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Abstract: This paper uses panel cointegration techniques to examine the causal 

relationship between output, renewable and non-renewable energy consumption, and 

international trade for a sample of 69 countries during the period 1980-2007. In the short-run, 

Granger causality tests show that there is a bidirectional causality between output and trade 

(exports or imports), a bidirectional causality between non-renewable energy and trade, and a 

one way causality running from renewable energy to trade. In the long-run, a bidirectional 

causality between renewable energy and imports and a unidirectional causality running from 

renewable energy to exports, are noticed. Our long-run OLS, FMOLS and DOLS estimates 

suggest that renewable, non-renewable energy consumption and trade have a positive impact 

on economic growth. Our energy policy recommendations are the following: i) any non-

renewable energy policy should take into account the importance of international trade, ii) 

more renewable energy use should be encouraged by national and international competent 
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authorities in order to increase international economic exchanges and promote economic 

growth without harming the environment, and iii) increasing imports, particularly by 

developing countries, is a good vehicle for renewable energy technology transfer and 

contributes to increase renewable energy consumption in the long-run, thus contributing to 

reducing greenhouse gas emissions.  

 

Keywords: Renewable and non-renewable electricity consumption; Trade; Panel 

cointegration. 

JEL Classification: C33, F14, Q43 

 

1. Introduction 

This paper investigates the interaction between international trade and renewable and non-

renewable energy consumption by considering a panel of 69 countries. This investigation is 

interesting because the causal relationship between renewable and non-renewable energy and 

international trade has not been previously studied. Nevertheless, it is admitted that the use of 

renewable energy, particularly by developing countries, is greatly influenced by technology 

transfer, which mainly operates through international economic exchanges. The Rio and 

Johannesburg conferences recognize that trade helps to achieve more efficient allocation of 

scarce resources and facilitates the access of rich and poor countries to environmental goods, 

services and technologies (World Trade Organization, 2011). 

Several empirical studies analyze the causal relationship between economic growth and 

consumption of renewable energy (Apergis and Payne, 2010a, 2010b, 2011, 2012, Sadorsky, 

2009b). Other research papers analyze the causal relationship between economic growth, 

renewable energy consumption and carbon dioxide (CO2) emissions (Sadorsky, 2009a). All 

these studies agree that renewable energy consumption plays an important role in increasing 

economic growth. Moreover, an energy policy to increase the share of renewable energy in 

total energy consumption is very effective in reducing greenhouse gas emissions. In addition 

to capital, labor, and renewable energy consumption, other variables such as international 

trade can be incorporated into the production function to explain the growth of gross domestic 

product (GDP).  

Many studies investigate the causal relationship between energy consumption (total 

energy use), international trade, and output. Lean and Smyth (2010a) study the dynamic 

relationship between economic growth, electricity production, exports and prices in Malaysia. 

Granger causality tests show the existence of a unidirectional causality running from 
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economic growth to electricity production. Lean and Smyth (2010b) study the causal 

relationship, in Malaysia, between output, electricity consumption, exports, labor, and capital 

in a multivariate model. They show the existence of a bidirectional causality between output 

and electricity consumption. They conclude that Malaysia should adopt the strategy of 

increasing investment in electricity infrastructure and encouraging electricity conservation 

policies to reduce unnecessary use of electricity. Similarly, Narayan and Smyth (2009) find 

feedback effects between electricity consumption, exports and GDP, for a sample of Middle 

East countries. Sadorsky (2011) uses panel cointegration techniques for 8 Middle East 

countries to study how trade can affect energy consumption. He finds a Granger causality 

running from exports to energy consumption and a bidirectional causality between imports 

and energy consumption in the short-run. In the long-run, he notices that an increase in both 

exports and imports affect the energy demand. In another paper, Sadorsky (2012) confirms the 

long-run causality between trade and energy consumption using a sample of 7 South 

American countries. He concludes that environmental policies made to reduce energy 

consumption will reduce trade.  

Ben Aïssa et al. (2014) explore the relationship between renewable energy consumption, 

trade and output for 11 African countries. They show that there is a bidirectional causality 

between output and trade (exports or imports) in both the short and long-run. However, in the 

short-run, these authors find that there is no causality between output and renewable energy 

consumption and between trade and renewable energy consumption. The present paper differs 

from that of Ben Aïssa et al. (2014) by the inclusion of non-renewable energy consumption as 

a dependent variable, and by considering another panel of countries. 

To our knowledge, no research has been reported on the causal relationship between 

international trade, renewable and non-renewable energy consumption. The aim of this paper 

is to explore the causal relationship between renewable energy consumption, non-renewable 

energy consumption, trade, and output by considering a panel of 69 countries.  

This study has the following structure. Section 2 gives an idea about the renewable energy 

sector and international trade. Section 3 describes the methods used. Section 4 deals with the 

results and their discussions. Finally, Section 5 presents the main conclusions and policy 

implications.  

 

2. Renewable energy and international trade 

According to the International Energy Agency (2012), more than 70 countries are 

expected to use renewable energy technologies in the power sector by 2017. One policy driver 
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is environmental concerns which aim to reduce CO2 emissions and local pollutants. 

Renewables are also encouraged to stimulate economies, reinforce energy security and 

diversify energy consumption. Renewable energies have been used principally by the 

electricity sector, followed by biofuels. In most cases, subsidies are needed because 

renewables are still more expensive than conventional energy sources.  

Renewable energy use, including traditional biomass, was 1684 million tons of oil 

equivalent (Mtoe) in 2010 representing 13% of total primary energy use (International Energy 

Agency, 2012). This share has remained stable since 2000, but the contributions of different 

renewable sources have changed. The share of traditional biomass in total renewable energy 

decreased from 50% in 2000 to 45% in 2010, while biofuels made an increasing share in the 

transportation fuel needs. The share of hydropower, the largest source of renewable 

electricity, remained stable. The most important increases are those of electricity generation 

from wind which increased by 27% and solar photovoltaic (PV) which increased by 42% per 

year on average during the period 2000-2010. The renewable sector has been affected by the 

international economic crisis. However, weaker performances in some regions in Europe and 

United States for example, have been largely offset by an important increase in the rest of the 

world, notably in Asia.  

