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Abstract

In the framework Hotelling-Downs competition two players can
freely choose a position along a one-dimensional market. We intro-
duce restrictions of feasible strategies and analyze the consequences for
players and consumers. In equilibrium players may minimally differ-
entiate away from the center of the market and even locate completely
independently of consumers’ preferences. We provide conditions for
these novel cases as well as for the standard result that players locate
on the median of the distribution of consumers. In addition to the
short run, where restrictions are fixed, we elaborate on the long run
by studying the players’ choice of restrictions under (potential) mar-
ket entry. In both settings, we find an inefficient outcome, in which a
firm is capable of offering a product at the center of the market, but
instead chooses a position that is worse for most of the consumers.
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1 Introduction

The design of new products is a key task for companies in virtually any
industry. As an example, consider Samsung’s tablet device called ‘Galaxy’
which is characterized by a certain size, shape, price, and functionality. The
ongoing ‘patent war’ between Samsung and Apple (see Cusumano, 2013)
illustrates that the choice of these product specifications cannot be seen in-
dependently of Samsung’s technological capabilities, which are further re-
stricted by several patents on the competitor product ‘iPad’. Generally,
product specification choices have to account for technological abilities and
constraints as well as for the competitor’s products and the preferences of
the consumers. While economic models of product differentiation incorpo-
rate heterogeneous consumer preferences and strategic behavior in the face of
competition, they usually abstract from the technological constraints. Con-
sequently, these models focus on the effects of reducing price competition
by increasing differentiation and on the effects of ‘stealing’ consumers of the
competitor by decreasing differentiation, but they conceal that restrictions
of the company’s and competitor’s abilities affect strategic product position-
ing. This is unsatisfying – not only because empirical evidence documents
that strategy restrictions are present when choosing a product position, but
because firms’ behavior and consumers’ surplus are substantially affected by
strategy restrictions, as it turns out.

In particular, when standard models predict that two firms choose simi-
lar product specifications (minimal differentiation), then the chosen position
must be at the median of the distribution of consumers, which is interpreted
as the center of the market or ‘where the demand is’. In this note, we
introduce restrictions of feasible positions and observe that under various
conditions, this conclusion does not hold true anymore. Specifically, we find
equilibria where the center of the market would be a feasible product posi-
tion for a company, but this company does not have an incentive to locate
there, due to strategy restrictions of its main competitor. This suggests that
the standardization of products, e.g. the similarity of Samsung’s and Apple’s
tablets, does not inevitably result from consumers’ tastes, but could also re-
flect a technological constraint of one of the two companies. In that case,
strategy restrictions do not contribute to an increase in product variety and
social welfare is even lower than predicted by the standard analysis.

It is empirically well-justified to consider strategy restrictions because
they seem ubiquitous in applications of horizontal differentiation. Restric-
tions have several sources and take many forms. In addition to technological
constraints and the legal environment (e.g. patents, regulations), overrid-
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ing corporate strategies can reduce the set of feasible product positions for
a company. Specific examples for spatial restrictions in the literal sense are
territorial restrictions in distribution, such as in the case of franchising (Stern
et al., 1976), and zoning restrictions imposed by a government (Datta and
Sudhir, 2013). In the application of flight scheduling in the airline market
(e.g. Panzar, 1979; Schipper et al., 2007) strategies are restricted, e.g. by lo-
cal bans on nighttime flying. Moreover, there are generally constraints based
on the brand perception of consumers, such that due to observable character-
istics (e.g. the company’s home country), perceived technical expertise and
previous (marketing) activities, certain product positions cannot credibly be
chosen by a company (Hauser, 1988).

Models of spatial competition commonly abstract from the fact that in
the short term the set of feasible product positions is restricted. However,
one approach to incorporate strategy restrictions is given by the framework of
Prescott and Visscher (1977), which was further developed by Loertscher and
Muehlheusser (2011). In this dynamic model players sequentially choose po-
sitions and are then fully restricted from relocating. More explicit accounts
for restrictions of strategies are the works of Samuelson (1984), Hummel
(2010), and Hauser (1988). Samuelson (1984) analyzes a multidimensional
model of probabilistic voting and incorporates restricted strategies in the
following way: Each candidate is endowed with an initial position and her
choice of strategy is restricted within some convex compact set around this
endowment. In the context of brand positions Hauser (1988) introduces a re-
striction on feasible positions by assuming that given positions cannot change
their relative order. A similar assumption is made by Hummel (2010) in the
context of political candidates since his model restricts political candidates
from moving more than halfway into the direction of the opponent. This is
motivated by the idea that a change in political position from a primary to a
general election, so-called ‘flip-flopping’, undermines a candidate’s credibility.
Within the context of political competition there are additional approaches
to incorporate restrictions of positions (see Samuelson, 1984, and the refer-
ences therein). Even though these works use the important idea of strategy
restrictions, they do not systematically discuss their effect on equilibrium
locations and they focus on the application to political competition, but not
to product differentiation.

In this note we address this gap in the literature by using the most basic
model: Two players simultaneously choose a position on a line, while for
each of them only some interval of positions is feasible. We thereby follow
Samuelson’s (1984) approach of how to restrict strategies. We use this sim-
ple yet powerful model as a benchmark to make the arguments clear. Our
analysis of the model addresses the following research questions: How do
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strategy restrictions affect product positions of the firms (i.e. equilibrium lo-
cations)? What are the welfare implications of strategy restrictions? What
is the optimal choice of restrictions for an incumbent firm, if there are po-
tential entrants? We find that in the equilibrium analysis there are three
cases to distinguish. In one case we obtain the standard result that both
players locate on the median. In the second case the analysis resembles
Bertrand competition, where instead of price undercutting, there is virtually
an undercutting in the product position.1 In the final case players minimally
differentiate on the boundaries of their restrictions independently of the lo-
cation of the median. This independence means that consumers’ preferences
do not influence players’ decisions in any way. While equilibrium positions
in each case can be characterized by some form of minimal differentiation,
consumers’ preferences only play a vital role in the first case. Thus, our
results differ from previous findings in that preferences of consumers do not
matter to the same extent as in the standard model.

