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Abstract

As a selling mechanism, auctions have acquired a central position in the free market econ-
omy all over the globe. This development has deepened, broadened, and expanded the theory
of auctions in new directions. This chapter is intended as a selective update of some of the
developments and applications of auction theory in the two decades since Wilson (1992) wrote
the previous Handbook chapter on this topic.
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1 Introduction

Auction theory is a prominent and attractive topic of game theory and economic theory.1 There are
two main reasons for this: the first is that despite its simple rules, it is mathematically challenging
and often leads to both surprising and elegant results. The second and probably the more important
reason is that as a useful market mechanism, auctions have been widely practiced since ancient
history.2

Both reasons have become even more relevant and convincing since the chapter “Strategic
Analysis of Auctions” was written in the first volume of this Handbook (Wilson, 1992). The
mathematical developments became more challenging as the theory branched in many directions,
such as multi-unit auctions, dynamic auctions, combinatorial auctions, auctions with externalities,
and more general incomplete information frameworks. The embracing of free market economic
principles around the world made auctions the main vehicle for executing the huge volume of
privatization that took place and is still occurring.

The theory and practice of auctions have stimulated one another. The massive use of
spectrum auctions, online auctions and the privatization via auctions of big economic units (such
as oil refineries and power plants) called for theoretical investigations, and the availability of new
theoretical results and tools encouraged and facilitated the practical use of auctions, as reflected in
the title of Milgrom’s book, Putting Auction Theory to Work (Milgrom, 2004). The importance of
mechanism design, of which auction theory is a central part, was recognized not only by politicians
and regulators but also by the academic community, as expressed by awarding the 2007 Nobel
Prize in Economics to Hurwicz, Maskin, and Myerson. Game theorists and economists became
more and more involved in the practice of auctions both in helping regulators to design ‘the right
auction’ and in consulting competing companies to choose the ‘right bidding strategy’ (for instance,
Binmore, Cramton, Klemperer, McAfee, McMillan, Milgrom, Weber, Wilson, and Wolfstetter, to
mention only a few, all acted in at least one of those roles). ‘Econlit’ lists 20 books3 and 3,432
works with the word Auction or Auctions in the title that were written since 1992 (according to
‘Google Scholar’ the number is much higher – about 20,000).4

Given the volume of work done in the past two decades, we cannot hope to provide a fair
and comprehensive presentation of all research and applications on auctions since Wilson’s chapter
in 1992, within the framework of one chapter. It is even clearer that our bibliography cannot be

1As an illustration of the importance of auction theory within game theory, see the recent textbook Game Theory
(Maschler, Solan, and Zamir, 2013), where auction theory is presented and developed as one of its chapters.

2Herodotus describes Babylonian bridal auctions in 500 B.C. where revenue from the most attractive maidens was
used to subsidize the less attractive ones (see Baye et al., 2012b, for an analysis). In 200 B.C., Ptolemy IV of Egypt
ran an auction for the tax-farming rights for Palestine and Syria. When the highest bid was at 8000 talents of silver
(232 tons), Joseph the Tobiad told the Pharaoh that the bidders were colluding and offered 16000 talents with the
condition that he would be lent soldiers to help in the collection. The profits allowed him to be king of Israel (see
Montefiore, 2011, and Adams, 1992).

3Among the relevant books are Cramton, Shoham, and Steinberg (2006), Klemperer (2004), Krishna (2002, 2009),
Menezes and Monteiro (2005), Milgrom (2004), Paarsch and Hong (2006), Smith (1989), and Wolfstetter (1999).

4Econlit lists 1,993 academic journal articles, 977 working papers, 254 papers in collective volumes, 185 disserta-
tions, and 20 books.
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exhaustive. Instead, we made a selection of the theoretical themes of research and a sample of
important applications of auction theory. As with any selection, it is prone to be biased by the
taste of the selectors. We hope that, nonetheless, a non-expert reader will get a reasonably good
picture, directly or indirectly through the references, of many of the important developments in
auctions in the past few decades.

2 First-Price Auctions: Theoretical Advances

Theoretical and empirical studies of auctions are focused almost exclusively on the prominent so-
lution concept of Nash equilibrium or more precisely Bayes-Nash equilibrium (BNE), as auctions
are games of incomplete information. However, an explicit expression of the BNE is mathemati-
cally hard to obtain and so far it is available only for simple models, subject to highly restrictive
assumptions. For example, Kaplan and Zamir (2012) provide explicit forms of the equilibrium bid
functions in an asymmetric first-price auction with two buyers whose values v1 and v2 are uniformly
distributed in [v1, v1] and [v2, v2], respectively. Furthermore, even the existence of a BNE is a dif-
ficult issue since auctions are games with discontinuous payoff functions and hence many of the
standard results on the existence of Nash equilibrium cannot be applied in a straightforward way
to auctions. Other tools, specifically tailored for this kind of model, are called for. In this section,
we highlight the main results on existence of Nash equilibrium in auctions. We will mainly focus
on auctions of a single indivisible object.5

Let us begin with the basic first-price auction model. Vickrey (1961) is the first to analyze
auctions with independent, private values drawn from a uniform distribution. Riley and Samuelson
(1981) extend Vickrey’s analysis to n symmetric buyers, with values that are independent and
identically distributed from a general distribution F that is strictly increasing and continuously
differentiable. They find that there exists a unique equilibrium that is symmetric with bid function
b(v) = v −

∫ v
v F

n−1(x)dx/Fn−1(v) for all bidders; that is, each bidder bids the conditional expec-
tation of the other bidders’ highest value given that he wins the auction. Since this contribution,
there have been various works extending it to auctions in which one or more of the key assumptions
of Riley and Samuelson no longer hold. These assumptions are symmetry and independence of the
value distributions and smoothness of the common distribution F .

2.1 Mixed-Strategy Equilibria

When one relaxes one of Riley and Samuelson’s (1981) three basic assumptions about the distri-
butions (symmetry, independence and smoothness), for a first-price auction, a pure-strategy Nash
equilibrium may not exist. A simple example is the case of two buyers each with a value drawn
from the discrete distribution of 0 and 1 each with probability 1/2. The equilibrium here is unique
and in mixed strategies. In a classic example, Vickrey (1961) shows that when one buyer’s value is
commonly known there is a unique equilibrium where that buyer uses a mixed strategy.6

5For a recent survey of existence and characterization results, see de Castro and Karney (2012).
6See Martínez-Pardina (2006) for a generalization of this situation.
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Jackson and Swinkels (2005) demonstrate that without independence even when both buyers
have private values drawn from a continuous distribution, there may not exist a pure-strategy
monotonic equilibrium in a first-price auction. As an example consider an auction with two buyers
with values v1 and v2 uniformly distributed on the triangle v1 ≥ 0, v2 ≥ 0, and v1 + v2 ≤ 1.
The intuition is that a buyer with value 1 knows that the other buyer has value 0 and hence in
equilibrium he should not bid above 0. By monotonicity, each buyer should bid 0 for all his values
,which cannot be an equilibrium.

Jackson and Swinkels then prove the existence of equilibrium in mixed strategies in a gen-
eral model that covers in particular both first-price and all-pay auctions as special cases. More
specifically, they consider an environment with multiple identical items of the same indivisible ob-
ject. Each buyer has an additive, but not necessarily linear, utility for multiple items, he is endowed
with a finite (possibly zero) number of items, and he may want to sell or buy some items. Formally,
the type θi = (ei, vi) of buyer i consists of the number ei of items that he is endowed with and his
values vi = (vi1, vi2, . . . , vi`), where vik is his marginal utility from the k-th item and ` is the total
number of items in the economy. The key assumptions of the model are that the type space Θ is
compact and the distribution F on Θ is continuous and absolutely continuous with respect to the
product of its marginal distributions (which they call imperfect correlation). Finally, the utility
functions over the payoff are assumed to be continuous.

2.2 Asymmetric Buyers: Existence of Mixed and Pure-Strategy Equilibria

The symmetry of buyers was central and crucial for the results of Milgrom and Weber (1982).
Existence results for models with asymmetric buyers were obtained by several authors, primarily
by Lebrun (1996, 2006) and by Maskin and Riley (2000b).

An early general existence result for equilibria in first-price asymmetric auctions is due
to Lebrun (1996) who proved that an equilibrium in mixed (distributional) strategies exists in an
n-buyer first-price auction for an indivisible single good, under the following assumptions:

• The value distributions F1, . . . , Fn are independent, with compact supports contained in [c,K]
for some finite c and K (c < K).
• None of the distributions Fi has an atom at c.
• The allowed bidding range is [c,K].

The condition of no atoms at c is needed to avoid payoffs discontinuities at c, with the
standard tie-breaking rule (all the highest bidders have equal probability of winning). This difficulty
can be avoided by ‘augmenting’ the game to include messages to be sent by the bidders and
to be used in case of a tie. In this augmented first-price auction, the existence is then proved
without the assumptions of no atoms at c. However, this is not very appealing: not only is this
‘augmentation’ rather artificial, but the resulting equilibrium may include buyers using weakly
dominated strategies.

