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Is Harrod-neutrality Needed for Balanced Growth? Uzawa's Theorem Revisited  

Abstract: Taking into account the adjustment costs of investment, this paper proves 

that it is not the neoclassical growth model itself but the specific form of capital 

accumulation function that requires technical change to exclusively be Harrod neutral 

in steady state. Uzawa’s(1961)steady-state growth theorem holds only when the 

marginal efficiency of capital accumulation is constant, which implies that the capital 

supply is infinitely elastic. Therefore, it is unnecessary to make strong assumptions 

about the shape of the production function and the direction of technical change for 

neoclassical growth model to exhibit steady-state growth. 
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1 Introduction 

Uzawa’s (1961) steady-state growth theorem (Uzawa theorem, hereafter) says that for 

a neoclassical growth model to exhibit steady-state growth, either the production 

function must be Cobb-Douglas or technical change must be Harrod neutral in the 

long run.Because of this theorem, much of macroeconomics—and an even larger 

fraction of the growth literature—makes strong assumptions about the shape of the 

production function and the direction of technical change (see Jones, 2005). However, 

are these assumptions really necessary? Considering the fact that technical change can 

also be Hicks neutral and Solow neutral in reality, it seems that there are no 

compelling reasons for us to think so. We try to argue in this paper that the Uzawa 

theorem can be only derived from specific prerequisites (which are not pointed out 

clearly in existing literature) and will not hold under general circumstances. 

Over the last decades, researchers have delved into Uzawa theorem by either 

providing more simplified proofs (see Barro and Sala-i-Martin,2004, chapter 1; 

Schlicht, 2006; Acemoglu, 2009,chapter 2) or seeking for more satisfactory 

justifications(see Fellner, 1961; Kennedy, 1964; Samuelson, 1965; Drandakis and 

Phelps, 1966; Acemoglu, 2003; Jones, 2005; Jones and Scrimgeour, 2008).However, 

these endeavors do not clarify the prerequisites of the theorem. Specifically, it is not 

clear whether it is the neoclassical growth model itself or its particular assumptions 

that compel technical change to be Harrod neutral in the steady-state equilibrium. 

In his newly-published book, Acemoglu(2009, Chapter 2) specifies the critical 

condition of the Uzawa theorem, but fails to highlight how special these conditions 

are. Based on the work of Schlicht (2006), Acemoglu proves that balanced growth 

rates of capital and output result immediately from the assumed capital accumulation 

process, K = Y − C − δK,
1
 and directly lead to the derivation of Uzawa theorem. This 

is to say that the assumed capital accumulation process is a necessary condition for 

the Uzawa theorem. However, this commonly-used capital accumulation process  

ignores adjustment costs that are typically associated with the replacement for 

worn-out equipment, the installation of new machines, the cost of learning, and 

sometimes the cost related to the purchase of machines from capital goods 

producers(Eisner and Strotz, 1963;Lucas, 1967;Foley and Sidrauski, 1970;Mussa, 

1977;Bailey and Scarth, 1980, 1983). When such adjustment costs are taken into 

account, it takes more than one unit of the final product to get one additional unit of 

capital. While Abel and Blanchard (1983) have developed a neoclassical growth 

model with adjustment costs, they have not considered the implications for the 

direction of balanced-growth technical change. Our findings are related to Sato’s 

conclusions (see Sato, 1996, 1999, 2000) which were ignored by Acemoglu (2003), 

Jones (2005) and Jones and Scrimgeour (2008). However, unlike Sato, we obtain our 

                                                            
1The variables of the equation have the standard definition and will be specifically defined in the second section. 
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conclusions by considering the adjustment costs of investment. Furthermore, we 

prove that the constant marginal efficiency of capital accumulation implies that the 

capital supply is infinitely elastic and provide a clear revision of the Uzawa theorem. 

