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Abstract

The rank-ordered logit model’s coefficients often vary significantly with the

depth of rankings used in the estimation process. The common interpretation of

the unstable coefficients across ranks is that survey respondents state their more

and less preferred alternatives in an incoherent manner. We point out another

source of the same empirical regularity: stochastic misspecification of the random

utility function. An example is provided to show how the well-known symptoms

of incoherent ranking behavior can result from stochastic misspecification, fol-

lowed by Monte Carlo evidence. Our finding implies that the empirical regularity

can be addressed by the development of robust estimation methods.
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Keywords: rank-ordered logit, exploded logit, ranking, qualitative response,
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1 Introduction

The use of stated preference data has become commonplace in the discrete choice mod-

eling literature.1 The stated preference surveys provide practical means to collect data

for analyzing consumer preferences for both non-market goods and potential market

goods, allowing estimation of choice models when revealed preference data do not exist

(Vossler et al., 2012). This explains the popularity of applying stated preference data

in research areas characterized by the scarcity of revealed preference data, including

environmental economics, health economics and transportation economics.

In relation to multinomial choice data which record the chosen alternative in each

choice set, rank-ordered data record the ranking of all available alternatives from best

to worst. A stated preference survey can collect both types of data as easily, by eliciting

either a choice or rank ordering over the same set of alternatives (Caparros et al., 2008).2

Econometric models for both types of data can be derived from an identical random

utility maximization model, the most popular among them being the multinomial logit

(MNL) model (McFadden, 1974) and the rank-ordered logit (ROL) model (Beggs et al.,

1981). The extra information that rank orderings provide can then be exploited to

estimate the utility coefficients of interest more precisely.

A long standing issue in rank-ordered data analysis is that the estimated ROL coeffi-

cients often vary significantly with the depth of rankings incorporated in the estimation

process (Chapman and Staelin, 1982). In particular, the estimates often become atten-

uated monotonically with successive incorporation of each worse-ranked alternative, as

if the residual variance increases because respondents are less certain about their less

preferred alternatives (Hausman and Ruud, 1987).

As Hanley et al. (2001) summarize, the common interpretation of this empirical

regularity is that rank-ordered data are unreliable due to the cognitive burden of rank-

ing several objects, which induces behavioral inconsistencies in how the respondents

arrive at their better and worse alternatives. Under such interpretation, several studies

have explored the implications of different survey designs for consistency in respondent

behavior (Boyle et al., 2001; Foster and Mourato, 2002; Caparros et al., 2008; Scarpa

et al., 2011). Likewise, several econometric models have been developed to accom-

modate the relative cognitive difficulties of identifying better and worse alternatives

1See references in popular econometrics textbooks of Greene (2008) and Train (2009).
2Outside stated preference settings, rank orderings are often harder to observe than multinomial

choices, but can still be observed in, for example, a recall survey (Berry et al., 2004; Train and Winston,
2007) asking consumers to name both actually purchased and another closely considered products.
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(Hausman and Ruud, 1987; Fok et al., 2012; Yoo and Doiron, 2013), as well as more

generally changing decision protocols across ranks (Ben-Akiva et al., 1992).

This paper advances an alternative explanation for the instability of the ROL co-

efficients across ranks: stochastic misspecification of the random utility function. We

present analytic examples and Monte Carlo evidence, pointing out that even a minor

departure from the postulated error distribution can induce the ROL estimates to ex-

hibit the very sort of variation which has been read as symptoms of inconsistent ranking

behavior. Since the ROL model relies on the independence of irrelevant alternatives

property to express a rank-ordering probability as a product of marginal choice prob-

abilities, its susceptibility to stochastic misspecification has been suspected previously

(Hausman and Ruud, 1987; Layton, 2000). But the actual consequences of stochastic

misspecification, in particular that they include the empirical regularity in question,

have not been explored and demonstrated to date.

In empirical applications, the true distribution of the error terms in the utility func-

tion is very rarely known. Our findings suggest that a new estimation method robust to

stochastic misspecification is needed to separate the effects of stochastic misspecification

from the true inconsistency in ranking behavior.

The remainder of this paper is organized as follows. Section 2 reviews the rank-

ordered logit model and the issue of unstable coefficients. Section 3 presents analytic

examples showing that this empirical regularity may arise from stochastic misspecifica-

tion. Section 4 presents Monte Carlo evidence on the consequences of estimating ROL

when stochastic misspecification is present. Section 5 concludes with recommendations

for future research.

2 Unstable ROL coefficients across ranks

We use the following notations to describe the usual cross-sectional setting of rank-

ordered data. Agent n ∈ {1, 2, · · · , N} faces a choice set of Jn > 2 alternatives. The

alternatives are assumed to be labeled numerically, and for simplicity Jn is assumed to

equal J for all N agents.3 Each agent, thus, faces the choice set J = {1, 2, . . . , J}.
Each agent states which M out of J alternatives she likes best, where 1 ≤M ≤ J − 1,

3That Jn = J is also true in most of empirical applications. Our subsequent discussion, nevertheless,
can be easily adapted to cases where the number of alternatives varies across the agents by making
notations related to the choice set size agent-specific.
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and ordinally ranks these M alternatives from best to worst without a tie.4 We use

rn ≡ (rn1, · · · , rnM) to denote agent n’s rank ordering of the M alternatives, where

rnm ∈ J indexes the alternative ranked mth best. Finally, the collection of her m best

alternatives is denoted by Jn,m = {rn1, . . . , rnm}.
Following McFadden’s (1974) random utility framework, assume that agent n ob-

tains utility Unj from alternative j ∈ J

Unj = x′njβ + εnj, (1)

where xnj is an observed K-vector that contains the characteristics of agent n and

alternative j, β is a K-vector of taste coefficients, and εnj is the random utility part

that is unobservable to econometricians.5

When M = 1, a multinomial discrete choice model with the following choice prob-

ability can be derived from the random utility maximization hypothesis

P (rn, xn, β) = Pr
(
UrnM

> maxj∈J\Jn,M
Unj
)
, (2)

where xn = (xn1, · · · , xnJ) and \ denotes the set difference operator. When M > 1,

the probability of observing agent n’s rank ordering can be similarly derived as that of

observing a preference relation

P (rn, xn, β) = Pr
(
Urn1 > · · · > UrnM

> maxj∈J\Jn,M
Unj
)
. (3)

