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Abstract

This paper details particle Markov chain Monte Carlo (PMCMC) techniques for analysis of un-

observed component time series models using several economic data sets. PMCMC provides a

very compelling, computationally fast and efficient framework for estimation and model com-

parison. For instance, we estimate a stochastic volatility model with leverage effect and one

with Student-t distributed errors. We also model time series characteristics of US inflation

rate by considering a heteroskedastic ARFIMA model where heteroskedasticity is specified by

means of a Gaussian stochastic volatility process.
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1 Introduction

In this article we analyze different economic data sets using particle Markov chain Monte Carlo
(PMCMC) techniques, see Andrieu et al. (2010) implemented in Ox (Doornik 2009). The aim
of this paper is not to focus on the properties of PMCMC nor to provide thorough analysis of
empirical data. Instead, we aim to describe the basic steps of PMCMC together with details on
implementation of some of the key algorithms in Ox. These algorithms are chosen for the insights
that they provide. They are not always the most advanced or quickest way of programming in
Ox. Rather, we show that Ox provides a very compelling and computationally fast framework for
estimating rather advanced econometric models. We illustrate these methods on three problems,
producing rather generic methods.

The main difference between MCMC and PMCMC is that where in traditional MCMC, in
particular Gibbs sampling problems we resort to converting nonlinear or non-Gaussian models to
linear and Gaussian state space models in order to draw the latent states, in the PMCMC framework
we integrate these latent states out directly using the particle filter and thereafter sample the model
parameters using Metropolis-Hastings. This is due to the results in Andrieu et al. (2010) where they
show that when an unbiasedly estimated likelihood is used inside a Metropolis-Hastings algorithm
then the estimation error makes no difference to the equilibrium distribution of the algorithm. We
believe that applying the PMCMC methodology to unobserved component models is in fact the
most important contribution that we make. As we shall see for these type of models, PMCMC
requires limited design effort on the user’s part especially if one desires to change some features
in a particular model. It allows us straightforwardly to develop a sampling algorithm by changing
only few lines in our codes. On the other hand, estimating the same type of models using “pure”
Gibbs sampling would require relatively more programming effort.

We briefly introduce the main concepts of PMCMC in section 2. The initial model in Section
3 is the standard stochastic volatility (SV) model with Gaussian errors applied to a financial data
set concerning daily OMXC20 returns. Next, we consider different well-known extensions of the
SV model. The first extension is a SV model with Student-t errors. In the second extension we
incorporate a leverage effect by modeling a correlation parameter between measurement and state
errors. In the third extension we implement a model that has both stochastic volatility and moving
average errors, see for example Chan (2013). The fourth extension is PMCMC implementation of
the stochastic volatility in mean model of Koopman and Hol Uspensky (2002). In this specification
the unobserved volatility process appears in both the conditional mean and the conditional variance.
Finally, we consider a two factor stochastic volatility model as in Harvey et al. (1994) and Shephard
(1996). We show that PMCMC provides a straightforward procedure for estimation and marginal
likelihood calculation of these models. Specifically, within the PMCMC framework computing the
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marginal likelihood is relatively easy using the method of Gelfand and Dey (1994) as the integrated
likelihood is easily available from the particle filter.

Thereafter, we reconsider the unobserved components model of the US inflation rate, see Stock
and Watson (2007), Grassi and Proietti (2010). We estimate different specifications of the un-
observed components model using PMCMC. Model selection is again carried out by comparing
marginal likelihoods between models. Results indicate that the specification in which the volatility
of both the regular and irregular components of inflation evolve according to SV processes performs
best in terms of ML. Finally, we show that it is also relatively easy to estimate more complicated
models using PMCMC. We do this by estimating an autoregressive fractionally integrated moving
average (ARFIMA) model with time-varying volatility modeled as a Gaussian SV process using
monthly postwar US core inflation data from 1960 to 2013.

The main concepts of PMCMC with focus on Metropolis-Hastings and the particle filter are
presented in section 2. In section 3 we present several applications to demonstrate the performance
of the algorithms using different economic data sets and finally the last section concludes.

2 Markov Chains and Particle Filters

Consider the simplest formulation of the stochastic volatility (SV) model

yt = exp(αt/2)εt , εt ∼ N (0,1) (2.1)

αt+1 = µ +φ (αt−µ)+σηt , ηt ∼ N (0,1) (2.2)

where yt is the observed data, (α1, ...,αT )
′

are the unobserved log-volatilities, µ is the drift in the
state equation, σ is the volatility of log-volatility and φ is the persistence parameter. Typically,
we would impose that |φ |< 1 so that we have a stationary process with the initial condition, α1 ∼
N
(
µ,σ2/

(
1−φ 2)). Let θ =

(
µ,φ ,σ2)′ and YT = (y1, ...,yT )

′
. This model has been heavily

analyzed in time series econometrics, see for example Kim et al. (1998). The major challenge
of estimating this model is that while sampling p(θ | α1, ...,αT ,YT ) is relatively easy, sampling
α1, ...,αT ∼ p(α1, ...,αT | θ ,YT ) is often difficult.

Within the Gibbs sampling framework, the most popular approach for estimating (2.1)-(2.2)
is the so-called auxiliary mixture sampler, see Kim et al. (1998). The idea is to approximate the
SV model using a mixture of linear Gaussian models. Specifically, we can square both sides of
(2.1) and take the logarithm such that y∗t = αt + ε∗t where y∗t = logy2

t and ε∗t = logε2
t . Kim et al.

(1998) show that ε∗t can be approximated by a seven-component Gaussian mixture density. We can
then write this mixture density using an auxiliary random variable, zt ∈ {1, ...,7} that serves as the
mixture component indicator. Hence, ε∗t | zt ∼ N

(
mi,s2

i
)

where p(zt = i) = ωi. The values of mi,

3



s2
i and ωi, i = 1, ...,7 are all fixed and given in Kim et al. (1998). Using this approximation the SV

model can be expressed as a linear Gaussian state space model. Bayesian estimation can then be
performed using standard Gibbs sampling techniques for linear Gaussian state space models, see
for instance Kim and Nelson (1999). Finally, notice that using this specification we sample from
the augmented posterior, p(θ ,α1, ...,αT ,z1, ...,zT | YT ).

