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INCENTIVE AND NORMATIVE ANALYSIS ON
SEQUENCING PROBLEM

PARIKSHIT DE

Abstract. We identify the complete class of transfer rules that
guarantee strategyproofness of any non-increasing in completion
time allocation rule for the sequencing problem. We then charac-
terize the class of mechanisms satisfying efficiency of decision (or
aggregate cost minimization), egalitarian equivalence and strate-
gyproofness. There is no mechanism in this class that satisfies
either feasibility or weak group strategyproofness. Finally we iden-
tify the restrictions under which egalitarian equivalence, efficiency
of decision, identical preference lower bound and strategyproofness
are compatible.

Keywords: Sequencing problems, Strategyproofness, Egalitarian
equivalence, Identical preference lower bound

JEL Classification: C72, D63, D71, D82

1. Introduction

Consider a public decision making problem where (1) there are n
agents and a single server, (2) the server can provide services of non-
identical processing length but can process only one particular service
at a time. (3) Jobs may not be identical across agents, so their pro-
cessing time may differ, we assume that processing time is common
knowledge. (4) Waiting for the service is costly, monetary transfers
are given to the agents to compensate them. (5) Agents have quasi-
linear preferences over position in queue and monetary transfers. The
problem with the above mentioned structure is known as the sequenc-
ing problem. Typically the natural problems in this set-up are how to
solve the problem of information asymmetry and what is a ‘reasonable’
the order in which to serve the agents.

A real life example of sequencing problem was given by Suijs[15]. He
considered a large firm that has several divisions that need to have a
service facility which is provided by maintenance and repairing unit of
the firm. When a number of divisions ask for service for this facility,
as the maintenance and repairing unit can only serve one division at a
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2 PARIKSHIT DE

time, each division has to incur a downtime cost. In order to minimize
the total downtime cost firm has to use a true cost revelation mech-
anism since cost are private information to the corresponding units.
Apart from the above example we can have situations like a diagnos-
tic centre, installed with a machine( due to space shortage) that can
provide multiple services but can serve one agent at a time, where a
certain number of enlisted patients visits for diagnosis or software in-
stallation problem to PCs of a set of agents. All these examples capture
the structure of sequencing problem.

Assuming quasi-linear preferences, it is possible to design mecha-
nisms that satisfy non-manipulability and efficiency of decision. This
is a consequence of the result due to Hölmstrom’s[17] on the unique-
ness of the class of Vickrey-Clarke-Gorves (VCG) mechanisms.1 From
Suijs[15] and Mitra[4] we know that linearity of cost structure is a cru-
cial assumption to ensure ‘first best’. By ‘first best’ we mean one can
find mechanisms that satisfy efficiency of decision, dominant strategy
incentive compatibility and budget balancedness.

Sequencing problem has also been analyzed in a cooperative game
set-up. In this respect we mention the pioneering work of Curiel, Peder-
zoli and Tijs[24] where they axiomatically characterizes a division rule
(Equal Gain Split) to share cost savings among agents and shows the
advantages of Equal Gain Split over Equal Division Rule. The other
important work in this context is by Mishra [23] who characterized the
Shapley value.

Our analysis on sequencing problem is from non-cooperative point
of view. In sequencing context efficiency of decision is a well studied
allocation rule. Queue efficiency implies minimal aggregate waiting
cost. But there many situations where efficiency of decision may not
be the primary objective. Think of situations where some well defined
priority across the set of agents exists. For example, in an academic
institute, faculty members may be given priority over research scholars
and research scholars are given priority over graduate students in using
printing or photocopying facilities. Mishra and Mitra[2] has given many
such examples in the context of scheduling problems. Hence we first
ask the following general question: What are the class of strategyproof
(or non-manipulable) allocation rules and what is the class of trans-
fers associated with such allocation rule? We identify the complete
class of allocation rule and then associate the unique class of transfer
rule associated with such rules. We show that allocation rule must be
non-increasing in completion time and this is also sufficient with the
associated unique class of transfers.

Next we try to further classify Vickrey-Clarke-Groves transfer scheme
in such a way that the mechanism is egalitarian equivalent. Egalitar-
ian equivalence is a well known equity concept that was introduced by

1See Vickery[25], Clarke[21], Groves[22].
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Pazner and Schmeidler [14] and is based on the idea that all individ-
uals should be placed in a situation which is Pareto-indifferent to a
perfectly egalitarian allocation. In this respect our findings are similar
to the work of Chun, Mitra and Mutuswami[1] in Queueing2 context.