In this paper, we prove that frequently-cited Uzawa theorem does not hold in 

more general cases, and specify its prerequisites explicitly. We consider the 

steady-state equilibrium of a neoclassical growth model with several specific 

functions of adjustment cost. These examples show that the Uzawa theorem holds 

only when the marginal efficiency of capital accumulation is constant. We believe 

that this requirement is unrealistic as it implies that the capital supply is infinitely 

elastic. Thus the Uzawa theorem should be revised in light of this condition. By 

clarifiying the special requirements associated with the Uzawa theorem it becomes 

more compatible with our economic intuition and relaxes the conditions under which 

a neoclassical growth model can exhibit balanced growth. 

The rest of the paper is organized as follows. Section 2 examines the steady-state 

equilibrium of a neoclassical growth model with adjustment costs; Section 3 presents 

several examples of adjustment cost functions and analyzes their specific 

requirements; Section 4 specifies the prerequisite of the Uzawa theorem and its 

economic implications, and Section 5 concludes. 

 

2 A Neoclassical Growth Model with Adjustment Costs 

2.1 Formulation of the Model 

Consider a representative consumer in the economy with the usual constant relative 

risk aversion (CRRA) preferences. The lifetime utility of the representative consumer 

can be expressed as 

 
C(t)1−θ

1 − θ
e−ρtdt

∞

t=0

,                                                                        (1) 

where C t  is the consumption at the period t, θ is the coefficient of relative risk 

aversion, and ρ is the rate of time preferences. 

The production function satisfies the standard neoclassical properties,
2
 and 

allows for both capital-augmenting and labor-augmenting technologies. That is,  

Y t = F B t K t , A t L t  ,                                                   (2) 

                                                            
2That is, constant returns to scale (CRS), positive but diminishing marginal products, Inada conditions, and 

essentiality of each input (Barro and Sala-i-Martin, 2004, chapter 1). 
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where Y t , K t , L(t) denote output, capital stock and labor at the time t, B(t) and 

A t  refer to the capital-augmenting and labor-augmenting technologies. Thus, the 

interaction terms B t K t and A t L t  represent, respectively, the effective 

capital and effective labor at time t. Further, the initial endowment of technology and 

labor is no less than one, i.e.  A 0 , B 0 , L 0 ≥ 1.In addition, the growth rates of 

labor L and both technologies are given exogenously, that is,A (t) A(t) = a ≥

0,B (t) B(t) = b ≥ 0, and L (t) L(t) = n ≥ 0. 

The budget constraint of the representative consumer is given by 

Y t = C t + I t ,where C t , I t > 0.                                  (3) 

The investment function I t  has two parts, including the purchase of new 

capital goods Ik t  and the additional adjustment cost incurred  h Ik t , Z ， 

I t = Ik t +  h Ik t , Z ,                                                      (4) 

where h 0, Z = 0, ∂h ∂Ik > 0, ∂2h ∂IK
2 ≥ 0. Z represents factors that affect 

adjustment cost other than Ik t .It may include the capital stock K, factor-augmenting 

technology A or B,or other factors. 

The net increase in the stock of capital at a point in time t is the difference 

between the amount of investment Ik t  (rather than I t ) and the depreciation δK(t). 

To be more accurate, our capital accumulation function can be formulated as follows: 

 K (t) = Ik t − δK t ,                                                                             (5) 

where K 0 > 0, δ ≥ 0, and Ik t > 0. 

By equation (4), the investment I t  is surely a monotonically increasing 

function of   Ik t  as   ∂I(t) ∂Ik t  = 1 + ∂h ∂Ik t  ≥ 1 .Solving for the inverse 

function of equation (4) yields: 

Ik t = G I t , Z ≤ I t ,                                                                   (6) 

where G I t , Z  is the efficiency function of capital accumulation,which reflects the 

degree to which investment is converted to new capital goods. 