Within the PMCMC framework we need not use the above approximation. On the contrary,
we approach estimating (2.1)-(2.2) directly by first integrating out (α1, ...,αT )

′
and thus obtaining

p(YT | θ) where

p(YT | θ) =
T

∏
t=1

p(yt | Yt−1,θ) (2.3)

In more general cases we do not have a closed form expression for p(yt | Yt−1,θ) and can therefore
only approximate it. In this paper, we use simulations to unbiasedly estimate each term on the
right side of (2.3). This is carried out using the particle filter, see Kim et al. (1998), Doucet
et al. (2000) and Creal (2012). We then use the main result of Andrieu et al. (2010) which states
that when an unbiasedly estimated likelihood is used inside a MCMC algorithm then the estimation
error makes no difference to the equilibrium distribution of the algorithm, the posterior distribution,
p(θ | YT ) ∝ p(YT | θ) p(θ). Thus, conditional on p(YT | θ) and the prior, p(θ) we can sample θ

from p(θ | YT ) by using Metropolis-Hastings (M-H). M-H follows the steps:

1. Initialize, start with a vector of parameters, θ (0), set i = 1.

2. Draw a candidate value θ ∗ ∼ q
(

θ | θ (i−1)
)

.

3. Accept θ ∗ with probability

aMH

(
θ
∗,θ (i−1)

)
= min

1,
p(θ ∗ | YT )q

(
θ (i−1) | θ ∗

)
p
(
θ (i−1) | YT

)
q
(
θ ∗ | θ (i−1)

)
 (2.4)

4. If θ ∗ is accepted, set θ (i) = θ ∗, else θ (i) = θ (i−1).

5. Set i = i+1 and repeat from Step 2.

The candidate density, q
(

θ | θ (i−1)
)

can be chosen freely, though a density which is related to the
target density would lead to better acceptance rates. We start by using the random walk Metropolis-
Hastings algorithm, see Koop (2003). Thus, we generate θ ∗ from q

(
θ | θ (i−1)

)
∼ N

(
θ (i−1),Σq

)
where Σq is chosen by the researcher in a manner to ensure a sufficient acceptance rate. A suffi-
cient acceptance rate ensures that the chain moves in the appropriate direction. We follow Koop
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(2003, page 98) and adjust Σq to get acceptance rates roughly around 30 to 40%. We do this by
experimenting with different values of Σq until we find one which yields a reasonable acceptance
rate probability.

To allow for faster convergence and even better mixing we follow So et al. (2005) and do the
following: we perform the random walk M-H algorithm for the first N1 of the total N PMCMC

iterations and form the sample mean, θ̂ and sample covariance, Σ̂ for
{

θ (i)
}N1

i=1
. Then, using the

Gaussian proposal with mean θ̂ and covariance Σ̂, we perform the following independent kernel
M-H algorithm for the remaining N2 = N−N1 iterations. Hence,

1. At iteration i where i≥ (N1 +1), generate θ ∗ from N
(
θ̂ , Σ̂

)
2. Accept θ ∗ with probability

aMH

(
θ
∗,θ (i−1)

)
= min

1,
p(θ ∗ | YT )q

(
θ (i−1)

)
p
(
θ (i−1) | YT

)
q(θ ∗)

 (2.5)

where q
(

θ (i−1)
)

is the Gaussian proposal density with mean θ̂ and covariance Σ̂ evaluated

at θ (i−1).

3. Set i = i+1 and repeat from Step 2.

Finally, for the SV model we specify the priors for µ , φ and σ2 as

µ ∼ N (0,1) ,
φ +1

2
∼ Beta(20,1.5) , σ

2 ∼ IG
(

4
2
,
0.02

2

)
where IG

( s0
2 ,

v0
2

)
denotes the Inverse-gamma density, see Kim and Nelson (1999).

2.1 Particle filter

The particle filter is a sequential simulation device for filtering of non-Gaussian, nonlinear state
space models. It can be thought of as a generalization of the Kalman filter, which is only able to
analyze linear, Gaussian state space models. Both the particle and Kalman filters produce filtered
estimates of (α1, ...,αT )

′
and p(yt | Yt−1,θ) for t = 1, ...,T . In the Kalman case all these quantities

are exact whereas in the particle filter case they are simulation-based estimates.
The main idea of the particle filter is to sample a cloud of particles, α

( j)
t , j = 1, ...,M such that

they together describe the density of the state variable at time t conditional on Yt . At each t we
propagate the particles α

( j)
t and update their associate weights. This way we prevent accumulation

of errors by eliminating unpromising particles. In the following we give a brief description of a
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very general particle filter that we use throughout this paper. For more details on particle filtering
the reader is referred to Doucet et al. (2000) and Creal (2012). Our particle filter scheme is as
follows:

1. Set t = 1 and l0 = 0. Draw α
(1)
t , ...,α

(M)
t from αt | α0,θ .

2. Compute τ
( j)
t = p

(
yt | α( j)

t ,Yt−1,θ
)

and w( j)
t = τ

( j)
t /

(
ΣM

k=1τ
(k)
t

)
for j = 1, ...,M.

3. Resample
{

α
(1)
t , ...,α

(M)
t

}
with probabilities w(1)

t , ...,w(M)
t . First, draw u ∼ U (0,1). Let

x( j) = u
M +( j−1)/M for j = 1, ...,M and find indices i1, ..., iM such that Σi j−1

k=1w(k)
t < x( j) ≤

Σi j

k=1w(k)
t . We refer to this step as the “Resampling step” for future references.

4. Sample α
( j)
t+1 ∼ αt+1 | α

(i j)
t ,θ for j = 1, ...,M.

5. Compute lt (θ) = lt−1 (θ)+ log
(

M−1ΣM
j=1τ

( j)
t

)
. Set t = t +1 and goto step 2.

As an estimate for E [αt | α1, ...,αt−1,Yt−1,θ ] we use α̂t = ΣM
j=1w( j)

t α
( j)
t . A basic implementation

of the particle filter is provided in Table 1.
Del Moral (2004, Theorem 7.4.2) shows that ̂p(YT | θ) = E [exp(lT (θ))] = p(YT | θ). There-

fore, since the particle filter provides us with an unbiased estimate of p(YT | θ) we can use the result
in Andrieu et al. (2010) and replace p(YT | θ) with ̂p(YT | θ) inside a MCMC sampling scheme.
Thereafter, we sample θ which has a relatively lower dimension using Metropolis-Hastings. Ba-
sic code for evaluating aMH

(
θ ∗,θ (i−1)

)
itself could be implemented as in Table 2. The routine

funcMetropolisHasting() draws θ ∗, evaluates aMH

(
θ ∗,θ (i−1)

)
using (2.4) for i = 1, ...,N1

and (2.5) for i = N1 +1, ...,N. For i = 1, ...,N1 we specify the random walk variance, Σq as vtune.
As stated before, we experiment with several values for vtune in order to get reasonable accep-
tance rate probabilities. For instance, for the Gaussian SV model we set: 4µ(i) = 0.2828ε