We then show that egalitarian equivalence is incompatible with first
best situation since feasibility is not compatible with efficiency, strate-
gyproofness and egalitarian equivalence. Here we try to focus a sharp
difference in result found by Chun, Mitra and Mutuswamy[1]. While
they had possibility result with feasibility in queuing problems we have
impossibility result with feasibility in case of sequencing problems and
we find the explanation is hidden in the heterogeneity of individual
processing speed.

As we explore more stronger notion of non-manipulability, we must
mention the findings of Mitra and Mutuswamy[9] that shows there
does not exist any mechanism that satisfies queue-efficiency and strong
group strategy-proofness, in a single machine queueing context. In our
framework even pair-wise group strategyproofness is incompatible with
efficiency of decision and egalitarian equivalence. Next we introduce
another normative notion namely identical preference lower bound. It
is a notion of individual rationality based on the idea that agent’s
utility is at least as much as that of consuming his equal share of re-
sources. This concept was first introduced by Moulin [18]. We identify
the class of mechanism that satisfies efficiency, strategyproofness, egal-
itarian equivalence and identical preference lower bound.

This paper has been arranged in the following way. In Section 2 we
formally introduce the model and add necessary definitions. In Section
3 we state and prove our characterization results. Then in Section 4
we draw our conclusions.

2. The Model

We consider the set of agents N = {1, . . . , n} with a single ma-
chine. Each individual has a different kind of work to be executed
by the machine. The machine can process one job at a time. Let
∀i ∈ N, si ∈ <++ where si denotes the processing time of ith agent
and we assume that not all si’s are same. Each agent is identified
with a waiting cost θi ∈ <++, the cost of waiting per unit of time.
The profile of waiting costs of the set of all agents is typically denoted
by θ = (θ1, . . . , θn) ∈ <n++. For any i ∈ N, θ−i denotes the pro-
file (θ1 . . . θi−1, θi+1, . . . θn) ∈ <n−1

++ . A sequencing game is denoted by
Ω = 〈N,<n++,<n++〉.

2Here processing speed is constant across agents and agent’s own processing
speed do not contribute to his own waiting time.
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An allocation of n jobs can be done in many ways. An allocation rule
is a mapping σ : <n+ → Σ(N) that specifies for each profile θ ∈ <n++ an
allocation(rank) vector σ(θ) ∈ Σ(N). Agent i’s position is denoted by
σi(θ) which is an input of the vector σ(θ). Let Σ(N) denote the set of
all possible sequence of agents in N . Given σ ∈ Σ(N),∀ ∈ N,Pi(σ) =
{j ∈ N |σj(θ) < σi(θ)} denotes the set of predecessors of i and similarly
P ′i (σ) = {j ∈ N |σj(θ) > σi(θ)} denotes the set of successors of i. Agent
i’s waiting time is denoted by Si(σ(θ)) and corresponding waiting cost
is Si(σ(θ))θi. A transfer rule is a mapping t : <n+ → <n that specifies
for each profile θ ∈ <n++ a transfer vector t(θ) = (ti(θ), . . . , tn(θ)) ∈ <n.
We assume that the utility function of each agent i ∈ N is quasi-liner
and is of the form Ui(σ(θ), ti(θ), θi) = −Si(σ(θ)(θi) + ti(θ), where ti(θ)
is the monetary transfer of agent to i.

Definition 1. ∀θ ∈ <n++, a queue σ ∈ Σ(N) is efficient if σ ∈
argminσ∈Σ(N)

∑n
i=1 Si(σ)θi.

The implication of efficiency is that agents are ranked according to
the non-increasing order of their waiting costs (that is, if θi ≥ θj under
a profile θ, then Si(σ(θ)) ≤ Si(σ(θ))). Moreover, there are profiles for
which more than one rank vector is efficient. For example, if all agents
have the same waiting cost, then all rank vectors are efficient. There-
fore, we have an efficiency correspondence. In this paper we consider
a particular efficient rule (that is, a single valued selection from the
efficiency correspondence). For our efficient rule, we use the following
tie breaking rule: if i < j and θi = θj then Si(σ(θ)) < Si(σ(θ)). This
tie breaking rule guarantees that, given a profile θ ∈ <n++, the efficient
rule selects a single rank vector from Σ(N).