The maximum likelihood estimation (MLE) is often applied to estimate β when the

distribution of the error terms, εnj, is assumed to be known. When the error terms are

i.i.d. type I extreme value, closed-form expressions for formulas (2) and (3) exist: they

are the multinomial logit (MNL) model (McFadden, 1974) and the rank-ordered logit

(ROL) model (Beggs et al., 1981) respectively. The ROL probability of observing agent

n’s rank ordering is

P (rn, xn, β) =
M∏
m=1

[
ex
′
nrnm

β∑
j∈J\Jn,m−1

ex
′
njβ

]
, (4)

where Jn,0 is an empty set.6

4In the special case when M = J − 1, all J alternatives are ranked from the best to worst.
5All the vectors are column vectors.
6When M = 1, formula (4) is the MNL probability of observing agent n’s choice.
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The ROL formula (4) is a product of MNL formulas. A single observation on

agent n’s rank ordering is exploded into M pseudo-observations on choices, in Train’s

(2009, p.157) parlance. The mth pseudo-observation is constructed as an independent

observation on a choice among a set of alternatives excluding Jn,m−1. The sample size

effectively increases with M ; when M ≥ 2, β can be more precisely estimated than

when each agent’s best alternative in J is observed alone (i.e. M = 1).

Note that each agent’s rank ordering can be recoded as if M had been smaller than

it actually is, say integer Q such that 1 ≤ Q ≤M . The ROL formula (4) implies that,

when the model is correctly specified, β can be consistently estimated via MLE using

any of potential response variables detailing the top Q ranks; discarding the bottom

(M −Q) pseudo-observations results only in efficiency loss.7

Starting from Chapman and Staelin (1982), however, several empirical studies have

found the sensitivity of the ROL coefficients to the depth of pseudo-observations that

MLE exploits. Specifically, the estimates tend to vary significantly as Q is successively

increased from 1 through M , that is as MLE incorporates information on each worse-

ranked alternative incrementally. As Hausman and Ruud (1987) observed, the estimates

also often become attenuated monotonically as Q is increased, as if the coefficients are

normalized with respect to an increasingly larger error variance.

Over years, this empirical regularity has been interpreted as a data problem, symp-

tomizing inconsistencies in how respondents state their more and less preferred alterna-

tives (Hanley et al., 2001). The cognitive burden of rank-ordering several alternatives

has been postulated as the underlying cause of inconsistent ranking behavior, with the

pattern of attenuation being taken as an indication that respondents find it easier to

tell what they like better. Under such interpretation, several studies have explored the

implications of different survey designs for consistency in respondent behavior (Boyle

et al., 2001; Foster and Mourato, 2002; Caparros et al., 2008; Scarpa et al., 2011), and

the use of econometric models describing the cognitive process of completing a rank-

ordering task (Hausman and Ruud, 1987; Ben-Akiva et al., 1992; Fok et al., 2012; Yoo

and Doiron, 2013).

Within such a paradigm, the ROL formula (4) is viewed as a special case of a general

specification

P (rn, xn, {αm}Mm=1) =
M∏
m=1

[
ex
′
nrnm

αm∑
j∈J\Jn,m−1

ex
′
njαm

]
, (5)

7The ROL model reduces to the MNL model when the rank orderings are recoded as choices (Q = 1).
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which involves a distinct K-vector of coefficients αm influencing the choice of the mth

best alternative. This specification, however, is incompatible with the microeconomic

approach of modeling a rank ordering as a realized preference relation, encapsulated in

equations (1) and (3), because no distributional assumption on εnj leads to equation

(5). As Ben-Akiva et al. (1992, p.153) make explicit, a different behavioral framework

is needed to conceptualize a rank ordering as a constructed sequence of choices.8

Below, we point out another potential source of the same empirical regularity:

namely, that the error terms εnj are not i.i.d. extreme value. This explanation is com-

patible with the microeconomic approach using which Beggs et al. (1981) introduced

the ROL model. It is also relevant to most of empirical works wherein the postulated

error distribution serves only as an approximation to unknown true distributions. More

importantly, it opens doors to the development of more general an econometric solution

than the ad hoc modeling of cognitive processes through restrictions on {αm}Mm=1, the

validity of which are data-specific.

3 The impact of stochastic misspecification

In this section, we use an analytic example to demonstrate how stochastic misspecifica-

tion can induce the ROL coefficients to be unstable across ranks. The overall impact of

coefficient attenuation following incorporation of worse-ranked alternatives is a decrease

in the magnitude of the systematic component of utility. To focus on this, consider a

random sample wherein each agent n ranks three alternatives according to the random

utility function

Unj = βj + εnj, (6)

where βj is the systematic utility and εnj is the unobserved utility that agent n obtains

from alternative j ∈ {1, 2, 3}. We can normalize β3 = 0 because only differences in

utility matter to the observed behavior (Train, 2009, Ch 2). For brevity, subscript n

will be omitted except when specifying a sample log-likelihood function.

8Specifically, assume now that agent n constructs her response by solving M independent random
utility maximization problems in sequence. The choice set at the mth problem is J \ Jn,m−1, and
the utility-maximizing alternative in this choice set is ranked mth best in her response. Equation (5)
results when agent n derives utility Unj,m from each alternative j ∈ J \ Jn,m−1:

Unj,m = x′njαm + εnj,m,

where the error terms εnj,m are independent across m, and i.i.d. type I extreme value.
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Suppose that εj are independent and identically distributed over j, with F (·) and

f(·) as the true distribution and density functions respectively. Then, the true choice

probability of alternative j is Pj ≡ Pj(β1, β2) where Pj(·) is defined as

Pj(b1, b2) = Pr(bj + εj > bk + εk for k ∈ J \ {j})

=
´ [∏

k∈J\{j} F (bj − bk + εj) f(εj)
]
dεj

(7)

with J = {1, 2, 3} and b3 = 0 by normalization. Assume that Pj ∈ (0, 1) for j ∈ J.