By simply inserting formula (6) into (5), we obtain the capital accumulation 

equation with investment adjustment costs: 

 K (t) = G I t , Z − δK t .                                                                (7) 

It is evident from equations (6) and (7) that  K (t) = G I t , Z − δK t ≤ I t −

δK t , which shows that the speed of capital accumulation depends not only on the 
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level of investment I t , but also on the conversion efficiency from investment to 

capital. By the property of the inverse function, we obtain the following relations: 

 
 
 

 
 GI ≡

∂G

∂I(t)
=

1

∂I(t) ∂Ik t  
=

1

1 + ∂h ∂Ik t  
> 0                                       

GII ≡
∂2G

∂I(t)2
=

∂[1 + ∂h ∂Ik t  ]−1

∂I(t)
= −

∂2h ∂Ik t 2 

[1 + ∂h ∂Ik t  ]3
≤ 0             

 ,       (8) 

where GI and GII  refer to the marginal efficiency of capital accumulation and its 

first-order derivative respectively. Equation group (8) shows that the marginal 

efficiency of capital accumulation diminishes with additional investment incurring 

adjustment costs. 

2.2 Steady-state Equilibrium  

We can analyze this optimization problem by setting up the Hamiltonian 

H C, K, λ =
C(t)1−θ

1 − θ
e−ρt + λ(t) G Y t − C t , Z − δK(t)  .                  (9) 

 λ(t) is a costate variable. The usual transversality condition is expressed as: 

lim
t→∞

λ(t)K(t) = 0.                                                                                   (10) 

The first-order conditions thus are: 

 

∂H

∂C
= C−θe−ρt − λGI = 0                      

λ = −
∂H

∂K
= −λ  GI

∂Y

∂K
+ GZ

∂Z

∂K
− δ 

 .                                        (11) 

After some mathematical manipulation of the first-order conditions, we obtain 

the Euler equation: 

θ
C 

C
= GI

∂Y

∂K
+ GZ

∂Z

∂K
−

G I
GI

− ρ − δ .                                                 (12)  

Substituting ∂Y ∂K = B ∂Y ∂ BK   derived from the production function (2) into 

equation (12), we can further arrive at the following necessary condition for 

consumers to achieve dynamic optimality: 

θ
C 

C
= GIB

∂Y

∂(BK)
+ GZ

∂Z

∂K
−

G I
GI

− ρ − δ.                                       (13) 

Let k be the ratio of effective capital to effective labor (i.e. k ≡ BK AL ), the 

intensive form of the production function can be rewritten as f k = F(BK AL , 1). 

This implies that the marginal product of effective capital is  f ′ k = ∂Y ∂(BK) . 
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Define c ≡ C AL  as the consumption per effective labor. After using equations (7) 

and (13), we get: 

 
 
 

 
 k 

k
= b +

G I, Z 

K
− δ − a − n                                      

c 

c
=

1

θ
 GIBf ′ k + GZ

∂Z

∂K
−

G I
GI

− ρ − δ − a − n 

 .                 (14) 

Suppose that at some point t0  c (t) c(t) = 0  and  k (t) k(t) = 0 , which 

corresponds to the steady-state equilibrium path. Then we have: 

 
 
 

 
 G I, Z 

K
= a + n + δ − b                                      

GIBf ′ k + GZ

∂Z

∂K
−

G I
GI

= ρ + δ + θ(a + n) 

 .                      (15) 

Let GI t B t = GI t0 B t0 exp    GI
 (τ) GI(τ) + B (τ) B(τ)  dτ

t

t0
 . Using this 

in equation (15), we obtain: 

f ′ k∗ =
ρ + δ + θ a + n + GI

 GI − GZ
∂Z

∂K

GI t0 B t0 exp    GI
  τ GI τ  + B  τ B τ   dτ

t

t0
 

.                (16) 

Since by assumption k (t) k(t) = 0 the left-hand side of equation (16) is a 

positive constant. Since the right-hand side of equation (16) must be a constant too, it 

requires GZ
∂Z

∂K
 being a constant and， 

  GI
 GI = − B B                               (17) 