A mechanism is (σ, θ) constitutes of an allocation rule σ and a trans-
fer rule t. We are interested in strategy proof mechanism for the se-
quencing problem.

Definition 2. A mechanism(σ, t) is strategy-proof (SP) if ∀i ∈ N, ∀θi, θ′i ∈
<++ and∀θ−i ∈ <n−1

++ we have,
−Si(σ(θi, θ−i))θi + ti(θi, θ−i) ≥ −Si(σ(θ′i, θ−i))θi + ti(θ

′
i, θ−i).

It means for any agent truthful reporting is weakly dominates false
reporting irrespective of other players report.

Definition 3. A mechanism(σ, t) is efficient (EFF) if for all announced
profile

θ ∈ <n++, σ(θ) ∈ argminσ∈Σ(N)

n∑
i=1

Si(σ)θi.

Efficiency here basically implies minimization of aggregate waiting
cost.



INCENTIVE AND NORMATIVE ANALYSIS ON SEQUENCING PROBLEM 5

Definition 4. A mechanism (σ, t) satisfies egalitarian equivalence (EE)
if ∀θ ∈ <n++ ∃ (S̄(θ), t(θ)) 3 ∀i ∈ N, −Si(σ(θ))θi + ti(θ) = −S̄(θ)θi +
t(θ).

Here (S̄(θ), t(θ)) denotes the reference bundle, where S̄(θ) is the ref-
erence waiting time and t(θ) his the reference transfer.

Egalitarian equivalence was introduced by Pazner and Schmeidler
[14] and is based on the idea that all individuals should be placed
in a situation which is Pareto-indifferent to a perfectly egalitarian al-
location. In this sequencing problem’s context (S̄(θ), t(θ)) is such a
reference bundle, where if the agent is placed remains indifferent to is
original bundle that he receives under efficiency and strategyproofness.

Definition 5. A mechanism (σ, t) satisfies budget balancedness (BB) if
∀θ ∈ <n++,

∑n
i∈1 ti(θ) = 0.

Definition 6. A mechanism (σ, t) satisfies feasibility (FSB) if
∀θ ∈ <n++,

∑n
i∈1 ti(θ) ≤ 0.

The profile θ and θ′ are S-variants if ∀i ∈ N \ S, θi = θ′i.

Definition 7. A mechanism (σ, t) is weak group strategyproof (WSP)
if for all S-variants θ, θ′ Ui(σ(θ), ti(θ), θi) ≥ Ui(σ(θ′), ti(θ

′), θi) for at
least one i ∈ S .

This implies as long as all the group member are not strictly better
off by deviating from their true profile, such group will not be formed.

Definition 8. A mechanism (σ, t) is pair-wise group strategyproof (PWSP)
if for all S-variants θ, θ′ where |S| = 2,
Ui(σ(θ), ti(θ), θi) ≥ Ui(σ(θ′), ti(θ

′), θi) for at least one i ∈ S .

This implies pair of agents deviates from their true profile by jointly
misreporting if an only if they are both strictly better off from the
situation when they truthfully reports.

Definition 9. A mechanism (σ, t) satisfies identical preference lower

bound (IPLB) if ∀θ ∈ <n++ ∀i ∈ N, Ui(σ(θ), ti(θ), θi) ≥ −(si+
∑

j 6=i sj

2
)θi.

This concept was first introduced by Mouin[18] in 1990 and is based
on the idea that an agent’s welfare is atleast that of consuming his
equal share of resources. In the context of sequencing problem agents
are considered identical as long as their relative waiting cost’s are same.
That is if for all i, j ∈ N, θi

si
=

θj
sj

then agents are considered to be

identical. Identical preference lower bound implies that any agent’s
utility should be at least as that of average or expected utility of that
agent when the agent perceives all the other agents identical to herself.

3. Results

3.1. Strategy-Proof Mechanism.



6 PARIKSHIT DE

Proposition 1. The allocation rule σ is strategy-proof (dsic) if ∀i ∈
N,Si(σ(θ)) is non-increasing with θi.

Proof: We first prove the necessity, that is, non-increasingness of
Si(σ(θ)) with θi is a necessary condition for allocation rule to be strategy-
proof.