When the distribution function F (·) is known, MLE can be applied to consistently

estimate the parameter vector β ≡ (β1, β2) and the choice probabilities (P1, P2, P3). In

practice, the true distribution and density functions are rarely known. In most cases,

MLE is operationalized by assuming that the distribution and density functions of the

error terms are G(·) and g(·) respectively. Define

Gj(b1, b2) =
´ [∏

k∈J\{j}G(bj − bk + εj) g(εj)
]
dεj . (8)

Then, the log-likelihood function of a random sample of N agents

1

N

N∑
n=1

3∑
j=1

1(Unj > Unk for k ∈ J \ {j}) · ln [Gj(b1, b2)]

converges to its probability limit

l(b1, b2) = E
{∑3

j=1 1(Uj > Uk for k ∈ J \ {j}) · ln [Gj(b1, b2)]
}

=
∑3

j=1 Pj · ln [Gj(b1, b2)]

(9)

as N goes to infinity. We can show that there is a unique bo ≡ (bo,1, bo,2) ∈ R2 that

maximizes l(b1, b2) at which

G1(bo,1, bo,2) = P1, (10)

G2(bo,1, bo,2) = P2, (11)

when G(·) is an increasing continuous distribution function. Equations (10) and (11)

imply that even when the pseudo-true vector bo, to which the ML estimator converges,

is different from the true parameter vector β because the assumed distribution G(·) is
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different from the true distribution F (·), the choice probabilities are still consistently

estimated.

The ROL model is equivalent to the MNL model when the estimation process uses

information on the best alternative only. For the MNL model, G(·) is the type I

extreme value, EV (0, 1, 0), distribution function. The MNL estimator of β converges

to bMNL ≡ (bMNL,1, bMNL,2) that solves

G1(bMNL) =
ebMNL,1

ebMNL,1 + ebMNL,2 + 1
= P1, (12)

G2(bMNL) =
ebMNL,2

ebMNL,1 + ebMNL,2 + 1
= P2. (13)

In other words,

bMNL,1 = ln

(
P1

1− P1 − P2

)
, bMNL,2 = ln

(
P2

1− P1 − P2

)
.

For a further discussion, consider the case where (β1, β2) = ( π
2
√
2
, π

2
√
8
) = (2.221, 1.111)

and εj ∼ Unif [−π2

2
, π

2

2
].9 We can calculate the choice probabilities (P1, P2, P3) =

(64
96
, 25

96
, 7

96
) analytically, and find the probability limit of the MNL estimator as bMNL =

(2.213, 1.273). When εj ∼ N(0, π
2

6
) instead, we can compute the choice probabilities

(P1, P2, P3) = (0.686, 0.247, 0.067) numerically and obtain bMNL = (2.326, 1.304).10 In

the uniform case, the MNL estimator is biased downward for β1 and upward for β2,

while in the normal case, it is biased upward for both. This asymptotic bias does not

result from re-normalizing the overall scale of utility because both Unif [−π2

2
, π

2

2
] and

N(0, π
2

6
) have the same variance as EV (0, 1, 0). Despite the biased coefficients, the

choice probabilities are consistently estimated by the MNL model as noted earlier.

We do not have this luck when we estimate the ROL model using information on the

full rank ordering, i.e. best and second-best alternatives. Let Pjkl = Pr(Uj > Uk > Ul)

be the true probability of a specific rank ordering (j, k, l), and T be the set of all possible

rank orderings i.e. permutations of the choice set J = {1, 2, 3}. Table 1 provides the

true probability of each (j, k, l) ∈ T for the above two cases.

9Since the overall scale of utility is irrelevant to the observed behavior (Train, 2009, Ch 2), this
case is observationally equivalent to the case where β = ( 1

2 ,
1
4 ) and εj ∼ Unif [− 1

2 ,
1
2 ], a configuration

which facilitates the analytic derivation of true choice and rank-ordering probabilities.
10It is generally difficult to evaluate the true choice and rank-ordering probabilities given a specific

distributional choice for εj . The normal case is an exception due to the availability of multinomial
probit and rank-ordered probit likelihood evaluators in many software packages.
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Table 1: True probabilities of rank-orderings

εj ∼ Unif [− π√
2
, π√

2
] εj ∼ N(0, π

2

6
)

P123 = 44/96 P132 = 20/96 P123 = 0.483 P132 = 0.203

P213 = 20/96 P231 = 5/96 P213 = 0.203 P231 = 0.043

P312 = 5/96 P321 = 2/96 P312 = 0.043 P321 = 0.023

Pjkl is the true probability that options j,k and l are most, second-most and least preferred respectively.

According to the ROL model, the probability of the rank ordering (j, k, l), given

systematic utility vector b ≡ (b1, b2), is

Gjkl(b1, b2) =
ebj

ebj + ebk + ebl
· ebk

ebk + ebl
.

The ROL log-likelihood function of a random sample of N agents

1

N

N∑
n=1

∑
(j, k, l)∈T

1(Unj > Unk > Unl) · ln [Gjkl(b1, b2)]

converges, as N approaches infinity, to its probability limit

lROL(b1, b2) = E
{∑

(j, k, l)∈T 1(Uj > Uk > Ul) · ln [Gjkl(b1, b2)]
}

=
∑

(j, k, l)∈T Pjkl · ln [Gjkl(b1, b2)] .

(14)

The ROL estimator of β converges to the unique pseudo-true vector that maximizes

lROL(b1, b2). This pseudo-true vector, bROL ≡ (bROL,1, bROL,2), solves the following

first-order conditions:

ebROL,1

ebROL,1 + ebROL,2 + 1
+ P2

ebROL,1

ebROL,1 + 1
+ P3

ebROL,1

ebROL,1 + ebROL,2
= P1 + P213 + P312, (15)

ebROL,2

ebROL,1 + ebROL,2 + 1
+ P1

ebROL,2

ebROL,2 + 1
+ P3

ebROL,2

ebROL,1 + ebROL,2
= P2 + P123 + P321. (16)

It is difficult to obtain the closed-form solution for equations (15) and (16). But

we can numerically solve for bROL = (1.845, 0.882) in the uniform case, and bROL =

(1.974, 0.952) in the normal case. In comparison with their MNL counterparts bMNL =

(2.213, 1.273) in the uniform case and bMNL = (2.326, 1.304) in the normal case, the
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ROL estimator’s probability limit bROL has a smaller magnitude in each argument.

When we estimate the ROL model with a random sample, we will observe that the

coefficient estimates vary with the depth of rankings because the probability limit of

those estimates per se varies with whether information on only the best (bMNL) or the

best and second-best alternatives (bROL) are used in the estimation process.11

The choice probabilities are no longer consistently estimated by the ROL model in

this example, as summarized in Table 2.

Table 2: ROL vs true choice probabilities

εj ∼ Unif [− π√
2
, π√

2
] εj ∼ N(0, π

2

6
)

G1(bROL) = 0.649 < 0.667 = P1 G1(bROL) = 0.667 < 0.686 = P1

G2(bROL) = 0.248 < 0.260 = P2 G2(bROL) = 0.240 < 0.247 = P2

G3(bROL) = 0.103 > 0.073 = P3 G3(bROL) = 0.093 > 0.067 = P3

Pj is the true probability that option j is the most preferred option. Gj(bROL) is the corresponding

asymptotic ROL prediction, obtained by evaluating the MNL formulas in (12) and (13) at bROL.