Because of governments support, decreasing costs, CO2 pricing in some regions, and 

rising fossil fuel prices in the long-term, the International Energy Agency (2012) estimates 

that the share of renewables in primary energy use will increase. Electricity generation from 

renewable will approximately triple from 2010 to 2035, attaining 31% of total production. In 

2035, hydropower will provide half of renewable production, wind nearly one-quarter and 

solar PV 7.5%. Solar PV production will increase 26-fold from 2010 to 2035. The use of 

renewables is expected to reduce CO2 emissions by over than 4.1 Gt in 2035, contribute to the 

diversification of the energy sources, reduce oil and gas import bills, and decrease air 

pollution. 

The United Nations Environment Program and the World Trade Organization (2009) 

consider that the 60 years prior to 2008 have been marked by a considerable expansion of 

international trade. In terms of volume, world trade is approximately 32 times greater now 

than it was in 1950. The share in total GDP increased from 5.5% in 1950 to 21% in 2007. 

This considerable expansion in world trade has been encouraged by technological progress, 

which has considerably reduced the costs of transportation and communications, and by 

countries’ use of more open trade and investment policies. The number of countries 
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participating in international trade has increased. For instance, developing countries have 

approximately doubled their share in international trade in the last 60 years.  

This expansion in international trade poses questions about its impact on greenhouse gas 

emissions. The impact of trade on pollution can be explained by three principal effects, which 

are the scale, composition and technique effects. International trade can be used as a channel 

for diffusing technologies, especially from developed to developing countries, to combat 

climate change. International trade can increase the availability of goods and services that are 

more energy efficient. The increase in income made possible by trade openness can lead to a 

demand for better environmental quality and a reduction in greenhouse gas emissions.  

It is admitted that international trade and renewable energy consumption are linked. 

International trade can induce more renewable energy use, for many reasons: i) more trade in 

goods necessitates more energy and renewable energy use to produce and transport these 

goods from one country to another, ii) because of economies of scale and technology 

progress, the price of equipments (for instance solar PV and onshore wind power) used to 

produce renewable energy have considerably reduced pushing companies to explore new 

markets. This makes renewables more affordable for a larger range of consumers throughout 

the world (United Nations Environment Program 2013a), and iii) international trade can play 

a significant role in greening the energy sector as it is an important vehicle for renewable 

energy technology transfer. Indeed, international technology transfer through trade occurs 

when a country imports capital goods, such as machines and equipment to produce renewable 

energy. Local firms of the importing country can copy the technology of the imported goods, 

or acquire knowledge, through training sessions for engineers and technicians operating the 

production line, as customer or distributor, or through business relationships with the source 

company. As an example, China has mainly acquired foreign technologies to create a 

domestic PV industry mostly through the international trade of manufacturing equipments (De 

la Tour et al., 2011). Consequently, China is the largest solar PV cell producer in the world, 

with more than one third of worldwide production in 2008, exporting more than 95 percent of 

what it produces.  

 More renewable energy production can stimulate international trade for many reasons: i) 

the use of more renewable energy implies more production of goods and the excess of 

production in some countries is exported to importing countries, ii) according to the United 

Nations Environment Program (2013a), there is a surplus in renewable energy production in 

some regions in the world, whereas a deficiency in renewable energy production is noticed in 

other regions. This has established international commercial exchanges in renewable energy 
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goods. For instance, in some regions of the world, available biomass is insufficient to meet 

growing demand for bioenergy, whereas other regions produce biomass in excess. This 

situation has created important international trade in solid and liquid biomass fuels. Another 

example is the Lesotho highlands power project which will generate 6 GW of wind power and 

4 GW of hydropower, mainly for export to South Africa. This is equivalent to nearly one 

quarter of South Africa’s total current energy supply (United Nations Environment Program 

2013b), and iii) increasing renewable energy production  has a significant impact on 

international trade in rare earth minerals or metals, which are important inputs for the 

manufacture of several renewable energy supply products such as wind turbines and energy 

efficient lighting.  

In conclusion, the production and consumption of renewable energies and international 

economic exchanges are increasing in all parts of the world. It is accepted that renewable 

energy consumption and international trade are linked, however few researches have 

empirically studied this relationship.  

 

3. Material and methods 

The data set is a panel of 69 countries followed over the years 1980-2007 and includes 

annual data on output, renewable and non-renewable electricity consumption, capital, labor, 

exports, and imports. The Appendix lists the 69 countries included in the analysis which are 

distributed on the five continents. Annual time series data are chosen to include as many 

countries as possible by taking into account the availability of data over the selected period. 

The multivariate framework for the analysis includes real gross domestic product (output) 

measured in constant 2000 US dollars. Renewable energy consumption is the total renewable 

electricity consumption measured in millions of kilowatt hours. It comprises the electricity 

produced from geothermal, solar, wind, tide and wave, biomass and waste, and hydroelectric. 

Non-renewable energy consumption is the total non-renewable electricity produced using oil, 

natural gas and coal, and is measured in millions of kilowatt hours. Exports (imports) are 

measured using merchandise exports (imports) in current US dollars and are converted to real 

values by dividing them by the price level of consumption (pc). The capital stock is measured 

by the gross fixed capital formation in constant 2000 US dollars. Labor is measured as the 

total number of labor force. Data on exports, imports, capital and labor are obtained from the 

World Bank (2010). Data on renewable and non-renewable energy consumption are obtained 

from the U.S Energy Information Administration (2012), and those on pc are obtained from 
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the Penn World Table version 7.1 (Heston et al., 2012). All estimations are made using 

Eviews 8.0. 

Following Apergis and Payne (2011, 2012), Lean and Smith (2010a, 2010b), and 

Sadorsky (2012), we estimate the relationship between renewable and non-renewable energy 

consumption, output and trade by using the production function. The model presented by 

Apergis and Payne (2012) includes renewable and non-renewable energy in the production 

function in order to investigate the relation between energy and output. The model used by 

Sadorsky (2012) includes exports and imports in two separate empirical models, whereas the 

models used by Lean and Smith (2010a, 2010b) include only exports. In the present paper, we 

follow the same model specification as Sadorsky (2012) to investigate the relationship 

between renewable and non-renewable energy consumption, output and trade. 