Since strategy restrictions are only exogenous in the short term, we also
elaborate on the choice of restrictions. In a simple market entry game, we
find two types of equilibria in both of which the incumbent firm chooses
an optimal level of flexibility at the center of the market, i.e. around the
median. The threat of copying the entrant’s product position is credible and
thus either fully deters entry or leaves only niche positions to a potential
entrant. In case of market entry, the median position is feasible for the
incumbent, but would not be chosen, as it happens in the static (short-term)
game. To our best knowledge, this outcome, two firms locating next to each
other but not at the center of the market, is new to the literature. We assess
welfare by aggregated transportation costs and show that this novel case is
highly inefficient. Transportation costs are even larger than in the classic
case of minimal differentiation.

This note contributes to the existing literature in several ways. First, we
close a gap in the literature on spatial competition by providing conditions
when and how strategy restrictions affect equilibrium outcomes. Already 30
years ago, Larry Samuelson pointed to this gap by noting that “the common
assumption that candidates choose freely from the entire strategy space is an
unrealistic one” (cf. Samuelson 1984, who gives credit to two articles which,
however, do not make this statement as explicitly). However, to our knowl-
edge, the effect of strategy restrictions on equilibrium locations has still not
been systematically discussed. Second, we demonstrate the significance of
restrictions of feasible strategies for horizontal product differentiation. We

1In our model we abstract from price competition. If we include price competition in
the standard way, then we would receive a trivial form of maximal differentiation.
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show that under restrictions qualitatively different strategies become preva-
lent, where not the consumer, but the competitor is the first interest. As
a result, restrictions are an essential factor for market outcomes. Third, we
derive implications for consumers and a social planner by assessing social
welfare. For instance, our results imply that if a social planner were in the
position to impose restrictions on one company, e.g. in order to increase prod-
uct variety in the market, it should only do so if it can impose restrictions
on the other company as well.

The Hotelling-Downs model of spatial competition is a widely used tool in
the analysis of product differentiation and of political competition. Consider-
ing the vast amount of literature dealing with this approach, it is remarkable
that the idea of restricting the companies’ strategies plays hardly any role.
Models of spatial competition can be organized into location-cum-prices mod-
els which study a game of spatial competition before price competition (e.g.
Hotelling, 1929; d’Aspremont et al., 1979; de Palma, 1985; Meagher and Za-
uner, 2004; Król, 2012) and purely spatial models (e.g. Downs, 1957b; Eaton
and Lipsey, 1975; Prescott and Visscher, 1977; Loertscher and Muehlheusser,
2011) which abstract from endogenous price setting. A well-known result for
location-cum-prices models is that firms maximally differentiate in a one-
dimensional market, which holds for a uniform distribution of consumers
with quadratic transportation costs (d’Aspremont et al., 1979) and for some
generalizations of quadratic transportation costs (Economides, 1986). In a
multidimensional market, the same specification leads to maximal differen-
tiation with respect to one dimension and to minimal differentiation with
respect to all others (Irmen and Thisse, 1998). Moreover, using an evolu-
tionary approach Hehenkamp and Wambach (2010) show that minimal dif-
ferentiation with respect to all dimensions emerges in this setting. A caveat of
location-cum-prices models is that they have to ensure existence of equilibria
by assuming very simple distributions of consumers and specific functional
forms.

This is not true to the same extent for pure spatial models. Pure spa-
tial models are not only sensible in regulated markets where prices are fixed,
but also apply to markets in which prices are not a dominant marketing in-
strument, such as a newspaper market (George and Waldfogel, 2006). Pure
spatial models typically find minimal differentiation under general conditions
(Downs, 1957b; Eaton and Lipsey, 1975), but not when an endogenous num-
ber of players sequentially chooses a position (Prescott and Visscher, 1977;
Loertscher and Muehlheusser, 2011). In fact, the latter approach can be con-
sidered as an alternative way to introduce strategy restrictions because in
this dynamic game firms once choose locations which are fixed thereafter. A
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main feature of this model is that firms agglomerate in densely populated ar-
eas (Loertscher and Muehlheusser, 2011), which is similar to locating ‘where
the demand is’. Further recent literature on product differentiation has fo-
cused on tying (Amelio and Jullien, 2012; Egli, 2007; Gilbert and Riordan,
2007) and on empirical evidence on minimal versus maximal differentiation
(Barreda-Tarrazona et al., 2011; Picone et al., 2009).

Introducing strategy restriction typically does not qualitatively affect
maximal differentiation results. For example, in the most common location-
cum-price model (d’Aspremont et al., 1979), it is easy to show that firms
would choose the furthest feasible positions from each other. Minimal differ-
entiation results, on the other hand, have to be carefully reconsidered, as we
will show.

Our model of spatial competition with restricted strategies does not only
apply to companies in a market but also to parties in a political competition.
We do consider this application, although the terminology and arguments in
the note are adapted to firms and consumers.

2 A Model with Restricted Strategies

We define a game between two players L and R, who compete in a one-
dimensional market. The players simultaneously choose a product position
in order to maximize their payoff.

There is a continuum of positions X = [0, 1]. Positions are ordered by
the relation ≤ such that we can refer to distances (|x − y|), being closer
(|x − y| < |x − z|) or being in between (x < y < z). A product position is
interpreted as the mixture of all the criteria a consumer takes into account
when deciding which product to buy.2 We consider a unit mass of consumers
who are distributed on X according to the cumulative distribution function
F : X → R+ with full support in the corresponding density function: f(x) >
0 for any x ∈ X. Let q := F−1(1

2
) ∈ X be the median of the distribution

which is also referred to as the ‘median consumer’ (Waldfogel, 2008, p. 568).3

If the distribution satisfies symmetry, i.e. F (x) = 1 − F (1 − x), then the
median is q = 1

2
.