The Shannon entropy of the ROL predictions are 0.86 in the uniform case and 0.83 in

the normal case, larger than their true counterparts 0.81 and 0.79. In other words, ROL

squeezes the three choice probabilities closer to one another because of the attenuation

in the estimated systematic utility.

By comparing equations (12) and (13) that determine the pseudo-true vector for the

MNL estimator with equations (15) and (16) that determine the pseudo-true vector for

the ROL estimator, we can clearly see why the MNL does a better job in estimating the

choice probabilities under stochastic misspecification. Equations (12) and (13) imply

that bMNL is determined in a way such that the MNL choices probabilities match with

the true choice probabilities.12 In comparison, bROL is determined to match other kinds

11Our presentation focuses on the issue of attenuation but our example also can shed light on why
some studies (e.g. Ben-Akiva et al., 1992; Layton, 2000) find that alternative-specific constants are
either magnified or attenuated while other coefficients are attenuated across ranks. Suppose that
alternative 2 is used as the base alternative to estimate (α1 = β1 − β2, α3 = −β2). Then, in the
uniform case, the probability limit of the MNL estimator is (0.940,−1.273) and that of the ROL
estimator is (0.963,−0.882): the estimator of α1 is magnified while that of α2 is attenuated.

12In our 3-alternative example involving two alternative-specific intercepts, the MNL choice proba-
bilities exactly equal to the true choice probabilities. In more complicated cases, e.g. involving generic
coefficients on continuous attributes, the MNL choice probabilities are usually different from the true
choice probabilities. However, the pseudo-true vector is the one that makes the the MNL choice prob-
abilities as close as possible to the true choice probabilities. This explains why, in some empirical
studies, the MNL model is a good approximation for other parametric models such as the multinomial
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of probabilities. The left-hand side of equation (15) is the probability that alternative

1 is ranked as a top-two (i.e. either best or second-best) alternative under the assumed

extreme value distribution of the error terms, while the right-hand side of equation

(15) is the true probability that alternative 1 is a top-two alternative.13 Therefore, the

pseudo-true vector bROL is determined in a way such that the probability of observing

each alternative as a top-two alternative under the assumed distribution is as close as

possible to its counterpart under the true distribution.

From equation (15), we can see that bROL = bMNL if

P2
ebROL,1

ebROL,1 + 1
= P213, (17)

and

P3
ebROL,1

ebROL,1 + ebROL,2
= P312, (18)

which requires the independence of irrelevant alternatives (IIA) property. The IIA prop-

erty only holds when the error terms are i.i.d. type I extreme value or can be normalized

as so (Anderson et al., 1992, Ch 2). Except in such special cases, the sensitivity of the

estimated coefficients to the depth of rankings used in the estimation process needs not

symptomize data unreliability resulting from incoherent ranking behavior.

4 Evidence from simulation experiments

In this section, we provide simulated examples to further illustrate that the instability

of ROL coefficients across ranks needs not symptomize a data problem, because it can

arise when the ROL model is estimated in the presence of stochastic misspecification.

We have conducted 3 sets of simulation experiments on the finite sample behavior of

the ROL estimates under different configurations of the systematic component of utility

and choice set size. Experiment A uses the identical configuration as our analytic

examples involving 3 alternatives and 2 identified intercepts. Experiment B considers

5 alternatives and follows a more typical setup for a simulation study by incorporating

generic attributes. Experiment C applies synthetic data generated by combining actual

stated preference data with simulated errors.

The common setup for all 3 experiments can be summarized as follows, using the

probit model (MNP): see for example Dow and Endersby (2004).
13Similar analysis applies for equation (16).
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same notations as in Section 2. We generate random samples of N agents who rank

J alternatives according to the random utility function in equation (1). The ranking

behavior of each agent is consistent with random utility maximization as described by

Anderson et al. (1992): given the realizations of the random component of utility or

error terms, εnj, each agent has a deterministic preference relation over all alternatives

which enables her to rank them from best to worst in an unambiguous and consistent

manner. Her rank ordering, rn, coincides with her realized preference relation. Because

her rank ordering is not constructed as a sequence of choices, the issue of whether she

chooses the (q + 1)th best alternative in the same manner as the qth best (Ben-Akiva

et al., 1992), and that of whether she indeed chooses the qth and (q + 1)th in sequence

(Scarpa et al., 2011) are irrelevant in our simulated data.

When the error terms are i.i.d. type I extreme value, EV (0, 1, 0), the correctly

specified model is ROL. In practice, the error terms may depart from this distribution

in several aspects, for example due to heteroscedasticity and non-zero correlations, the

extent of which is likely to be context-specific.14 To emphasize the generality of our

findings, we have selected for presentation cases where the true error terms are i.i.d.

but not necessarily as EV (0, 1, 0). Specifically, each experiment simulates the error

terms εnj as i.i.d. random variables with the variance of π2/6 from one of the following

5 distributions in turn:15

• EV (0, 1, 0), to obtain benchmark results in the absence of misspecification.

• Unif [− π√
2
, π√

2
] and N(0, π

2

6
): Our analytic examples have employed these uniform

and normal distributions.

• Logistic(0, 1√
2
): The logistic distribution is closely related to the extreme value

distribution in that differencing two independent EV (0, 1, 0) random variables

results in a Logistic(0, 1) random variable.

• 0.369 · N(−1, 0.184) + 0.631 · N(1.5, 0.193): Fox (2007, p.1014) has constructed

this mixed normal distribution to compare the performance of the MNL estimator

14For instance, an omitted attribute shared by some alternatives can induce εnj to be positively
correlated over them (Train, 2009, Ch 4) and omitted random heterogeneity in β can induce εnj to be
heteroscedastic and correlated over j (Train, 2009, Ch 6).

15While the EV (0, 1, 0) and mixed normal distributions have the Euler’s constant (≈0.5775) as their
mean whereas the other distributions have zero mean, this difference is inconsequential. Because only
differences in utility matter for the observed behavior (Train, 2009, Ch 2), drawing the error terms
from a distribution with non-zero mean, say N(0.5775, π2/6), is equivalent to drawing them from the
same distribution with zero mean, say N(0, π2/6).
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Figure 1: Density functions used in simulating error terms
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and his semi-parametric procedure.

