
MPRA
Munich Personal RePEc Archive

Input aggregation bias in technical
efficiency with multiple criteria analysis

Valero L. Casasnovas and Ana M. Aldanondo

Public University of Navarre

12. June 2014

Online at http://mpra.ub.uni-muenchen.de/56778/
MPRA Paper No. 56778, posted UNSPECIFIED

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213960357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/56778/


1 
 

 

Input aggregation bias in technical efficiency with multiple criteria analysis  

Ana M. Aldanondo a  & Valero L. Casasnovas a,* 

 

a Department of Business Administration, Public University of Navarre, Campus 
Arrosadia, Pamplona, 31006, Spain 

 
      * Corresponding author. E-mail: valero.casasnovas@unavarra.es 
 

 

WORKING PAPER 

June 2014 

 

 

Abstract 

We extend the Tauer (2001) and Färe et al. (2004) analyses of aggregation bias in 

technical efficiency measurement to multiple criteria decision analysis. We show input 

aggregation conditions consistent with multiple criteria evaluation of overall efficiency 

in conjunction with variation in aggregation bias.  
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I. Introduction 

Aggregate input values are a common feature in Data Envelopment Analysis (DEA) 

applications. Researchers estimating the technical efficiency of different economic units 

often use raw material costs rather than quantities per material and labour costs instead 

of the number of hours worked per job category. While there are advantages in using 

aggregate data to overcome information gaps or reduce the dimensions of the problem, 

there are also some drawbacks. Various studies (Primont, 1993; Thomas and Tauer, 

1994; Tauer, 2001; Färe and Zelenyuk, 2002; Färe et al., 2004) suggest that measures of 

radial technical efficiency using linear input aggregates could be biased by price 

allocation inefficiency.  

The main approach to the theoretical analysis of technical efficiency aggregation bias is 

based on the standard model of cost efficiency and its decomposition into technical 

efficiency and allocation efficiency. In this context, cost minimization (as a prerequisite 

for profit maximization) is the only economic aim of the production unit. The question 

is whether this scenario is always warranted. Indeed, in complex production problems, 

decisions require a combination of multiple, conflicting optimization criteria and 

efficiency. For instance, a plant manager may seek simultaneously to reduce production 

costs, optimize management time and reduce pollutant inputs (Coelli et al., 2007). Thus, 

we have multiple overall efficiency criteria and a single technology (or technical 

efficiency). This may pose an additional problem of inconsistency when estimating 

technical efficiency using aggregate inputs. Technical efficiency estimates based on a 

single composite input (or materials,…) price may be incompatible with overall 

environmental efficiency (or cost,…) estimates and other criteria. 
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The main purpose of this paper is to extend the analysis of input aggregation bias1 to 

situations in which the production units are simultaneously focused on several 

objectives. The two main issues we wish to address are a) the number and nature of the 

aggregate values required in order to avoid inconsistent estimates; and b) how far the 

degree of bias in the efficiency score varies when using several linear aggregates of the 

same inputs. 

 

II. Presentation of the different models 

Let us consider a situation in which we observe the production activity of k=1,…,K 

firms using N inputs,  xk= (xk1,xk2,…,xkN) Є RN
+ in order to produce M outputs yk= (yk1, 

yk2,….,ykM) Є RM
+ using the same linear technology. We assume that the technology is 

regular and presents variable returns to scale (VRS).2 The production possibility set is 

considered defined by the convex combination of these observed activities (Färe et al., 

1994). Here, let us recall the definition of the production input set L(y) as the set of 

inputs vectors, x Є RN
+ yielding at least output level y Є RM

+ (Shepard, 1970; Färe et 

al.,1994). 

Inputs have their corresponding prices (w1,w2,….,wn) Є RN
+, which are assumed to be the 

same for all firms. To illustrate the problem,3 let us further suppose that the production 

process also generates h=1,…,H pollutant residues. Each unit of input, n, includes a 

quantity of different materials (an1,an2,….,anH) Є RH
+ some of which are discharged into 

nature as pollutant residues.4 The total material h used by firm k is given by the 

following equation:  

                                                 
1 Similar analysis is possible for aggregate outputs. 
2 The analysis can be extended to constant returns to scale. 
3 We use the environmental condition to give meaning to the second set of input coefficients. This can be 
generalised to other problems 
4 For more on materials balance-based models of environmental efficiency, see Coelli et al. (2007). See 
also Hampf (2014) for a justification of the strong disposability condition in material balance models. 
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Where anh is the unit coefficient of substance h for input n, which may be null for some 

inputs. For the sake of simplicity, we will begin by assuming that the productive activity 

generates a single pollutant residue, H=1 allowing us to drop the index h in the notation. 

