryy, ryy) (3.1)
valid for all the Index-Fund pairs studied. In all the cases the equal time cross-
correlation cor(rfj ., 1) dominated over both aforementioned lag = 1 correlations.
In addition, our suspicion of lead-lag effects is supported by the fact that all Fund-
Index cross-correlations far exceed the autocorrelation of the Index cor(r},r{_;).



F1 F2 F3 F4 F5 F6 F7 F8
peor (i, ri_p;ry) 022 025 033 034 032 035 026 0.32

cor(ryy, 1) 0.78 0.64 0.75 0.75 0.83 0.80 0.30 0.66
cor(rf,r_;) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
cor(ri,, ry_y) 0.15 0.20 023 024 0.19 0.23 0.26 0.25

Table 2: Table of correlation coefficients of funds F1,. .., F8 and Index at specified
lags (lag = 0 and lag = 1). The first table line contains partial correlations (pcor)
measuring the strength of association of rf ¢, (returns of Funds ¢ = 1,2,...,8) and
ri_, (log-price changes of Index) with eliminated effect of the additional variable
rl. The next three lines present specific ordinary correlation coefficients (cor) of
interest. Partial correlations are significant at the level of significance a = 0.05.

4 Vector autoregression and Toda-Yamamoto cau-
sality tests

The correlation analysis presented in Table 2 is based on pairwise relations and is
not capable of capturing higher order lag dynamics. Therefore, we decided to use
the Vector Autoregression (VAR) methodology followed by the Toda-Yamamoto
(see Toda and Yamamoto, 1995) causality test. For the Index and i-th Fund the
system of regression equations takes the form

p+dMax p+dMax

mP) = Y aWP )+ Y BiW(P ) +e, (4.1)
T=1 T=1
p+dMazx p+dMazx

WP = > WP )+ > 6I(P) 4, (4.2)
T=1 T=1

where p is an optimal VAR lag selected by the Schwarz Information Criterion,
dMaz is the highest order of integration in the In(P/) and In(P};) pair and e,
vy are the error terms. The reason why we apply Toda-Yamamoto instead of
the more frequently used Granger causality was that the Johansen cointegration
tests needed to perform the Granger causality tests may give fairly ambiguous
results (high sensitivity to the lags included, significance levels near the indecisive
10% levels, contradictory results to the evidence of the Dickey Fuller cointegration
tests). On the other hand, there is well established Toda-Yamamoto methodology,
which provides less restrictive causality test with the following properties:

1. Granger test gives misleading results in the case of faulty identified cointe-
gration among the variables.

2. Granger causality tests in Error Correction Model (ECM) still contain the
possibility of incorrect inference and suffer from the asymptotic nuisance
parameter in some cases (see Toda and Phillips, 1993, p. 1338).



3. Toda-Yamamoto test does not require knowledge of the integration and coin-
tegration properties of the data. It can be applied even when the underlying
time series are not of the same order, and when the rank conditions fail
(Toda and Yamamoto, 1995, p. 225).

First, we tested the integration of the time series by the traditional Augmented
Dickey-Fuller (ADF) and most widely used Kwiatkowski-Phillips-Schmitt-Shin
(KPSS) tests, which formulate the zero hypotheses in a complementary way (pres-
ence of unit root vs. stationarity). The benefit of such simultaneous testing is that
it reduces the risk of decision errors. In all investigated time series the alterna-
tive ADF test hypothesis on the non-existence of the unit root on levels was not
rejected at any standard significance level, while in the case of the KPSS test the
zero stationarity hypothesis has been rejected at 1% level for each time series.
After differencing, testing by the means of ADF tests yields acceptance of the
alternative no unit root hypothesis for each time series at the 1% level.
Considering all the investigated time series data on prices to be of order I(1), we
run the regression of Eq. (4.1) and Eq. (4.2). The Toda-Yamamoto procedure uses
modified Wald statistics for testing of

fr=0r=-=0,=0 (4.3)
in case of F' = [ causality and
(51:(52:"‘:617:0 (44)

for the opposite causal association I = F'. The test results are given in Table 3.
The relatively high number of observations (1221) helps us minimise the finite
sample bias and ensures a good approximation of F-Wald statistics, which follows
a chi-squared distribution with p degrees of freedom.

F1 F2 F3 F4
p 2 2 2 2
d 1 1 1 1

W = F) 41.01* 56.3* 71.23* 79.36*
W(F =1) 0.60 3.42 1.54 1.99

p 6 3 2 2

d 1 1 1 1
W(I = F) 39.4™* 5852* 47.54* 47.29*
W(F =1) 1.62 2.35 0.88 1.62
Note: Signif. codes: ()*** 0.001; ()** 0.01; ()* 0.05; ()- 0.1

Table 3: Toda-Yamamoto tests supporting the I = F' causality.