The production modeling framework given below shows that output (Y) is written as a 

function of renewable and non-renewable energy (RE, NRE), trade (O)1, capital (K), and labor 

(L): 

 

( , , , ),it it it it ititY f RE NRE O K L=                                                                                              (1)     

 

Eq. (1) can be written as follow: 

                                               

1 2 3 4 5i i i i i
it it it it it itY RE NRE O K Lβ β β β β=                                                                                                (2) 

 

The natural log of Eq. (2) gives the following equation: 

 

1 2 3 4 5it i i i it i it i it i it i it ity t re nre o k lα δ β β β β β ε= + + + + + + +                                                  (3)                                                

 

where 1, ,i N= …  for each country in the panel, 1, ,t T= …  denotes the time period and ( )ε  

denotes the stochastic error term. The parameters iα  and iδ  allow for the possibility of 

country-specific fixed effect and deterministic trend, respectively. 
                                                           

1
 International trade is incorporated into the production function by including real exports or real imports of 

merchandises in two separate specification models because of the high correlation value (0.97) between exports 

(ex) and imports (im). 
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To examine the relationship between renewable and non-renewable energy consumption 

and trade for a sample of 69 countries, we use panel cointegration techniques. These 

techniques are interesting because estimations from cross-sections of time series have more 

freedom degrees and are more efficient than estimations from individual time series. Panel 

cointegration techniques are particularly useful when the time series dimension of each cross-

section is short.  

 

4. Results and discussions 

Our empirical analysis follows four steps: i) we proceed panel unit root tests for 

stationary, ii) we look for long-term cointegration between variables, iii) we estimate the 

long-run relationships between variables, and iv) we study the causality between variables 

using Engle and Granger (1987) approach.  

 

4.1. Stationary tests 

In this study four types of unit root tests are computed in order to examine the order of 

integration of variables at level and at first difference, namely Levin et al. (2002), Im et al. 

(2003), test of Fisher using augmented Dickey and Fuller (ADF) (1979), and Phillips and 

Perron (1988). These tests are divided in two groups. The first group of tests includes LLC’s 

test (Levin et al., 2002) assuming a common unit root process across the cross-section. The 

second group of tests comprises IPS-W-statistic (Im et al., 2003), Fisher-ADF Chi-square 

(Dickey and Fuller, 1979) and Fisher-PP Chi-square (Phillips and Perron, 1988) which 

assume individual unit root process across the cross-section. For all these tests, the null 

hypothesis is that there is a unit root and the alternative hypothesis is that there is no unit root. 

We assume that the test regressions contain an intercept and no deterministic trend. The 

numbers of lags are selected automatically using Schwarz information criterion (SIC). The 

results of unit root tests are reported in Table 1. 

Insert Table 1 here 

Table 1 indicates that, at level, there is a unit root for y, nrec, k, ex, and im panel data 

series, whereas after first difference, all our variables are integrated of order one, I(1). For (re) 

data series, the result from the IPS test reports the presence of a unit root at level, whereas 

after first difference it confirms that renewable energy consumption is integrated of order one 

at the 1% significance level. Using IPS and ADF tests, labor force (l) contains a unit root at 

level but becomes stationary after first difference. Finally, we can conclude that the stationary 

of each variable is established and our results confirm that the integration order is one. 
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4.2. Cointegration tests 

To check for long-run association in a heterogeneous panel, we use the cointegration tests 

of Pedroni (1999, 2004). Pedroni (2004) proposes seven statistics distributed on two sets of 

cointegration tests. The first set comprises four panel statistics and includes v-statistic, rho-

statistic, PP-statistic and ADF-statistic. These statistics are classified by the within-dimension 

and take into account common autoregressive coefficients across countries. The second set 

comprises three group statistics and includes rho-statistic, PP-statistic, and ADF statistic. 

These tests are classified by the between-dimension and are based on the individual 

autoregressive coefficients for each country in the panel. The null hypothesis is that there is 

no cointegration ( 0 : 1  iH ρ = ), whereas the alternative hypothesis is that there is 

cointegration between variables. Panel cointegration tests of Pedroni (2004) are based on the 

residual of Eq. (3). The estimated residuals are defined as follows: 

 

1ˆ ˆ
it i it itwε ρ ε −= +                                                                                                             (4) 

 

We assume that the tests are running with individual intercept and deterministic trend. The 

results from the tests for the data set for the model with exports and the model with imports 

are reported in Tables 2 and 3, respectively. 

Insert Table 2 here 

Table 2 indicates that, for the model with exports, three panel statistics (v-statistic, PP-

statistic and ADF-statistic) among the four statistics used for the within-dimension, reject the 

null hypothesis of no cointegration at the 1% significance level and approve that there is 

evidence of cointegration between variables. Two group statistics (PP-statistic and ADF-

statistic) among the three statistics used for the between-dimension reject the null hypothesis 

of no cointegration at the 1% significance level and approve the existence of cointegration 

between variables. Therefore, five tests among seven confirm the existence of long-term 

cointegration between the variables.  

Insert Table 3 here 

For the model with imports, Table 3 indicates that, among the four used statistics of the 

within-dimension, three panel statistics (v-statistic, PP-statistic and ADF-statistic) reject the 

null hypothesis of no cointegration at the 1% significance level. Two group statistics (PP-

statistic and ADF-statistic) among the three statistics used of the between-dimension reject the 
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null hypothesis of no cointegration at the 1% significance level.  Thus, the tests of Pedroni 

(2004) confirm the existence of long-term cointegration between the variables. 

 

4.3. Long-run estimations 

This step consists in the long-run estimation of Eq. (3) where the dependent variable is 

real GDP or output, and the independent variables are renewable energy consumption, non-

renewable energy consumption, real exports (or imports), capital stock and labor force. The 

ordinary least squares (OLS) estimator is asymptotically biased and its distribution depends 

on nuisance parameters, in the context of a panel estimate. To correct this bias, we estimate 

the long-run structural coefficients of Eq. (3) by using the fully modified OLS (FMOLS) and 

the dynamic OLS (DOLS) panel approaches proposed by Pedroni (2001, 2004). To correct the 

problems of endogeneity and serial correlation, FMOLS uses a non-parametric approach, 

whereas DOLS uses a parametric approach. As our variables are measured in natural 

logarithms, the coefficients estimated from the long-run cointegration relationship can be 

considered as long-run elasticities. The results of long-run estimates for the model with 

exports and that with imports are reported in Tables 4 and 5, respectively. 

Insert Table 4 here 

Table 4 reports the results for panel OLS, FMOLS and DOLS long-run estimates for Eq. 

(3) with exports. For the renewable energy, non-renewable energy, capital and labor variables, 

the three approaches produce very close results in terms of sign, magnitude and statistical 

significance.2 Indeed, their estimated coefficients are statistically significant at the 1% level 

and indicate a positive impact on output. The estimated coefficient of exports is not 

statistically significant under FMOLS and DOLS approaches, but is statistically significant at 

the 1% level under the OLS approach with a positive impact on output.  