(i)
1 ,

4φ (i) = 0.01ε
(i)
2 and 4σ2(i) = 0.01ε

(i)
3 where εk ∼ N (0,1) for k = 1, ...,3. Thereafter, we follow

section 2 and perform independent kernel Metropolis-Hastings for the remaining N2 draws.
The function funcPosterior() evaluates p(θ ∗ | YT ) as θ ∗ is generated. In order to evaluate

p(θ ∗ | YT ) we need to run the particle filter using θ ∗. The denominator is evaluated using θ (i−1)

and ̂p
(
YT | θ (i−1)

)
which are available from the previous iteration. We thereafter complete the

M-H step by drawing u from the standard Uniform distribution. If aMH

(
θ ∗,θ (i−1)

)
≥ u we set

θ (i) = θ ∗ and ̂p
(
YT | θ (i)

)
= ̂p(YT | θ ∗), else we retain θ (i−1) and ̂p

(
YT | θ (i−1)

)
. Thereafter, we

take another MCMC iteration and move along the chain.
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2.2 Bayes factors and marginal likelihood computation

The main output from the particle filter is the loglikelihood contribution of each observation. The
sum of the loglikelihood contributions delivers the estimated loglikelihood of the data, ̂p(YT | θ),
with the unobserved states integrated out. This quantity can then be used to compute the marginal
likelihood (ML) for a model M . The marginal likelihood is defined as

p(YT |M ) =

ˆ
Θ

p(YT | θ ,M ) p(θ |M )dθ

In the following steps the model index, M is suppressed for conciseness. Gelfand and Dey (1994)
propose a very compelling and general method to calculate ML. It is efficient and utilizes the
same routines when calculating ML for different models. The Gelfand-Dey (G-D) estimate of the
marginal likelihood is based on

1
N

N

∑
i=1

g
(

θ
(i)
)
/
[

p
(

YT | θ (i)
)

p
(

θ
(i)
)]
→ p(YT )

−1 as N → ∞ (2.6)

whereas before, N is the number of PMCMC iterations. G-D show that if g
(

θ (i)
)

is thin-tailed

relative to p
(

YT | θ (i)
)

p
(

θ (i)
)

then (2.6) is bounded and the estimator is consistent. Following
Geweke (2005) a truncated Normal distribution, N (θ ∗,Σ∗) is used for g(θ). θ ∗ and Σ∗ are the
posterior sample moments calculated as

θ
∗ =

1
N

N

∑
i=1

θ
(i) and Σ

∗ =
1
N

N

∑
i=1

(
θ
(i)−θ

∗
)(

θ
(i)−θ

∗
)′

whenever θ (i) is in the domain of the truncated Normal. The domain, Θ is defined as

Θ =

{
θ :
(

θ
(i)−θ

∗
)′
(Σ∗)−1

(
θ
(i)−θ

∗
)
≤ χ

2
a (z)

}
where z is the dimension of the parameter vector and χ2

a (z) is the ath percentile of the Chi-
squared distribution with z degrees of freedom. In practice, 0.75, 0.95 and 0.99 are popular se-
lections for a. Once the marginal likelihood for different specifications has been calculated, we
can compare them using Bayes factors, BF. The relative evidence for MA versus MB is BFMAB =

p(YT |MA)/p(YT |MB). This odds ratio is the factor by which the data considers MA more prob-
able than MB. Kass and Raftery (1995) recommend considering twice the logarithm of the Bayes
factor for model comparison and suggest a rule-of-thumb of support for MA based on 2logBFMAB:
0 to 2 not worth more than a bare mention, 2 to 6 positive, 6 to 10 strong, and greater than 10 as
very strong.
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3 Applications

3.1 Stochastic volatility models

In this section we estimate the standard stochastic volatility (SV) model along with different ex-
tensions. The first of these extensions we label the SVt model where εt ∼ St (v) and St stands for
the Student-t distribution with v > 2 degrees of freedom. In the second extension we incorporate a
leverage effect by letting ρ denote the correlation between εt and ηt . We shall refer to this model as
SVL. Notice that in both cases we need only to make small adjustments in the codes. With regards
to the SVt model, for p(yt | αt ,Yt−1,θ) we use

p(yt | αt ,Yt−1,θ) =
Γ
(v+1

2

)
Γ
( v

2

)√
(v−2)π

1
σt

(
1+

y2
t

(v−2)σ2
t

)−(v+1)/2

We then follow the sampling steps as before. On the other hand, if we were to use pure Gibbs
sampling to estimate the SVt model then we would be forced to convert the model into a condition-
ally Gaussian state space model by letting εt = λ

−1/2
t et where et ∼ N (0,1) and λt ∼ G(v/2,v/2).

We would then follow the steps in Chib et al. (2002) and sample from the augmented posterior,
p(θ ,v,α1, ...,αT ,z1, ...,zT ,λ1, ...,λT | YT ) whereas before, zt serves as the mixture component in-
dicator.

For the SVL model we need only to rewrite (2.2) as

αt+1 = µ +φ (αt−µ)+σρyt exp(−αt/2)+σ

√
(1−ρ2)ξt

Here, we use that ηt = ρεt +
√
(1−ρ2)ξt where ξt ∼ N (0,1) and we need to sample an additional

parameter, ρ . We choose the same priors as in section 2 for µ , φ and σ2. With regards to the
additional parameters we let v∼ Exp(0.2) where Exp denotes the Exponential distribution and we
set ρ ∼ N (0,1) truncated such that −1 < ρ < 1. The prior on ρ assumes that ρ lies between −1
and 1. Furthermore, we ensure that

∣∣∣ρ(i)
∣∣∣< 1 by resampling ρ(i) until

∣∣∣ρ(i)
∣∣∣< 1.

We can also expand the plain stochastic volatility model by allowing the errors in the measure-
ment equation to follow a moving average (MA) process of order m, see for example Chan (2013).
This means that the errors in the measurement equation are no longer serially independent as for
the plain SV model. Here, we choose a more simple specification and set m = 1. Hence, our model
is given as

yt = eαt/2
εt +ψeαt−1/2

εt−1, εt ∼ N (0,1)

αt+1 = µ +φ (αt−µ)+σηt , ηt ∼ N (0,1)
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As before, we impose that |φ | < 1, α1 ∼ N
(
µ,σ2/

(
1−φ 2)) and we also ensure that the root

of the characteristic polynomial associated with the MA coefficient, ψ is outside the unit circle.
Notice that under the standard stochastic volatility model, the unconditional variance of yt is simply
eαt . However, under the moving average variant, the unconditional variance of yt is given by
eαt +ψ2eαt−1 . Hence, in this case the unconditional variance is time-varying through two channels:
the moving average term of eαt and αt which evolves according to (2.2). Estimating this model is
straightforward as again we only need to make small adjustments in the codes. With regards to ψ ,
we let p(ψ)∼ N (0,1) truncated such that −1 < ψ < 1.