Consumers are distinguished from firms, or players, whom we denote by L

2Product positions are basically a perception or as Desarbo and Rao (1986) put it:
“many combinations of product features and other marketing mix attributes may map
into a specific perceptual product position.”

3Depending on the application the much more common term ‘median voter’ can be
used synonymously.
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and R.4 Because of technological or other constraints, players’ strategies are
restricted in the sense of Samuelson (1984), i.e. a strategy (product position)
sP for P = L,R, cannot be chosen freely from all the product positions in X
but only from some compact convex subset.

Assumption 1 We define the set of feasible product positions for each player
as an interval within X, i.e. a player P = L,R has the strategy set SP =
[sP , s̄P ].

Let S = SL × SR denote the strategy space and let s−P (S−P ) denote the
strategy (set) of the player that is not P . Without loss of generality we let
sL ≤ sR.

We assume that the firms’ costs are independent of the chosen product
position and normalized to zero. Moreover, we abstract from price competi-
tion because in it would lead to trivial results (under the standard set-up), as
discussed above.5 Thus, profit maximization in this model equals the max-
imization of market share. Consumers are assumed to buy one unit at the
firm that is closer to them. Let x̂ := sL+sR

2
be the position of an indifferent

consumer. Then the players’ payoffs for a strategy profile sL < sR are as
follows:

πL(s) = F (x̂),

πR(s) = 1− F (x̂)

and vice versa for sL > sR. For two equal positions sL = sR we assume that
the two firms split the market equally, i.e. πL(s) = πR(s) = 1

2
. We solve our

model with the standard notion of Nash equilibrium. In one case there will be
an open set problem very similar to Bertrand competition with constant but
unequal marginal costs.6 We tackle this issue by studying epsilon-equilibria
as done by Radner (1980) and Dixon (1987).7

Definition 1 (cf. Dixon, 1987) Let ε ≥ 0. s ∈ S is a ε-equilibrium if for
P = L,R, there does not exist a strategy s̃P ∈ SP such that

πP (s̃P , s−P )− πP (s) > ε. (1)

4As a convention we use the male form for consumers and the female form for players.
5Prices can be considered as exogenously fixed and equal.
6In Bertrand competition there does not exist a smallest price difference to undercut

an opponent. In our model there will not exist a smallest unit of product differentiation.
7Other ways to handle the open set issue would not lead to qualitatively different

results.
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s = s = q L R 

SL

Figure 1: In Case (I), i.e. q ∈ SL ∩ SR, both players choose the median as
their product position: sL = sR = q. This result equals the result of the
classic Hotelling-Downs model.

Clearly, for sufficiently large ε every strategy profile is an epsilon-equilibrium.
Thus, this notion is sensible for small epsilon only. In particular, for ε = 0 it
coincides with the notion of Nash equilibrium.

3 Equilibrium Positions

To analyze our model we distinguish between three cases, which are distinct
and exhaustive.

3.1 Case (I)

In Case (I) we analyze the model when the feasible strategies overlap and
the median is part of this intersection, i.e. q ∈ SL∩SR. An example for Case
(I) is SL = SR = X, the classic model of unrestricted strategies. The result
of Black (1948) on majority voting implies that the equilibrium outcome in
this location game is minimal differentiation on the median as illustrated in
Figure 1. Because this is an equilibrium in the classic model of unrestricted
strategies, it must also be an equilibrium in our model, since the set of
possible deviations has been reduced. Our first result establishes that there
are no additional equilibria.

Proposition 1 If q ∈ SL ∩ SR, the unique Nash-equilibrium is that both
players choose the median as their product position, i.e. sL = sR = q.

Proof. By the definition of the median q we have F (q) = 1 − F (q) = 1
2
.

Suppose s is such that no player chooses the median q. Let P be a player
with πP (s) ≤ π−P (s). Deviating to s̃P = q leads to a payoff of πP (q, s−P ) > 1

2

while πP (s) ≤ 1
2
. Suppose s is such that exactly one player, P , chooses the

median. Then π−P (s) < 1
2
, while πP (q, q) = 1

2
. Finally, for sL = sR = q any

deviation leads to a lower payoff.
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In Case (I) we get the classic outcome of minimal differentiation (on the
median), despite strategy restrictions. Minimal differentiation is known to be
inefficient since the work of Hotelling (1929). However, under the constraint
of minimal differentiation, i.e. if both have to locate on the same position,
locating on the median is constrained efficient: The median is the position
that minimizes the sum of distances to all consumers. In that sense the
median incorporates the preferences of the consumers. Comparative-static
changes in preferences or changes in the sample of consumers would affect
the location of the median and thus the product positions taken by players,
as long as the condition q ∈ SL ∩ SR still holds, i.e. as long as we are still in
Case (I).

3.2 Case (II)

In Case (II) we examine the situation where the feasible strategies SL and
SR overlap and the median is not part of the intersection, i.e. SL ∩ SR 6= ∅
and q 6∈ SL ∩ SR.

Definition 2 (More-Central Player) If there is a player who can choose
a product position which is strictly closer to the median, she is called the
more-central player (MC); her opponent is called the less-central player (LC).

In Case (II) we have to distinguish between two different subcases: In Sub-
case (II-a) a more-central player does not exist and in Subcase (II-b) a more-
central player exists. Subcase (II-a) occurs if the players’ feasible product
positions share a boundary and the median is beyond this boundary, e.g.
q < sL = sR. This case occurs when there is a technological or legal restric-
tion that hinders both companies from offering at the center of the market.
In Subcase (II-b) the median is not in the strategy set of the less-central
player, e.g. q < sLC , while it might, but need not, be in the strategy set
of the more-central player, i.e. sMC < sLC . A particular example for this
subcase is given if one player is unrestricted, i.e. SP = X, while the other
player is restricted such that she cannot choose the median q /∈ S−P .