Figure 1 plots the corresponding density functions.

In every experiment, 10,000 random samples of N agents are generated using each

distribution. For each sample, we obtain three sets of estimation results.

First, we estimate ROL J − 1 times, each time using the top Q ranks of observed

responses where integer Q varies from 1 through J−1. In each estimation, the likelihood

of agent n’s response is specified as in equation (4), replacing M with an appropriate Q.

Recall that with Q = 1, this is the MNL likelihood of her most preferred alternative and

with Q = J−1, the ROL likelihood of her full rank ordering. We use bQ = (bQ1 , · · · , b
Q
K)

to denote the resulting estimates of β, and report their means and empirical standard

deviations (SD) over the 10,000 repetitions.

Second, we conduct the likelihood ratio tests of consistency in ranking behavior as

in Chapman and Staelin (1982) and Ben-Akiva et al. (1992). These tests are motivated

by viewing an observed rank ordering as a sequence of choices. They are performed

at each Q by comparing the sample likelihood of the restricted model in equation (4)

13



with that of the unrestricted model in (5), again replacing M with an appropriate Q.

Rejection of H0 : αm = β for all m = 1, 2, · · · , Q is taken as evidence that the most and

less preferred alternatives are not chosen in a coherent manner, and the 2nd through

Qth ranks of the observed responses are unreliable for use in estimation of preferences

(Hanley et al., 2001). We conduct each test LRQ at the nominal size of 5%, and report

the empirical rejection frequencies in the 10,000 repetitions.

Finally, we estimate the HROL model of Hausman and Ruud (1987). The likelihood

of agent n’s response is now specified as a special case of equation (5) with M = J − 1,

α1 = β and αm = σmβ where β and scalars σm for 2 ≤ m ≤ J − 1 are parameters to be

estimated. The fact that σm is often decreasing in m has been interpreted as evidence

that respondents are less certain about less preferred alternatives. This interpretation

has inspired modern modeling approaches that generalize the use of such scale param-

eters to capture the respondent’s ranking capabilities (Scarpa et al., 2011; Fok et al.,

2012; Yoo and Doiron, 2013). We report the mean and empirical standard deviation of

each σm’s estimates, denoted σ̂m, over the 10,000 repetitions.

We now turn to a more specific discussion of each experiment. In Experiment A,

agent n ranks J = 3 alternatives in order of utility Unj:

Unj = βj + εnj (19)

n = 1, 2, · · · , N j = 1, 2, 3

where β1 = π√
2

= 2.221, β2 = π√
8

= 1.111 and β3 is normalized to 0 as in our analytic

example. We repeat this experiment for 3 different sample sizes: N = 100, 300, 500.

Table 3 summarizes the selected estimation results. When εnj are drawn from

EV(0,1,0), the results are as expected because ROL is the correctly specified model.

Recall that vectors b1 = (b11, b
1
2) and b2 = (b21, b

2
2) exploit the first rank and full (here,

best and second-best) ranks, respectively. Efficiency gains from using all ranks are

evident. Arguments of b2 are much less dispersed than those of b1 under the same

sample size configuration. The empirical size of the test of consistency in ranking

behavior, LR2, is always close to its nominal size of 5%, with the largest deviation of

5.8% occurring when N = 100. The mean scale estimate σ̂2 from HROL is almost 1,

indicating no attenuation.

When ROL is a misspecified model, efficiency gains still remain but the rest of the

results change dramatically. Consider the cases of εnj drawn from the uniform and

normal distributions, which have been analyzed in Section 3. In both cases, subject
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to sampling error which is smaller in larger samples, the mean of b1 and b2 are in line

with their probability limits (i.e. bMNL and bROL), mimicking the empirical regularity of

coefficient attenuation across ranks. The LR2 test rejects the null much more frequently,

already in 20% of 10,000 simulated samples when N = 100; the frequency increases

substantially to 55% and 78% when N = 300 and 500. These are false rejections if

the null is interpreted as consistency in ranking behavior, and correct rejections if the

null is interpreted as independence of irrelevant alternatives (IIA) or equivalently the

assumption that εnj are i.i.d EV (0, 1, 0). Our results suggest that this type of test

could be problematic as a test of consistency in ranking behavior in empirical works

when ROL is employed as an approximation to an unknown true model. It appears

more appropriate when viewed as a test of IIA, showing more desirable size and power

properties than the tests of IIA which can be implemented using multinomial choice

data.16 The mean σ̂2 lies below 0.7, seemingly suggestive of increased noise in the second

rank. In summary, b1 and b2 appear misleadingly consistent with the interpretation that

our simulated agents have chosen their best and second-best alternatives in sequence,

and experienced greater cognitive difficulties in identifying the latter.

The preceding qualitative conclusions remain unchanged when εnj are drawn from

the logistic and the mixed normal distributions. The logistic case yields very similar

results as the previous two cases. The mixed normal case, presumably because the

density of this distribution deviates arguably the most from the EV (0, 1, 0) density,

yields more quantitatively striking results. The average difference between b1 and b2,

both in level and as a proportion of b1, becomes much larger, as also indicated by

much smaller the mean of σ̂2 (now, below 0.48) than in the three preceding cases. In

consequence, the LR2 test rejects the null much more frequently, already 64% of times

when N = 100 and more than 97% of times in larger samples.

Experiment B incorporates a larger number of alternatives, J = 5, and considers an

environment where even MNL choice probabilities are inconsistent in the presence of

stochastic misspecification.17 Agent n ranks J = 5 alternatives in order of utility Unj:

Unj = β1xnj1 + β2xnj2 + β3xnj3 + εnj (20)

n = 1, 2, · · · , N j = 1, 2, 3, 4, 5

16Fry and Harris (1996) investigate the finite sample properties of these tests in detail.
17We use the same systematic component of utility as what Lee (1995, p.397) has specified to compare

the performance of the MNL estimator and his semi-parametric procedures.
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Table 3: Experiment A on hypothetical DGP in equation (19)

β = (β1 = 2.221, β2 = 1.111)

N=100 b1 b2

b1 b2 b1 b2 LR2 σ̂2
EV1 2.281 1.157 2.245 1.126 5.80% 1.060

(0.422) (0.458) (0.261) (0.226) (0.351)
Uniform 2.283 1.330 1.866 0.892 21.71% 0.680

(0.431) (0.459) (0.241) (0.213) (0.251)
Normal 2.396 1.360 1.996 0.963 19.88% 0.692