The flexibility of PMCMC can be used to model other attractive specifications of the stochastic
volatility model. For instance, consider the popular stochastic volatility in mean (SVM) model
of Koopman and Hol Uspensky (2002) where eαt/2 appears in both the conditional mean and the
conditional volatility. We follow the same notation as before and define the SVM model as

yt = β exp(αt/2)+ exp(αt/2)εt , εt ∼ N (0,1)

where αt follows (2.2). Estimation of this extension is nontrivial using pure Gibbs sampling.
This is because drawing α1, ...,αT ∼ p(α1, ...,αT | θ ,β ,YT ) is computationally more demand-
ing since the model cannot be written in linear state space form. However, within the PMCMC
context estimating the SVM model is straightforward. In fact, we note that p(yt | αt ,Yt−1,θ) ∼
N (β exp(αt/2) ,exp(αt)). Incorporating this specification is very easy in the particle filter as we
only need to modify step 2 of the algorithm and thus use τ

( j)
t = N

(
βeα

( j)
t /2,eα

( j)
t

)
, j = 1, ...,M.

Furthermore, in the M-H step we sample an additional parameter, β where p(β )∼ N (0,1).
It was suggested to provide a simulation example of SV-MA(1) and SVM. We present simula-

tion results in appendix A where we also experiment with different values of M to see its impact
on the results, especially for low values of M, for example M = 1 or M = 10. Finally, we estimate
a two factor SV model, TFSV. We define TFSV as

yt = exp
(

µ

2
+

αt +α2t

2

)
εt , εt ∼ N (0,1)

αt = φαt−1 +σηt , ηt ∼ N (0,1)

α2t = φ2α2t−1 +σ2η2t , η2t ∼ N (0,1)

|φ |< 1 , α1 ∼ N
(
0,σ2/

(
1−φ

2))
|φ2|< 1 , α21 ∼ N

(
0,σ2

2/
(
1−φ

2
2
))

Estimating the two factor SV model using PMCMC is straightforward. First, we collect all the
parameters in θ =

(
µ,φ ,φ2,σ

2,σ2
2
)′

. Then, we only need to modify the particle filter such that
we draw two sets of particles (one for αt and one for α2t) instead of one. This part is also very
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easy and does not cost anything in terms of computation. We specify the increments in the M-H
part as 4µ

(i)
= 0.3162ε

(i)
1 where ε

(i)
1 ∼ N (0,1). For φ and φ2 we find that M-H is very sensitive

with regards to their values. Therefore, we try get as close as possible to the center of the posterior.
Hence, we perform the following, see also Fouque et al. (2010): First, we put the restriction φ > φ2.
This restriction is needed for identification. We then draw φ and φ2 from a truncated Normal
density. For instance, φ∗∼N

(
b,B−1) truncated such that |φ∗|< 1 where b= (1/B)ΣT

t=1α
(i−1)

t α
(i−1)

t−1

and B = ΣT
t=1α

2(i−1)

t−1
1. We draw µ , σ2 and σ2

2 as before and thereafter accept or reject θ ∗. For
the priors, we set µ ∼ N (0,1), φ ∼ N (0,1), φ2 ∼ N (0,1), truncated such that |φ | < 1, |φ2| < 1,
σ2 ∼ IG(4/2,0.02/2) and σ2

2 ∼ IG(4/2,0.02/2).
The top panel in Figure 1 displays the OMX Copenhagen 20 (OMXC20) index for the period

1/2/2006-12/30/2010 followed by the returns and the filtered estimates of σ̂t = exp(α̂t/2) for t =

1, ...,T . From these figures strong differences in return and volatility are apparent2. For instance,
the top left panel shows a sharp decrease in the OMXC20 index towards the end of 2008. At the
same time the third panel in the top row of Figure1 shows an increase in the conditional volatility
of SVL for that time period.

We set M = 1000 and run our sampler for N = 20000 M-H iterations. After discarding the first
10000 iterations we collect the final sample and compute the posterior mean, θ , 95% credibility
intervals (indicated inside the brackets), the inefficiency measures, RB, the loglikelihood that results
from the particle filter, the logarithm of the marginal likelihood, log(ML) for a= 0.75, a= 0.99 and
the M-H acceptance ratio. The inefficiency measures display the relative variance of the posterior
sample draws when adapting for correlation between iterations, as compared to the variance without
accounting for correlation. In these calculations, we follow Bos (2011) and choose a bandwidth, B

of 100, see also Kim et al. (1998) for a further background on this measure. Results are summarized
in Table 3.

We find that the Gaussian SVL model performs best in terms of the marginal likelihood crite-
rion3. The 2logBF of SVL versus SV in Table 3 is 7.8 and this indicates strong evidence in favor
of the SVL model. Compared to SVt the 2logBF in favor of SVL is 12.8 which is also very strong
evidence. The distribution of the parameters, θ =

(
µ,φ ,σ2,ρ

)′
are also concentrated around their

means. The values of φ close to one confirm strong daily volatility persistence, in accordance
with typical estimates reported in the literature. Notice that the persistence increases slightly as
the fat-tailed error distribution is introduced (φ = 0.9810 and 0.9852 for the SV and SVt model,

1We could also choose a Beta(20,1.5) prior for φ and φ2. However, we find that φ2 is very sensitive with regards
to the hyperparameter values of Beta(., .). Therefore, we choose a more uninformative prior, i.e. N (0,1) truncated to
ensure that |φ |< 1.

2OMX Copenhagen 20 (OMXC20) is the Copenhagen Stock Exchange’s leading share index. The index consists
of the 20 most actively traded shares on the Copenhagen Stock Exchange.

3An advantage of using Bayes factors is that they automatically include Occam’s razor effect in that they penalize
highly parametrized models that do not deliver improved content.

10



respectively) and drops from φ = 0.9810 for SV to φ = 0.9777 for SVL. In the SVt model, the dis-
tribution of the degrees of freedom parameter is centered around 14.20 with a standard deviation of
2.28. For the SVL model the posterior mean of ρ is −0.22 and negative as expected. We also find
that ψ = 0.0045 for the SV-MA(1) model. Compared to SV-MA(1) the 2logBF in favor of SVL is
15.8. On the other hand, we estimate β at 0.5636 with a standard deviation of 0.1688. However,
compared to SV or SVL, SVM does not offer any improvements in terms of ML. Finally, TFSV
performs worst in terms of ML. The estimates of µ , φ and σ2 are relatively close to those for the
plain SV model. On the other hand, the estimates of φ2 and σ2

2 show that the second factor, α2t is
very close to being a white noise process.