Let σ is strategy-proof (i.e.) Take an i ∈ N and θ−i ∈ <n−1
++ , ∀i ∈

N, ∀θi, θ′i ∈ <++ we have,

(1) −Si(σ(θi, θ−i))θi + ti(θi, θ−i) ≥ −Si(σ(θ′i, θ−i))θi + ti(θ
′
i, θ−i).

(2) −Si(σ(θ′i, θ−i))θ
′
i + ti(θ

′
i, θ−i) ≥ −Si(σ(θi, θ−i))θ

′
i + ti(θi, θ−i).

From now on we will suppress θ−i ∈ <n−1
++ as it is an obvious argument

in σ and t i.e. Si(σ(θi, θ−i) is denoted as Si(σ(θi)) and t(θi, θ−i) is
denoted as t(θi).

Solving (1)&(2) we have,

(3) θi(Si(σ(θ′i))−Si(σ(θi))) ≥ ti(θ
′
i)−ti(θi) ≥ θ′i(Si(σ(θ′i))−Si(σ(θi)))

Further we get,

(4) (θi − θ′i)(Si(σ(θ′i))− Si(σ(θi))) ≥ 0

Equation (4) implies Si(σ(θi)) is non-increasing with θi.

Next we try to find the appropriate transfer rule that will ensure
strategy-proofness in the above mentioned set-up. Consider an agent
i ∈ N , for a given θi ∈ <n++ agent i can face maximum 2n−1(i.e.

∑n−1
j=0 (n−

1)Cj
) different processing speed. But the number different processing

speed is faced by i is actually depends on the concerned allocation
rule. So depending on the allocation rule the agent can face same(i.e.
single) processing time3 (i.e. constant allocation rule) or R + 1 dif-
ferent processing time where R ∈ {1, 2, 3, . . . , 2n−1 − 1}. We assume
0 < θ1∗

i < θ2∗
i < . . . < θR∗i < ∞ such that Si(σ(θ1∗

i )) > Si(σ(θ2∗
i )) >

. . . > Si(σ(θR∗i )) and ∀θi ∈ (θR∗i ,∞), Si(σ(θR∗i )) > Si(σ(θi)) > 0 4. So
for agent i ∈ N, ∀k ∈ {1, 2, 3, . . . , R}, θk∗i (k 6= 0) acts as level-mark
waiting cost i.e. if for agent i, θi ∈ (θk−1

i , θki ] then corresponding wait-
ing time of agent i is Si(σ(θki )). We assume θ0∗

i ≡ 0. If θi ∈ (0, θ1∗
i ]

then the corresponding waiting time is Si(σ(θ1∗
i )) and if θ ∈ (θR∗i ,∞)

3For this constant allocation rule we can use equation (3) to find the appropriate
transfer rule. It is trivial that constant transfer rule will be the appropriate transfer
scheme.

4Note that by Proposition (1), Si(σ(θ)) can not be increasing in θi
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then the corresponding waiting time is Si(σ(θi)) i.e. the minimum al-
lowable waiting time (specified by the allocation rule concerned)5. Let
the transfer rule for agent i with waiting cost θi be

(5)

∀θi ∈ (0, θ1∗
i ]

ti(θi) = hi(θ−i)

∀k ∈ {1, 2, . . . , R− 1},∀θi ∈ (θk∗i , θ
(k+1)∗
i ]

ti(θi) = hi(θ−i)−
∑k

j=1{Si(σ(θj∗i ))− Si(σ(θ
(j+1)∗
i ))}θj∗i

∀θi ∈ (θR∗i ,∞)
ti(θi) = ti(θ

R∗
i )− θR∗i [Si(σ(θR∗i ))− Si(σ(θi))]

Theorem 1. An allocation rule σ is strategy-proof if and only if the
transfer of each agent i ∈ N is given by (7).