(0.449) (0.479) (0.251) (0.214) (0.239)
Logistic 2.497 1.395 2.104 1.024 20.87% 0.696

(0.467) (0.497) (0.261) (0.215) (0.226)
Mixed norm 2.478 1.410 1.837 0.881 63.84% 0.477

(0.465) (0.495) (0.266) (0.194) (0.186)

N=300 b1 b2

b1 b2 b1 b2 LR2 σ̂2
EV1 2.239 1.125 2.228 1.114 5.35% 1.017

(0.231) (0.252) (0.149) (0.132) (0.179)
Uniform 2.236 1.289 1.854 0.885 55.36% 0.657

(0.234) (0.249) (0.138) (0.120) (0.133)
Normal 2.353 1.327 1.982 0.959 54.48% 0.666

(0.241) (0.260) (0.143) (0.121) (0.123)
Logistic 2.446 1.353 2.088 1.014 54.65% 0.674

(0.247) (0.266) (0.147) (0.122) (0.122)
Mixed norm 2.426 1.367 1.825 0.876 97.57% 0.463

(0.253) (0.272) (0.150) (0.111) (0.101)

N=500 b1 b2

b1 b2 b1 b2 LR2 σ̂2
EV1 2.233 1.122 2.226 1.115 5.00% 1.009

(0.175) (0.191) (0.114) (0.099) (0.136)
Uniform 2.226 1.282 1.849 0.883 78.63% 0.651

(0.178) (0.190) (0.108) (0.092) (0.100)
Normal 2.341 1.314 1.981 0.955 77.67% 0.665

(0.183) (0.197) (0.108) (0.095) (0.095)
Logistic 2.432 1.340 2.085 1.012 77.38% 0.674

(0.191) (0.206) (0.115) (0.096) (0.093)
Mixed norm 2.417 1.358 1.824 0.875 99.93% 0.461

(0.192) (0.206) (0.117) (0.086) (0.077)

Each row summarizes the results over 10,000 random samples of N agents generated from the specified

density; we use the same abbreviation for each density as defined in notes to Figure 1. bQ = (b1, b2)

are the ROL estimates of true coefficients β = (β1, β2) using the first Q ranks of each agent’s response;

we report their mean and empirical standard deviation (in parentheses). LRQ is the likelihood ratio

test for consistency in ranking behavior across the first Q ranks; we report its rejection frequency at

the nominal size of 5%. σ̂Q is the scale for the Qth best pseudo-choice, estimated by HROL that uses

all available ranks; we report its mean and empirical standard deviation (in parentheses).
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where (β1, β2, β3) = (1,−1, 1). Each observed attribute xnji is obtained by drawing from

an i.i.d. random variable. xnj1 is generated as a uniform random variable with support

on [−1, 1]; xnj2 as a Poisson random variable with mean 2 and truncated with support

on [0, 5]; and finally xnj3 as a truncated standard normal random variable with support

on [−1.8, 1.8]. We also repeat this experiment for 3 sample sizes: N = 100, 300, 500.

Table 4 summarizes the selected estimation results of Experiment B. When εnj are

drawn from EV (0, 1, 0), all ROL coefficient estimates b1, b2, b3 and b4 closely resemble

the true parameter values on average. Efficiency gains from exploiting deeper ranks are

also evident. For example, using all ranks (b4) in N = 100 yields similarly dispersed es-

timates as using the top-rank (b1) in N = 300. All tests (LR2, LR3,LR4) of consistency

in ranking behavior across the subscripted ranks (or more appropriately, that of IIA

in light of our earlier discussion) have sizes close to the nominal 5% level. The HROL

scale estimates σ̂2, σ̂3 and σ̂4 are close to 1 on average as expected.

When εnj is drawn from other distributions, the results except efficiency gains change

again. Since the present experiment involves more than 3 alternatives, we can now

examine how the coefficient estimates change as the ROL estimator exploit deeper ranks

successively: the mean estimates bQ continue to decline in magnitude as we increase Q.

All LRQ tests reject the null much more often than 5%, once again calling into question

their use as tests for consistency in ranking behavior. Even when only the top-two

ranks (LR2) are used in estimation, the null is rejected from 9% to 38% of samples when

N = 100, and from 20% to 92% of samples when N = 300. These rejection frequencies

increase further as deeper ranks are incorporated into estimation. Similarly, σ̂Q also

decreases in the depth of ranking Q, resulting in 1 > σ̂2 > σ̂3 > σ̂4 on average. Without

knowing the true DGPs, we might have taken both sets of results as evidence that our

simulated agents feel less certain about their less preferred alternatives.

The impact of stochastic misspecification tends to be the most striking when εnj

are drawn from the mixed normal distribution. One more pattern concerning other

distributions is evident in the present experiment, which is to be seen in Experiment C

again: the impact tends to be the greatest for the uniform, normal and logistic cases in

order. This ordering agrees with the impression Figure 1 conveys regarding how much

the density of each distribution overlaps with the EV (0, 1, 0) density.

In further experimentation, we have found that the qualitative conclusions remain

unchanged when the above experiments are repeated after scaling up or down all true
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Table 4: Experiment B on hypothetical DGP in equation (20)

β = (β1 = 1, β2 = −1, β3 = 1)

N=100 b1 b2 b3

b1 b2 b3 b1 b2 b3 b1 b2 b3
EV1 1.024 -1.023 1.024 1.013 -1.013 1.014 1.010 -1.010 1.012

(0.261) (0.155) (0.195) (0.184) (0.111) (0.139) (0.156) (0.093) (0.119)
Uniform 1.102 -1.117 1.106 0.963 -0.969 0.965 0.900 -0.898 0.902

(0.266) (0.156) (0.198) (0.182) (0.103) (0.132) (0.149) (0.081) (0.110)
Normal 1.122 -1.128 1.116 1.012 -1.018 1.009 0.949 -0.948 0.945

(0.269) (0.162) (0.205) (0.189) (0.109) (0.142) (0.156) (0.089) (0.118)
Logistic 1.138 -1.148 1.138 1.046 -1.052 1.045 0.982 -0.984 0.981

(0.275) (0.168) (0.205) (0.192) (0.115) (0.144) (0.160) (0.095) (0.121)
Mixed norm 1.229 -1.249 1.231 1.007 -1.015 1.006 0.895 -0.894 0.893

(0.284) (0.178) (0.217) (0.191) (0.111) (0.143) (0.156) (0.086) (0.114)

b4

b1 b2 b3 LR2 LR3 LR4 σ̂2 σ̂3 σ̂4
EV1 1.009 -1.009 1.011 5.17% 5.39% 5.73% 1.020 1.029 1.049