This variant of an ‘augmented’ first-price auction, along with a second variant in which in
case of a tie, the object is given to the bidder with the highest value, was used in a subsequent
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paper (Lebrun, 2002) to prove (under the assumptions in Lebrun, 1996) the upper-hemicontinuity of
the Nash-equilibrium correspondence with respect to the valuation distributions. This implies the
continuity of the Nash-equilibrium under the conditions that guarantee its existence and uniqueness
(that is, when the Nash-equilibrium correspondence is single valued). Lebrun views these results
as a proof of robustness of the theoretical existence results and the usefulness of the numerical
approximations of the Nash equilibrium.

Lebrun (2006) provides results on the existence and uniqueness of the equilibrium in asym-
metric first-price auctions with n risk-neutral bidders, reserve price r, and the fair tie-breaking rule.
Lebrun makes the following assumptions:
• The value distributions F1, . . . , Fn are independent with supports [ci, di]; ci < di, i = 1 . . . n.
• For each i = 1, . . . , n, the cumulative distribution Fi is differentiable over (ci, di] with deriva-

tive (density) fi locally bounded away from zero over this interval. Assume further that
Fi(ci) = 0 for all i.

Assume without loss of generality that c1 ≥ c2 ≥ ci for all i ≥ 2; then the main result is:

Theorem 1 If the above assumptions hold and no bidder bids above his value, then under any of
the following conditions, the first-price auction has one and only one equilibrium: (i) r > c1; (ii)
c1 > c2; (iii) There exists δ > 0 such that Fi is strictly log-concave over (c1, c1 + δ)

⋂
(ci, di), for

all i ≥ 1, that is, fi/Fi, the reverse hazard rate, is strictly decreasing over this interval.7

2.3 Relaxation of Symmetry and Independence

Athey (2001) proves existence of a Bayes-Nash equilibrium in nondecreasing pure strategies for a
large class of games of incomplete information. Her general result was widely used and in particular
it was adapted and used for auctions by Athey herself and other authors (e.g., Reny and Zamir,
2004, to be discussed below). The novelty of Athey’s work is that for studying the question of
existence of pure-strategy Nash equilibrium (PSNE), which is basically a fixed-point problem, she
introduces the single-crossing condition (SCC) which plays a central role in the proof of existence.
Verifying this condition requires comparative statics analysis for a single-player problem (which is a
simpler problem than showing the existence of a fixed point). The SCC of Athey is built on a related
notion of single-crossing property due to Milgrom and Shannon (1994), who developed comparative
statics analysis using only conditions that are ordinal (that is, invariant under order-preserving
transformations of the utilities). Let X be a lattice, Θ a partially ordered set, and h : X ×Θ→ R
a real function on the product set.

Definition 2 The function h : R2 → R satisfies the (Milgrom-Shannon) single-crossing property of
incremental returns (SCP-IR) in (x; θ) if, for all xH > xL and all θH > θL, h(xH , θL)−h(xL, θL) ≥
(>)0 implies h(xH , θH)−h(xL, θH) ≥ (>)0. The function h satisfies weak SCP-IR if for all xH > xL
and all θH > θL, h(xH , θL)− h(xL, θL) > 0 implies h(xH , θH)− h(xL, θH) ≥ 0.

This condition requires that the incremental return to x, h(xH , ·) − h(xL, ·), as a function
of θ, crosses zero at most once, from below.

7For more about the role of log-concave probability in auction theory, see Bergstrom and Bagnoli (2005).
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Athey considers a game of incomplete information with a finite set of players I = {1, . . . , I}.
The players’ type sets are intervals in the real line, Ti = [ti, ti], and the action sets are compact
convex sets in the real line, Ai ⊂ R. The prior probability on the types is assumed to have density
(with respect to the Lebesgue measure). Finally a technical integrability condition is assumed on the
utility functions (henceforth Assumption (A1)) to ensure that the objective function Ui(ai, ti;α−i)
of player i of type ti, when all other players are using nondecreasing strategies α−i, is well defined
and finite. For this model, she defines the following single-crossing condition.

Definition 3 The Single-Crossing Condition for games of incomplete information (SCC) is satis-
fied if for each player i ∈ I, whenever every other player j 6= i uses a strategy αj that is nondecreas-
ing (in his type), player i’s objective function, Ui(ai, ti;α−i), satisfies single crossing of incremental
returns (SCP-IR) in (ai; ti).

The method adopted by Athey to prove that the SCC is sufficient for the existence of PSNE
is to prove it first for the case of finite action sets and then, for the case of a continuum of actions,
to use a sequence of appropriately designed grid approximations to prove that a certain selection
of a sequence of monotone PSNE for the finite approximations converges to a monotone PSNE in
the original game. The result for finite action sets is:

Theorem 4 If Assumption (A1) is satisfied, SCC holds, and the action set Ai is finite for all i ∈ I,
then the game has a PSNE where each player’s equilibrium strategy, βi(·), is nondecreasing.

The results for continuous actions sets are derived from Theorem 4 and the following theo-
rem.

Theorem 5 If Assumption (A1) is satisfied and the following hold: (i) for all i ∈ I, Ai = [ai, ai],
(ii) for all i ∈ I, ui(a, t) is continuous in a, and (iii) for any finite A′ ⊂ A =×i∈I Ai, a PSNE
exists in nondecreasing strategies, then a PSNE exists in nondecreasing strategies in the game where
players choose actions from A.

Athey applies these results to supermodular and log-supermodular utility functions and
affiliated types. Then she shows that the results can be extended with additional assumptions to
certain cases of discontinuous utility functions that include some auction games. However, a more
general result on the existence of PSNE in asymmetric first-price auctions using Athey’s result was
given by Reny and Zamir (2004) (henceforth RZ).

RZ notice that the SCC can fail in two possible ways. First, if there are ties at winning bids
and, second, if a buyer uses a strategy that yields a negative payoff. They define a single-crossing
condition that states that SCC holds whenever we avoid these two possibilities.

Definition 6 The Individually Rational, Tieless, Single-Crossing Condition (IRT-SCC) is satisfied
if for each player i ∈ I, actions ai, a′i, and nondecreasing strategies αj such that Pr(maxj 6=i αj(·) =
ai or a′i) = 0, Ui(a′i, ti;α−i) ≥ 0, then Ui(a′i, ti;α−i) ≥ Ui(ai, ti;α−i) is maintained when ti rises if
a′i > ai and when ti falls if a′i < ai.
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Using their definition IRT-SCC, RZ are able to prove the existence of PSNE for asymmetric
buyers, interdependent values, and affiliated one-dimensional signals. They note, by way of a
counterexample, that these results cannot extend to multidimensional signals.

A further significant generalization was obtained by Reny (2011), who proved the existence
of monotone pure-strategy equilibria in Bayesian games with locally complete metric semilattices
action spaces and type spaces that are partially ordered probability spaces. The novel idea that
enabled this generalization was to use the Eilenberg and Montgomery (1946) fixed-point theorem
rather than the Kakutani’s fixed-point theorem used in Athey (2001). The point is that while
Kakutani’s theorem requires that the sets of monotone pure-strategy best replies be convex, which
may be hard to establish, the Eilenberg and Montgomery fixed-point theorem requires that these
sets be contractible. This condition turns out to be rather easy to verify for the general class of
Bayesian games studied by Reny. Finally, we note that in a recent unpublished work Zheng (2013)
proves the existence of a monotone PSNE in a first-price auction with (endogenous) resale.

2.4 Monotonicity and the Role of Tie-Breaking Rules

The study of Nash equilibrium in first-price auctions has concentrated primarily on monotone
pure-strategy equilibria (MPSE). Whenever the existence of such MPSE is established, the natural
questions to be asked are: Is there only one MPSE? Are there any non-monotone pure-strategy
equilibria? Are there mixed-strategy equilibria (MSE)? These questions, which turned out to be
related to each other, were partially or fully answered for various models (under various sets of
assumptions), and some are not answered to date. The answers to these questions also often hinge
on the tie-breaking rule used. For example, in the general symmetric model of Milgrom and Weber
(1982) where they established a unique symmetric MPSE, it was only 24 years later that McAdams
(2006) proved that there are no asymmetric MPSE and in a subsequent paper, McAdams (2007a),
he ruled out non-monotone equilibria in this model (including mixed-strategy equilibria).8 In these
works, McAdams considered two tie-breaking rules:

• The standard coin-flip rule according to which the winner of the object is chosen by a uniform
probability distribution over the set of buyers who submitted the highest bid.
• The priority rule according to which the winner is the buyer with the highest rank in a
pre-specified (prior to the bidding) order (permutation) of the buyers.

The results of McAdams are for a general asymmetric model with any (finite) number of
buyers with affiliated types and interdependent values. More precisely, he considers the general
model of Reny and Zamir (2004) restricted by the additional assumption that the utility functions
are strictly decreasing in the bids. In addition he considered two types of bidding sets: the con-
tinuum price grid where bi ∈ [0,∞) and the general price grid where the bids are restricted to an
arbitrary subset of bi ∈ [0,∞). For this model, McAdams proves that:

• Given a continuum price grid and the coin-flip rule, every MSE of the first-price auction with
no ties is outcome-equivalent to some MPSE.

8Earlier and weaker results in this direction were obtained in Rodriguez (2000).
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• Given a general price grid and the priority rule, every MSE of the first-price auction is
outcome-equivalent to some MPSE.
• Given the coin-flip rule, every MPSE of the first-price auction has no ties.