When all the conditions (i.e.  GZ
∂Z

∂K
 being a constant and GI

 GI = − B B  ) are 

satisfied the ratio of effective capital to effective labor 𝑘 is a constant. Then we have 

f ′ k∗ =  ρ + δ + θ a + n − b − GZ

∂Z

∂K
 GI t0 B t0  .                    (18) 

By equation (7), we obtain the steady-state growth rate of capital 

K ∗ K∗ = G(I, Z) K − δ = a + n − b.                                                   (19) 

Similarly, by equations (2) and (3) and  c = C AL , we obtain the steady-state 

growth rate of the other three endogenous variables as follows: 

Y ∗ Y∗ = I ∗ I∗ = C ∗ C∗ = a + n.                                                     (20) 
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So, it is evident that the neoclassical growth model exhibits steady-state growth 

path when these conditions (i.e. GI
 GI = − B B    and GZ

∂Z

∂K
  being a constant) are 

satisfied. This is independent of either Harrod-neutral technical change or the 

Cobb-Douglas production function. 

Further, if we take the first-order Taylor expansionof equations (14) around the 

steady-state (c∗, k∗), we get 

 

 
 

k (t)

k(t)
c (t)

c(t) 

 
 

≈

 

 
 

∂ k (t)/k(t) 

∂k |k=k∗
c=c∗

, −
GI

k∗

1

θ
GI t0 B t0 f ′′  k∗ , 0

 

 
 

 
k
c
 .                            (21) 

With the coefficient determinant being clearly negative: 

det 

∂ k (t)/k(t) 

∂k |k=k∗
c=c∗

, −
GI

k∗

1

θ
GI t0 B t0 f ′′  k∗ , 0

 =
1

θ
GI t0 B t0 f ′′  k∗ 

GI

k∗ < 0.        (22) 

As can be seen from (22), steady-state growth of this model actually implies the 

stable saddle path when  GI
 GI = − B B   and GZ

∂Z

∂K
 is a constant.  

 

3 Examples of Adjustment Cost Function 

In this section, we try to examine what conditions on technical change would yield a 

steady-state equilibrium in the neoclassical growth model under some specific 

functions of adjustment cost. 

Example 1: Adjustment cost is given by 

h Ik t , K = Ik t ∅ Ik t /K(t) , ∅[0]=0,∅′ > 0,∅′′ ≥ 0.           (23) 

This adjustment cost function is commonly usually used in the existing literature 

(see Abel and Blanchard,1983; Barro and Sala-i-Martin,2004,chapter3). Total 

investment is then 

 I t = Ik t + Ik t ∅  
Ik  t 

K t 
 .                          (24) 

Dividing both sides by K we can obtain： 

I t 

K t 
=

Ik t 

K t 
+

Ik t 

K t 
∅  

Ik t 

K t 
                                                        (25) 
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Therefore, as formula (25) indicates that 
I t 

K t 
 is monotonically increasing in 

Ik  t 

K t 
, 

its inverse function is well-defined. Let that inverse function be  ω (.)，where 

 ω′ > 0, ω′′ ≤ 0. By construction we obtain Ik t = K t ω  
I t 

K t 
 .  Inserting it into 

the capital accumulation function (7), we can further get 

 K  t = K t ω  
I t 

K t 
 − δK t .                                                 (26) 

Equation (26) indicates G[ I t , K t  = K t ω  
I t 

K t 
 . From it we can obtain GI =

ω′，
GI 

GI
=

ω’‘

ω’
 

I 

I
−

K 

K
 

I

K
，GZ

∂Z

∂K
= GK = ω − ω′

I t 

K t 
. According to the result of section 

2,GK  must be constant in steady-state equilibrium, namely
dGK

dt
= −ω′′  

I 

I
−

K 

K
  

I

K
 

2
=

0. Since 
I

K
> 0，it must be the case that ω′′  

I 

I
−

K 

K
 = 0, yielding also 

GI 

GI
= 0. The 

condition GI
 GI = − B B    implies that B B  = 0 . Therefore, for steady-state 

equilibrium under the above adjustment cost to exist, technical change must be 

Harrod neutral. 