In Figure 1 we report the Markov chain output for µ | YT , φ | YT , σ2 | YT , ρ | YT along with
histograms and the evolution of ACFs for these parameters. The chain mixes well with relatively
fast decaying autocorrelation functions.

3.2 Unobserved components model of inflation

In this section we reconsider the unobserved components model of Stock and Watson (2007) and
provide a computational framework using PMCMC. This model provides a simple but yet suffi-
cient framework for discussing the main stylized facts concerning inflation. Specifically, the model
postulates the decomposition of observed inflation into two components: the regular component
which captures the trend in inflation and the irregular component which captures the deviations of
inflation from its trend value. We start from a specification where components are driven by distur-
bances whose variance are constant over time. Thereafter, we consider specifications in which the
components are driven by disturbances whose variance evolves over time according to a stationary
stochastic volatility process.

We focus on quarterly inflation rates constructed from the seasonally adjusted consumer price
index, made available by Fred (Federal Reserve Economic Data). We denote the quarterly se-
ries by CPIt . The annualized quarterly inflation rate, denoted yt , t = 1, ...,T is computed as
yt = 400log(CPIt/CPIt−1). For the analysis we use data from 1952:q1-2013:q1. In the follow-
ing the most general specification of the unobserved component (UC) model is defined as

yt = αt + εt , εt ∼ N
(
0,σ2

ε

)
(3.1)

αt+1 = αt +ηt , ηt ∼ N
(
0,σ2

η

)
(3.2)

This model contains two parameters, θ =
(
σ2

ε ,σ
2
η

)′
and a vector of the unobserved states, (α1, ...,αT )

′
.

We let p
(
σ2

ε

)
∼ IG

(4
2 ,

0.02
2

)
and p

(
σ2

η

)
∼ IG

(4
2 ,

0.02
2

)
. PMCMC implementation of this model fol-

lows the same procedure as in section 3.1. In this model it is important to make sure that θ ≥ 0.
Implementation of this restriction in Ox is nothing more than using the while() condition. This
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routine is presented in Table 4.
We also provide extensions of (3.1) and (3.2) by incorporating stochastic volatility effects in σ2

ε

or both in σ2
ε and σ2

η . First, let h1t = logσ2
εt where

h1t+1 = µ1 +φ1 (h1t−µ1)+σ1η1t , η1t ∼ N (0,1)

Hence, in this case we add a second unobserved state which describes the evolution of the log-
volatility to the irregular component of inflation. We shall refer to this model as UC-SVm. Finally,
we add a third unobserved state which describes the log-volatility of αt . Henceforth, we refer to
this model as UC-SV4.

UC-SVm and UC-SV both have a special structure. For instance, for the UC-SV model, condi-
tional on hkt , k = 1,2 the remaining model is a linear Gaussian state space model where (α1, ...,αT )

′

can be integrated out analytically using the Kalman filter. This is known as Rao-Blackwellization
in the literature because it is an implication of the Rao-Blackwell Theorem, see Robert and Casella
(2004). When this is possible, the state vectors can be separated. Particles are only simulated for
h( j)

kt k = 1,2 and conditional on these we can integrate αt , t = 1, ...,T out analytically using the
prediction and updating steps of the Kalman filter.

In the PMCMC procedure we modify the particle filter using the approach of Creal (2012). In
the following we provide the steps of the modified particle filter for the UC-SV model.

1. For t = 1, draw α
(1)
1 , ...,α

(M)
1 , P(1)

1 , ...,P(M)
1 where Pt is the covariance of αt and it is obtained

from the Kalman filter, see Kim and Nelson (1999). Draw h(1)k1 , ...,h
(M)
k1 for k = 1,2 and set

τ
(1)
1 , ...,τ

(M)
1 = 1/M.

2. for t = 2, ...,T use the prediction step of the Kalman filter and obtain prediction errors and

variances,
{

v( j)
t , f ( j)

t

}M

j=1
.

3. Compute τ
( j)
t ∼ N

(
v( j)

t , f ( j)
t

)
and normalize w( j)

t = τ
( j)
t /ΣM

k=1τ
(k)
t .

4. Resample M particles with probabilities w(1)
t , ...,w(M)

t using the “Resampling step” and set
w( j)

t = 1/M.

5. Draw h(1)kt , ...,h
(M)
kt , k = 1,2 and run the updating step of the Kalman filter on each of these

particles to obtain
{

α
( j)
t ,P( j)

t

}M

j=1
.

Finally, we compare the performance of UC, UC-SVm and UC-SV using the marginal likelihoods.
The implementation of G-D for the UC model is provided in Table 5. Notice that calculating the

4The specification of the stochastic volatility processes differs only slightly from Stock and Watson (2007) who
assume a random walk process for the log-variances, hkt , k = 1,2. Here, we follow Grassi and Proietti (2010).
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marginal likelihood of UC-SVm or UC-SV is very straightforward. Results, reported in Table 6,
point out that with regards to ML the UC-SV model performs best.

The filtered estimate of (α1, ...,αT )
′
and the filtered estimates of the volatilities are all available

from the particle filter. They are pictured in Figure 2 together with yt . These estimates confirm
largely the results of Stock and Watson (2007) and Grassi and Proietti (2010). The volatility of
the irregular component, exp(h1t/2) increases during the high periods of inflation in the 1970s,
while the volatility of the regular component, exp(h2t/2) is relatively more stable. Specifically,
exp(h2t/2) has been decreasing substantially after 1982. The decrease in exp(hkt/2), k = 1,2
since the early 1980s and throughout the 1990s has been documented in a range of studies and it is
often labeled “The Great Moderation”. Finally, exp(h1t/2) shows that the increase in volatility of
the inflation rate during the last recession is mainly concentrated in the irregular component.

3.3 Long memory with stochastic volatility

In this section we model changing time series characteristics of monthly US core inflation rate by
considering a heteroskedastic ARFIMA model similar to Bos et al. (2012). The heteroskedasticity
is specified by a Gaussian SV process, see section 2.

The ARFIMA(0,d,0) model for a time series, yt with time-varying volatility, σεt , t = 1, ...,T is
given by

(1−L)d (yt− τ) = σεtεt , εt ∼ N (0,1) (3.3)

The fractional difference operator (1−L)d with d ∈ R is given by

(1−L)d =
∞

∑
j=0

(
d

j

)
(−L) j

Here, we assume that 0 < d < 0.5 and specify σεt = exp(αt/2) where αt evolves according to
(2.2). We let θ =

(
τ,d,µ,φ ,σ2)′ and proceed in a very similar fashion as in section 3.1. For the

priors of τ and d we specify p(τ)∼ N (0,1) and p(d)∼ N (0,1) truncated such that 0 < d < 0.5.
We simulate a data set of T = 1000 observations. We set τ = 0.7, d = 0.35, µ = 1.2, φ = 0.97

and σ2 = 0.05. We first generate the volatility sequence according to (2.2) with α1∼N
(
µ,σ2/

(
1−φ 2)).