Therefore, an increase in technical efficiency in inputs also implies a decrease in costs 

and a gain in overall environmental efficiency. We will now consider how the radial 

technical efficiency score (Farrell, 1957) varies with an aggregation of NN ≤ˆ  inputs, 

simultaneously using two types of linear aggregates of the same inputs, one price-

weighted, wn, and another weighted by the material flow coefficients, an. 
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Starting from previous results obtained by Färe et al. (2004), we will compare the input-

oriented technical efficiency scores estimated for firm k using a single linear aggregate 

of inputs (costs or materials, indistinctly) with that estimated using two aggregates 

simultaneously. To this end, we will define four efficiency scores for the same 

production unit k using the data envelopment analysis (DEA) model of Banker, Charnes 

and Cooper (1984), BCC, for technologies with variable returns to scale. 

EFi(yk,xk), which is the estimated efficiency score, is calculated without aggregate input 

values, by the following linear program: 
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The efficiency of unit k using aggregate costs of N̂  inputs, ),...,,,(
1ˆˆ kNNkNk

k
C xxCyEF + is 

estimated by the following linear program: 
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We calculate the efficiency score using aggregate material inputs 

( )kNNkNk

k
A xxAyEF ,...,,,

1ˆˆ +  
by the same program as in (5), substituting

Nk
C ˆ  with

Nk
A ˆ . 

We then extend program (5) to include both 
Nk

C ˆ  and 
Nk

A ˆ as inputs, in order to obtain the 

efficiency score using double aggregation: 
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Thus, we have four DEA measures of input-oriented technical efficiency:5 EFi,EFc, 

EFA, EFCA. The second and third use a single linear aggregate as the input (the subcost 

or sub-pollutant), the fourth uses two aggregates of the same inputs. 

 

III. Technical efficiency biases using multiple aggregates  

We will begin by showing that the technical efficiency score is consistent and less 

biased when the estimation uses two linear aggregates of the same inputs (costs and 

environmental load) than when it uses a single aggregate. For this, we start from 

previous results obtained by Färe et al. (2004) for an analysis using a single linear 

aggregate. These authors show that, for every observation k (k=1,…,K), it is satisfied 

that: 

( ) ( ) ( )kk
NNkNk

k
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k
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and          (7) 
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Where CkN  and AkN  are, respectively, the observed firm´s cost and material use; EFC 

(yk,CkN) represents the variable returns to scale (VRS) cost efficiency (Färe and 

                                                 
5 Similar analysis is possible for aggregate outputs. 
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Grosskopf, 1985); and EFA (y
k,AkN) is the VRS overall environmental efficiency. Then, 

when some inputs are linearly aggregated while others are kept disaggregated, the 

technical efficiency score given by the BCC model exhibits a downwards bias with 

respect to that given by an application using fully unbundled inputs, and this bias is 

limited by the allocative efficiency (Färe et al., 2004). 

According to these results, a unit that performs well in terms of overall environmental 

efficiency can be classed as technically inefficient if the calculations are made using 

program (5) with a single aggregate cost variable. For this to occur, the unit needs to be 

cost allocation inefficient. Similar mis-measurement can occur with a unit that is overall 

cost-efficient if the estimate is computed using only aggregate material inputs. 

Applying the same conditions as in equations (7), as will be seen later, it can be proven 

that, for any k (k=1,…,K), it is satisfied that:  

( ) ( ) ( )kk
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In other words, the technical efficiency score estimated by linear program (6), using two 

linear aggregates of the same inputs, one for costs (equation 2) the other for materials 

(equation 3) and non-aggregated values of all other variables, is biased downwards in 

relation to the estimate given by program (4).The degree of bias is less than or equal to 

that which occurs in the measure of technical efficiency using a single linear aggregate, 

whether of costs or materials. Therefore the use of both aggregates together cannot 

possibly give the inconsistent result of finding a unit overall cost- or environment-

efficient and at the same time technically inefficient.  

To prove the relationship in equations (8), one only needs to demonstrate, in a way 

analogous to that used by Färe et al. (2004), that the set of all feasible solutions given 
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by linear program (4) is a subset of the set of feasible solutions given by linear program 

(6).6 Therefore, the smallest optimal solution given by program (4) must be greater than 

or equal to that given by program (6). Linear program (6) is, in turn, a more constrained 

version of program (5). Thus, the smallest optimal solution given by program (6) will be 

no smaller than that given by program (5), which proves the relationship in equations 

(8).This result can be generalised to the case using more than two linear aggregates of 

the same inputs, H>1. An increase in the number of linear aggregates of the same inputs 

used in the DEA technical efficiency estimation reduces potential aggregation bias.  