Example 2: Adjustment cost is given by 

h Ik t , Z t  = ∅ IK t  =  IK t  IK t (1−β)/β − 1 , 0 < β ≤ 1.     (27) 

This function is a special case of the adjustment cost function used in 

Acemoglu(2009,chapter7).Inserting it in the investment function (4) yields Ik t =

I(t)β . Combining it with the capital accumulation function, we obtain: 

 K  t = I(t)β − δK t .                                                         (28) 

Obviously, when β = 1, there are no adjustment costs and equation (28) is just 

the usual capital accumulation function applied in the discussions of Uzawa’s theorem 

(see Acemoglu, 2003; Barro and Sala-i-Martin,2004, chapter 1;Jones, 2005; Schlicht, 

2006; Jones and Scrimgeour, 2008).Since GI = 1 and GI
 /GI = 0， steady-state 

equilibrium requires B B = 0, ie, technical change must be Harrod neutral. 

However, when 0 < β < 1, equation (28) indicates that the marginal efficiency 

of capital accumulation is diminishing in investment. From equation (28) we get 

GI = βI(t)β−1 ，
GI 

GI
=  β − 1 

I 

I
， GZ

∂Z

∂K
= 0 . Therefore, when   0 < β < 1 , 

capital-augmenting technical change is possible along the steady-state path, with the 

rate of technical change satisfying  
B 

B
=  1 − β 

I 

I
.Since at the steady-state 

I 

I
= n + a 
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as given by equation (20), we obtain 
B 

B
=  1 − β (n + a).

3
 Thus, β can take any 

positive value less than one and technical change need not be Harrod neutral for a 

neoclassical growth model to possess a steady-state equilibrium. 

Example 3: Adjustment cost is given by 

h Ik t , B(t) = IK(t) B t − 1 .                        (29) 

According to this adjustment cost function, we can rewrite the capital 

accumulation function as:4 

 K  t = I t B t  − δK t                                                          (30) 

The above equation implies  G[ I t , B t  =
I t 

B t 
， from which we can 

obtain  GI =
1

B t 
，

GI 

GI
= −

B 

B
= −b ≤ 0，GZ

∂Z

∂K
= GB

∂B

∂K
= 0 . Thus for any rate of 

capital-augmenting technological progress b ≥ 0 there exists a steady-state 

equilibrium. The steady-state ratio of effective capital to effective labor,k∗ , is 

determined by the equation f ′ k∗ =  ρ + δ + θ a + n − b ，the growth rate of 

capital is 
K ∗

K∗ = a + n − b,the growth rates of output, investment and consumption are 

Y ∗

Y∗ =
I ∗

I∗
=

C ∗

C∗ = a + n.  Since the rates of labor- and capital-augmenting technical 

change a and b can both be greater than zero, there is no need for technical change to 

be necessarily Harold neutral. 

 

4 Prerequisite for Uzawa theorem and its economic implications 

From the above we have seen that the steady-state equilibrium of the neoclassical 

growth model with adjustment costs requires GI
 GI = − B B . Therefore, when and 

                                                            
3 This conclusion may be also obtained by a method similar to Schlicht’s (2006). 

4 Note that B(t) is capital-augmenting technology rather than investment-embodied technology. These 

two types of technological improvement differ in that the productivity of capital increases steadily for 

capital-augmenting technology but decreases steadily for investment-embodied one. 
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only when GI
 GI = 0, (that is, the marginal efficiency of capital accumulation is 

constant)the existence of a steady-state equilibrium requires that the rate of 

capital-augmenting technical change be zero, namelyB B = 0 (that is, technical 

change must be Harrod-neutral). However, some examples of adjustment cost 

functions presented above have shown that GI
 GI  may not be equal to zero. Therefore, 

an amended version of the Uzawa theorem is as follows: 

Under constant marginal efficiency of capital accumulation technical change must 

be Harrod neutral for a steady-state equilibrium of the neoclassical growth model 

to exist. 