                                                           
2
 Even though Kao and Chiang (2001) show, by using Monte Carlo experiments, that the DOLS estimator 

outperforms the OLS and FMOLS estimators, some authors prefer the DOLS and others the FMOLS, whereas 

some other authors use both of them as, in most cases, they give very close results. For instance and for 

heterogeneous panels, Apergis and Payne (2012) use the FMOLS estimator, whereas Sadorsky (2009b) uses the 

FMOLS, DOLS and OLS estimators. 
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By using the FMOLS approach, a 1% increase in renewable energy, non-renewable 

energy consumption, capital and labor increase output by 0.04%, 0.09%, 0.79%, and 0.06%, 

respectively. By using the OLS approach, a 1% increase in exports increases output by 0.03%. 

Insert Table 5 here 

 Table 5 reports the results for panel OLS, FMOLS and DOLS long-run estimates for Eq. 

(3) with imports. For all variables, except for the import variable, the three approaches 

produce very close results in terms of sign, magnitude and statistical significance. Indeed, 

their estimated coefficients are statistically significant at the 1% level and indicate a positive 

impact on output. The estimated coefficients of imports are very close and indicate a positive 

impact on output with a statistical significance at the 1%, 10% and 5% levels with the OLS, 

FMOLS and DOLS approaches, respectively. 

In the long-run, FMOLS estimate results suggest that a 1% increase in renewable energy, 

non-renewable energy consumption, imports, capital and labor increase output by 0.04%, 

0.08%, 0.04%, 0.77%, and 0.06%, respectively. 

For all variables except for the export and import variables, the computed coefficients for 

the model with exports and that with imports are very similar in terms of sign, magnitude and 

statistical significance, and lead to the same conclusions. These long-run estimates are very 

different from those found by Apergis and Payne (2012) because our estimated coefficients 

are relatively very small for the renewable energy, non-renewable energy, and labor variables.  

We think that this difference is due to the integration of international trade as a dependent 

variable in our specified model. 

4.4. Causality tests 

Given that the residual cointegration tests of Pedroni (1999, 2004) show the existence of a 

long-run relationship between variables in the two specific models (exports or imports), then 

the approach of Engle and Granger (1987) can be used to estimate the error correction model. 

Our analysis will focus principally on the output, renewable energy consumption, non-

renewable energy consumption, exports, and imports variables. 

The estimation of the dynamic vector error correction model (VECM) is given as follows: 

 

1 1,1 1,2 1,3 1,4 1,5
1 1 1 1 1

q q q q

it i ij it j ij it j ij it j ij it j ij it j
j j j j

q

j

y y re nre o kθ θ θ θ θ θ− − − − −
= = = = =

+ +∆ = + ∆ + ∆ + ∆ ∆ ∆∑ ∑ ∑ ∑ ∑  

, 1 1
1

11 6ij it j

q

it
j

i itECTl λθ µ−−
=

++ +∆∑                                                                                                                     (5)                                   
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2 2,1 2,2 2,3 2,4 2,5
1 1 1 1 1

q

it i ij it j ij it j ij it j i

q q

j it j ij it j
j

q

j j j j

q

re y re nre o kθ θ θ θ θ θ− − − − −
= = = = =

∆ = + ∆ + ∆ + ∆ ∆+ + ∆∑ ∑ ∑ ∑ ∑  

2 2
1

12,6ij it j

q

i it
j

itECTl λ µθ − −
=

∆ + +∑                                                                                                  (6)                                 

3 3,1 3,2 3,3 3,4 3,5
1 1 1 1 1

q q q q

it i ij it j ij it j ij it j ij it j ij it j
j j j

q

j j

nre y re nre o kθ θ θ θ θ θ− − − − −
= = = = =

∆ = + ∆ + ++ ∆+∆ ∆ ∆∑ ∑ ∑ ∑ ∑
 

3 3
1

13,6ij it j

q

i it
j

itECTl λ µθ − −
=

∆ + +∑                                                                                                  (7)                          

4 4,1 4,2 4,3 4,4 4,5
1 1 1 1 1

q q q q

it i ij it j ij it j ij it j ij it j ij it j
j j j j

q

j

o y re nre o kθ θ θ θ θ θ− − − − −
= = = = =

+ +∆ = + ∆ + ∆ + ∆ ∆ ∆∑ ∑ ∑ ∑ ∑  

4 4
1

14,6ij it j

q

i it
j

itECTl λ µθ − −
=

∆ + +∑                                                                                                   (8)                                                                                

5 5,1 5,2 5,3 5,4 5,5
1 1 1 1 1

q q q q

it i ij it j ij it j ij it j ij it j ij it j
j j j j

q

j

k y re nre o kθ θ θ θ θ θ− − − − −
= = = = =

+ +∆ = + ∆ + ∆ + ∆ ∆ ∆∑ ∑ ∑ ∑ ∑  

5 5
1

15,6ij it j

q

i it
j

itECTl λ µθ − −
=

∆ + +∑                                                                                                   (9)                                                                          

6 6,1 6,2 6,3 6,4 6,5
1 1 1 1 1

q q q q

it i ij it j ij it j ij it j ij it j ij it j
j j j j

q

j

l y re nre o kθ θ θ θ θ θ− − − − −
= = = = =

+ +∆ = + ∆ + ∆ + ∆ ∆ ∆∑ ∑ ∑ ∑ ∑  

6 6
1

16,6ij it j

q

i it
j

itECTl λ µθ − −
=

∆ + +∑                                                                                                                     (10) 

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ

it it i it i it i it i it i itECT y re nre o k lβ β β β β= − − − − −                                                                 (11)                                     

 

where ∆  is the first difference operator; the autoregression lag length, q, is set at one and 

determined automatically by SIC; µ  is a random error term; ECT is the error correction term 

derived from the long-run relationship of Eq. (3).  

To investigate the short and long-run dynamic relations between variables, we follow the 

two steps approach of Engle and Granger (1987). First, we estimate the long-run parameters 

in Eq. (3) in order to get the residuals corresponding to the deviation from equilibrium. 

Second, we estimate the parameters related to the short-run adjustment of Eqs. (5) - (10). The 

short-run causality is determined by the significance of F-statistics and the long-run causality 
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corresponding to the error correction term is determined by the significance of t-statistics.3 

The Granger causality tests are reported in Tables 6 and 7, and Fig.1 resumes short-run 

causalities for our main variables. 