Figure 2 illustrates the two subcases and the corresponding equilibrium
analysis. The strategic situation resembles Bertrand competition with con-
stant marginal costs. In the Bertrand model players can improve by under-
cutting the opponent’s prices for any price above the marginal costs; here
players can improve by locating closer to the median for any strategy away
from the restriction boundary. In the Bertrand model we have a unique
Nash equilibrium for equal marginal costs and only epsilon-equilibria under
unequal marginal costs. Here, we find a fully analogous result in Subcase
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s = s = y L R 

SL

q

Case (IIa)

s = y R 

SL

q

Case (IIb)

s = y -  L ε

Figure 2: (IIa) if a more-central player does not exist, i.e. none of the players
can choose a product position closer to the median than her opponent, both
players take the same product position on the edge of their restriction toward
the median. (IIb) if a more-central player exists (here: L), the less-central
player (here: R) locates on the edge of her restriction toward the median,
while the more-central player approaches this position from the side of the
median (here: from the left).

(IIa) and an analogous, but unique type of epsilon-equilibrium in Subcase
(IIb), as Proposition 2 shows.

Proposition 2 Suppose SL ∩ SR 6= ∅ and q 6∈ SL ∩ SR.

(i) If a more-central player does not exist, the unique Nash equilibrium
is such that both players take a product position on the edge of their
restriction toward the median, i.e. if q < sL = sR, then s = (sL, sR)
is the Nash equilibrium; if q > s̄L = s̄R, then s = (s̄L, s̄R) is the Nash
equilibrium.

(ii) If a more-central player exists, then for any ε > 0, there is an ε-
equilibrium such that the less-central player takes the product position
on the edge of her restriction in direction of the median and the more-
central player locates closely next to it in direction of the median, i.e.
if sMC < sLC and q < sLC, then sLC = sLC and sMC = sLC − ε; if
s̄P > s̄−P and q > s̄−P , then s−P = s̄−P and sP = s̄−P + ε, for some
ε > 0.

Proof. (i) Let y be the feasible position which is closest to the median.
No player can improve by relocating from sL = sR = y since relocation
has to be in the opposite direction of the median. Now let ŝ 6= s be a
strategy profile where not both players locate on y. Take a player P such
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that πP (ŝ) ≤ π−P (ŝ) and relocate her to s̃P = y. This is a strict improvement
(irrespective of whether the other player −P is also located on y).

(ii) Assume sL < sR and q < sR such that L is the more-central player.
Suppose L locates within the feasible set of R, i.e. sL ∈ SR. If πL(s) ≤ 1

2
,

L can improve by moving closer to the median; if πL(s) > 1
2
, R can improve

by choosing the same position as L. Thus, in equilibrium sL < sR. Suppose
sR 6= sR, then R can improve by moving to sR. Thus, in equilibrium sR = sR.
The maximal possible payoff for L is then bounded from above by F (sR).
Choosing sL = sR − ε leads to a payoff of F (sR − ε

2
). For small ε, any

difference ε between these payoffs can be undercut. Thus, (sR − ε, sR) is an
ε-equilibrium for sufficiently small ε. If s̄P > s̄−P and q > s̄−P , then the
proof is in full analogy to above.

In Subcase (IIa) both players locate as closely as possible to the median,
which is qualitatively similar to the standard result of Case (I). In Sub-
case (IIb) this only holds for the less-central player. For the more-central
player, however, it is possible that the median is a feasible product posi-
tion, but this central position will never be chosen. Instead, the more-central
player minimally differentiates to the opponent’s strategy restriction. The
practical implication of this scenario is that products are sold which do not
fit to the median consumer’s taste, although this would be a feasible position
for one of two firms. This is highly inefficient, as we will see in Subsection 3.4.

3.3 Case (III)

In Case (III) we examine the model with restricted strategies when the fea-
sible strategies do not overlap, i.e. SL ∩ SR = ∅.

Proposition 3 If SL ∩ SR = ∅, then sL = s̄L and sR = sR are strictly
dominant strategies.

Proof. For any strategy profile with sL < s̄L, changing to s̃L = s̄L is a
strict improvement because it shifts the indifferent consumer x̂ to the right.
Analogously, for player R.

Proposition 3 shows that in the unique Nash equilibrium both players lo-
cate at the edge of their strategy set in direction of the opponent as illustrated
in Figure 3. While the result is trivial, it has a remarkable implication.

Unlike Case (I) and Case (II), equilibrium positions in Case (III) do not
depend on the median. Even more generally, consumers preferences do not
at all affect the position of the players, as noted in Remark 1.

Remark 1 Equilibrium positions in Case (III) are independent of consumers’
preferences (represented by F or q).
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Figure 3: Equilibrium positions in Case (III), i.e. if SL ∩ SR = ∅. Both
players locate as closely as possible to the opponent’s strategy set. Equi-
librium strategies are independent of the position of the median q and thus
independent of consumers’ preferences.

Thus, companies might offer products which do not respect consumers’ needs.
For instance, it is possible, as in Case (II), that the median position is avail-
able for one of the two players (such as in Figure 3), but she does not choose
it.