Thus, non-monotone equilibria can exist under the coin-flip rule but they are distinguish-
able: all non-monotone equilibria have positive probability of ties whereas all monotone equilibria
have zero probability of ties. McAdams provided an example of a non-monotone pure-strategy
equilibrium in a first-price auction (such an example requires three buyers with affiliated types and
interdependent values).

In yet another paper, McAdams (2007b) addressed the issue of the uniqueness of the MPSE
proved to exist in the RZ model. He proves this uniqueness under considerable restriction of the
RZ model. In particular he assumes a symmetric model (roughly: the distribution and the utilities
are invariant to any permutation of the buyers). For this he proves:

• There is a unique MPSE in the symmetric first-price auction, up to the bids made by a set
of measure zero of types.

2.5 Revenue Comparisons

An important property of symmetric auctions with independent private values that is lost as soon as
we relax the symmetry condition is revenue equivalence among a large class of auctions. Although
symmetry is not a condition in the Revenue Equivalence Theorem of Myerson (1981), the asymmetry
implies different equilibrium allocations for different types of auctions (e.g., first-price and second-
price auctions), which violates the requirement that equilibrium allocations be the same. Now, the
investigation of revenue comparisons between selling mechanisms in general and types of auctions
in particular naturally follows. This comparison turns out to be rather difficult, and so far, no
strong general results are available. Even the question of which of the two auctions, first price or
second price, generates a higher revenue in an asymmetric setting is very partially answered. In
this subsection, we review some of these results.

Maskin and Riley (2000a) study an asymmetric environment with two buyers: a strong
one and a weak one. This ranking of the buyers means that the distribution of the strong buyer’s
value, Fs, Conditionally Stochastic Dominates (CSD) the distribution of the weak buyer’s value,
Fw. Formally, CSD is defined as follows. For all x < y in the common support of Fs and Fw,

Pr{vs < x|vs < y} = Fs(x)
Fs(y) <

Fw(x)
Fw(y) = Pr{vw < x|vw < y}.

Under CSD,9 in a first-price auction, the weak buyer bids more aggressively than a strong
buyer. Furthermore, a strong buyer would prefer a second-price auction while a weak buyer would
prefer a first-price auction. Revenue comparisons between the two formats are mixed. When
there is a shift (Fs(x + α) = Fw(x), α > 0) or stretch (e.g., for distributions that start at zero,
Fs(x) = α · Fw(x), 0 < α < 1, holds on the common support) a first-price auction generates higher

9Maskin and Riley (2000a) use a weaker definition.
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revenue, while when there is a move of probability to the lower end of the support, a second-price
auction generates higher revenue (Fw(x) = α · Fs(x) + δ, 0 < α < 1, δ = 1− α).10

Kirkegaard (2012) expands Maskin and Riley’s (2000a) revenue comparison between first-
price and second-price auctions. He finds that under CSD, no atoms, and the condition

∫ F−1
s (Fw(x))

x (fw(x)−
fs(y))dy ≥ 0 for all x, a first-price auction generates higher revenue than a second-price auction.
This also holds in the presence of a reserve price. Kirkegaard (2014) provides additional sufficient
conditions for revenue comparisons of first-price and second-price auctions. Outside the indepen-
dent private value model, de Castro (2012) finds that with certain cases of dependence, revenue in
a first-price auction may be higher than that in a second-price auction even under symmetry, in
contrast to Milgrom and Weber (1982), who find the opposite holds in the case of affiliated values.

3 Multi-Unit Auctions

The literature on multi-unit auctions for environments in which buyers exhibit demand for multiple
units of the same good is of great practical importance. The U.S. government treasury auctions
three trillion dollars worth of securities annually (to finance public debts). The underpricing of one
cent per $100 would lead to a loss of $300 million!

Treasury auctions are typically sealed-bid auctions in which each buyer submits a demand
function (either as the total price P (x) that he is willing to pay for x units, or equivalently his
marginal bid p(x) for the x-th unit). The submitted demands determine a clearing price and
there are two commonly used pricing methods: uniform pricing, in which all units are sold at the
highest price that clears the market, and discriminatory pricing, in which each buyer pays his own
bid (for the units that he won). In practice, both pricing methods are used in treasury auctions
of various countries and empirically it is not clear which one generates higher revenue (see, for
example, Bartolini and Cottarelli, 1997, Binmore and Swierzbinski, 2000, and Brener et al., 2009).
Theoretically, it is known that both types of auctions are inefficient (see, for example, Wilson,
1979, Back and Zender, 1993, and Ausubel et al., 2013) and both are vulnerable to manipulation
and cooperative behavior among buyers (see Goswami et al., 1996, Kremer and Nyborg, 2003). In
addition to sealed-bid auctions, ascending auctions are commonly used in wine auctions (see Février
et al., 2005), timber auctions (see Athey and Levin, 2001, and Athey et al., 2011), spectrum auctions
(see Section 10), and other instances where multiple units of the same object or similar objects are
for sale. These can be run either simultaneously or sequentially.

3.1 Efficient Ascending-Bid Auctions

Effective auction design is guided by two principles; both are related to information. The first
principle is that the price paid by the winner should be independent of his own bid, inducing the
buyer to reveal his information (his true value of the good).11 This was achieved brilliantly by

10For more precise (and general) definitions of shifts, stretches, and probability moves, see Maskin and Riley
(2000a).

11The independence of the price of the bidder’s own bid is not a sufficient condition for bidding the true value in
equilibrium. As an example, in the equilibrium a third-price auction (of a single-unit indivisible object and symmetric
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Vickrey in the second-price auction and was later generalized to the Vickrey-Clarke-Groves (VCG)
mechanism. The second principle is to maximize the information of each bidder when placing
his bid, as in the English ascending auction. This principle is important if the objective of the
design is revenue maximization. When the buyers’ values for the object are interdependent and
signals are affiliated (roughly speaking, positively correlated), gathering more information about
the other bidders’ signals will typically induce buyers to bid more aggressively and hence increase
seller revenue (increasing the expectation of the second-highest bid).12

Ausubel (2004) proposes an efficient auction design with these two features for multi-unit
auctions. He calls it a “dynamic auction” but it is not dynamic in the same sense as in the dynamic
auction literature where the dynamic component is either that of the buyers’ population or that of
the information available to a fixed population of buyers. The dynamic in Ausubel’s auction is that
of the auction mechanism: information is revealed (implicitly) during the process as the buyers
change their demand with the change of prices. It is a dynamic auction in the same sense that the
ascending English auction is dynamic. It could therefore be called an open multi-unit auction.13

The starting point of Ausubel is what he calls the ‘static multi-unit Vickrey auction,’ which
is actually the VCG mechanism for selling homogeneous items. This is a sealed-bid auction that
generalizes the second-price auction to multiple units: each buyer submits a sealed-bid demand
function, which with discrete items is a list of prices that he is willing to pay for the first, second,
third item, etc. A market clearing price is determined (where the number of bids above or equal to
that price equals the number of units available). Each bid exceeding the clearing price is winning
and for each unit won the buyer pays the opportunity cost of assigning this unit to him, that is,
the bid of the buyer (other than himself) that was rejected as a result of him receiving the unit.
For example, if a buyer receives two items, and the highest rejected prices other than his own were
5 and 3, he pays 5 for his first unit and 3 for his second. Note that these are neither the uniform
nor the discriminatory prices and, just as in the second-price auction for a single unit, the prices
paid by the buyer are independent of his bids for these two units (which are each of course at least
5). 14 The declared objective of Ausubel in this work was to design an open ascending auction that
generalizes the single-unit English clock auction and is analogous to the multi-unit Vickrey auction
in the same way that the English auction is analogous to the second-price auction for a single unit.

setting), every bidder bids more than his value (see Kagel and Levin, 1993). It is also not a necessary condition since
in an environment having two buyers with values independently drawn from the uniform distribution, a first-price
auction where the winning bidder pays half his bid will induce truthful bidding.

12However, it is not always true that the seller’s revenue increases monotonically as more information is given to the
buyers. A counterexample is provided by Landsberger et al. (2001), who show that when the (two) buyers (in addition
to privately knowing their own values) commonly know (only) the ranking of their values, the revenue is higher than
the case of complete information when the values are commonly known. This was also shown in Kaplan and Zamir
(2000) in the context of the strategic use of seller information in a private-value first-price auction: revealing only
part of his information may yield the seller higher revenue than revealing all of it.

13In the auction literature, it is also referred to as the Ausubel auction.
14For the pure independent private-value setting, the Vickrey multi-unit auction achieves an (ex-post) efficient

outcome. This need not be the case when the values are interdependent. Perry and Reny (2002) modify the Vickrey
auction to obtain efficiency also in the case of interdependent values (while maintaining the assumptions that the
objects for sale are homogeneous and that each bidder’s demand is downward sloping). Their mechanism consists of
a collection of second-price auctions between each pair of bidders conducted over at most two rounds of bidding.