Insert Table 6 here 

For the panel VECM with exports, short-run Granger causality tests, reported in Table 6, 

show that there is evidence of a bidirectional causality between exports and output at the 1% 

significance level. There is also a bidirectional short-run causality between exports and non-

renewable energy consumption, which is statistically significant at the 1% and 5% levels 

when the causality runs from non-renewable energy and exports, respectively. A 

unidirectional short-run causality running from renewable energy consumption to exports is 

validated at the 5% significance level. However, there is no evidence of a short-run causality 

between output and renewable energy consumption, output and non-renewable energy 

consumption, and renewable and non-renewable energy consumption.  

The long-run test results reported in Table 6, show that the error correction term is 

statistically significant at the 1% level for Eqs. (5), (8) and (10). Let us notice that the 

computed error correction terms corresponding to the renewable energy and non-renewable 

energy equations are statistically significant with a slow speed of adjustment whereas their 

                                                           
3
 The error correction term estimates the speed at which the dependent variable converges to the long-run 

equilibrium after variations of independent variables. The value of lagged ECT should be between -1 and 0, and 

statistically significant. 
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signs are not negative.4 This means that there is evidence of a long-run causality running: i) 

from renewable and non-renewable energy, exports, capital, and labor to output, ii) from 

output, renewable and non-renewable energy, capital and labor to exports, and iii) from 

output, renewable and non-renewable energy, exports and capital to labor. We can also 

deduce that there is a long-run bidirectional causality between output and exports.  

Insert Table 7 here 

For the panel VECM with imports, short-run Granger causality tests, reported in Table 7, 

show that there is evidence of a bidirectional causality between imports and output at the 1% 

significance level. There is a bidirectional short-run causality between imports and non-

renewable energy consumption, which is statistically significant at the 1% and 10% levels 

when the causality runs from non-renewable energy and imports, respectively. A 

unidirectional short-run causality running from renewable energy consumption to imports is 

validated at the 5% significance level. However, there is no evidence of a short-run causality 

between renewable energy consumption and output, non-renewable energy consumption and 

output, and renewable and non-renewable energy consumption.  

Table 7 reports the long-run test results which show that the error correction term is 

statistically significant at the 1% level for Eqs. (5), (6), (8) and (10). Notice that the estimated 

error correction terms concerning the non-renewable energy and capital equations are 

statistically significant with a slow speed of adjustment but their signs are not negative. This 

means that there is a long-run causality running: i) from renewable and non-renewable 

energy, imports, capital, and labor to output, ii) from output, non-renewable energy, imports, 

capital and labor to renewable energy, iii) from output, renewable and non-renewable energy, 

                                                           
4
 To be significant, the estimated error correction term should be between -1 and 0 and statistically 

significant. Our estimated error correction terms for the non-renewable energy equation are not comprised 

between -1 and 0 for both the exports and imports models. The referee suggested this result may be due to 

multicolinearity between renewable and non-renewable energy variables which may affect the Granger causal 

results. Upon the recommendation of the referee the following two models were estimated: (1) renewable energy 

consumption, output, trade (exports or imports), capital and labor, and (2) non-renewable energy consumption, 

output, trade (exports or imports), capital and labor. We find no difference in the Granger causal results, both in 

the short and long-run, between the present model and these two models. Moreover, the estimated error 

correction terms for the non-renewable energy consumption are not significant because they are not comprised 

between -1 and 0 as in the present model. These results are available upon request. 
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capital and labor to imports, and iv) from output, renewable and non-renewable energy, 

imports and capital to labor. Also, we deduce that there is a long-run bidirectional causality 

between output and imports, output and renewable energy, and renewable energy and imports. 

Insert Fig 1 here 

Fig.1 sums up the short-run Granger causality between our main variables. By looking to 

the short-run causalities in Fig. 1, and the long-run causalities in Tables 6 and 7, we can 

highlight our main causal relationships. 

Indeed, there are both short and long-run bidirectional causalities between trade (exports 

or imports) and output. This signifies that any variation in trade affects output, and any 

variation in output affects trade. This suggests that economic growth cannot be achieved 

without more international trade. These results are in agreement with the findings of Ben 

Aïssa et al. (2014) who consider a panel of 11 African countries, and those of Sadorsky 

(2012) who is concerned by a panel of 7 South American countries.  

Our short-run Granger causality tests suggest the existence of a unidirectional causality 

running from renewable energy consumption to trade. In the long-run, there is a unidirectional 

causality running from renewable energy consumption to exports, and a bidirectional 

causality between renewable energy and imports. These results suggest that any variation in 

renewable energy consumption affects both exports and imports. Moreover, any increase in 

imports, increases renewable energy consumption. These results are different from those 

obtained by Ben Aïssa et al. (2014) who show that there is no short-run causality between 

renewable energy consumption and international trade for the considered panel of African 

countries mainly because the consumed renewable energy in most African countries 

considered in the panel is much lower than the consumed non-renewable energy. Sadorsky 

(2012) finds a short-run Granger causality running from energy consumption to imports, a 

long-run bidirectional causality between energy consumption and imports, and short and long-

run bidirectional causalities between renewable energy and exports. 

The Granger causality tests show the existence of a bidirectional causality between non-

renewable energy consumption and trade in the short-run, and a one way causality running 

from non-renewable energy to trade in the long-run. This signifies that any variation in trade 

affects non-renewable energy consumption, and any variation in non-renewable energy 

consumption affects trade. Thus, trade expansion cannot be achieved without affecting non-

renewable energy consumption. Sadorsky (2012) finds similar results by showing the 

existence of short and long-run bidirectional relationship between energy consumption and 

exports, and a long-run bidirectional relationship between energy consumption and imports.  
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In the short-run, there is no causality between renewable energy consumption and non-

renewable energy consumption. However, there is a short-run indirect and unidirectional 

causality running from renewable energy consumption to non-renewable energy consumption 

through trade (exports or imports). This means that, in the short-run, any variation in 

renewable energy consumption indirectly affects non-renewable energy consumption. These 

results are new and interesting because this study is the first attempt to empirically investigate 

the causal relationship between renewable energy consumption, non-renewable energy 

consumption and international trade. In the long-run and for the model with imports, we find a 

unidirectional causality running from non-renewable energy consumption to renewable 

energy, meaning that any changes in non-renewable energy affect renewable energy 

consumption. However, Apergis and Payne (2012) show the existence of a short-run 

bidirectional causality between renewable and non-renewable energy consumption indicative 

of substitutability between the two energy sources. We think that this causality obtained by 

these authors may be due to the omission of the trade variable.  