Thereafter, we use exp(αt/2)εt and generate yt through ARFIMA dynamics using d and τ . We
estimate (3.3) using PMCMC and compare the estimates with the true parameters. For compari-
son, we also estimate a plain ARFIMA model using Gibbs sampling. Results are summarized in
Table 7. Overall, PMCMC works very well as parameter estimates are close to their respective true
values.
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We then apply our model to a monthly time series of inflation, using the core consumer price
index (CPILFESL) downloaded from FRED’ s database. This series excludes the direct effects of
price changes for food and energy and it is seasonally adjusted. We denote the price index by Pt .
From this price index series, we construct the monthly US core inflation as yt = 100log(Pt/Pt−1).
It can be interpreted as the percentage price change per month. Our series starts in 1960:1 and runs
until 2013:4, for a total of 639 months.

We estimate (3.3) along with an ARFIMA(1,d,0)-SV model. We also estimate an ARFIMA(1,d,1)-

SV model (not reported) but do not find the MA coefficient to be significantly different from zero.
For further comparison we also estimate a homoscedastic ARFIMA(0,d,0) model using Gibbs sam-
pling. Results are summarized in Table 8. For ARFIMA(0,d,0)-SV the order of integration, d, is
estimated at 0.35 and significantly different from 0. This implies that US core inflation exhibits
long memory behavior. The average inflation rate, τ is estimated at 0.13% per month. When we
estimate an additional parameter, namely, ρ in the ARFIMA(1,d,0)-SV model we find that d in-
creases from 0.35 to 0.46. At the same time the AR coefficient, ρ is estimated at −0.28 and is
significantly different from zero. The stochastic volatility component itself is nearly nonstationary
as the autoregressive coefficient of volatility, φ , is close to one and the conditional volatility of
volatility, σ is well-identified and estimated at 0.14. The average volatility, exp(µ/2) is at 0.18%
per month for both models

The marginal likelihood criterion shows that there is strong evidence in favor of ARFIMA-
SV specifications. The 2logBF in favor of ARFIMA(0,d,0)-SV compared to ARFIMA(0,d,0) is
212.12. We note further improvements in terms of ML for the ARFIMA(1,d,0)-SV model. We plot
the inflation rate along with the filtered estimates of exp(αt/2) for ARFIMA(1,d,0)-SV in Figure 3.
The volatility decrease in the early 1980s is noticeable and persistent. As stated in section 3.2, this
period is labeled as the Great Moderation. We report the Markov chain output for d | YT and ρ | YT

along with the evolution of ACFs for these parameters in the bottom rows of Figure 3. Clearly, the
Markov chain mixes well with relatively fast decaying autocorrelation functions.

We also perform a recursive out-of-sample forecasting exercise to evaluate the performance
of ARFIMA-SV models. For each model in Table 9 we produce h-month-ahead point forecasts
with h = 1, h = 4 and h = 8 using a rolling window with a width of 200 months. We choose
the out-of-sample period from 1976:9 to the end of the sample for a total of 439 observations.
Specifically, given Yt , t ≥ 200 we implement our sampling scheme, obtain posteriors draws of θ

and compute E [yt+h | Yt ] using at each step h = 2, ... previously obtained forecasts until h-1. As
a new observation enters the information set, the posterior is updated through a new round of
sampling and the forecasting procedure is implemented.

Table 9 reports mean absolute error (MAE) and root mean squared error (RMSE) for the
predictive mean. The ARFIMA-SV models are estimated using PMCMC while AR(1), AR(4),
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ARMA(1,1), ARFIMA(0,d,0) and ARFIMA(1,d,0) are estimated using Gibbs sampling.
Overall, we find that ARFIMA(1,d,0)-SV performs very well against the other models. It is

the top performer for h = 4, h = 8 in terms of MAE and RMSE. For instance, the RMSE of the
ARFIMA(1,d,0)-SV model is 10% lower than the RMSE of the AR(1) model for h = 1, 23% for
h = 4 and 27% for h = 8. ARFIMA(1,d,0)-SV also offers improvements in terms of out-of-sample
point forecasts compared to ARFIMA(1,d,0). However, these improvements are relatively modest.

In order to perform a joint evaluation of the forecasts and find out if ARFIMA-SV models
generate significant improvements in terms of forecasting the methodology of Hansen et al. (2011),
termed the Model Confidence Set (MCS) is applied. The appealing feature of the MCS approach
is that it allows for a user-defined criterion of “best” and does not require a benchmark model for
comparison. Overall, we see that ARFIMA-SV specifications perform very well compared to their
homoscedastic counterparts and the AR models. Both models belong to the 5% MCS for h = 1
while ARFIMA(1,d,0)-SV is the only model that belongs to the 5% MCS for h = 4 and h = 8, i.e.
ARFIMA(1,d,0)-SV performs significantly better than all the other models.

Finally, in order to get a better understanding of changes in the dynamics of US inflation we
follow Bos et al. (2012) and perform a sensitivity analysis using rolling estimates (with a width of
200 months) of the parameters for the ARFIMA(1,d,0)-SV model. We show recursive estimates
of τ , d, ρ and the unconditional volatility of volatility of inflation,

√
σ2/1−φ 2 along with their

respective one-standard-error credibility intervals in Figure 4. The values for 1960:1 correspond to
the estimation period 1960:1-1976:8.

Panel (a) shows a clear structural break in τ . Recursive estimates of τ fluctuate around 0.35 and
0.4 until the early 1980s and thereafter drop to about 0.25 fluctuating around this value till the end
of the sample. More importantly, post-break estimates of τ are relatively more stable confirming
a certain degree of success in achieving long run inflation stability since the Great Moderation.
Recursive estimates of d in panel (b) show that d gradually drops from 0.45 at the start of the
sample to about 0.3 towards the end of the sample. The estimate of d is 0.31 for the last subsample
which runs from 1996:9 to 2013:4. It is cautiously evident that long memory characteristics of
inflation might not have remained significant after the Great Moderation as evidenced by a smaller
d. On the other hand, ρ increases from −0.4 to −0.1 and then subsequently falls back to around
−0.3 after the Great Moderation until around 1995. Finally, we find a significant one time drop in√

σ2/1−φ 2 in the beginning of the 1980s confirming the effects of the Great Moderation also in
the unconditional volatility of volatility of inflation.
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4 Conclusion

In this paper we present algorithms and implementations for analyzing different data sets using Ox
in combination with PMCMC techniques. We provide some short Ox programs that show how to
implement the main part of PMCMC. These programs can easily be extended to different models.