12



For a homogeneous multi-unit auction of M units for sale, the auction proceeds as follows:
starting at a low per-unit price, the auctioneer raises the price continuously (or in discrete steps)
while each of the buyers posts his demand (i.e., the number of units he is willing to buy) at the
current price. The auction ends with the price at which the total demand equals the number of
units offered for sale and each buyer receives the number of items that he demanded at this price.
The payment made by each buyer is calculated as follows. As the process of increasing the price
proceeds, at each price pt for which the demand d(pt) at that price drops (by one unit or more),
and d(pt) ≥M , it is determined whether for buyer i the demand d−i(pt) of all other buyers at that
price is strictly less than M , that is, whether d−i(pt) = M − k where k > 0. If so, then buyer i has
clinched winning k units. If his last clinch at a previous stage was at price pt′ when the demand of
all other buyers was d−i(pt′) = M − k′, then buyer i pays a price pt for each of the last (k − k′)
units. In other words, the buyer buys “the newly clinched” units for the price pt at which they
were clinched.15

Illustrating the process is the following example of Ausubel (2004), loosely patterned after
the first U.S. Nationwide Narrowband Auction in which there were five spectrum licenses and five
bidders with the limitation that each can buy only up to three licenses. The bidders marginal
values for the licenses (their inverse demand functions) are given as columns in Table 1 in millions
of dollars.

Unit A B C D E
1 123 75 125 85 45
2 113 5 125 65 25
3 103 3 49 7 5

Table 1: Marginal values of the buyers in Ausubel’s (2004) example.

When the auctioneer starts from a low price, say 10, the demands will be (3, 1, 3, 2, 2) for
bidders (A,B,C,D,E), respectively. As the price goes up (say continuously), the demands become
(3, 1, 3, 2, 1) at price p = 25 (a bidder chooses not to buy when indifferent), then (3, 1, 3, 2, 0) at
price p = 45, then (3, 1, 2, 2, 0) at price p = 49, and then (3, 1, 2, 1, 0) at price p = 65. At this price,
the total demand is 7, which still exceeds the supply of 5. Yet, the total demand of all bidders but
A is 4 = 5 − 1. In the language of Ausubel, ‘bidder A has clinched winning one unit’ at price 65
(expressing the fact that at that point it was guaranteed that he would end up with at least one
unit). At price p = 75, the demand drops to (3, 0, 2, 1, 0) and bidder A clinches winning two items,
paying 75 for his second item, and bidder C clinches one item at price 75. The total demand is
still higher than the supply and so the price goes on increasing until it reaches p = 85, where the
demand becomes (3, 0, 2, 0, 0) and hence supply equals demand. At this price 85, bidder A clinches

15If the demand drops from d(pt−1) > M to d(pt) < M , then the total number of units clinched will exceed the
supply M and the process ends at time t. (For example, the supply is 10, there are two symmetric buyers, there are 0
clinched units at t − 1, and the demand drops to d(pt) = 8. Here, each buyer would clinch 10-(8/2)=6 units.) In this
case, there may be many possible methods to assign a market clearing allocation of the objects, including random
allocation.

13



his third unit (3 = 5 − 2) and bidder C clinches his second unit (2 = 5 − 3). The outcome of the
auction is therefore: bidder A wins three licenses and pays 65 + 75 + 85 = 225 million, and bidder
C wins two licenses and pays 75 + 85 = 160 million.

This mechanism yields an efficient allocation: the process allocates the items to the buyers
who value them the most, and for this homogeneous discrete multi-item environment with inde-
pendent values it yields the same allocation as the sealed-bid multi-unit Vickrey auction described
previously.

For comparison, in a uniform-price ascending-clock auction, the closing price in this example
would be 75 (assuming full information), buyer A would reduce his demand and ask for two items
at price 75 and end the auction (preferring to get two items at price 75 each rather than three
items at price 85 each) with the inefficient allocation (2, 0, 2, 1, 0). Furthermore, the example can
be slightly perturbed to make this inefficient outcome the unique outcome of iterated elimination
of weakly dominated strategies.

The Ausubel model is for independent values but otherwise it is quite general: it allows
for both discrete and divisible objects, both complete information when demand functions are
commonly known, and incomplete information when demand functions are only privately known.
Ausubel considers two versions of the model, one with a continuous-time clock and one with a
discrete-time clock. For private values, the main result about this mechanism which he calls ‘the
alternative ascending-bid auction’ is that sincere bidding by all bidders is an ex-post perfect equi-
librium yielding the efficient outcome of the multi-unit Vickrey auction.

To provide a generalization of the Milgrom-Weber model of interdependent values, Ausubel
needs to make some assumptions and limit his general model. He considers a continuous-time game
with symmetric interdependent values. A seller offers M discrete and indivisible homogeneous
goods. Each buyer i has constant marginal utility vi for each unit up to a capacity of λi units
and zero marginal utility for any additional unit beyond this capacity. The marginal values vi are
interdependent: they are derived from affiliated private signals. The main result for this model is
that if all buyers have the same capacity λ, and M/λ is an integer, then under certain assumptions
(analogous to those in the Milgrom-Weber model) both the multi-unit Vickrey auction and the
alternative ascending-bid auction attain full efficiency. However, the alternative ascending-bid
auction yields the same or higher expected revenue than the multi-unit Vickrey auction. This
is analogue to the the Milgrom and Weber result for a single-unit auction: with affiliation, the
ascending English auction generates higher revenue than its sealed-bid analogue, the second-price
auction.

3.2 Multiple Heterogeneous Items

In a subsequent paper, Ausubel (2006) extends his multi-unit open ascending auction to K het-
erogeneous commodities with available supply S = (S1, . . . , SK) among n buyers. The starting
point of Ausubel’s mechanism is the Walrasian Tâtonnement process (also known as dynamic clock
auction). One application of such auctions is to sell spectrum rights where many licenses are sold
simultaneously and may vary slightly (see the subsequent section of this chapter for further dis-
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cussion). In this selling mechanism, a ‘fictitious’ auctioneer announces a price vector for the K
commodities and the buyers report their demand (vectors), the auctioneer then adjusts the prices
by increasing the prices of commodities with positive excess demand and decreasing the prices of
commodities with negative excess demand. The process continues until a price is reached in which
demand equals supply for all commodities. The trade takes place only at the final (market clearing)
price and the buyers’ payments are linear in quantities; all buyers pay the same price for all units
of the same commodity that was allocated to them.

This process is vulnerable to strategic manipulation as the linear payment method provides
an incentive for the bidders to underreport their true demand at the announced price (see Ausubel,
2004, for the ascending auction, and Ausubel, 2002, for the sealed-bid auction.) Consequently the
process typically does not result in a Walrasian outcome. An extreme empirical demonstration of
this is the GSM spectrum auction in Germany (see Grimm et al., 2003, and Riedel and Wolfstetter,
2006). To overcome this drawback, Ausubel replaces the linear pricing by the non-linear pricing in
‘clinches’ introduced in his above-described one-commodity multi-unit ascending auction. Similarly
to the process in the homogeneous case, the price vector P (t) is changing (according to an adapted
Walrasian Tâtonnement process), and units of each commodity ` are allocated (clinched) to buyer i
at that price P`(t) when the demand of all other buyers for that commodity is less than the available
supply S`. Thus, in Ausubel’s dynamic mechanism, payments are made along the process and they
are determined by the prices at various points in time. Hence, buyers pay different prices for units
of the same commodity clinched to them at different stages in the process. As a result, there are
technical issues to ensure that payments are well defined, i.e., do not depend on the trajectory of
the price vector p(t) provided it satisfies certain conditions.

When a bundle of heterogeneous objects is purchased by a bidder in an auction, there is
the issue of complementarity and substitutability of different commodities that affects the efficiency
of the auction. For his open ascending auction, Ausubel assumes a substitutes condition (or gross
substitutes) which is needed for the existence of Walrasian equilibrium. This condition requires that
if the prices of some commodities are increased while the prices of the remaining commodities are
held constant, then a bidder’s sincere demand weakly increases for each of the commodities whose
prices were held constant.

The issue of complementarity was raised in environments where heterogeneous objects are
sold in separate auctions. As it was pointed out in Milgrom (2000), this situation may lead to
inefficiency due to what is called exposure: a bidder may purchase object A while paying more
than his value for A alone or a bidder may purchase bundle AB while paying more than his value
for the bundle. This situation may occur, for instance, if, while bidding for A, the price of the
complementary object B is not yet determined. The price of B may eventually be too high for it
to be worthwhile to purchase B, or the marginal benefit of purchasing B may be worthwhile but
the total purchase price of bundle AB is higher than its value to the bidder.16

Zheng (2012) considers a sale of two objects A and B with two types of bidders: one type is
interested in only one object and another type has an added value for the bundle AB. The author

16See Szentes and Rosenthal (2003a, 2003b) for the exposure problem in the chopsticks auction.
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designs a mechanism consisting of two simultaneous ascending English auctions modified so as to
allow for jump bidding (and other rules accompanying it). The author shows that this modified
auction can avoid exposure and restore efficiency since the jump bids can serve as signals.

For divisible goods and strictly concave utility functions and mandatory participation,
Ausubel proves that sincere bidding by every buyer is an ex-post perfect equilibrium of the auction
game. With sincere bidding, the price vector converges to a Walrasian equilibrium price vector and
the outcome is that of a modified VCG mechanism with the same initial price vector P (0).

For the algorithmic aspects of multi-unit auctions see the chapter “Algorithmic Mechanism
Design” in this Handbook.