Our Granger causality tests show that there is no short-run causality between non-

renewable energy consumption and output, supporting the neutrality hypothesis. However, 

there is an indirect short-run bidirectional causality between non-renewable energy and 

output, which occurs through trade (exports or imports). Therefore, in the short-run, policies 

targeted to reduce non-renewable energy consumption will indirectly reduce economic growth 

through the impact of non-renewable energy reduction on exports and imports. However, in 

the long-run, there is a one way causality running from non-renewable energy consumption to 

output. Conversely, Apergis and Payne (2012) demonstrate a bidirectional relationship 

between non-renewable energy consumption and output in both the short and long-run. These 

differences can be explained on the basis of the differences in used data and variables. Indeed, 

in our study, the integration of exports and imports in the production function as explanatory 

variables can divert the direction of short-run causality between variables. Our short-run 

Granger causality results confirm those of Sadorsky (2012) who shows that the causality 

between output and energy consumption is indirect. Indeed, in the short-run, he shows the 

existence of an indirect bidirectional causality between energy consumption and output 

through exports, and an indirect unidirectional causality from energy consumption to output 

through imports. Many other papers show the absence of a short-run causal relationship 

between energy consumption and output, and the existence of an indirect causality. Indeed, 

Halicioglu (2009) show the existence of an indirect and bidirectional short-run causality 

between energy consumption and output that runs through CO2 emissions. Ozturk and 
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Acaravci (2010) report the absence of short-run causal relationship between energy 

consumption and output. In fact, the debate on the causal relationship between energy 

consumption and growth has been treated by different studies and the direction of causality 

depends on the selected countries, the period considered, the empirical methodologies, and 

included variables. Al-mulali et al. (2013) resume the findings of 81 studies concerned by the 

causal relationship between energy consumption and economic growth. They conclude that 

45% of these studies find a bidirectional causality (feedback hypothesis), 10% find no causal 

relationship (neutrality hypothesis), 25% find a one way causal relationship running from 

energy consumption to output (growth hypothesis), and 20% find a one way causal 

relationship running from output to energy consumption (conservation hypothesis).  

Our Granger causality tests show that there is no short-run causality between renewable 

energy consumption and output, and this supports the neutrality hypothesis. However, there is 

an indirect short-run unidirectional causality from renewable energy to output through trade 

(exports or imports). Thus, in the short-run, policies targeted to increase renewable energy 

consumption will indirectly increase economic growth through the impact of renewable 

energy increase on exports and imports. In the long-run, we show the existence of a 

unidirectional causality running from renewable energy to output in the model with exports, 

and a bidirectional causality between renewable energy and output in the model with imports. 

Thus, in the long-run, increasing renewable energy consumption is beneficial for economic 

growth. Our results are not in agreement with those of Apergis and Payne (2010a, 2011, 

2012) who show the existence of a bidirectional relationship between renewable energy 

consumption and output in both the short and long-run. These differences can be explained on 

the basis of the differences in used data and variables. Indeed, in our study, the integration of 

exports and imports in the production function as explanatory variables can divert the 

direction of short-run causality between variables. Al-mulali et al. (2013) investigate the long-

run relationship between renewable energy consumption and GDP growth for 108 countries 

categorized as high income, upper middle income, lower middle income, and low income 

countries. The results reveal that for 79% of the countries this causality is bidirectional, for 

19% of the countries there is no causality, and for 2% of the countries there is a one way long-

run relationship from output to renewable energy or from renewable energy to output.  
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5. Conclusions and policy implications 

This research studies the causal relationship between output, renewable and non-

renewable energy consumption and trade for a panel of 69 countries over the period 1980-

2007. This study is interesting because no research has been reported on the causal 

relationship between output, international trade, renewable and non-renewable energy 

consumption. 

We consider two models. In each model the dependant variable is GDP (output) and the 

independent variables are renewable energy consumption, non-renewable energy 

consumption, trade, the stock of capital and labor force. In the first model, international trade 

is measured by merchandise exports, and in the second model, it is measured by merchandise 

imports.  

Granger causality tests show that there is evidence of a bidirectional causality between 

output and trade (exports or imports) in both the short and long-run. These results indicate 

that any changes in trade affect output and any changes in output affect trade. They suggest 

that economic growth cannot be achieved without expanding international economic 

exchanges.  

Even though there is no short-run causality between output and renewable energy 

consumption, there is a long-run and bidirectional causality between output and renewable 

energy consumption in the model with imports.  Indeed, economic growth makes people more 

aware of environmental protection leading to an increase in renewable energy consumption. 

We provide this reason because we don’t find a causality running from output to non-

renewable energy consumption. However, we find a long-run causality running from non-

renewable energy consumption to output. Thus, more non-renewable energy consumption 

boosts economic growth in the long-run. 

Also, there is evidence of a one way short-run causality without feedback running from 

renewable energy consumption to trade. These results suggest that increasing renewable 

energy consumption increases imports and exports, in the short-run. Thus, any policy 

designed to increase renewable energy consumption, will increase trade and its benefits. 

Policies designed to increase renewable energy consumption encourage international trade 

and promote economic growth. We think that this short-run unidirectional causality is due to 

at least one of the two following reasons: i) there are great disparities in the production of 

renewable energy between countries encouraging their international exchanges, which are 

becoming more and more important; ii) the increase in renewable energy production has a 

significant and positive impact on international exchanges in rare earth minerals or metals, 
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which are becoming increasingly important. Our short-run Granger causality tests suggest that 

neither exports nor imports affect renewable energy consumption. However, in the long-run, 

there is a bidirectional causality between renewable energy and imports. This means that, in 

the long-run, increasing imports leads to an increase in renewable energy consumption. We 

think that this long-run causality is due to the renewable energy technology transfer occurring 

when countries import capital goods, such as machines and equipment to produce renewable 

energy. This causality from imports to renewable energy consumption occurs only in the 

long-run because, when renewable energy technology transfer occurs through imports, a 

relatively long time is needed for importing countries to build the necessary human and 

physical capacities for producing renewable energies. We also show the absence of causality 

running from exports to renewable energy consumption in both the short and long-run. This 

means that increasing exports has no impact on renewable energy consumption. This absence 

of causality can be attributed to at least one of the two following reasons which should be 

considered for all our panel of 69 countries: i) the proportion of renewable energy used to 

produce and to transport exported goods is not significant, ii) the exports of equipment needed 

to produce renewable energy are not important.  