This formulation makes it clear that the Uzawa theorem, typically viewed as a 

surprising and troublesome result (see Jones and Scrimgeour, 2008; 

Acemoglu,2009,chapter 2),holds only under special circumstances. The revised 

theorem not only indicates that steady-state equilibrium may exist for other directions 

of technical change, but also allows us to put forward intuitive explanations more 

conveniently. Specifically, under our formulation one needs to answer why the 

existence of steady-state equilibrium requires that technical change be Harrod neutral 

only for the case in which the marginal efficiency of capital accumulation is constant. 

We argue here that the result is due to the fact that the constant marginal 

efficiency of capital accumulation implies that capital supply is infinitely elastic in 

steady-state. Namely, if  GI
 GI = 0, then  εK =

K /K

r /r
= ∞. 

Proof: Let r denote the price of capital, α denote the output elasticity of 

capital.By the neoclassical production function we have r = αY/K in a competitive 

market. Since α is constant in steady-state equilibrium, we get: 

r /r = Y /Y − K /K.                           (31) 

Substitute equation (31) into εK =
K /K

r /r
, we obtain: 

εK =
K /K

Y /Y − K /K
                                                               (32) 

From equation (7) we get  K /K − δ = G(I, Z)/K. When the growth rate of capital 

is constant, it must be the case that: 

G 

G
=

GI I

G

I 

I
+

GZ Z

G

Z 

Z
=

K 

K
                         (33) 

Using again the fact that all growth rates are constant and 
GI I

G
> 0,

I 

I
> 0，

GI I

G
must 

be a constant along the steady-state path. Therefore we get 
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GI 

GI
+

I 

I
−

G 

G
= 0.                        (34) 

Thus, under the maintained assumption that 
GI 

GI
= 0, together with equation (20) 

implying that 
I 

I
=

Y 

Y
 in steady-state, equations (33) and (34) yield 

Y 

Y
=

K 

K
 thereby 

implying εK = ∞.
5
 

QED . 

Since the constant marginal efficiency of capital accumulation implies that capital 

supply is infinitely elastic, the revised version of the Uzawa theorem can be also 

expressed as:  

If capital supply is perfectly elastic with respect to the interest rate then the 

steady-state equilibrium of the neoclassical growth model requires technical change 

to be Harrod neutral. 

 

5 Conclusions 

The frequently-cited Uzawa theorem says that for a neoclassical growth model to 

possess a steady-state growth path, either the production function must be 

Cobb-Douglas or technical change must be purely labor-augmenting in the 

steady-state equilibrium. However, by taking into account the adjustment costs of 

investment and using several specific functions of adjustment cost, this paper proves 

that this requirement is necessary only when the marginal efficiency of capital 

accumulation is constant, which implies that the capital supply is perfectly 

elastic.That is, the puzzling requirement that technical change must be Harrod neutral 

along a steady-state equilibrium path does not derive from the neoclassical growth 

model itself but from the special assumption about the shape of the capital 

accumulation function. Our revised version of the Uzawa theorem clarifies this issue 

and removes a misunderstanding that has affected growth theory for quite a long time. 

 

 

 

                                                            
5
Similarly, Schlicht’s (2006) crucial step in his proof of Uzawa’s theorem is to get the equation Y /Y = K /K. 

However, equations (34) and (20) show that this condition is obtained only when GI
 /GI = 0. If GI

 /GI ≠ 0，then 

Y /Y ≠ K /K，and the production function cannot be expressed as Y=F(K,AL) and Schlicht’s method can only prove 

the revised version of Uzawa’s theorem. 
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