4 Dynamic Auctions

The literature on dynamic auctions provides natural extensions to the well-established static auc-
tions theory to common economic environments: situations where the populations of sellers and
buyers, the amount of goods for sale, and the state of information of the various agents are changing
dynamically. These changes present the agents and the market designers with dynamic decision
problems. Examples are airlines managing their prices when customers enter the market at different
times, government surplus auctions where the amount being sold is stochastically changing, owners
of internet search engines managing their advertisements when the number of people searching for
terms varies, and selling a start-up company when the actual value becomes clearer over time.

The framework of modeling and analyzing such economic environments is that of dynamic
mechanism design within which dynamic auctions are a special case of such mechanisms. There
is no clear line between the two bodies of literature and often a paper with the title ‘Dynamic
Auctions’ is actually a paper on ‘Dynamic Mechanism Design’. This is the case with the survey by
Bergemann and Said (2011). This paper surveys the literature on dynamic mechanism design by
grouping it in a two dimensional way. In the first dimension the distinction is between models in
which the population of agents change over time while their private information is fixed and models
in which the population of agents is fixed but the information of the agents is changing over time.
In the second dimension, they group the works according to whether they aim to find mechanisms
maximizing social welfare or maximizing revenue.

4.1 Dynamic Population

Due to the mathematical difficulties involved, each work studies a very special case resulting from
restrictions and assumptions that have various degrees of plausibility. For this reason, it is hard
to compare results obtained by different authors. The common approach to model a changing
population of bidders is to have potential bidders enter (or possibly depart from) the market by
some exogenous or endogenous process. Crémer et al. (2007) study a mechanism design problem in
which a seller wishes to sell a single unit of an indivisible object to one of a finite set I of potential
buyers. The problem becomes dynamic since the seller has to contact prospective bidders, at a
cost, and bring the auction to their attention. He incurs a cost of ci (which they call a search
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cost) to inform bidder i about the rules of the auction, the identity of the other bidders, and the
distribution of their valuations. Bidder i then privately learns his type xi and decides whether to
participate or not. If he agrees to participate, he signs a binding contingency contract. While the
types of the bidders are independent, there are interdependent valuations of the object: bidder i’s
value is ui(x1, . . . , xI) = xi +

∑
j 6=i eij(xj). All bidders have the same discount factor δ ∈ (0, 1].

At the start of each period t the seller approaches a set of potential entrants. Those who
decide to enter (after learning their type) and sign a contract send a message to the seller who
decides whether to stop the mechanism and sell the object to one of the participants (entrants and
incumbents) according to the contracts or to approach new bidders. There are variants of informa-
tion disclosure policies, whether or not the seller reveals to the new entrants the messages received
in previous stages. In principle, bidders may send a message at each stage they participate in but
there is no loss of generality in limiting the mechanism to a single message at the entering stage.
The authors apply a revelation principle argument to observe that any perfect Bayes equilibrium
(PBE) outcome can be obtained by an incentive feasible mechanism in which the bidders communi-
cate their types truthfully. The main result is that under some technical differentiability conditions,
the optimal (seller’s profit-maximizing) mechanism is an optimal search procedure relative to the
ex-post virtual utility functions Vi(x1, . . . , xI) = xi− 1−Fi(xi)

fi(xi) +
∑
j 6=i eij(xj). An interesting part of

the result is that the seller’s optimal revenue does not depend on the information disclosure policy
adopted.

For the special case of private values (eij(·) = 0 for all i, j) and δ = 1, the optimal mechanism
can be implemented by a sequence of Myerson’s optimal auctions where a new entrant joins at each
period as long as the object is not sold. In the symmetric case where the bidders have the same
distribution of values, the mechanism consists of a sequence of second-price auctions with a reserve
price that declines over time. Crémer et al. show that in this special case the optimal design
problem is similar to the Weitzman (1979) pandora problem of searching for the highest reward
box when only one box can be opened (at a cost) at each period.

In a subsequent paper, Crémer et al. (2009) consider a variant of the model where the costly
recruitment of bidders by the seller is replaced by a cost for a bidder to find out his valuation. The
seller can force the bidder to pay an entry fee before finding out his type. They show that the seller
can obtain the same profit as if he had full control over the bidders’ acquisition of information and
could directly observe their valuations once they are informed (intuitively because the bidders are
ex-ante identical).

As we move to multiple units for sale, Vulcano et al. (2002) and Pai and Vohra (2013) have
similar models in which a seller with K identical items for sale faces a random arrival of buyers with
a demand for one unit. The value for the item and the latest time that it has to be purchased by
are the private information of the arriving buyer. Both papers address the revenue maximization
problem. Board and Skrzypacz (2013) consider a seller with K identical indivisible items for sale in
a discrete time span of {1, . . . , T}. At time t, a random number Nt of buyers arrive to the market
where {Nt}∞t=1 are i.i.d. random variables. The number of buyers is observed by the seller but
not by the buyers. Each buyer is interested in a single unit for which he has value vi (his private
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information). The values are also i.i.d. There is a discount factor δ for the buyers’ utilities.17

Compared to the Crémer et al. model, in the Board and Skrzypacz model the seller has multiple
units of the same object rather than one, the set of potential buyers is infinite, and the process
of entering the market is random and exogenously given (while it is controlled strategically by the
seller in the Crémer et al. model). The values are assumed to be i.i.d. while Crémer et al. allow for
interdependent values.

The authors design a selling mechanism in which a buyer, when entering the market and
observing his value vi, declares his value to be ṽi and the mechanism determines (probabilistically)
the allocation and the transfers. They prove that the optimal (profit-maximizing) allocation is
obtained by the following mechanism: at time t with k units left to sell, the seller sells the next
unit to the highest-valued agent with a value exceeding a certain cutoff xkt . Interestingly, the cutoff
level xkt depends on the time remaining and the number of items for sale but not on the number of
agents who have entered in the past and their values. The endogenously determined cutoffs xkt are
decreasing both in t and k. The cutoff xkt is determined by an equation asserting that the seller is
indifferent between selling to the agent with the cutoff value today and waiting one more period.

The implementation is achieved by setting, for t < T , prices pkt such that the ‘cutoff agent’
with value xkt will be indifferent between buying and not buying. At the last period t = T , the
seller allocates the items to the k-highest-value buyers, subject to these values exceeding the static
monopoly price. Note that it is sufficient to base these prices only on the items remaining. For
example, the price for an item in period 3 would be the same if three items were allocated in period
1 and one item in period 2 or two items were allocated in each period.

For the case of a single item (K = 1), this allocation can be implemented by a sequence of
second-price auctions with pre-determined reserve prices Rt. For the multiple-item case (K > 1),
a sequence of second-price auctions cannot implement the optimal allocation since the optimal
allocation may have more than one item allocated in the first period. The optimal allocation
in period 2 depends upon how many items were allocated in period 1. Hence, if a second-price
auctions with reserve prices were to be used to implement the optimal allocation, then the second-
period reserve prices would need to be a function of how many items were sold in the first period
(or equivalently the number of items remaining to be sold). Thus, as with prices in the optimal
allocation, the mechanism needs to have reserve prices that depend upon the period and the number
of remaining items, that is, Rkt .

Board and Skrzypacz also consider the continuous time version of the model in which buyers
enter the market according to a Poisson process at arrival rate λ, and instantaneous discount rate
r. The optimal mechanism becomes simpler to implement in this case since at any time instant t
at most one unit is sold. The cutoff values xkt are determined as before but now by the continuous
form of the indifference condition for the seller. The implementation is made by setting a take-it-or-
leave-it selling price pkt that makes the agent with value equal to the cutoff xkt indifferent between
buying at time t and waiting.

17For a model of allocating heterogeneous objects to impatient agents arriving sequentially (with privately known
characteristics) see Gershkov and Moldovanu (2009).
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4.2 Repeated Ascending-Price Auctions

Said (2008) highlights the difference between static and dynamic auctions by demonstrating that
even with a single object for sale and a random arrival of buyers (similar to the Board and Skrzypacz
model) repeated sealed-bid second-price auctions may not lead to an efficient allocation.

In his leading example, two buyers are present in the market with values v1, v2 ∈ [0, 1],
and w.l.o.g. assume v1 > v2. A third potential buyer with value v3 ∼ F , where F is the uniform
distribution on [0, 1], may enter the market with probability q ∈ [0, 1]. Assume that v1 and v2 are
commonly known by the players but the value v3 of the new entrant is his private information. Each
buyer wishes to purchase exactly one unit of the object. There are three units that are sold via a
sequence of three second-price auctions in which the buyers’ bids are revealed after each round and
subsequent rounds are discounted by δ per period. Note that at the first round, buyers 1 and 2 do
not know whether buyer 3 has entered or not but, as the bids of the first round are announced, this
becomes known to them in the second and third rounds. The efficient allocation should have the
highest-valued buyer receiving the unit in the first round, the second-highest-valued buyer receiving
the unit in round 2, and the third-highest-valued buyer (if there is one) receiving the last unit.

To see why this situation may lead to inefficiency, let us sketch the equilibrium of the specific
case (adapted from Said, 2008) in which v1 = 2

3 , v2 = 1
3 , δ = 9

10 , and q > 0. Buyer 1 knows that
even if he loses the first round there is a probability of 1−q that he will be alone in the next round,
will receive an item at price zero, and obtain a utility of δ times his value. Therefore, his bid in
the first round will be at most (1− (1− q)δ)v1 = (0.1 + 0.9q)v1, which is considerably lower than
his value for small q. The same holds for buyer 2.

