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Abstract

We extend the Tauer (2001) and Fé&teal (2004) analyses of aggregation bias in
technical efficiency measurement to multiple crétetecision analysis. We show input
aggregation conditions consistent with multipleesta evaluation of overall efficiency

in conjunction with variation in aggregation bias.
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[. Introduction

Aggregate input values are a common feature in Batzelopment Analysis (DEA)
applications. Researchers estimating the techeftialency of different economic units
often use raw material costs rather than quantatesmnaterial and labour costs instead
of the number of hours worked per job category. [&/there are advantages in using
aggregate data to overcome information gaps orceethe dimensions of the problem,
there are also some drawbacks. Various studies@ti 1993; Thomas and Tauer,
1994; Tauer, 2001; Fare and Zelenyuk, 2002; E&iet, 2004) suggest that measures of
radial technical efficiency using linear input aggates could be biased by price
allocation inefficiency.

The main approach to the theoretical analysis dirteal efficiency aggregation bias is
based on the standard model of cost efficiency idlecomposition into technical
efficiency and allocation efficiency. In this cortecost minimization (as a prerequisite
for profit maximization) is the only economic airhtbe production unit. The question
is whether this scenario is always warranted. Iddee complex production problems,
decisions require a combination of multiple, canitig optimization criteria and
efficiency. For instance, a plant manager may sa®kltaneously to reduce production
costs, optimize management time and reduce potlutpnts (Coelliet al., 2007). Thus,
we have multiple overall efficiency criteria andsangle technology (or technical
efficiency). This may pose an additional problemimdonsistency when estimating
technical efficiency using aggregate inputs. Techinefficiency estimates based on a
single composite input (or materials,...) price mag imcompatible with overall

environmental efficiency (or cost,...) estimates atiter criteria.



The main purpose of this paper is to extend théysisaof input aggregation biago

situations in which the production units are simndously focused on several
objectives. The two main issues we wish to addaess) the number and nature of the
aggregate values required in order to avoid inabest estimates; and b) how far the
degree of bias in the efficiency score varies whging several linear aggregates of the

same inputs.

[1. Presentation of the different models

Let us consider a situation in which we observe ghaduction activity ofk=1,...,K
Yie...Vkv) € Ry’ using the same linear technology. We assume tleateithnology is
regular and presents variable returns to scale YR®e production possibility set is
considered defined by the convex combination ofe¢hebserved activities (Faeg al,
1994). Here, let us recall the definition of theduction input set(y) as the set of
inputs vectorsx € Ry" yielding at least output levgl € Ry" (Shepard, 1970; Faet
al.,1994).

same for all firms. To illustrate the probléntet us further suppose that the production
process also generatbsl,...,H pollutant residue€ach unit of input, n, includes a
quantity of different material@nianz,..,a.4) € Ry some of which are discharged into
nature as pollutant residuésthe total materiah used by firmk is given by the

following equation:

! Similar analysis is possible for aggregate outputs

% The analysis can be extended to constant retarssale.

% We use the environmental condition to give meaminipe second set of input coefficients. This lban
generalised to other problems

“ For more on materials balance-based models of@mviental efficiency, see Coedit al (2007). See
also Hampf (2014) for a justification of the stragigposability condition in material balance models
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N
A?N :Zanhxkn h:l”H (1)
n=1

Wherea,nis the unit coefficient of substanbdor inputn, which may be null for some
inputs. For the sake of simplicity, we will begiyp &ssuming that the productive activity
generates a single pollutant residde,1 allowing us to drop the inddxin the notation.
Therefore, an increase in technical efficiencynputs also implies a decrease in costs

and a gain in overall environmental efficiency. Wi#l now consider how the radial

technical efficiency score (Farrell, 1957) varieshwan aggregation M<N inputs,
simultaneously using two types of linear aggregateshe same inputs, one price-

weighted w,, and another weighted by the material flow coedfits,a,.

N ~

Cii =D WXq k=12,...,K N<N (2)
=1

and
N ~

Ay = Z a, X, k=12,.,K N<N (3)
=1

Starting from previous results obtained by Fétral (2004), we will compare the input-
oriented technical efficiency scores estimatedfifon k using a single linear aggregate
of inputs (costs or materials, indistinctly) withat estimated using two aggregates
simultaneously. To this end, we will define fourfi@éncy scores for the same
production unik using the data envelopment analysis (DEA) mod@&antker Charnes
and Coope(1984), BCC, for technologies with variable retutmscale.