3.4 Welfare Implications

In our model producers’ surplus is constant because firms play a zero-sum-
game for market share. Therefore, welfare effects can be discussed solely
on the basis of the consumers’ surplus. Welfare is now measured by the
total transportations costs TC(sL, sR), which is the sum of distances of each
consumer to a closest player.8 Formally, for sL ≤ sR,

TC(sL, sR) :=

∫ x̂

0

|sL − x|f(x)dx+

∫ 1

x̂

|sR − x|f(x)dx. (2)

To ease the exposition, let us assume that consumers are uniformly dis-
tributed, i.e. f(x) = 1 for all x. Then (2) simplifies to TC(sL, sR) =
3
4
(sL)2 + 3

4
(sR)2− 1

2
sLsR−sR+ 1

2
. The global optimum is attained for sL = 1

4

and sR = 3
4
, which yields TC(1

4
, 3

4
) = 1

8
. We will use this social optimum as

a benchmark to assess efficiency of the three cases. In particular, to quan-
tify inefficiency we report the so-called Price of Anarchy (henceforth: PoA),
which is attained by dividing the “worst” equilibrium, i.e. the equilibrium
strategy profile with maximal transportation costs, by the globally minimal

8In models where transportation costs are quadratic in distance it is common to use
the sum of squared distances (e.g. d’Aspremont et al., 1979; Meagher and Zauner, 2004;
Król, 2012). Since our model is more general in this respect, we use linear transportation
costs to measure efficiency. The choice of efficiency criterion, however, is not crucial for
our discussion.
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transportation costs (Koutsoupias and Papadimitriou, 2009).9

In Case (I) both players locate on the median q(= 1
2
). This yields total

transportation costs of TC(q, q) = 1
4

and, hence, a PoA of 2.
In Subcase (IIa) both players choose the same location, say y, which was

their common boundary in direction of the median. Since in Subcase (IIb)
players differentiate only by some ε, which is vanishingly small for a notion of
epsilon-equilibrium close to the notion of Nash equilibrium, we can approxi-
mate welfare properties of this subcase also by equal positions sL = sR = y.
In an extreme example strategies are restricted to be at an endpoint of the
line, e.g. SL = SR = {0}, which yields the globally maximal transportation
costs of 1

2
. More generally, transportation costs are U-shaped in the common

location y and the closer y to the median, the lower the transportation costs.
Thus, in Case (II) the transportation costs lie in the interval (1

4
, 1

2
], which

yields a PoA in the interval (2, 4]. The intervals are open on one side because
the median q cannot coincide with the common location y when we are in
Case (II).

The unique equilibrium in Case (III) is that players choose sL = s̄L

and sR = sR. By coincidence this choice may be socially optimal (which
happens when s̄L = 1

4
and sR = 3

4
), but there are also examples with an

almost maximal transportation costs, e.g. if SL = {0} and SR = {0.001}.
Therefore, in Case (III) the transportation costs lie in the interval [1

8
, 1

2
) with

a corresponding PoA in the interval [1, 4). If we focus, however, on situations
where the median is between the two strategy sets, i.e. s̄L < q < sR, e.g.
because the players’ restrictions are symmetric with respect to q = 1

2
, then

inefficiency is bounded. The worst case example is then SL = {0} and
SL = {1}, which yields transportation costs of 1

4
and a PoA of 2. Similarly,

if we suppose that the difference between the two strategy sets are at least
one third, i.e. sR − s̄L ≥ 1

3
, the same conclusion holds. Table 1 summarizes

the welfare properties of the three cases, where Case (III+) stands for Case
(III) under the qualification that at least one of these two properties, either
the median is between the restrictions or the restrictions differ by at least
one third, holds. We observe that the three cases can be ranked according
to the welfare they induce in equilibrium as follows:

Case (III+) � Case (I) � Case (II).

This holds with respect to the cardinal criterion of total transportation costs.
Considering the ordinal notion of Pareto efficiency, we come to a similar con-

9Likewise the Price of Stability refers to the “best” equilibrium in relation to the
social optimum. There is no need to use both measures in our model since we have
uniqueness of equilibria, up to small differences between a multitude of epsilon-equilibria
in Subcase (IIb).
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CASE Transportation Costs Price of Anarchy Market Share
Case (I) 1

4
2 50%

Case (IIa) (1
4
, 1

2
] (2, 4] 50%

Case (IIb) (1
4
, 1

2
] (2, 4] (50%− 100%)

Case (III) [1
8
, 1

2
) [1, 4) [50%− 100%)

Case (III+) [1
8
, 1

4
] [1, 2] [50%− 75%]

Table 1: Summary of welfare properties of equilibria for different cases under
the assumption of a uniform distribution of consumers. Market Share stands
for the equilibrium market share of the larger competitor, which measures
inequality between firms.

clusion. Equilibrium positions in Case (I) and Case (II) are not Pareto
efficient, because one of the two minimally differentiated players could be re-
located to shorten distances of some consumers without harming all others.
On the other hand, equilibrium positions in Case (III) are Pareto efficient.
We can summarize the welfare implications of strategy restrictions by com-
paring unrestricted strategies SP = X with restricted strategies SP ⊂ X.
Interestingly, unrestricted competition where all positions are feasible (which
is a special example of Case (I)) leads to a worse outcome than Case (III+)
that implies that restrictions are strong enough to exclude some positions
from the feasible set of both firms. Moreover, if only one player is restricted,
while the other can cover the entire spectrum (which is a special example
of Case (II)), the outcome is even worse. Thus, if a social planner were in
the position impose a restrictions of one firm, it should only do so if it can
impose a restriction on the other firm as well.

Let us finally discuss the consequences for firms. As mentioned above,
for firms there is no issue of inefficiency in our model, but we can discuss
their inequality. Market shares are equal in equilibrium in Case (I) and in
Subcase (IIa). In Subcase (IIb), the more-central player receives a larger
proportion of the consumers. Finally, in Case (III) L receives a higher payoff
if and only if s̄L is closer to the median than sR. These observations are also
indicated in Table 1, where the last column reports the equilibrium market
share of the largest competitor. Moreover, it is easy to show that a player P
receives at least half of all consumers

(a) if her strategy set includes the median, i.e. q ∈ SP , or

(b) if her strategy set is a superset of the opponent’s, i.e. SP ⊇ S−P .