However, unlike buyers 1 and 2, buyer 3 knows whether or not he has entered the market
in round 1. If entering in round 1, buyer 3 knows that he cannot pay zero for the item in round 2
since he would face another buyer. Since in any equilibrium, in round 1, buyer 1 outbids buyer 2,
in round 2 buyer 3 faces buyer 2 who bids (1 − δ)v2 (since the round 3 price is zero). From this,
if buyer 3’s value is larger than 1

3 , then his potential round 2 profit is v3 − 1
3(1− δ). Therefore, in

round 1, buyer 3 will bid v3 − (v3 − 1
3(1− δ))δ = 0.1v3 + 0.03. Consequently, for small enough q, a

buyer 3 entering the market with value slightly less than v1 = 2/3 will win the first item, which is
inefficient. This happens when 0.1v3 + 0.03 > (0.1 + 0.9q)v1, for example, v3 = 0.6 and q = 0.03.

The author suggests that this result is driven first by the fact that the future is discounted
and hence the order in which objects are allocated matters. But more importantly, there is a
fundamental information asymmetry: while the values of buyers 1 and 2 and their presence are
commonly known, the presence of the new entrant and his value are his private information. With
this insight, Said shows that efficiency is recovered if the sealed-bid second-price auction is replaced
by its open-auction counterpart, namely, the open ascending price auction (while there is still one
object per round). The intuition is that with this auction more information is revealed to make up
for the initial asymmetry of information.

In a subsequent paper, Said (2012), building on this insight, proves similar results; namely,
the repeated sealed-bid second-price auction is inefficient while an appropriate repeated ascending
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auction is efficient. However, this cannot be viewed as a ‘more general’ result since the model
here differs from the one in Said’s previous work. In Said’s (2012) model, the author considers an
infinite-horizon discrete-time process with a single seller. In each period t ∈ N, the seller has Kt

units of a homogeneous and indivisible good available for sale. The amounts Kt are independently
distributed according to µt. Objects are perishable: any object that is not allocated or sold perishes
at the end of each period. Each period t begins with the arrival of Nt buyers. The variables {Nt}∞t=1
are independent with distributions λt; t = 1, 2, . . .. Each buyer i present in the market wishes to
obtain a single unit and is endowed with a privately-known value vi for that single unit. The values
vi are independent and with distributions Fi. In addition, buyers may exogenously depart from
the market (and never return) after each period, where the (common) probability of any buyer i
surviving from period t to t+ 1 is γt ∈ [0, 1]. Otherwise, buyers remain present on the market until
they obtain an object. Buyers are risk neutral, with quasilinear and time-separable preferences.
All buyers, as well as the seller, discount the future with the common discount factor δ ∈ (0, 1).
Finally, it is assumed that every buyer is aware of the presence of all other buyers in the market.

In this model, Said shows first that a sequence of second-price sealed-bid auctions with no
bid disclosure does not admit an efficient equilibrium. Again, the main reason is that the dynamics
creates asymmetry of beliefs between the incumbents and the entrants: the incumbents of a certain
round are the losers of the previous round, and each knows his bid and the information disclosed
at the end of the previous round (e.g., selling prices). Thus, an incumbent has information on
the other incumbents that the new entrant at this period does not have. Also, even when private
values are independent, market dynamics and repeated competition generate interdependence: the
value of winning an object in a round compared to not winning it in that round depends upon the
opportunity cost of not participating in subsequent rounds. This opportunity cost depends upon
the competitors’ values. Thus, the net values are interdependent.

Here again, efficiency can be restored, by replacing the sealed-bid second-price auction by
its open-auction counterpart, namely, the ascending auction. In such an auction, a price clock rises
continuously from zero and buyers drop out of the auction at various points. The auction ends
as soon as the number of active buyers is Kt or less. Each one will then receive a unit and pay
the closing price. If at the beginning of the round there are less than Kt buyers, the auction ends
immediately at price zero. Here again, in principle, losers from the previous period seem to have
an informational advantage over the new entrants of that period. However, it turns out that the
information content of the dropping time in the previous round will be available again in the present
period bidding strategy, and this time to all competitors: incumbents and entrants. In other words,
in the ascending auction bidders are engaged in a revelation process and at each round a player
reveals his information again. Technically, the game has an equilibrium in memory-free strategies.
Indeed, the author provides such equilibrium-bidding strategies in the sequential ascending auction
and proves that they generate the same allocations and transfers as in the truthful equilibrium
of the dynamic pivot mechanism developed by Bergemann and Välimäki (2010) as the dynamic
version of the VCG mechanism.
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5 Externalities in Single-Object Auctions

Externalities in auctions are where a player cares not only about winning the object but also about
who wins it in case of losing.18 Two well-suited examples are given by Jehiel et al. (1996). After the
breakup of the Soviet Union, Ukraine was left with 176 intercontinental nuclear missiles. Although
neither the United States nor Russia had any interest in these old-fashioned missiles, they each paid
Ukraine (in various ways) about one billion dollars to dismantle this arsenal. The second example is
when China agreed in 1994 not to sell its M-9 and M-11 missiles to Arab countries; as a reward, the
United States agreed to lift its one-year-old embargo on satellite exports to China. Although these
are not proper auctions, they are cases in which a party is willing to pay, not to have an object,
but to prevent a third party from having it. More generally, these are cases in which ‘whoever
wins’ may affect the downstream interaction between the players. Typical economic examples are
auctioning of a cost-reducing patent to oligopolists, auctioning spectrum licenses to incumbents,
and a retailer competing in an auction for a neighboring plot of land against a competitor who, if
he wins, intends to build a polluting factory on it.

5.1 A General Social Choice Model

Major contributions to this topic are by Jehiel and Moldovanu in numerous papers including a
review (Jehiel and Moldovanu, 2006). In this review, they make the distinction between allocative
externality due to the final allocation of the object and informational externality due to information
held by the other competitors in the auction. They provide a general social choice mechanism in
which multi-object auctions with both types of externalities, as well as combinations of the two and
complementarities, are special cases. In this model there are N + 1 agents, indexed by i = 0, . . . , N
(agent 0 is the seller) and K social alternatives, indexed by k = 1, . . . ,K. Each agent gets a private
`-dimensional signal about the state of the world θi ∈ Θi ⊂ R`. The vector of all private signals is
θ = (θ0, . . . , θN ) ∈ Θ =×N

i=0 Θi. Agents have quasi-linear utility functions ui(k; θ; ti) = vik(θ) + ti

that depends on the chosen alternative k, on the vector of private signals θ, and on monetary
payments ti.

For an auction allocating a set M of (heterogeneous) objects, a partition of M is P =
(P1, . . . , PN ), where Pi is the bundle of objects allocated to agent i. In this model, the number of
alternatives K is equal to the number of possible partitions. Thus, we can write utility as viP (θ)+ti.
In addition, agents receive a signal for each possible partition, and so ` = K. Hence, we can also
write, for each partition P , agent i’s signal as θiP .

The pure private value is obtained when both the signal θiP and the value viP (θ) depend only
on the bundle Pi allocated to the agent; that is, for any two partitions P and P ′, Pi = P ′i implies
θiP = θiP ′ ≡ θiPi and v

i
P (θ) = viP ′(θ) ≡ viP (θiPi). The pure allocative externalities case is obtained

when viP (θP ) ≡ viP (θiP ); that is, while the value of an agent depends on the whole distribution
of bundles (allocative externalities), it depends only on his own signal and not on the signals of

18Externalities can extend beyond the identity of the winner such as in the case where there is a positive spillover
from the expenditure (see D’Aspremont and Jacquemin, 1988).
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the other agents (no informational externalities). In the case of pure informational externalities
and no allocative externalities, the agent cares only about his bundle and about the information
of other agents about this bundle; that is, for any two partitions P and P ′, Pi = P ′i implies
viP (θ) = viP ′(θ) ≡ viPi(θ) for all θ. In addition, since viPi(θ) depends on the signals of other agents
only to the extent that they concern information ‘about’ the bundle Pi, the signals of any agent j
can be partitioned into equivalence classes (with respect to their effect on viPi(θ)) indexed by Pi;
θj = (θjPi)Pi⊆M and we can write viPi(θ) as viPi(θ

0
Pi
, . . . , θNPi). Finally, the dependence of the value

viP on the partition P accommodates complementarities and substitutabilities in the usual way.

5.2 Complete Information

Considering first the issue of allocative externalities, it turns out that traditional auction formats
need not be efficient, and they may give rise to multiple equilibria and strategic non-participation.
The first observation is that even in the simplest case of a single object and complete information,
the very notion of value becomes endogenous: if we denote by vii the value of agent i when i wins
the object (e.g., a license of a cost reducing patent) and by vij (typically negative) the externality
exerted on agent i if agent j wins the object, then the net value for agent i for winning the object
compared to losing the auction is vii − vij if he expects agent j to win or vii − vik if he expects
agent k to win in the case where he loses the auction. Jehiel and Moldovanu (1996) demonstrate
this point and show that, even in a simple second-price auction, not only is there no dominant
strategy but there can be multiple equilibria with different allocations of the good. They illustrate
this possibility in the following example: N = 3 and vii = v for all i, the externality terms are
v2

1 = v1
2 = −α, v3

1 = v3
2 = −γ, and v1

3 = v2
3 = −β, where α > γ > β > 0. In one equilibrium, agents

1 and 2 compete (being ‘afraid’ of each other winning the object) and one of them wins and pays
v + α. In a second equilibrium, agent 3 competes with agent 1 (or with 2) and wins the object
paying v + β (since γ > β, agent 3 is more afraid from 1 than 1 is afraid of 3).