Proof: Fix θ−i ∈ <n−1
++ . Form equation (1)&(2) we have,

∀i ∈ N, ∀θi, θ′i ∈ <++ Si(σ(θi)) = Si(σ(θ′i))⇒ ti(θi) = ti(θ
′
i)(6)

For an agent i ∈ N, ∀θi, θ′i ∈ (0, θ1∗
i ], Si(σ(θ1∗

i )) denotes the waiting
time. So by equation (6) we have, ti(θi) = ti(θ

′
i) = hi(θ−i)(as the

expression is θi independent). So

(7) ti(θ
1∗
i ) = hi(θ−i)

Consider any pair {θi, θ′i} ∈ (θ1∗
i , θ

2∗
i ] × (0, θ1∗

i ]. By applying equation
(3)&(6) and the fact that condition (3) must hold for all {θi, θ′i} ∈
(θ1∗
i , θ

2∗
i ]× (0, θ1∗

i ] we get,

ti(θi) = ti(θ
1∗
i )− θ1∗

i {Si(σ(θ1∗
i ))− Si(σ(θ2∗

i ))}

i.e. the expression reduces to,

ti(θi) = hi(θ−i)− θ1∗
i {Si(σ(θ1∗

i ))− Si(σ(θ2∗
i ))}

Hence ti(θ
2∗
i ) = hi(θ−i)− θ1∗

i {Si(σ(θ1∗
i ))− Si(σ(θ2∗

i ))}

Now in general for any pair {θi, θ′i} ∈ (θk∗i , θ
(k+1)∗
i ] × (θ

(k−1)∗
i , θk∗i ]

where k ∈ {1, 2, . . . , R− 1} (note θ0∗
i ≡ 0) using equation (3)&(6) and

by the
similar fashion we get,

ti(θ
(k+1)∗
i ) = ti(θ

k∗
i )− θk∗i {Si(σ(θk∗i ))− Si(σ(θ

(k+1)∗
i ))}(8)

5There is a potential difference between minimum possible waiting
time(MPWT)and minimum allowable waiting time(MAWT). Depending on the al-
location rule MPWT i.e. si may or may not be equal to MAWT. If MAWT is si
then so is MPWT but the reverse is not always true.
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Thus using equation (7) and solving equation (8) recursively we get,

θi ∈ (θk∗i , θ
(k+1)∗
i ] 3 k ∈ {1, 2, . . . , R− 1}

ti(θi) = hi(θ−i)−
∑k

j=1 θ
j∗
i {Si(σ(θj∗i ))− Si(σ(θ

(j+1)∗
i ))}(9)

Solving ti(θ
R∗
i ) form equation (9) and using equation (3) we get,

∀ ∈ (θR∗i ,∞)

ti(θi) = ti(θ
R∗
i )− θR∗i {Si(σ(θR∗i ))− Si(σ(θi))}(10)

Thus we have proved the necessity of transfer rule given by equation
(5) for ensuring strategy-proofness. The proof of sufficiency is quite
easy, hence omitted.

So the mechanism (σ, t) that ensures strategy-proofness in this
set-up must have an allocation rule such that ∀i ∈ N,Si(σ(θ)) is non-
increasing with θi and the corresponding transfer rule ti(θi) is given by
equation (5).

3.2. Strategy-Proof, Efficient and Egalitarian Equivalence Mech-
anism.
Here we examine the implication of egalitarian equivalence on a strategy-
proof mechanism with a specific allocation criteria called efficient allo-
cation rule. In this section we will use a slightly different notation to
refer an agent. Here we refer the agent at the i-th position of the queue
as agent (i). So the true waiting cost profile is θ = {θ(1), θ(2), . . . , θ(n)}
is such that λ(1) > λ(2) > . . . > λ(n) > 0 where ∀i ∈ N, λ(i) =

θ(i)
s(i)

.

Hence ∀θ(N) = (θ(i), θ−(i)) ∈ <n++,∀i ∈ N, si 6= s(i).

The crucial fact behind the idea of egalitarian equivalent allocation
where everyone consumes the same “reference bundle” and derives same
utility as they get with initial allocation is trivially egalitarian. In case
of queueing problem Chun, Mitra and Mutuswamy[1] have completely
characterized EFF, SP and EE mechanisms. In queueing problem each
element of the set {1, 2, . . . , n} can be a potential reference position
because jobs are homogeneous hence permutation of agents nothing
to do with agents job completion time. Unlike queuing problems, in
sequencing problems individuals can only think of the “last position” of
the queue where for everyone the job completion time will necessarily
be same that is S̄(θ) = S̄ =

∑
i∈N s(i). So we need to find the class

of VCG transfer rule that respects EE at the only available reference
position S̄.