In that sense, a strategy set, e.g. a technology, is particularly valuable if (a) it
allows to serve the center of the market and if (b) it is more flexible than the
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opponent’s. On the other hand, if strategy restrictions are not exogenous,
flexibility can be assumed to be costly. Next, we analyze the optimal choice
of strategy restrictions.

4 Analysis of the Long Run: Choice of Re-

strictions

In contrast to short-term, long-term competition provides other opportunities
and the rules of competition can change (Porter, 1985). While in the short
term restrictions must be considered as fixed, in the long run companies
can influence their feasible positions. We consider a simple variant of the
standard market entry game. Positions X and consumers are as specified
above. There are now two periods t = 0, 1. In period 0 a firm F1 is a
monopolist in the market. In period t = 1 either F1 stays monopolist or a
second firm F2 enters. The sequence of actions is as follows. (i) F1 chooses a
set of feasible strategies S1 and some initial position s1

0 ∈ S1. (ii) F2 chooses
whether to enter the market and if it enters it chooses some position s2 ∈ X.10

(iii) F1 chooses a position s1 ∈ S1 to compete against F2. In a monopoly
situation F1 serves all consumers, in a duopoly with s1 6= s2 consumers are
split as in the static model. If s1 = s2, we assume that all consumers stay
at the incumbent and do not switch to the entrant.11 One interpretation
for this assumption is that consumers face small switching costs which cause
inertia. Let π : [0, 1]→ R+ be a continuously increasing function that assigns
a profit to any mass of consumers. Moreover, let 0 < f entry < π(1

2
) be the

fixed costs of market entry. For F1, let C : [0, 1] → R+ be an increasing
function that represents the costs of flexibility. We assume that the larger
the range [s1, s̄1], the higher these costs. Moreover, let δ ∈ (0, 1] be F1’s
discount factor. The payoffs of F1 and F2 are then

Π1,Π2 =


π(1)− C(s̄1 − s1) + δπ(1− F (x̂)), π(F (x̂))− f entry, if s2 < s1

π(1)− C(s̄1 − s1) + δπ(F (x̂)), π(1− F (x̂))− f entry, if s2 > s1

π(1)− C(s̄1 − s1) + δπ(1), π(0)− f entry, if s2 = s1

π(1)− C(s̄1 − s1) + δπ(1), π(0), if no-entry.

10After observing F1’s first move, there would be no incentive to build a strategy set
that consists of more than one position.

11The result for the convention that the two firms split the market equally will be trivially
that both firms choose the median. This observation stays true in the model variation,
where firms first simultaneously choose feasible strategies and then simultaneously choose
positions within their feasible set.
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We now derive a subgame perfect Nash equilibrium (SPNE) by backward
induction. Because of the open set issue this will be a “perfect epsilon-
equilibrium” (Radner, 1980).

(iii) If F2 does not enter, then the choice s1 ∈ S1 is arbitrary. If F2 enters and
s2 ∈ S1, then s1 = s2 is profit maximizing (because then F1 receives all
consumers). If F2 enters and s2 /∈ S1, then s1 = s1 when s2 < s1 and
s1 = s̄1 when s2 > s̄1 is profit maximizing for F1.

(ii) Given optimal behavior of F1 in decision (iii), we receive the following payoffs
for different decisions of F2 at stage (ii):

Π2 =


π(0)− fentry, if s2 ∈ S1

π(F (s1 − ε
2))− fentry, if s2 = s1 − ε

π(1− F (s̄1 + ε
2))− fentry, if s2 = s̄1 + ε

π(0), if F2 does not enter

for ε > 0. Choosing s2 ∈ S1 is strictly dominated by not entering. In the
two central cases, the payoff of F2 is decreasing in ε. Thus, we have an open
set problem as in Case (IIb) of the short-term analysis. The supremum here
is F (s1) respectively 1−F (s̄1) and it can be approached by letting ε shrink.
Therefore F2 enters if

π(max{F (s1), 1− F (s̄1)}) > fentry (3)

and chooses a sufficiently small ε. Otherwise, i.e. if Condition (3) does not
hold, F2 does not enter.

(i) To derive the optimal behavior of F1 in stage (i), we distinguish between
the best entry deterring and the best entry admitting choice. Anticipating
the behavior in stage (ii) and (iii) a strategy set S1 is entry deterring if
π(F (s1)) ≤ fentry and π(1 − F (s̄1)) ≤ fentry. Let y := F−1(π−1(fentry)),
i.e. the rightmost position that still does not allow for profitable entry to
the left and, similarly, ȳ := F−1(1 − π−1(fentry)).12 Then the best entry
deterring choice is S1 = [y, ȳ]. Note that y is increasing in fentry, i.e. the
larger the entry costs, the smaller the necessary flexibility to deter entry.

The best choice of S1 given that F2 enters is the solution to the following
maximization problem:

max
s1,s̄1

π(1)− C(s̄1 − s1) + δπ(1−max{F (s1), 1− F (s̄1)}). (4)

Since any choice such that F (s1) 6= 1 − F (s̄1) is a “waste” of flexibility
costs, we have in equilibrium F (s1) = 1 − F (s̄1). Thus, we can substitute

12F and π are strictly increasing continuous functions such that they can be inverted.
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s1 = F−1(1−F (s̄1)) to rewrite the maximization problem in dependence of
one variable only:

max
s̄1∈[q,ȳ]

π(1)− C(s̄1 − F−1(1− F (s̄1))) + δπ(F (s̄1)) (5)

A choice s̄1 > ȳ is excluded by assumption because it deters entry and the
last profit is the simplification of π(1− (1− F (s̄1)).