Another phenomenon pointed out by Jehiel and Moldovanu (1996) is that with the presence
of allocative externalities there is strategic non-participation. By staying out, an agent may induce
an outcome that turns out to be more favorable to him than the outcome that would have arisen
if he had participated. An example where firms are the agents (taken from Jehiel and Moldovanu,
2006) has N = 3, where firms 1 and 2 are incumbents, while firm 3 is a potential entrant. The
incumbents do not value the object per se (such as an innovation that is irrelevant for their pro-
duction technologies): v1

1 = v2
2 = 0. Moreover, v2

1 = v1
2 = 0. The entrant has value v3

3 = v, and
it creates a negative externality of α on each of the incumbents, which is greater than his value;
v1

3 = v2
3 = −α and α > v. Consider a second-price auction. Clearly it is the interest of the incum-

bents to avoid entry by bidding slightly above v. However, there is a free-rider problem between the
two incumbents: each one would prefer to let the other deter the entrant. Indeed, in this example,
in any equilibrium (there are three) at least one incumbent firm chooses not to participate with
positive probability.
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5.3 Incomplete Information

Models with allocative externalities and incomplete information give rise to various situations that
depend on the nature of the private information of the agents. When the private information of
agent i is the allocative externality vij caused to him by other agents, the resulting situation has no
informational externalities. When the private information of agent i is the allocative externality
vji that he causes to others, the environment becomes that of private interdependent values. (Of
course, having only partial information about these two types of externalities is also conceivable.)

As we just said, models of incomplete information and allocative externalities are closely
related to the research on auctions with interdependent values. For example, Jehiel and Moldovanu
(2000) consider a two-bidder second-price auction in which each of the private signals is the corre-
sponding private value, that is, θi = vii, and the externalities are functions of both signals, that is,
vij = vij(θi, θj). With no reserve prices, this is analoguous to the Milgrom and Weber (1982) model
with interdependent values vi = θi − vij(θi, θj), i = 1, 2, j = 3− i. However, with the presence of a
reserve price r, there is the possibility the seller keeping the object and hence the ‘net value’ of bid-
der i for winning the object is either θi if the alternative is that the seller keeps it, or θi− vij(θi, θj)
if the alternative is that bidder j wins it. Jehiel and Moldovanu (2000) find that in this case there
is discontinuity in the bidding range in equilibrium. This can happen when the reserve price is
binding, that is, when the value including the externalities may be less than the reserve price.
For example, take the symmetric case of two buyers with values in [v, v] with constant (negative)
externality −e. In a second-price auction with a reserve price r satisfying v + e ≤ r ≤ v + e, a
(basically unique) symmetric equilibrium strategy is bidding v+ e when v ≥ r and bidding 0 when
v < r. In other words, there is no relevant bid in the interval (r, r + e). In such a case the optimal
reserve price may well be below the seller’s value for the object. For positive externalities they
show that entry fees and reserve prices need not lead to the same revenue, in contrast to the case
with no externalities. Variants of this model were studied by Moldovanu and Sela (2003), Goeree
(2000), Das Varma (2003), and Molnar and Virag (2004).

Fan et al. (2013, 2014) have a model where a patent is auctioned between two firms engaged
in a Cournot duopoly where the winner of the auction receives the patent for a fixed fee and then
collects royalties from the loser. Since the fixed fee and the royalties depend upon information
obtained by bidding in the auction, the bids in this auction have a signaling content that affects
the downstream competition. Hence, the externality is bid-dependent.

On the issue of revenue-maximizing auctions, Jehiel et al. (1999) consider a model in which
the private information of bidder i is his value vii and all externalities vij caused to him (he receives a
multidimensional signal). They find that a second-price auction with an appropriately determined
entry fee is the revenue-maximizing mechanism in a class of mechanisms where the object is always
sold. Similar models are studied by Das Varma (2002) and Figueroa and Skreta (2004). Caillaud
and Jehiel (1998) study the possibility of collusion in the presence of negative externalities.

Informational externalities were studied at early stages by Wilson (1967) and Milgrom and
Weber (1982) in single-object auctions with symmetric bidders. The focus was later shifted to multi-
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object auctions with asymmetric bidders. The main approach of most studies is that of mechanism
design, investigating the issues of incentive compatibility, revenue equivalence, and revenue and
welfare maximization in direct-revelation mechanisms. The breadth, depth, and technical aspects
of this literature make a systematic detailed presentation of the main results not feasible within
this section. For further reference, we suggest the works of Maskin (1992), Krishna and Maenner
(2001), Jehiel and Moldovanu (2001), Jehiel and Moldovanu (2006), and the numerous references
listed there.

6 Auctions with Resale

In the standard private-value auction model, if a buyer wins the auction it is for him worth his
private value. This is even the case if another buyer has a higher private value. In this section,
we look at what happens when there is the possibility of resale by the winner of the auction to
another buyer with a higher value. For this analysis, there must be two stages in the game. In
the first stage, the object is sold by the seller via an auction. In the second stage, the winning
buyer has the option of selling the object to one of the other buyers. Here we need to specify both
what information is revealed after the first stage and the selling procedure of the second stage. For
example, are bids revealed after the first stage and does the winning buyer have full bargaining
power in the second stage? The main issue to address is the effect of the introduction of resale on
the outcome of the auction, specifically, on the allocation of the object and on the revenue.

6.1 First-Price and Second-Price Auctions

Under symmetry, adding this possibility of resale does not change the equilibrium in a first-price
auction or the symmetric equilibrium (bid your value) in a second-price auction. This is shown
when the bids are revealed (Haile, 2003), when the values are revealed (Gupta and Lebrun, 1999),
and when the losing bids are not revealed (Hafalir and Krishna, 2008). Under asymmetry, this is
no longer the case and revenue equivalence between first-price and second-price auctions breaks
down. Hence, it is important to study resale in asymmetric auctions.

We begin with an example adapted from Hafalir and Krishna (2008). A weak buyer has a
value drawn from the uniform distribution on [0, 1] and a strong buyer has a value drawn from the
uniform distribution on [0, 4]. Consider the first-price auction with resale where the winner in the
auction in the first stage, without seeing the losing bid, can make a take-it-or-leave-it offer to the
loser. The equilibrium bid functions are 5

4vw for the weak buyer and 5
16vs for the strong buyer. If

the weak buyer wins in the first stage, he would make a take-it-or-leave-it offer to the strong buyer
of double what he paid, 5

2vw. Notice that for both buyers the distribution of bids is uniform on
[0, 5

4 ]. Revenue is thus 2
3 ·

5
4 = 5

6 . In a second-price auction with resale there is an equilibrium where
buyers bid their values (and, hence, there is no resale), revenue is 3

4 ·
1
2 + 1

4 ·
1
3 = 3

8 + 1
12 = 11

24 , which
is less than in the first-price auction with resale. By comparison, in a first-price auction without
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resale, the equilibrium bid functions are:19

bw(vw) = 16− 4
√

16− 15v2
w

15vw
, bs(vs) = 4

√
16 + 15v2

s − 16
15vs

.

Revenue in this equilibrium is approximately 0.59, which is lower than the revenue in the equilibrium
of a first-price auction with resale.

Hafalir and Krishna show that these results generalize to any two distributions of values.
Namely, in the first-price auction with resale the bid distributions are identical for the two buyers
and the revenue of the first-price auction with resale is always higher than that of the second-price
auction where the buyers bid their values. Thus, with the introduction of resale, there is a ranking
between a first-price auction and a second-price auction that doesn’t exist without resale (provided
we only consider the bid-one’s-value equilibrium in the second-price auction).20

The model of Hafalir and Krishna was studied earlier by Garrat and Troger (2006) who
consider the special case in which the value distribution of one of the buyers is degenerate at 0.
In other words, one of the buyers is a speculator who has no value for the object per se and this
is known to the other buyer. Their main finding is that speculators can affect the equilibrium in
auctions with resale. In the first-price auction with resale they find that the speculative bidder
uses a mixed-strategy equilibrium and makes zero profit but influences the equilibrium, compared
to a first-price auction without resale, by increasing the selling price (and hence the revenue)
and changing the allocation to a possibly inefficient one. In a second-price auction there are
multiple equilibria where sometimes the speculator makes a profit. Again, the speculator changes
the equilibrium by increasing revenue and decreasing efficiency. The focus of Garrat and Troger
is on the role of speculation in auctions with resale while the focus of Hafalir and Krishna is on
the ranking of the seller’s revenue, but as we see in our above example of Hafalir and Krishna, the
weak buyer bids 5

4vw, which is above his value, and so speculation is present in first-price auctions
even in the non-degenerate case.