We show the existence of a short-run feedback causality between non-renewable energy 

consumption and trade, and a long-run unidirectional causality running from non-renewable 

energy to trade. These results suggest that trade expansion necessitates more non-renewable 

energy consumption. Moreover, any reduction in non-renewable energy consumption, for 

instance due to non-renewable energy conservation policies decided to reduce 2CO emissions, 

will reduce international trade and its benefits. 

In our long-run estimates, output is the dependent variable. Long-run elasticities are 

estimated using OLS, FMOLS and DOLS panel approaches. The results of estimates show 

that all coefficients are positive and statistically significant at mixed level, except for exports 

coefficients which are statistically significant only with the OLS panel approach. Therefore, 

in the long-run, any increase in capital, labor force, renewable energy consumption, non-

renewable energy consumption and trade (exports or imports) will increase economic growth.  

Our energy policy recommendations are the following. Firstly, we show the existence of a 

feedback short-run causal relationship between non-renewable energy consumption and trade, 

and a long-run causality running from non-renewable energy to trade. Thus, and as proposed 

by Sadorsky (2012), any non-renewable energy policy should take into account the 

importance of international trade. Secondly, we show that renewable energy consumption 
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Granger causes trade in both the short and long-run. Thus, the use of more renewable energy 

should be encouraged by national and international competent authorities because it increases 

international economic exchanges and promotes economic growth. This result is very 

interesting as it shows that more renewable energy stimulates trade, thus promoting economic 

growth without harming the environment. Thirdly, we demonstrate a long-run bidirectional 

causality between renewable energy consumption and imports. Therefore, increasing imports, 

especially by developing countries, is a good vehicle for renewable energy technology 

transfer and contributes to increase renewable energy consumption in the long-run. Thus, 

more imports do not mean systematically more pollution. 
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Appendix: 69 countries sample 

Algeria, Argentina, Australia, Austria, Bangladesh, Belgium, Bolivia, Brazil, Bulgaria, 

Cameroon, Canada, Chile, China, Comoros, Costa Rica, Denmark, Dominican Republic, 

Ecuador, Egypt, El Salvador, Finland, France, Gabon, Ghana, Greece, Guatemala, Honduras 

Hungary, Iceland, India, Indonesia, Iran, Ireland, Italy, Japan, Kenya, Korea Rep, Malawi, 

Malaysia, Mali, Mauritius, Mexico, Morocco, Mozambique, Netherlands, New Zealand, 

Nicaragua, Norway, Pakistan, Panama, Paraguay, Peru, Philippines, Portugal, South Africa, 

Spain, Sri Lanka, Sudan, Swaziland, Sweden, Switzerland, Syria, Thailand, Tunisia, United 

Kingdom, United States, Uruguay,  Venezuela, Zambia. 
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Tables  

 

 

Table 1. Panel unit root tests 

Panel unit root test method LLC IPS Fisher-ADF Fisher-PP 

y  6.53103  16.9322  27.9805  29.1039 

 (1.0000)  (1.0000)  (1.0000)  (1.0000) 

∆y -19.9102 -20.7862  664.983  669.754 

     (0.0000)a  (0.0000)a  (0.0000)a  (0.0000)a 

re -3.88498 -2.04254  217.292  262.121 

 (0.0000)a  (0.0205)  (0.0000)a  (0.0000)a 

∆re -34.7766 -37.1259  1239.34  1396.95 

     (0.0000)a  (0.0000)a  (0.0000)a  (0.0000)a 

nre 
 

-1.45649 6.16964  94.1782  103.004 

  
(0.0726) (1.0000) (0.9984) (0.9886) 

∆nre 
 

-31.1550 -32.8946  1109.17  1338.54 

    (0.0000)a (0.0000)a (0.0000)a (0.0000)a 

k  4.11696  8.83988  55.9864  37.5331 

 
 (1.0000)  (1.0000)  (1.0000)  (1.0000) 

∆k -22.5516 -23.0878  752.298  737.308 

     (0.0000)a  (0.0000)a  (0.0000)a  (0.0000)a 

l -11.9254  3.47584  177.046  267.188 

 (0.0000)a (0.9997)  (0.0140)  (0.0000)a 

∆l -9.00573 -12.7521  486.933  492.611 

     (0.0000)a  (0.0000)a  (0.0000)a  (0.0000)a 

ex  0.39704  9.92898  44.2421  40.1834 

(0.6543)  (1.0000)  (1.0000)  (1.0000) 

∆ex -30.1456 -30.3572  1014.52  1135.34 

     (0.0000)a  (0.0000)a  (0.0000)a  (0.0000)a 

im  4.60742  14.2231  18.0246  17.5201 

 (1.0000)  (1.0000)  (1.0000)  (1.0000) 

∆im -31.5097 -29.9565  997.782  1085.92 

     (0.0000)a  (0.0000)a  (0.0000)a  (0.0000)a 

Null hypothesis: Unit root.  

All unit root tests regressions are run with intercept. 

P-value listed in parentheses.   

Automatic lag length selection based on SIC (Schwarz information criteria). 

�
� ritical values at the 1% significance level. 
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Table 2. Pedroni cointegration tests (with exports) 

Alternative hypothesis: common AR coefs. (within-dimension)   

        Weighted   

Statistic Prob. Statistic Prob. 

Panel v-Statistic  3.000609  0.0000***  2.956833  0.0000*** 

Panel rho-Statistic  2.998403  0.9986  2.793275  0.9974 

Panel PP-Statistic -2.981728  0.0014*** -2.849749  0.0022*** 

Panel ADF-Statistic -3.271644  0.0000*** -3.192934  0.0007*** 

Alternative hypothesis: individual AR coefs. (between-dimension)   

    Statistic Prob.     

Group rho-Statistic  5.459964  1.0000 

Group PP-Statistic -3.660259  0.0001*** 

Group ADF-Statistic -3.927177  0.0000***     

Null hypothesis: No cointegration  

Trend assumption: Deterministic intercept and trend.  

Automatic lag length selection based on SIC with a max lag of 5. 

Newey-West automatic bandwidth selection and Bartlett kernel. 