In section 3 we provide several empirical examples. We show how to estimate stochastic volatil-
ity models with different specifications. Thereafter, we focus on estimating the unobserved com-
ponents model with time-varying volatility for US inflation data using PMCMC. Results using
quarterly inflation data show that extending the unobserved components model towards a model
with time-varying volatility both in the irregular and regular component of inflation provides im-
provements in terms of the marginal likelihood. Finally, we estimate two heteroskedastic ARFIMA
models where heteroskedasticity is specified by a Gaussian SV process. We apply these mod-
els to the monthly US core inflation data from 1960:1 to 2013:4. We find that US core inflation
exhibits long memory behavior. Comparing the ARFIMA-SV models with their homoscedastic
counterparts using the marginal likelihood criterion shows that there is strong evidence in favor of
the ARFIMA-SV models. Sensitivity analysis using rolling estimates of the parameters provides
a clear distinction between parameter changes in the level, long run dynamics and changes in the
unconditional volatility of volatility of inflation.
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A Appendix

In this appendix we present simulation results for SV-MA(1) and SVM. We simulate T = 1000
observations from these models and report the true DGP parameters along with PMCMC parameter
estimates in Table 10. In each case we also estimate a plain SV model for comparison. Overall, we
see that PMCMC works very well as parameter estimates are close to their respective true values.
Not surprisingly, in each case the corresponding model outperforms the plain SV model in terms
of ML.

Finally, we analyze the performance of PMCMC with respect to the number of particles, M.
We do this by estimating SV-MA(1) using M = 1, M = 10, M = 100 and M = 1000. In all of these
cases we choose N = 20000. From the columns of Figure 5 we see that using very low values of
M appears to be insufficient. For instance, for M = 1 the chain gets stuck on a specific parameter
value almost throughout the sample. For M = 100 we get better results but we still see that the chain
gets stuck for a considerable time. However, we see drastic improvements in the performance of
the algorithm for M = 1000. We also run the PMCMC algorithm for M = 2000 and get almost
identical results.
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Table 1: The particle filter in Ox

funcParticleFilter(const vhpf, const vESS, const vlogpdf, const vparam,

const vy, const iN)

{

...

vw=ones(iN,1)*(1/iN);

vlogpdf[0][0]=0; // No likelihood contribution

[vh]=funcInParticles(vparam,iN); // Initial particles

for(i=1; i<it; i++)

{

vA=funcResample(vw',iN); // Resample

vh=funcDrawP(vh[vA'],vparam,vy[i][0],iN); // Draw from q()

vE=vy[i]./(exp(0.5*vh));

vtau=exp(-0.5.*vh).*densn(vE); // Compute likelihood

vlogpdf[0][i][0]=log(meanc(vtau)); // Take logs

vw=vtau./sumc(vtau); // Normalize

if (ismissing(vw)) // Reset weights if missing

vw=ones(iN,1)/iN;

vhpf[0][i][0]=sumc(vw.*vh); // Store mean

vESS[0][i][0]=1/sumc(vw.^2); // Store ESS

if(vESS[0][i][0]<0.5*iN)

{

// If vESS[0][i][0]<0.5*iN resample

vA=funcResample(vw',iN);

vh=funcDrawP(vh[vA'],vparam,vy[i][0],iN);

vw=ones(iN,1)*(1/iN);

}

}

return 1;

}
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Table 2: PMCMC scheme in Ox

funcMetropolisHastings(const mprior, const vy, const vparamo, const

vparamq,

const mcov, const dlogpdfo, const iN, const idumth)

{

...

[vparamp]=funcDrawparam(vparamq,mcov,idumth);

// Draw the candidate, vparamp

[dnum,dden,dlogpdfp]=

funcPosterior(vparamp,vparamo,dlogpdfo,vy,mcov,mprior,iN);

idum=0;

vparamnew=vparamo; // vparamo is the old value

dlogpdfnew=dlogpdfo;

// Prepare these quantities

// Set the new parameters equal to the old

// If dalpha>du they will be replaced

dalpha=min(1,exp(dnum-dden)); // Calculate aMH

du=ranu(1,1); // Draw a random uniform number

if (dalpha>du) // accept

{

vparamnew=vparamp;

dlogpdfnew=dlogpdfp;

idum=1; // Count that the draw was accepted

}

return {vparamnew,dlogpdfnew,idum};

}
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Table 4: Drawing θ (i) in the UC model

funcDrawparam(const vparamo, const vtune)

{

...

vparamp=zeros(sizer(vparamo),1);

// Declare this vector for storage

// We use the while command to make sure

// that the variances are positive

while (vparamp[0][0]<=0 || vparamp[1][0]<=0)

{

// vparamo is the parameters at the old state

vparamp[0][0]=vparamo[0][0]+sqrt(vtune[0][0])*rann(1,1);

vparamp[1][0]=vparamo[1][0]+sqrt(vtune[1][0])*rann(1,1);

}

return vparamp;

}
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Table 5: Marginal likelihood computation using Gelfand-Dey method in Ox

funcGD(const mtheta, const mprior, const vlogpdf, const isim, const dalpha)

{

...

// mtheta is isimx2 vector of parameters

// Make the loop in order to evaluate the pdf

mpdf=zeros(isim,sizec(mtheta));

for (j=0; j<isim; j++)

{

// Compute pdf at each draw

mpdf[j][0]=funcIGpdfx(mtheta[j][0],mprior[0][0],mprior[0][1]);

mpdf[j][1]=funcIGpdfx(mtheta[j][1],mprior[1][0],mprior[1][1]);

}

// Calculate mean and variance of the draws

vmean=meanc(mtheta); mcov=variance(mtheta);

vtrunc=zeros(isim,1);

// Calculate g

vf=zeros(isim,1);

for (i=0; i<isim; i++)

{

// funcMVNpdfx is multivariate Normal

density (already in log)

vtrunc[i][0]=

(mtheta[i][]-vmean)*invert(mcov)*

(mtheta[i][]-vmean)';

vf[i][0]=funcMVNpdfx(mtheta[i][],vmean,mcov)-log(dalpha);

}

dcritical=quanchi(dalpha,sizec(mtheta));

vtrunci=vtrunc>dcritical;