5 Lead-lag relationship as a result of different
adjustments to the intrinsic values

Lead-lag relationship is often estimated by the Vector autoregression. In our trial
implementation of this approach, the error term was found to follow a persistent
systematic pattern observable predominantly at higher levels of autocorrelations
as well as statistically significant cross correlations. That is why we decided to
apply another methodology. Our choice was guided by the work of Theobald and
Yallup (1998). In the following we present an adaptation of this methodology and
axiomatics to our specific situation. The original single equation model is now
decomposed into the system of eight plus one stochastic equations for the partial
adjustments

nPh—mPf | = ¢f (nVi—-InPf_ 1)+u,t, i=1,2,...,8, (5.1)
P —InP, = g (V) -InP. ) +u,
Where V5 and V' are the intrinsic values of the i-th Fund and Index at time ¢;

€ [0;2], g* € [0;2] are the speeds of adjustment to the corresponding intrinsic

Values V%, V. The main assumption here is that the intrinsic values are assumed

to be the logarithmic random walks
111‘/;}2 1n‘/t 1+Uzt7 IH‘/tI:lIlV;I_l—i—U}H (52)

where ugt and uj are the i.i.d. zero mean white noise terms. Two distinct types
of the behaviour should be mentioned: if, for example, g = 0 then the asset
prices do not reflect their intrinsic values and form the random walk, whereas in
the idealised case gf = 1, the Fund prices fully reflect their intrinsic values, which
are the only determinants of their expected values. The interpretation of g' is
analogous. The equations of the system Eq. (5.1) are coupled to each other due
to postulated cross-covariances

for all ¢, 5, t', t", (5.3)
for all t', t",

for all 4, t', t",

for all 5, ¢, ¢",

for all 75, t',t",

for all g, t' #£1t",

= p;’F for all 7,1t
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where pi is the amplitude of the equal time cross-covariances of v;_, and v}

Jit—t"
Its numerical value is irrelevant for the estimation of the speeds of the adjustments

COV(Tth—lv TD

I
= 1-— 5.4
g cov(riF’t,r%) (5-4)
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k cov(rt, 7’5 4



The results of the calculation are depicted in Tab.4. The value ¢g' > 1 indicates
that Index overreacts to its intrinsic values. The effect of the lead-lag relationship
is empirically assessed by showing that the inequality g' > ¢F is satisfied for all
Funds.

F1. F2 F3 F4 F5 F6 F7 F8
gi 081 0.68 0.69 068 0.77 0.71 0.15 0.62

Table 4: The differences in the speeds of adjustment calculated for Funds by means
of Eq. (5.4). Moreover, the overreaction g' ~ 1.02 is obtained for the Index.

6 Temporal variations and local structural ana-
lysis of data

The previous results have been based on using of the entire data sample. In
the present section, we focus more on the local subset analysis, which admits to
shed light on the inhomogeneous structure of data and local processes. The careful
reader may recognise such attempt as application motivated by resembling the real
time conditions, where a time-window is moving down the data and emphasis is
placed on the role of instant feedback since future data is temporarily unavailable.
Each correlation is considered as moving average on the rolling window. Thus for
each time ¢ the maximum of the correlation function estimate may serve to define
the instant optimal two-element tuples (i*,lag*); as follows

s * _ F I
(i*,lag*); = argmax O (I G
lag € {1,...,20} estimated (61)
By..., 8 on interval [t — 120, ¢]

where ¢ runs over the indices of the Funds. More precisely, the choice of lag*
(and thus ¢*) is suboptimal since it is constrained by the lower bound 1 and
upper bound 20 days (in part because of computational reasons). This task is
specific due to the fact that right from the start we are penalising the situations
with negative and zero lag*. We analysed the sequence of 145 windows running
through the sample, each with a fixed size of 120 days and the window itself
moving five days at a time. The analysis of the log-returns is chosen because there
is a rather weak dependence on the window size compared to the size effects when
using prices. It should be noted that the original motivation has been to map the
almost continuous space of the returns to the space of discrete variables (i*, lag*);.
This may be mathematically viewed as a symbolic map of the time series (see e.g.
Crutchfield and Young, 1989, p. 105), which has been an active research field in
the past decades. The results presented in Figure 3 indicate relatively lengthy
periods with tendencies to prefer lag* = 1, with rare transitions to the region
limited by the upper and lower bounds.



7 Conclusion

In this paper, we study the existence of the lead-lag relationships in the dynamics
of open ended funds and an all-share index as the representative of capital mar-
ket. The results stand in stark contradiction to the weak form of market efficiency.
Several innovative approaches have been combined with more classic ones, with
the study leading to many opportunities for further research. We plan to further
focus on the ownership structure of funds and confront it with the links created
by the statistical threshold criteria for the selection of the relevant inter-asset
cross-covariances. Of interest will be the overlap of these statistical links with
the actual ownership relations. The matching between funds and corresponding
portfolios composed from the owned assets can be investigated as well. The prac-
tical implications of our work may be seen in a framework of the methodologies of
portfolio selection or mutual fund ratings.
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Figure 1: The comparison of the price movement Pf, (shown as full lines) of
Funds with the dynamics of Index P! (dashed lines). The prices are normalized
by dividing by the maximal values attained on the entire interval of record. The
mentioned normalisation is applied for the graphical purposes only and does not
calculations in any way. It can be seen that similar development of prices as Index
have Growth and Alsi Fund. It should be noted that Index serves as a benchmark
for Growth and Value Fund.
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Figure 2: Fund versus Index returns cross correlations calculated for multiple
time lags. We see that as expected, the dominating lag relationship corresponds
to lag = 1, which confirms an existing lead-lag relationship. Lead/lag arrows
depict direction of led/lagged returns of Funds to the log-price changes of Index
when calculating cross-correlation.
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Figure 3: Correlation between log-price changes of Index and returns of Funds
when optimal lag* is used (full lines) and when lag = 1 is used (dashed lines).
Optimal lag* is depicted by circles.
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