This maximization problem (5) incorporates the trade-off between leaving
few consumers for a potential entrant (large s̄1) and saving flexibility costs
(small s̄1). The solution to this problem depends on the specifications of the
cost function C, of the entry costs fentry, of the payoff function π, and of the
distribution of consumers F , but it certainly exists because we maximize a
continuous function over a compact set. Let z̄ be a solution to this problem
(5), be it an interior solution (z̄ ∈ (q, ȳ)) or a boundary solution (z̄ = q or
z̄ = ȳ). Let z := F−1(1 − F (z̄)). Then F1’s profit maximizing behavior
under entry and no-entry of F2 leads to the following payoffs:

Π1 =

{
π(1)− C(ȳ − y) + δπ(1), if S1 = [y, ȳ]

π(1)− C(z̄ − z) + δπ(F (z̄)), if S1 = [z, z̄]

The specific functional forms determine which choice leads to higher payoff
and, hence, F1’s choice in stage (i). Inspecting the two equilibrium payoffs
above reveals that entry deterrence becomes relatively more attractive for
lower costs of flexibility, for higher costs of entry, and for a larger discount
factor. In Example 1 we illustrate how these model parameters determine
the equilibrium path.

From the backward induction exercise we learn first of all that there
always exists a subgame perfect epsilon-equilibrium. Moreover, there are
two types of these equilibria, one entry admitting one entry deterring, which
both satisfy the following two properties.

(a) q ∈ S1 ⊆ [y, ȳ], i.e. F1 chooses a feasible set at the center of the market
within certain boundaries and

(b) F (s1) = 1−F (s̄1), i.e. the ‘niches’ left for F2 at both sides of the center
are of equal size.

In the entry deterring equilibrium, (i) F1 chooses S1 = [y, ȳ], (ii) F2 does not
enter, and (iii) F1’s final position s1 is arbitrary within S1 because it acts as
monopolist. An entry deterrent F1 gains π(1)− C(ȳ − y) + δπ(1). Thus, it
has the cost of flexibility C(ȳ−y) to keep a threat to potential entrants. This
is similar to a threat of a price war, but this threat is credible because after
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investments into flexibility have been made, a ‘minimal differentiation war’
is costless in our model. Welfare depends on the exact location of s1 ∈ S1

since the closer s1 to the median, the smaller the total transportation costs.
Thus, the size of the feasible set S1 not only determines the cost of flexibility,
but also provides an upper bound for the transportation costs. Since the size
of F1’s restriction is increasing in F2’s costs of entry f entry, entry barriers
might even be considered as welfare enhancing.13 Similarly, low marginal
costs of flexibility increase the set of feasible positions S1 and thus relax the
upper bound of transportation costs. By property (a) this boundary for total
transportation costs also applies to the entry admitting equilibrium.

The entry admitting equilibrium path is as follows: (i) F1 chooses S1 =
[z, z̄] such that z solves (5), i.e. it optimizes the trade-off between low costs
of flexibility and a large market share; (ii) F2 enters and chooses an adjacent
position to F1’s restriction, i.e. s2 = s1− ε, respectively s2 = s̄1 + ε; and (iii)
F1 reacts with choosing its restriction adjacent to s2, i.e. s1 = z or s1 = z̄.
Observe that the outcome of this dynamic model corresponds to Case (IIb)
of the static analysis, where F1 is in the role of the more-central player.
We discussed in Subsection 3.4 that this is the case with potentially high
inequality and low welfare. In given examples, the specific inequality and the
total transportation costs are determined by the size of the interval S1 such
that we get the following comparative static effects. Both equality of firms’
payoffs and welfare are increasing in F1’s marginal costs of flexibility (called c
in Example 1 below) and in F1’s discount factor δ. In the worst situation, F1
values the second period highly (δ = 1), while flexibility is relatively cheap.
Then it chooses a large feasible set S1 with only small niches left for F2 such
that market shares are highly unequal, while consumers’ transportation costs
are large because two similar products away from the center of the market
are offered. Of course, this can only be an entry admitting equilibrium if
F2’s costs of entry f entry are sufficiently low.

To study how costs of market entry and other model parameters deter-
mine which equilibrium is played and to illustrate further comparative static
effects, we use a specific example for which an explicit solution can be easily
obtained.

Example 1 Consider the special case of uniform distribution of consumers,
i.e. F (x) = x, quadratic costs of flexibility, i.e. C(r) = cr2 with cost param-
eter c, and linear payoff function, i.e. π(a) = a. From (3) we get that F2
enters if max{s1, 1 − s̄1} > f entry. Moreover, let f entry < 3

8
, which in this

case (π is the identity function) can be interpreted as the market share that

13The intuition is that low costs of entry lead to costly investments into flexibility that
allow the incumbent to offer products which are not close to the center of the market.
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is necessary to make market entry profitable. F1 can optimally deter entry
by choosing s1 = y = f entry and s̄1 = ȳ = 1 − f entry. The optimal choice
of F1 given that F2 enters is the solution to the maximization problem (cf.
(4)), which simplifies to

max
s̄1∈[ 1

2
,1−fentry ]

1− c(2s̄1 − 1)2 + δs̄1. (6)

Analogous to Eq. (5), the main idea of the simplification is that best actions
satisfy here s1 = 1 − s̄1. If f entry > 1

2
− δ

8c
, then we have the boundary

solution z̄ = ȳ = 1− f entry and z = y = f entry. In that case entry admission
is never profitable and we have the entry deterring equilibrium. On the other
hand, if f entry ≤ δ

8c
, then the unique solution to this maximization problem is

z̄ = 1
2
+ δ

8k
. In that case we have to compare the payoff of F1 under the optimal

entry admitting choice S1 = [1
2
− δ

8k
, 1

2
+ δ

8k
] with the payoff of the optimal

choice that deters entry S1 = [f entry, 1 − f entry]. Low enough entry costs
f entry, high marginal costs of flexibility c, as well as low enough valuation of
the future δ, make the entry admitting choice of restrictions more profitable
than entry deterrence.