Theorem 2. A mechanism(σ, t) satisfies EE,SP and EFF if and only
if the reference bundle for the profile θ ∈ <n++ is of the form (S̄, t(θ))
where S̄ = and t(θ) =

∑
i∈N{S̄ − S(i)(σ(θ))}θ(i) + k̄ =

∑
i∈N{S̄ −

Si(σ(θ))}θi + k̄.
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Proof: Let us consider an announcement profile θ = (θ(1), θ(2), . . . , θ(n)) ∈
<n++. So with EFF & tie breaking rule we can arrange agents uniquely
i.e. σ(i)(θ) = i.
Since the domain of preference is <++ is convex, it follows from Hölmstrom’s

result on efficient and strategy-proof mechanisms that (σ, t) must be a
VCG mechanism. This implies that the transfer is given by

∀i ∈ N : t(i)θ) = −
∑
j 6=i

θ(j)S(j)(σ(θ)) + h(i)(θ−(i))(11)

If we set h(i)(θ−(i)) =
∑

j 6=i S(j)θ(j)(σ(θ−(i))) + g(i)(θ−(i)) in equation

(11) we get

∀i ∈ N : t(i)(θ) = −s(i)

∑
j∈P ′

(i)
(σ(θ))

θ(j) + g(i)(θ−(i))(12)

As the mechanism (σ, t) satisfies EE, SP and EFF the following condi-
tion must hold

∀i ∈ N : −θ(i)S(i)(σ(θ)) + t(i)(θ) = −θ(i)S̄(θ) + t(θ)

Where the left side of the above equation is the utility from a VCG
mechanism and the right hand side is the utility from EE requirement.
The above expression can alternatively be written as ( ¯S(θ) = S̄)

t(θ) = −θ(i)S(i)(σ(θ))− s(i)

∑
j∈P ′

(i)
(σ(θ))

θ(j) + g(i)(θ−(i)) + θ(i)S̄(13)

Putting i = 1 into equation (13) we get

t(θ) = −θ(1)S(1)(σ(θ))− s(1)

∑
j∈P ′

(1)
(σ(θ))

θ(j) + g(1)(θ−(1)) + θ(1)S̄

Similarly for i = 2 we have

t(θ) = −θ(2)S(2)(σ(θ))− s(2)

∑
j∈P ′

(2)
(σ(θ))

θ(j) + g(2)(θ−(2)) + θ(2)S̄

Equating the expressions for t(θ) we get,

−s(1)θ(1) − s(1)θ(2) + g(1)(θ−(1)) = −θ(2)(s(1) + s(2))

+(s(1) − s(2))
∑

j∈P ′
(2)

(σ(θ))

θ(j) + g(2)(θ−(2))− S̄(θ(1) − θ(2))

Since g(1)(θ−(1))is independent of θ(1) and g(2)(θ−(2)) is independent of
θ(2) we get

g(1)(θ−(1)) = (S̄ − s(2))θ(2) + f(1)(θ(N)\{1,2})

and

g(2)(θ−(2)) = (S̄ − s(1))θ(1) + f(2)(θ(N)\{1,2})
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Now comparing the expression for t(θ) for i = 1 and i = 3 and using
the expression of g(1)(θ−(1)) we have

(S̄ − s(1))θ(1) + (S̄ − s(2))θ(2) + f(1)(θ(N)\{1,2}) = −θ(3)(s(1) + s(2) + s(3))

+s(1)θ(2) + s(1)θ(3) + (s(1) − s(2))
∑

j∈P ′
(3)

(σ(θ))

θ(j) + g(3)(θ−(3)) + S̄θ(3)

Comparing the expressions on both sides in the similar fashion we get

g(1)(θ−(1)) = (S̄ − s(2))θ(2) + {S̄ − (s(2) + s(3))}θ(3) + f ′(1)(θ(N)\{1,2,3})

and

g(3)(θ−(3)) = (S̄ − s(1))θ(1) + {S̄ − (s(1) + s(2))}θ(2) + f(3)(θ(N)\{1,2,3})

By using the same argument recursively we get

g(1)(θ−(1)) =
n∑
j 6=1

{S̄ − S(j)(σ(θ(N)\{1}))}θ(j) + k(1)

In fact the above expression hold not only for i = 1 but for all i ∈ N
i.e.

g(i)(θ−(i)) =
n∑
j 6=i

{S̄ − S(j)(σ(θ(N)\{i}))}θ(j) + k(i)