(0.143) (0.086) (0.109) (0.201) (0.220) (0.274)
Uniform 0.872 -0.869 0.874 18.13% 23.92% 24.99% 0.769 0.691 0.679

(0.135) (0.074) (0.100) (0.138) (0.144) (0.174)
Normal 0.910 -0.905 0.906 11.11% 18.14% 23.58% 0.833 0.729 0.652

(0.143) (0.081) (0.108) (0.150) (0.157) (0.173)
Logistic 0.936 0.936 0.936 8.94% 15.20% 24.40% 0.863 0.749 0.643

(0.146) (0.086) (0.111) (0.170) (0.158) (0.176)
Mixed norm 0.846 -0.838 0.844 37.57% 61.68% 68.81% 0.675 0.540 0.499

(0.140) (0.075) (0.103) (0.116) (0.115) (0.137)

N=300 b1 b2 b3

b1 b2 b3 b1 b2 b3 b1 b2 b3
EV1 1.007 -1.008 1.009 1.005 -1.005 -1.005 1.004 -1.004 1.005

(0.146) (0.087) (0.110) (0.110) (0.062) (0.080) (0.089) (0.052) (0.068)
Uniform 1.088 -1.103 1.088 0.958 -0.964 0.955 0.895 -0.895 0.894

(0.151) (0.088) (0.112) (0.106) (0.058) (0.077) (0.087) (0.047) (0.063)
Normal 1.101 -1.112 1.102 1.002 -1.008 1.002 0.940 -0.941 0.940

(0.151) (0.089) (0.113) (0.107) (0.062) (0.080) (0.080) (0.051) (0.067)
Logistic 1.121 -1.127 1.120 1.037 -1.042 1.038 0.975 -0.977 0.975

(0.153) (0.092) (0.116) (0.109) (0.064) (0.082) (0.092) (0.054) (0.069)
Mixed norm 1.209 -1.231 1.210 0.995 -1.007 0.995 0.886 -0.888 0.886

(0.161) (0.099) (0.120) (0.109) ( 0.063) (0.081) (0.089) (0.049) (0.066)

(Continued on the next page.)
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Table 4: Experiment B (ctd.)

(Continued from the previous page.)
b4

b1 b2 b3 LR2 LR3 LR4 σ̂2 σ̂3 σ̂4
EV1 1.003 -1.004 1.004 4.95% 4.88% 4.88% 1.007 1.010 1.014

(0.082 (0.048 (0.062) (0.112) (0.121) (0.147)
Uniform 0.870 -0.866 0.869 53.08% 73.85% 76.98% 0.763 0.680 0.666

(0.079 (0.043) (0.058) (0.077) (0.081) (0.096)
Normal 0.902 -0.899 0.903 29.17% 54.73% 72.63% 0.822 0.717 0.637

(0.081) (0.046) (0.061) (0.084) (0.085) (0.094)
Logistic 0.930 -0.928 0.930 19.58% 44.25% 72.24% 0.856 0.739 0.626

(0.083) (0.049) (0.064) (0.089) (0.088) (0.095)
Mixed norm 0.838 -0.834 0.838 91.73% 99.61% 99.85% 0.669 0.534 0.488

(0.080) (0.043) (0.059) (0.065) (0.064) (0.075)

N=500 b1 b2 b3

b1 b2 b3 b1 b2 b3 b1 b2 b3
EV1 1.003 -1.004 1.004 1.002 -1.002 1.003 1.002 -1.002 1.003

(0.112) (0.067) (0.084) (0.082) (0.048) (0.061) (0.069) (0.041) (0.052)
Uniform 1.084 -1.099 1.084 0.954 -0.960 0.953 0.893 -0.893 0.892

(0.117) (0.067) (0.086) (0.081) (0.045) (0.059) (0.067) (0.036) (0.049)
Normal 1.097 -1.108 1.099 1.000 -1.006 1.000 0.938 -0.939 0.938

(0.116) (0.069) (0.086) (0.081) (0.048) (0.062) (0.068) (0.039) (0.052)
Logistic 1.114 -1.123 1.115 1.033 -1.039 1.034 0.972 -0.974 0.973

(0.117) (0.071) (0.089) (0.083) (0.050) (0.064) (0.070) (0.041) (0.054)
Mixed norm 1.209 -1.225 1.207 0.994 -1.004 0.992 -0.886 -0.886 0.884

(0.125) (0.076) (0.094) (0.086) (0.048) (0.063) (0.070) (0.037) (0.050)

b4

b1 b2 b3 LR2 LR3 LR4 σ̂2 σ̂3 σ̂4
EV1 1.002 -1.002 1.002 4.94% 5.03% 4.91% 1.005 1.007 1.010

(0.064) (0.038) (0.048) (0.086) (0.093) (0.111)
Uniform 0.868 -0.864 0.867 80.35% 94.62% 96.23% 0.760 0.680 0.662

(0.061) (0.033) (0.044) (0.059) (0.062) (0.074)
Normal 0.901 -0.898 0.901 48.64% 82.00% 94.52% 0.820 0.714 0.634

(0.062) (0.036) (0.047) (0.066) (0.065) (0.073)
Logistic 0.927 -0.926 0.928 32.35% 70.62% 93.58% 0.853 0.737 0.623

(0.064) (0.038) (0.049) (0.069) (0.068) (0.073)
Mixed norm 0.838 -0.832 0.837 99.52% 100.00% 100.00% 0.668 0.532 0.487

(0.063) (0.033) (0.046) (0.050) (0.049) (0.057)

See notes to Table 3.
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parameters by the same proportion.18 But both variations in bQ across Q, and the

empirical sizes of the LRQ tests under misspecification, have become smaller (larger)

when the true parameters have been scaled up (down). That is, the impact of misspec-

ification expectedly varies with how much the observed response is influenced by the

systematic component of utility relative to the error terms.

Experiment C explores whether our previous results hold under an empirically plau-

sible configuration of the systematic component of utility. Specifically, we generate

synthetic data sets by combining the systematic component of utility estimated using

an actual stated preference data set with simulated error terms. The actual data set

is a subset of the electricity supplier choice data analyzed in Huber and Train (2001),

which accompanies Stata module -mixlogit- (Hole, 2007).19 We estimate MNL using

this data set, and then generate rank-ordered responses from the following process:

Unj = x
′

njβ + εnj (21)

n = 1, 2, · · · , 1195 j = 1, 2, 3, 4

where xnj is a vector of 6 observed generic attributes distinguishing J = 4 alternatives

in the actual data, and β is a vector of the empirical MNL estimates: see Hole (2007)

for the full data description and estimates. To save space, we summarize the ROL

estimates of 3 parameters out of 6: β1 or the coefficient on the contract length that can

be 0, 1 or 5 years; β2 or the coefficient on the dummy indicator of whether the supplier

is well-known (=1) or not (=0); and β3 or the coefficient on the contract price in cents

per kWH which can be 0, 7 or 9.