For instance, for c = 1 and δ = 0.8, F1 prefers to admit entry of F2
if f entry < 1

5
, i.e. if the required market share to make entry profitable is

below 20%. In that case we get the following equilibrium path: (i) F1 chooses
S1 = [0.4, 0.6] and s0 ∈ S1 arbitrary, e.g. s0 = 0.5 = q. F2 enters with
strategy s2 = 0.4 − ε (or with s2 = 0.6 + ε) for some small ε > 0. F1
reacts with s1 = 0.4 (respectively, s1 = 0.6). The market share of F1 is
approximately 60%, while F2 receives approximately 40%. The outcome is
inefficient for two reasons. First costly investments into flexibility are not
justified by some welfare benefit. Second, F1 locates at the position within S1

that actually maximizes total transportation costs.

There is an alternative interpretation for the model set-up of this sec-
tion. Consider the incumbent’s investment into flexibility as investment into
patents that protect its initial product s1

0. Specifically, the choice S1 = [s1, s̄1]
can be interpreted as restricting the feasible strategies of a potential entrant,
i.e. F2’s strategy set is restricted to X \ S1 = [0, s1) ∪ (s̄1, 1]. The model
results in an entry deterring or an entry admitting equilibrium as described
above.
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5 Discussion

We have introduced restrictions of feasible positions for two players who
compete in a one-dimensional market. The most striking insight is probably
that in the case where feasible positions do not overlap (Case III) short-run
equilibrium choices are fully independent of consumers’ preferences. Thus, in
that case firms are predicted to ignore the consumers and base their product
position on the competitor’s strategy only. This analysis naturally applies to
short-term competition where product positions underlie fixed restrictions.
In a longer term companies can invest into changes of their feasible posi-
tions. In a very simple model of endogenous restrictions under market entry
we show that there is an optimal choice of flexibility for an incumbent firm.
The practical prediction of this model is that an incumbent adapts a position
at the center of the market and keeps sufficient flexibility to quickly react
to a new entrant by changing its product position closely to the entrant’s.
If costs of entry are large, then the flexibility of the incumbent prevents the
other firm from entering at all. Otherwise, the two firms choose highly sim-
ilar product specifications, which are far from an ideal product in the eyes
of most of the consumers, even though such an ideal product would be fea-
sible for the incumbent. This outcome equals the outcome of one case in the
short-term analysis (Case IIb), which leads to highest transportation costs
and thus to lowest welfare.

As many models of spatial competition, our model also applies to po-
litical competition. Let us now change the interpretation from firms and
consumers to political candidates and voters. The left-right spectrum stands
for possible political platforms from left-wing to right-wing positions. Po-
litical candidates also have a restricted set of feasible positions (Samuelson,
1984) for two reasons. First, a candidate has to ‘maintain a loyalty’ to its po-
litical party, whereas parties only cover some part of the political spectrum,
they need sponsors and supporters, and are relatively ideologically immobile
(Downs, 1957a). Second, the own history of public perception restricts the
political positions that a candidate can credibly represent. A similar set of
credibility restrictions is based on personal characteristics (Samuelson, 1984),
e.g. a young candidate cannot credibly present himself as highly experienced.

In the classic model the main result is often summarized by the role of
the so-called median voter.14 At least two forms of the median voter theorem
are popular (Congleton, 2002). The weak form of the median voter theorem
claims that the median voter always casts his vote for the policy that is

14A median voter is a voter whose preference peak coincides with the median.
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adopted. As it is easy to show, this is still true in the model with restricted
strategies. The strong form of the median voter theorem says that the me-
dian voter always gets his most preferred policy. With restricted strategies
this is obviously not possible if q /∈ SL∪SR. But even if the median position
is available, it is not always chosen such as in Case (IIb) or in Case (III).
Under unrestricted strategies this could not be an equilibrium because each
candidate could beneficially deviate toward the median voter. If one candi-
date is incapable of such a move, however, the other candidate lacks incentive
to do so. Thus, restrictions of political platforms do severely affect political
campaigns and the outcome of two-party competition.

Our model uses several standard simplifications which have been relaxed
for the classic model and are also worth studying under restricted strate-
gies. First, the assumption of perfectly inelastic demand could be relaxed
such as in Anderson and Glomm (1992) and George and Waldfogel (2006).
Second, we have studied a one-dimensional market that summarizes all rele-
vant product characteristics including the price.15 A natural extension is to
consider multi-dimensional product differentiation. In such a model Irmen
and Thisse (1998) find that minimal differentiation is prevalent in all dimen-
sions but one. While in each dimension with minimal differentiation both
firms cluster on the median, this result would not generalize to restricted
strategies. Moreover, larger classes of consumers’, respectively voters’, pref-
erences can be considered. Our results do directly extend to single-peaked
preferences on tree graphs (Demange, 1982), which is a much more general
class of preferences. However, the extension to graphs that include cycles,
e.g. grids or hypercubes, as they have been studied in Nehring and Puppe
(2007) or Buechel and Roehl (2014), is an open problem. Finally, we have
restricted attention to the classic case of two players. While for an exogenous
number of players, the results under unconstrained competition resemble the
two player case (“minimum clustering” Eaton and Lipsey, 1975; Buechel and
Roehl, 2014), this is not true for an endogenous number of players (Prescott
and Visscher, 1977; Loertscher and Muehlheusser, 2011). Extending our
model into these directions is a worthwhile endeavor, but it clearly exceeds

15In many works, the price is used as an independent dimension which can be chosen
after a product position (d’Aspremont et al., 1979; de Palma, 1985; Meagher and Zauner,
2004; Król, 2012). Since the introduction of prices leads to non-existence of equilibria,
attention is often restricted to an equal distribution of consumers who are all endowed
with quadratic transportation costs. In that special case two firms maximally differentiate
in a one-dimensional set-up (d’Aspremont et al., 1979). Strategy restrictions would not
change this result apart from the fact that firms can only maximally differentiate within
their feasible sets.
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the scope of this note.
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