EFi(y* X, which is the estimated efficiency score, is caladavithout aggregate input

values, by the following linear program:



EFi (y*,x*)=min g

subject to

> 2 Yim 2 Vi m=1,..,M
k

D X < B n=1,...,N
k

2,20, > z,=1 k=1..,K
k

(4)

The efficiency of unit k using aggregate costsl(bﬁnputs,EFc(yk,CkN Xigag 1o X ) 1S

estimated by the following linear program:

EF. (yk,Cm,xmﬂ,...,xN): min S

subject to
> 2V 2 Yim m=1...,M
k
z,C . < pBC. .
2 % Kl ©)
ZZkanSﬂan n=N+1..,N
k

2,20, > z=1 k=1..K
k

We calculate the efficiency score using aggregateenal inputs
EF, (yk Ag xmﬂ,...,ka) by the same program as in (5), substitu@pgwith A .
We then extend program (5) to include b&lfy and A ; as inputs, in order to obtain the

efficiency score using double aggregation:



EFCA(yk’Ckr\] ’ AkN’XkN+1""’XN)= min S8
subject to

szykm 2 Yim m=1,...,.M

k

Z ZkaI\] S 'BCKN

k

Z zAg < BA

k

D Z X < B n=N+1..,N
k

2,20, >z =1 k=1..,K
k

(6)

Thus, we have four DEA measures of input-orienzhnical efficiency* EFi,EFc,
EFa, EFca. The second and third use a single linear aggeeagmthe input (the subcost

or sub-pollutant), the fourth uses two aggregatésedsame inputs.

[11. Technical efficiency biases using multiple aggregates

We will begin by showing that the technical effivdy score is consistent and less
biased when the estimation uses two linear aggesegait the same inputs (costs and
environmental load) than when it uses a single eggge. For this, we start from
previous results obtained by Fé&ee al (2004) for an analysis using a single linear
aggregate. These authors show that, for every wisen k (k=1,...,K) it is satisfied

that:
EF. (y*, o) < ER(Y*,Cq X 00X )< EFi (y©, X)
and (7)

EF, (Y*, Ax) < ERL(YS Ay X g%y )< EFi (y©, %)

WhereCyy and Axy are, respectively, the observed firm’s cost anceratuse;EFc

(V*,Cn) represents the variable returns to scale (VRS edficiency (Fare and

® Similar analysis is possible for aggregate outputs



Grosskopf, 1985); anBFa (Y A«) is the VRS overall environmental efficiency. Then
when some inputs are linearly aggregated while retlage kept disaggregated, the
technical efficiency score given by the BCC modehibits a downwards bias with
respect to that given by an application using fulhbundled inputs, and this bias is
limited by the allocative efficiency (Faet al, 2004).

According to these results, a unit that performd weterms of overall environmental
efficiency can be classed as technically ineffitidgrthe calculations are made using
program (5) with a single aggregate cost variabte.this to occur, the unit needs to be
cost allocation inefficient. Similar mis-measurernesn occur with a unit that is overall
cost-efficient if the estimate is computed usinty@ggregate material inputs.

Applying the same conditions as in equations (3)wal be seen later, it can be proven

that, for anyk (k=1,...,K), it is satisfied that:
EF (V5,0 Xgpre X ) S EFealY, C s A X upre X )< EF (Y5, )
and (8)

EFL (Y, Ao XX ) S EFcalY, C oo A s X poee- X ) < EFi(y*, x¥)

In other words, the technical efficiency scoreraated by linear program (6), using two
linear aggregates of the same inputs, one for desjisation 2) the other for materials
(equation 3) and non-aggregated values of all otheables, is biased downwards in
relation to the estimate given by program (4).Thgrde of bias is less than or equal to
that which occurs in the measure of technical igfficy using a single linear aggregate,
whether of costs or materials. Therefore the uséath aggregates together cannot
possibly give the inconsistent result of findinguait overall cost- or environment-
efficient and at the same time technically ineéiti.

To prove the relationship in equations (8), oneyameds to demonstrate, in a way
analogous to that used by Fateal (2004), that the set of all feasible solutiongegi
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by linear program (4) is a subset of the set ofif#a solutions given by linear program
(6).° Therefore, the smallest optimal solution giverpbygram (4) must be greater than
or equal to that given by program (6). Linear pergr(6) is, in turn, a more constrained
version of program (5). Thus, the smallest optismlition given by program (6) will be
no smaller than that given by program (5), whicbves the relationship in equations
(8).This result can be generalised to the casgyusiore than two linear aggregates of
the same input${>1. An increase in the number of linear aggregatéiseosame inputs
used in the DEA technical efficiency estimationuegls potential aggregation bias.
Next, we will prove that a sufficient condition faero aggregation bias in technical
efficiency estimated by linear program (6) is ttae input of thek™ unit should be a
positive linear combination of the inputs of an @hevariable return to scale (VRS)
cost-efficient unit, c(y°,X) (Fare and Grosskopf, 1985) and an overall VRS

environmentally-efficient unia(y?,»?) as indicated by the following expression:

ykm = ycm = ycm m :1, ..,M
Xn = T X, + a X, n=1,...,N (9)
a.20, a,=0, a,.+ta, =1

x* 0O L(y")
Where indexc denotes the overall cost-efficient unit and indedenotes the overall

environmentally-efficient unit (Coelgt al, 2007).