Next, we will prove that a sufficient condition for zero aggregation bias in technical 

efficiency estimated by linear program (6) is that the input of the kth unit should be a 

positive linear combination of the inputs of an overall variable return to scale (VRS) 

cost-efficient unit, c(yc,xc) (Färe and Grosskopf, 1985) and an overall VRS 

environmentally-efficient unit, a(ya,xa) as indicated by the following expression:7 
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Where index c denotes the overall cost-efficient unit and index a denotes the overall 

environmentally-efficient unit (Coelli et al., 2007). 

Let us first consider the benchmark case, in which NN =ˆ . That is, where technical 

efficiency is estimated by program (6) with only two inputs: the firm’s observed cost 

and observed material inputs, EFCA (yk,CkN,,AkN). The purpose of our proof is to 

demonstrate that the optimal solution to linear programs (4) and (6) is found with no 

                                                 
6 The proof, omitted for reasons of space and because the procedure is identical to that of Primont (1996) 
and Färe et al. (2004), is available upon request from the authors. Program (3) has arguably more 
constraints than program (4) because the input constraint has to be satisfied for all prices. 
7 For a determinate yk or  scale of production because we assume variable returns to scale (Tone, 1996; 
Krivonozhko and  Førsund, 2010)  
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slacks in input restrictions for the kth unit; that is, the kth unit is enveloped with a subset 

of efficient units of the input set L(yk) (Shepard, 1970; Färe et al., 1983). Here, it can be 

recalled that BCC-efficient units (Tone, 1996; Cooper et al., 2007) are those for which 

the optimal solution given by the BCC program is equal to 1 with no slacks in input and 

output restrictions. Now, we can define as BCC input efficient units those with an 

efficiency score equal to unity and no slacks in program (4) input restrictions,8 that is, 

no unit in the input set for the output of the BCC input-efficient unit has a smaller input 

vector than the BCC input efficient unit (Shepard, 1970; Färe et al., 1983). 

We begin with linear program (4). Let it be noted that units, c and a are both BCC-

input-efficient for program (4), because they are run with minimum input costs and 

minimum material inputs, respectively, for output yk (Sueyoshi, 1999).9 Furthermore, 

the convexity of technology determines that input set L(yk) includes a BCC-input- 

efficient unit which has an input vector that is a positive linear combination of the 

inputs of the two efficient units, c and a, as indicated by the following expression:10 
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where λx ≤1. 

Therefore, for the kth unit, projected efficiency according to program (4) (z*,y*, x*, β* ) 

is written as follows:  
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8 Tone and Tsutsui (2010) propose an equivalent category in a constant returns to scale model.  
9  This condition can be proved by comparing the solutions of the dual of programs (4) and (5). The proof 
is omitted here but is available upon request from the authors.  
10 Actually, all efficient units that are positive combinations of a and c are overall efficient for both 
criteria cost and environment together. And inefficient units enveloped by this part of the frontier are 
allocation- efficient. 
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Units c and a, for their part, are BCC input-efficient (Kornbluth, 1974) by linear 

program (6); because they have the output yk minimal production cost and lower 

environmental impact, respectively. Therefore, as for linear program (4), the projected 

activity of linear program (6) (z**, y**, C**, A**, β** ) is written as follows: 
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Given that (z*,x*) is that unit of the input set which maximally proportionally contracts 

the inputs of the kth unit, it is satisfied that β*=β** .11 

Finally, it can be shown, in a way analogous to that used by Färe et al. (2004), that the 

following relationship is satisfied:  

),...,,,,(),,(
1ˆˆˆ NNkNkNk

k
CAkNkN

k
CA xxACyEFACyEF +≤

 
(13)  

It only has to be proved that the set of feasible solutions to program (6) for the case in 

which NN <ˆ is a subset of the set of feasible solutions to program (6) when NN =ˆ .  

Then, if equations (11), (12) and (13) are satisfied, it is proved that there is zero 

aggregate bias in program (6) when the unit under analysis is a positive linear 

combination of a cost-efficient unit and an environmentally-efficient unit.  

These results can be generalised to the case in which more than two linear aggregates of 

the same inputs are used. 

The overall conclusion of this study is that aggregate bias in technical efficiency 

estimation decreases with the used number of linear aggregates of the same inputs and 

is null for allocation-efficient units (in terms of prices, environment,…) and for units 

                                                 
11 It is sufficient to write (CcN, AcN) and (CaN, AaN) as a function of the inputs of units a and c in (11). 
Further proof is available upon request from the authors.  



11 
 

that are a positive combination of a number of overall efficient units. These results have 

important implications for applied analysis. First, DEA technical efficiency programs 

with composite inputs should use as many linear aggregates of inputs as overall 

efficiency criteria to avoid inconsistencies between technical efficiency and overall 

efficiency estimates. Second, an adequate use of multiple linear aggregates could 

significantly reduce technical efficiency aggregation bias.   
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