*** Critical values at the 1% significance level. 

  

Table 3. Pedroni cointegration tests (with imports) 

Alternative hypothesis: common AR coefs. (within-dimension)   

        Weighted   

Statistic Prob. Statistic Prob. 

Panel v-Statistic  3.085872  0.0012***  3.047974  0.0012*** 

Panel rho-Statistic  3.652326  0.9999  3.489442  0.9998 

Panel PP-Statistic -2.708324  0.0034*** -2.076545  0.0189** 

Panel ADF-Statistic -3.022099  0.0013*** -2.504795  0.0061*** 

Alternative hypothesis: individual AR coefs. (between-dimension)   

Statistic Prob. 

Group rho-Statistic  6.203968  1.0000 

Group PP-Statistic -2.493555  0.0063*** 

Group ADF-Statistic -2.450293  0.0071***     

Null Hypothesis: No cointegration  

Trend assumption: Deterministic intercept and trend.  

Automatic lag length selection based on SIC with a max lag of 5. 

Newey-West automatic bandwidth selection and Bartlett kernel. 

*** Critical values at the 1% significance level.  

** Critical values at the 5% significance level.  
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Table 4. Panel OLS-FMOLS-DOLS long-run estimates (model with exports) 

Variables re nre ex k l 

OLS 

0.040250 0.113815 0.033148 0.725328 0.076066 

   

(0.0000)*** (0.0000)*** 

   

(0.0000)*** 

   

(0.0000)*** (0.0000)*** 

FMOLS 

0.040625 0.089270 0.011540 0.788769 0.058852 

   

(0.0000)*** (0.0002)***  (0.5694) 

   

(0.0000)*** 

   

(0.0000)*** 

DOLS 

0.040250 0.113815 0.033148 0.725328 0.076066 

   

(0.0002)*** (0.0000)***  (0.1059) 

   

(0.0000)*** 

   

(0.0000)*** 

Cointegrating equation deterministics: intercept and trend. 

All variables are measured in natural logarithms. 

*** Critical values at the 1% significance level.  

 

Table 5. Panel OLS-FMOLS-DOLS long-run estimates (model with imports) 

Variables re nre im k l 

OLS 

0.041878 0.112659 0.048148 0.717723 0.072206 

   

(0.0000)*** (0.0000)*** 

   

(0.0000)*** 

   

(0.0000)*** (0.0000)*** 

FMOLS 

0.042188 0.082159 0.042819 0.770815 0.057262 

   

(0.0000)*** (0.0005)***     (0.0708)* 

   

(0.0000)*** 

   

(0.0016)*** 

DOLS 

0.041878 0.112659 0.048148 0.717723 0.072206 

   

(0.0000)*** (0.0000)***    (0.0446)** 

   

(0.0000)*** 

   

(0.0001)*** 

Cointegrating equation deterministics: intercept and trend. 

All variables are measured in natural logarithms. 

*** Critical values at the 1% significance level.  

** Critical values at the 5% significance level.  

* Critical values at the 10% significance level.  
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Table 6. Granger causality tests (model with exports) 

Dependent 

variable 
Short-run           Long-run 

  ∆y ∆re ∆nre ∆ex ∆k ∆l ECT 

∆y -  0.27709  0.09175  14.9943  0.70006  6.15837 -0.075582 

  

(0.5987) (0.7620) (0.0001)*** (0.4029) (0.0132)** (0.0034)*** 

∆re  2.05523 -  0.88021  0.27543  1.07893  0.37766  0.000726 

 

(0.1518) 

 

(0.3483) (0.5998) (0.2991) (0.5389) (0.0543) 

∆nre  0.87644  0.70423 -  5.20133  0.35917  2.99523  0.005314 

 
(0.3493) (0.4015) 

 
(0.0227)** (0.5490) (0.0837)* (0.0029) 

∆ex  34.2832  6.52984  26.5075 -  30.3576  1.38140 -0.082826 

 

(0.0000)*** (0.0107)** (0.0000)*** 

 

(0.0000)* (0.2400) (0.0000)*** 

∆k  7.83140  1.33448  1.11353  4.35998 -  2.38113  0.014184 

 

(0.0052)*** (0.2482) (0.2914) (0.0369)** 

 

(0.1230) (0.9040) 

∆l  0.03283  0.04612  0.01208  3.62611  0.10699 - -0.004447 

 
(0.8562) (0.8300) (0.9125) (0.0570)* (0.7436)   (0.0013)*** 

Lag lengths selected is 1 based on the Schwarz information criterion. 

P-value listed in parentheses.  

*** Critical values at the 1% significance level.  

** Critical values at the 5% significance level.  

* Critical values at the 10% significance level.  
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Table.7 Granger causality tests (model with imports) 

Dependent 

variable 
Short-run           Long-run 

  ∆y ∆re ∆nre ∆im ∆k ∆l ECT 

∆y -  0.27709  0.09175  13.2892  0.70006  6.15837 -0.037834 

  

(0.5987) (0.7620) (0.0003)*** (0.4029) (0.0132)** (0.0000)*** 

∆re  2.05523 -  0.88021  0.31788  1.07893  0.37766 -0.004406 

 

(0.1518) 

 

(0.3483) (0.5730) (0.2991) (0.5389) (0.0002)*** 

∆nre  0.87644  0.70423 -  3.43358  0.35917  2.99523  0.011976 

 
(0.3493) (0.4015) 

 
(0.0640)* (0.5490) (0.0837)* (0.0017) 

∆im  36.1896  5.65292  30.4427 -  26.6078  1.64869 -0.142364 

 

(0.0000)*** (0.0175)** (0.0000)*** 

 

(0.0000)*** (0.1993) (0.0000)*** 

∆k  7.83140  1.33448  1.11353  4.05661 -  2.38113  0.042607 

 

(0.0052)*** (0.2482) (0.2914) (0.0441)** 

 

(0.1230) (0.0348) 

∆l  0.03283  0.04612  0.01208  2.55519  0.10699 - -0.000430 

  (0.8562) (0.8300) (0.9125) (0.1101) (0.7436)   (0.0002)*** 

Lag lengths selected is 1 based on the Schwarz information criterion. 

P-value listed in parentheses.  

*** Critical values at the 1% significance level.  

** Critical values at the 5% significance level.  

* Critical values at the 10% significance level.  
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Fig.1. Short-run causality between output, renewable and non-renewable energy and trade 
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