Table 5 summarizes the selected estimation results, which are qualitatively similar

to what we have found in Experiment B. When εnj are drawn from EV (0, 1, 0), all

coefficient estimates b1, b2 are b3 are close to the true parameters on average, and both

LR2 and LR3 result in empirical rejection frequencies close to the nominal 5% level.

When εnj are drawn from other distributions, on average, b1 are magnified relative

to the true parameters, and the usual pattern of attenuation is observed across b2 and

b3. This pattern is the most striking for the mixed normal, uniform, normal and logistic

cases in order. The inequality 1 > σ̂2 > σ̂3 also holds on average. The quantitative

18This is equivalent to maintaining the same true parameter values as before, and then specifying a
smaller or larger variance of εnj than π2/6.

19We have chosen this data set on the basis of its ready accessibility. Most of stated preference data
sets are not as easily accessible, either because they are proprietary or have been collected for exclusive
use by a team of researchers.
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Table 5: Experiment C on synthetic DGP in equation (21)

β = (β1 = −0.140, β2 = 1.055, β3 = −0.635)

N=1195 b1 b2 b3

b1 b2 b3 b1 b2 b3 b1 b2 b3
EV1 -0.140 1.060 -0.637 -0.140 1.057 -0.636 -0.140 1.057 -0.636

(0.016) (0.086) (0.044) (0.012) (0.061) (0.034) (0.010) (0.052) (0.031)
Uniform -0.151 1.135 -0.638 -0.122 0.931 -0.552 -0.114 0.860 -0.532

(0.016) (0.086) (0.044) (0.011) (0.059) (0.034) (0.010) (0.049) (0.030)
Normal -0.152 1.151 -0.664 -0.133 1.014 -0.599 -0.121 0.916 -0.563

(0.017) (0.087) (0.045) (0.012) (0.061) (0.035) (0.010) (0.050) (0.031)
Logistic -0.157 1.181 -0.690 -0.141 1.071 -0.632 -0.127 0.960 -0.589

(0.017) (0.089) (0.045) (0.012) (0.062) (0.035) (0.010) (0.051) (0.032)
Mixed norm -0.187 1.303 -0.755 -0.135 0.989 -0.580 -0.113 0.832 -0.527

(0.018) (0.090) (0.047) (0.012) (0.061) (0.036) (0.010) (0.051) (0.032)

LR2 LR3 σ̂2 σ̂3
EV1 4.85% 5.05% 1.003 1.005

(0.074) (0.089)
Uniform 99.25% 99.50% 0.648 0.641

(0.055) (0.067)
Normal 83.96% 98.86% 0.747 0.594

(0.057) (0.063)
Logistic 67.58% 99.05% 0.787 0.583

(0.058) (0.061)
Mixed norm 100.00% 100.00% 0.484 0.372

(0.041) (0.048)

See notes to Table 3.

results are even more dramatic in the present experiment than in Experiment B. The

equality of coefficients across first two ranks (LR2) is rejected 68% of times in the

logistic case, 84% in the normal case, and almost always in the uniform and mixed

normal cases. The equality across all ranks (LR3) is almost always rejected in every

case. These larger rejection frequencies do not stem from a much larger sample and

the presence of more parameters alone. The coefficient estimates per se exhibit greater

divergence across ranks. On average, both b2 and b3 show much larger attenuation

relative to b1 than their counterparts in Experiment B, which can also be inferred from

the visibly smaller means of σ̂2 and σ̂3, particularly in the mixed normal case.

5 Concluding remarks

In empirical works, the rank-ordered logit (ROL) estimates often vary significantly with

the depth of rankings exploited in the estimation process. The common interpretation
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of this regularity is that rank-ordered data are unreliable because the cognitive bur-

den of ranking several alternatives induces respondents to choose their most preferred

alternatives differently from less preferred ones (Hanley et al., 2001).

We advance an alternative explanation: stochastic misspecification of the random

utility function. Our analytic and simulated examples illustrate the consequences of

estimating a misspecified ROL model as follows. Even when all assumptions relevant to

the estimated model are true except that the i.i.d. unobservables are not extreme value

distributed, the estimates exhibit the pattern of variation which misleadingly agrees

with the increasing cognitive burden of identifying less preferred alternatives. The tests

of coefficient equality across ranks, when viewed as tests for the null of consistency in

ranking behavior, falsely reject the null much more often than the nominal size of 5%;

their empirical sizes even exceed 90% in some cases.

In practice, some amount of stochastic misspecification is inevitable because any

model is but an approximation to reality. Our findings suggest that the sensitivity

of the ROL estimates to the depth of rankings is to be naturally expected and needs

not symptomize a data quality problem. Viewing this sensitivity as a consequence of

stochastic misspecification, instead of the cognitive burden, has distinct methodological

implications. On one hand, it vindicates the microeconomic approach of modeling rank

orderings as realizations of random preference relations, as practiced by Calfee et al.

(2001), Train and Winston (2007) and Dagsvik and Liu (2009). On the other hand, it

provides a platform for developing more general an econometric procedure to address

this sensitivity than the ad hoc modeling of cognitive processes. We conclude with a

further remark on the latter implication.

In our view, a fruitful direction for future research lies in developing a semi-parametric

procedure for rank-ordered data that allows consistent estimation of random utility

model coefficients without specifying a particular error distribution. Such a procedure

is a direct solution to the sensitivity of the ROL estimates to the depth of rankings,

when its underlying cause is stochastic misspecification. It can also be used for a more

clearcut test of consistency in ranking behavior, because the semi-parametric estimates

must remain robust to the depth of rankings in the absence of inconsistent ranking

behavior. Hausman and Ruud (1987) apply a precursor to this type of procedure which

allows consistent estimation of coefficients on continuous attributes, and find some evi-

dence of robustness. Since most of attributes in stated preference surveys are discrete,

as in the Huber and Train (2001) data that we have used in our simulation, a more

general procedure needs to be developed for wider empirical applicability.
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