Now we further get ∀i, j ∈ N, k(i) = k(j) = k̄ by using the above
expression of g(i)(θ(i)) into t(θ) in equation (13) and equating them.
Hence

∀i ∈ N : g(i)(θ−(i)) =
n∑
j 6=i

{S̄ − S(j)(σ(θ(N)\{i}))}θ(j) + k̄

Using the above expression of g(i)(θ−(i)) in equation (13) we have,
t(θ) =

∑
i∈N{S̄ − S(i)(σ(θ))}θ(i) + k̄

Since
∑

i∈N{S̄ − S(i)(σ(θ))}θ(i) =
∑

i∈N{S̄ − Si(σ(θ))}θi the expres-
sion of reference transfer rule can also be written as follows: t(θ) =∑

i∈N{S̄ − Si(σ(θ))}θi + k̄.
Therefore it follows that a mechanism satisfies EE,SP and EFF only

if the reference bundle for the profile θ i.e. (S̄(θ), t(θ)) is of the form
t(θ) =

∑
i∈N{S̄ − Si(σ(θ))}θi + k̄ where S̄ =

∑
i∈N s(i).

Sufficiency is fairly obvious, hence omitted.

3.3. Feasibility, Pair Wise Weak Group Strategyproofness and
Identical Preference Lower-bound: Some possibilities and im-
possibilities.

Proposition 2. In a sequencing problem no mechanism satisfies EFF,SP,EE
and FSB.
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Proof. We have ∀θ ∈ <n++ ∀i ∈ N, t(i)(θ) =
∑

j 6=i(S̄ − S(j))θ(j) + k̄. If

FSB holds then ∀θ ∈ <n++ ∀i ∈ N,
∑

i∈N t(i)(θ) ≤ 0 i.e. we have,∑
i∈N

{S(i)(σ(θ))− S̄}θ(i) ≥
nk̄

(n− 1)

If k̄ ≥ 0, consider the profile θ = (θn, θ−n) where θ(j) 6=n = 1 . Then
we have, ∑

i∈N

{S(i)(σ(θ))− S̄}θi <
nk̄

(n− 1)

If k̄ < 0, consider the profile θ = (θn, θ−n) where θ(j)6=1 = 1 and

θ(1) = { 2k̄
(S(1)−S̄)

+ 1}. Then we have,∑
i∈N

{S(i)(σ(θ))− S̄}θi <
nk̄

(n− 1)

. Hence FSB is violated.

�

Remark 1. The consequence of the Proposition(2) is, in a sequencing
problem no mechanism satisfies EFF,SP,EE and BB.

Proposition 3. In a sequencing problem no mechanism satisfies
EFF,PWSP,EE.

Proof. If a mechanism (σ, t) satisfies EE,SP and EFF then ∀θ ∈ <n++

the allocation of an agent (i) such that i ∈ N is given by (σ(θ), t(i)(θ) =∑
(j)∈N\(i){S̄ − S(i)(σ(θ))}θ(j)).

Suppose the true waiting cost profile is θ = {θ(1), θ(2), . . . , θ(n)} is

such that λ(1) > λ(2) > . . . > λ(n) > 0 where ∀i ∈ N, λ(i) =
θ(i)
s(i)

.

Consider ∀i ∈ N, θ′(i) = θ(i) + ε1 such that

ε1 =
min(s(j)λ(j−1) − θ(j))

2
, j ∈ {2, 3, . . . , n}.

Let agents (2) and (3) jointly misreports as θ′(2) = θ(2) + ε1 and θ′(3) =
θ(3) + ε1. The basic idea is to construct a new profile so that under
this new misreported profile relative queue positions remains unaltered.
So under this new profile θ∗ = (θ(1), θ

′
(2), θ

′
(3), θ(4), . . . , θ(n)), t(2)(θ

∗) >

t(2)(θ) and t(3)(θ
∗) > t(3)(θ) since ε1 > 0 by construction. We find prof-

itable group deviation exists for agents (2) and (3). Therefore PWSP
impossible along with EFF and EE.

�
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Proposition 4. In case of two agents consider a mechanism that sat-

isfies EFF,SP,EE then it also satisfies IPLB if and only if k̄ ≥ − s(2)θ(1)
2

.