Let us first consider the benchmark case, in whitke N. That is, where technical
efficiency is estimated by program (6) with onlyotwnputs: the firm’s observed cost
and observed material input§Fca (Y,CvAw). The purpose of our proof is to

demonstrate that the optimal solution to lineargpams (4) and (6) is found with no

® The proof, omitted for reasons of space and becthesprocedure is identical to that of Primonto@)9
and Fareet al (2004), is available upon request from the awh&rogram (3) has arguably more
constraints than program (4) because the inputti@nshas to be satisfied for all prices.

" For a determinatg‘ or scale of production because we assume variahlens to scale (Tone, 1996;
Krivonozhko and Fgrsund, 2010)
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slacks in input restrictions for thé&' unit; that is, the" unit is enveloped with a subset
of efficient units of the input sét(y*) (Shepard, 1970; Fae al, 1983). Here, it can be
recalled that BCC-efficient units (Tone, 1996; Ceogt al, 2007) are those for which
the optimal solution given by the BCC program isa@do 1 with no slacks in input and
output restrictions. Now, we can define as BCC ineflicient units those with an
efficiency score equal to unity and no slacks iogoam (4) input restrictiorfsthat is,
no unit in the input set for the output of the B@@ut-efficient unit has a smaller input
vector than the BCC input efficient unit (Shepd®l70; Fareet al, 1983).

We begin with linear program (4). Let it be notdatt units,c anda are both BCC-
input-efficient for program (4), because they ame with minimum input costs and
minimum material inputs, respectively, for outm'jt(Sueyoshi, 1999) Furthermore,
the convexity of technology determines that inpet I(y*) includes a BCC-input-
efficient unit which has an input vector that igasitive linear combination of the

inputs of the two efficient units,anda, as indicated by the following expressin:

A(“_ +anjm(yk)

ac + aa ac + aa (10)

wherely <1.
Therefore, for thé" unit, projected efficiency according to program (,y*, x*, 5*)

is written as follows:

X; :ZZT(an :,B* (acxcn+aaxan) n:]‘!""N
k

y;mzzzlykmzykm m=1,...,M (11)
k

1...K

2,20, Yz =1 k
k

® Tone and Tsutsui (2010) propose an equivalengoayén a constant returns to scale model.

® This condition can be proved by comparing thetsmhs of the dual of programs (4) and (5). Theopro
is omitted here but is available upon request fthenauthors.

19 Actually, all efficient units that are positiverobinations ofa andc are overall efficient for both
criteria cost and environment together. And ingéfi¢ units enveloped by this part of the frontiex a
allocation- efficient.



Units ¢ and a, for their part, are BCC input-efficient (Kornblutli974) by linear
program (6); because they have the outguminimal production cost and lower
environmental impact, respectively. Therefore, @slihear program (4), the projected

activity of linear program (6)z(*, y**, C**, A** [**) is written as follows:

* K

Cin = Z::CKN =B (a Cnta CaN)
K

c~cN a

=> 2 Ay =B (@ Ay +a,Ay)
k
:ZZT(* ykm 2 ykm 1 ’M (12)
k
z, 20, >z =1 k=1..K
k

Given that £*,x*) is that unit of the input set which maximally paostionally contracts
the inputs of th&™ unit, it is satisfied thag*=g** 1
Finally, it can be shown, in a way analogous td tiseed by Faret al. (2004), that the

following relationship is satisfied:

EFca (Y Cuns A ) S EFca (Y, C g A s X Xn) (13)
It only has to be proved that the set of feasiblet®ns to program (6) for the case in

which N < Nis a subset of the set of feasible solutions tgEm (6) wheN = N.

Then, if equations (11), (12) and (13) are satikfig is proved that there is zero
aggregate bias in program (6) when the unit undelyais is a positive linear
combination of a cost-efficient unit and an envirantally-efficient unit.

These results can be generalised to the case shwire than two linear aggregates of
the same inputs are used.

The overall conclusion of this study is that aggtegbias in technical efficiency
estimation decreases with the used number of liaggregates of the same inputs and

is null for allocation-efficient units (in terms @frices, environment,...) and for units

1t is sufficient to write(Cen, Acn) and(Can, Aan) @s a function of the inputs of unasandc in (11).
Further proof is available upon request from ththaus.

10



that are a positive combination of a number of alv@fficient units. These results have
important implications for applied analysis. FirBXzA technical efficiency programs
with composite inputs should use as many linearrexgdes of inputs as overall
efficiency criteria to avoid inconsistencies betwedechnical efficiency and overall
efficiency estimates. Second, an adequate use dfipieulinear aggregates could

significantly reduce technical efficiency aggregatbias.
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