// Set this to basically zero if we

// extend the truncation limit

// i.e discard these draws

vf[vtrunci][]=-.Inf;

vlogGD=vf-sumr(mpdf)-vlogpdf;

dconstant=max(vlogGD);

// Calculate marginal likelihood

dml=-dconstant-log(meanc(exp(vlogGD-dconstant)));

return dml;

}
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Table 6: Estimation results of unobserved component (UC) models

UC UC-SVm UC-SV
Parameter θ̄ RB θ̄ RB θ̄ RB

µ1 0.0602 4.08 -0.0764 8.47
[-0.4104, 0.5197] [-0.3733,0.2223]

µ2 -0.5886 4.95
[-0.9465,-0.2391]

φ1 0.9456 4.54 0.9541 7.84
[0.9067,0.9792] [0.9278,0.9779]

φ2 0.9815 7.21
[0.9676,0.9938]

σ2
1 3.2280 5.09 0.1153 3.93 0.0844 8.97

[2.9026,3.5680] [0.0408,0.2215] [0.0383,0.1406]
σ2

2 2.0021 4.57 0.5090 3.59 0.0141 7.75
[1.2772,2.7866] [0.3449,0.6826] [0.0051,0.0255]

log(L) -592.28 -469.35 -465.07
log(ML), a = 0.75 -638.30 -497.77 -484.86
log(ML), a = 0.99 -638.03 -497.50 -484.58

M-H ratio 0.42 0.48 0.40

This table reports estimation results for different UC models. log(L): loglikelihood, log(ML): log-
marginal likelihood for the corresponding value of a. M-H ratio: Metropolis-Hastings acceptance
ratio.

25



Table 7: Simulation evidence, ARFIMA-SV

ARFIMA(0,d,0)-SV ARFIMA(0,d,0)
Parameter true θ̄ RB θ̄ RB

τ 0.70 0.5783 6.19 2.0887 7.45
[0.0270,1.1633]

d 0.35 0.3301 5.36 0.3406 6.37
[0.2970,0.3623]

µ 1.20 1.4317 5.37
[1.1736,1.6831]

φ 0.97 0.9666 4.67
[0.9551,0.9781]

σ2 0.05 0.0523 5.26 6.0434 1.02
[0.0361 ,0.0699]

log(L) -2203.3 -2321.9
log(ML), a = 0.75 -2221.4 -2353.4
log(ML), a = 0.99 -2221.1 -2354.1

M-H ratio 0.38

This table reports estimation results for different ARFIMA(0,d,0) models using simulated data.
log(L): loglikelihood, log(ML): log-marginal likelihood for the corresponding value of a. M-H
ratio: Metropolis-Hastings acceptance ratio.
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Table 8: Estimation results, ARFIMA-SV and ARFIMA

ARFIMA(0,d,0)-SV ARFIMA(1,d,0)-SV ARFIMA(0,d,0)
Parameter θ̄ RB θ̄ RB θ̄ RB

τ 0.1331 5.42 0.1086 5.80 0.2657 6.69
[0.0763,0.1886] [0.0324,0.1827] [0.1261,0.4009]

d 0.3509 6.22 0.4609 8.06 0.3968 4.44
[0.3206,0.3829] [0.4281,0.4926] [0.3491,0.4453]

ρ -0.2835 6.75
[-0.3335,-0.2328]

µ -3.5845 5.38 -3.4799 6.46
[-4.0077,-3.1675] [-3.9046,-3.0321]

φ 0.9871 5.74 0.9870 7.04
[0.9828,0.9898] [0.9831,0.9897]

σ2 0.0175 5.78 0.0191 6.61 0.0293 1.02
[0.0108,0.0249] [0.0124,0.0267] [0.0263,0.0326]

log(L) 337.77 353.37 218.70
log(ML), a = 0.75 315.00 327.08 209.25
log(ML), a = 0.99 315.28 327.36 209.22

M-H ratio 0.39 0.39

This table reports estimation results for different ARFIMA(p,d,q) models using US core inflation
rate data. log(L): loglikelihood, log(ML): log-marginal likelihood for the corresponding value of
a. M-H ratio: Metropolis-Hastings acceptance ratio.

Table 9: Out-of-sample forecast results, yt+h

MAE RMSE
Model h = 1 h = 4 h = 8 h = 1 h = 4 h = 8
AR(1) 0.1173 0.1633 0.1786 0.1656 0.2187 0.2350
AR(4) 0.1075 0.1296 0.1423 0.1552(∗) 0.1851 0.1889

ARMA(1,1) 0.1026 0.1185 0.1291 0.1500(∗) 0.1751 0.1771
ARFIMA(0,d,0) 0.1010(∗) 0.1167 0.1257 0.1480(∗) 0.1717 0.1787
ARFIMA(1,d,0) 0.1028 0.1154 0.1255 0.1491(∗) 0.1697 0.1766

ARFIMA(0,d,0)-SV 0.1002(∗) 0.1139 0.1205 0.1474(∗) 0.1695 0.1753
ARFIMA(1,d,0)-SV 0.1011(∗) 0.1105(∗) 0.1164(∗) 0.1479(∗) 0.1665(∗) 0.1707(∗)

This table reports out-of-sample mean absolute error (MAE) and root mean squared error (RMSE)
for the predictive mean. The out-of-sample period is from 1976:9 to the end of the sample. An
asterisk, (∗) signifies that the model belongs to the 5% MCS of Hansen et al. (2011).
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Figure 1: Estimation results, SVL model on OMXC20 daily returns
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Markov chains, histograms and autocorrelation functions for the parameters of the Gaussian SVL
model. Notice that the first 10000 iterations are considered as the burn-in period and therefore are
discarded. Note: for graphical output, the professional version of Ox is needed. Alternatively, the
updated GnuDraw package of Bos (2013) can be used.
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Figure 2: Estimation results, UC-SV
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Top panels: inflation, filtered estimates of the trend inflation and the1st difference of inflation.
Bottom panels: volatility of the irregular and regular component of inflation.
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Figure 3: Estimation results, ARFIMA(1,d,0)-SV
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Top panels: inflation and filtered estimates of volatility of the inflation rate. Bottom panels: Markov
chain and autocorrelation functions (after burn-in) of d and ρ .

31



Figure 4: Rolling window parameter estimates, ARFIMA(1,d,0)-SV
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Panel (a): τ , (b): d, (c): ρ and (d): unconditional volatility of volatility of inflation. Window width:
200 months. First period: 1960:1-1976:8, last period 1996:9 to 2013:4. The solid lines represent
parameter estimates and the dashed lines denote the one-standard-error credibility intervals.
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Figure 5: Estimation results, SV-MA(1) model
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Each column shows posterior draws of the parameter of interest for different number of particles,
M.
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