Proof. In two agent case a typical profile is (θ(1), θ(2)) ∈ <2
++. In the

efficient allocation
θ(1)
s(1)
≥ θ(2)

s(2)
i.e. s(2)θ(1) ≥ s(1)θ(2).

From Theorem(2) it is clear that for two agent case S̄ = s(1) + s(2)

is the reference position.

Now IPLB is compatible with a mechanism that satisfies EFF,SP,EE
if ∀i ∈ N,∀θ ∈ <++ U(i)(σ(θ), t(i)(θ), θ(i)) ≥ C(i)(θ) i.e.

(14) −S̄θ(i) + t(θ) ≥ −(s(i) +
∑
j 6=i

s(j)

2
)θ(i)

Consider i = 1. Then following equation(14) we have,

−(s(1) + s(2))θ(1) + (S̄ − S(1))θ(1) + (S̄ − S(2))θ(2) + k̄ ≥ −(s(1) +
s(2)

2
)θ(1)

Solving the above equation we get, k̄ ≥ − s(2)θ(1)
2

...(i).

Similarly for i = 2, following equation (14) we have,

−(s(1) + s(2))θ(2) + (S̄ − S(1))θ(1) + (S̄ − S(2))θ(2) + k̄ ≥ −(s(2) +
s(1)

2
)θ(2)

Solving this we get, s(2)θ(1) + k̄ ≥ s(1)θ(2)
2

...(ii).

If (i) holds then (ii) trivially holds. So condition (i) is necessary and
sufficient for IPLB.

Hence the necessary and sufficient condition for a mechanism with
two agents to be EFF, SP, EE and IPLB is S̄ = s(1) + s(2) and k̄ ≥
− s(2)θ(1)

2
.6

�

Proposition 5. Consider a Mechanism (σ, t) that satisfies EFF, SP,
EE, if k̄ ≥ 0 then it satisfies IPLB.

6It is the average negative externalities imposed by second agent on the first
agent.
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Proof. If a Mechanism (σ, t) satisfies EE, EFF, SP and IPLB then
∀i ∈ N, ∀θ ∈ <n++ we have,

U(i)(σ(θ))− C(i)(θ) =

 ∑
q∈P ′

(i)
(σ(θ))

sq −
∑

r∈P(i)(σ(θ))

sr

 θ(i)(15)

+
∑
j 6=i

(S̄ − S(j))θ(j) + k̄ ≥ 0

Note that,∑
j 6=i(S̄ − S(j))θ(j) =

∑
r∈P(i)(σ(θ)(S̄ − Sr)θr +

∑
q∈P ′

(i)
(σ(θ)(S̄ − Sq)θq.

Again,∑
r∈P(i)(σ(θ)(S̄−Sr)θr = s(i)

∑
r∈P(i)(σ(θ) θr+

∑
r∈P(i)(σ(θ)

(∑
q∈P ′

(i)
(σ(θ) sq

)
θr

+
∑

r∈P(i)(σ(θ)

(∑(i)−1
m=r+1 sm

)
θr

But, s(i)

(∑
r∈P(i)(σ(θ) θr

)
−
(∑

r∈P(i)(σ(θ)) sr

)
θ(i) ≥ 0, because agents

with higher λ(·) are placed in the earlier positions of the queue ( EFF
allocation).
Hence,(∑

q∈P ′
(i)

(σ(θ)) sq −
∑

r∈P(i)(σ(θ)) sr

)
θ(i) +

∑
j 6=i(S̄ − S(j))θ(j) > 0. Since

k̄ ≥ 0 therefore U(i)(σ(θ))− C(i)(θ) > 0. So IPLB holds. �

4. Conclusion

In this paper we have analysed sequencing problem from both incen-
tive and normative approaches. We have completely characterized the
class of incentive compatible mechanisms. We have identified unique
class of VCG mechanisms that ensures egalitarian equivalence and we
also have shown the possibility result with identical preference lower
bound in that unique class of VCG mechanisms. Sequencing game im-
pose a tougher restriction on the possible set of “reference position”,
compared to queueing game and that in turn results into the failure
of having a feasible VCG mechanism along with egalitarian equivalence.

Lastly, though we have found the necessary and sufficient condition
for the above mentioned unique class of VCG mechanism to satisfy
identical preference lower bound when the number of participating
agents is two, necessary condition for the same when the number of
participating agent is more than two remains an open question.
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