6.2 Seller’s Optimal Mechanism

Zheng (2002) and Lebrun (2012) search for the optimal mechanism when resale is permitted. My-
erson (1981) finds the optimal mechanism (i.e., maximizing seller revenue) when resale can be
prevented. For example, assume that buyer 1 has a value uniform on [0, 1] and buyer 2 has a value
that is drawn uniformly from [0, 2]. The optimal mechanism should allocate the object to the buyer
with the highest virtual surplus,21 which means that buyer 1 should get the object if v1 ≥ v2 − 1

2 .
This can be implemented by running a second-price auction with a minimum bid of 1 but where
buyer 1 receives a coupon that will reimburse him for his payment up to 1

2 . For instance, if buyer
1 bids 3

2 and buyer 2 bids 5
4 , then buyer 1 will win the auction at a price of 5

4 , yet pay
5
4 −

1
2 = 3

4 .
19These were from Griesmer et al. (1967). Also, see Kaplan and Zamir (2012) for the general solution to the

uniform case.
20See Section 2.5 for examples by Maskin and Riley (2000a) where the revenue between a first-price auction and a

second-price auction can be ordered in either way.
21Virtual surplus for a buyer with value v drawn from the distribution F (v) is v − 1−F (v)

f(v) .
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For such a mechanism, buyer 2 will bid his value (or drop out if his value is below 1) and buyer 1
will bid his value plus 1

2 (or drop out if his value is below 1
2).

Once resale is introduced, this mechanism will no longer work since if buyer 1 wins, he will
then try to sell the object to buyer 2, increasing his surplus. Zheng (2002) proposes a mechanism
that will work under resale. The buyers bid for the object and the winner pays some function
of his bid (a form of a first-price auction). This function should be set such that buyer 1 bids
v1 + 1 and buyer 2 bids v2. If buyer 1 wins, then he will believe that buyer 2’s value is uniform on
[0, v1 + 1] and will make a take-it-or-leave-it offer at v1 + 1

2 which would result in the buyer with
the highest virtual surplus getting the object as in the optimal mechanism without resale (since
the allocation is the same as in the optimal mechanism, the revenue is equivalent). The key insight
into this mechanism is that the buyer winning the auction sets a resale auction such that the object
is resold whenever the current owner does not have the highest virtual surplus. The winner of the
resale auction will do likewise (as will any subsequent winners). While the necessary conditions
for an optimal mechanism in Zheng (2002) are restrictive, Mylovanov and Tröger (2009) are able
to relax them such that even for three or more bidders there are several examples of distributions
that satisfy them (besides the uniform distribution).

Lebrun (2012) shows that optimal allocation for revenue is an equilibrium of a standard
second-price auction with resale (albeit with bidder-specific entry fees). This seemingly contradicts
Hafalir and Krishna (2008), who prove that a second-price auction is inferior to a first-price auction
with resale; however, rather than focusing on the bid-your-value equilibrium, Lebrun takes one of
the inefficient equilibria present in Garratt and Troger (2006). In order for this to be optimal, the
beliefs of the winner about the value of the loser must be very specific. In order for them to be so,
the buyers must use particular mixed-strategies in the first period.

6.3 Further Results

Gupta and Lebrun (1999) consider a different model of two-buyer first-price auctions with resale
in which they make the assumption that the values are revealed after the first stage.22 Under
this rather strong assumption, the authors provide an equilibrium for any second-stage sale price
function π(v1, v2), for example, max{v1, v2}. If the asymmetric value distributions are F1 and F2,
then the first-price auction with resale will have the same bid distribution as the symmetric first-
price auction (without resale) with value distribution G given by G−1(q) = π(F−1

1 (q), F−1
2 (q)), q ∈

[0, 1]. As a consequence, under symmetry the equilibrium doesn’t change under resale.
Bikhchandani and Huang’s (1989) early contribution to auctions with resale is one of the

few that deal with common values. They theoretically investigate treasury bill auctions where the
securities can be resold, and find that revenue is higher using a discriminatory auction (similar to
first price) rather than a uniform-price auction (similar to second price).

Garratt et al. (2009) show that resale can help reach a collusive equilibria in second-price
auctions. With two bidders with values drawn independently from the uniform distribution on

22Gupta and Lebrun also assume that the support of the value distribution of both buyers is the same.

26



[0, 1], bidders can flip a coin (or use a public sunspot) where, depending upon the outcome, one
of the bidders bids 1 and the other bids 0. A bidder with a value of 1 receives on average 1/2.
However, with a different distribution on [0, 1], the expectation can be lower than 1/2, meaning
that a bidder with value 1 would prefer the bid-one’s-value equilibrium. With resale, the bidder
with a value of 1 will receive more than 1/2 on average since when he bids 0, he will still receive
the object by buying it on the resale market. The extra profit is enough to make this collusive
equilibrium worthwhile.

In this section, we mentioned just some of the recent results on auctions with resale. In
Haile (2003), the reason motivating a resale is not the inefficiency in the primary auction but
rather information gained afterwards. Additional contributions of note are Bose and Deltas (2007),
Pagnozzi (2007, 2009), Harfalir and Krishna (2009), Cheng and Tan (2010), Lebrun (2010a, 2010b),
Cheng (2011), Che et al. (2013), Virág (2013), and Xu et al. (2013).

Finally, we note new work on an environment in which the seller cannot commit to not
reattempt to sell the object if he fails to do so in the auction (see Vartiainen, 2013, and Skreta,
2013). This topic is somewhat related to auctions with resale since in both cases, the seller cannot
prevent post-auction trade.

7 All-Pay Auctions

A contest is a situation in which players exert effort in an attempt to win a prize. Greater effort
increases the chances of winning. All the efforts are sunk while only the winner gets the prize
(hence the name all-pay as all participants pay a cost). In the literature, contests have been used
to describe environments including patent races, sport competitions, court cases, lobbying, political
campaigns, promotions, military, and rent-seeking. Explicitly, contests have been used as a tool
to spur innovation since the 1700s. The Longitude Prize of £20,000 established by the British
Parliament in 1714 induced John Harrison to invent the marine chronometer, for which he won
the prize in 1765 (see Sobel, 1996). Motivated by the Orteig Prize, Charles Lindbergh became
the first person to fly non-stop solo across the Atlantic in 1927 (Berg, 1998). The self-financed
Feymnann prize inspired nanotechnology. Such contests have gained more traction in recent years.
For example, the X-Prize Foundation created a number of high-profile prizes (the Ansari Space Prize
to privately launch a reusable manned spacecraft, the Lunar Prize to privately land an unmanned
probe on the moon, and the Tricorder Prize for a palm-sized instant medical evaluation tool), a
number of companies offer (or offered) design prizes (Topcoder uses computer programming contests
to generate needed code, and Netflix held a contest to help design a better movie recommendations
system), and the US military holds the DARPA challenges (races) to improve robotic designs.
These real-world contests have sparked increased academic interest in the field.

An important ingredient in describing a contest with the set of participants I = {1, . . . , n}
is the contest success function, which takes the efforts {xi}ni=1 of the agents and converts them into
each agent’s probability of winning: Pi : Rn → [0, 1]. The (expected) utility of a risk-neutral player
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i with a value of winning the prize vi and a cost of effort ci(xi) is

Pi(x1, . . . , xn)vi − ci(xi).

There are several popular contest success functions in the literature. The Generalized
Tullock (1980) success function is

Pi(x1, . . . , xn) = xri∑
j x

r
j

(1)

where r > 0 is a parameter.
The Lazear-Rosen (1981) success function is

Pi(x1, . . . , xn) = P (xi + εi ≥ max
j 6=i
{xj + εj})

where εi are random noise variables with the same distribution.
Perhaps the most “natural” is the auction success function where the prize is awarded (with

probability 1) to the competitor that exhibited the greatest effort, and in case of tie, the prize is
awarded randomly to one of the maximizers with equal probability to each. A contest with this
success function is equivalent to an all-pay (first-price) auction and the auction success function is
mathematically the limit of the Generalized Tullock success function (1) when r →∞:

Pi(x1, . . . , xn) =


1

#{j|xj=maxj{xj} } if xi = maxj{xj},
0 otherwise.

In this section, we will focus on the theoretical literature on all-pay auctions, which is where
the contest and auction theory literature overlap. This literature uses two main environments:
complete information and incomplete information about the bidders’ values of the prize or the
bidders’ costs. We will begin by describing core developments in these two environments before
delving into further advances. Unlike first-price auctions, many research questions have non-trivial
results under complete information and hence many topics are covered in the literature using both
environments’ tools. Intuition gained from the complete-information environment usually carries
over to the incomplete-information environment. Therefore, in many cases we cover the complete-
information case in more detail. When using the auction terminology we will refer to competitors
also as bidders or players and to the effort xi as the bid of player i.

7.1 Complete Information

Baye et al. (1996) build upon the work of Hilman and Samet (1987), Hillman (1989), and Hillman
and Riley (1989) to characterize the all-pay auction with complete information with two or more
players. They allow the values for the prize to be asymmetric (it is possible that vi 6= vj). In the
complete-information models, all values vi, i ∈ I, are common knowledge among all participants.
For each player i, ci(xi) = xi.23

23For the case of ci(xi) = ci · xi, the same analysis can be applied by redefining values such that ṽi = vi/ci.
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Before describing the equilibria, it is useful to describe several properties that hold in
equilibrium, and to see why. First, the equilibrium involves mixed strategies. In a pure-strategy
equilibrium each player i chooses an effort level xi with probability 1. If in such an equilibrium there
are no ties with the winning bid, then the winning bidder i can profitably deviate to (xi + xj)/2
where xj is the second-highest bid. If there is a tie at the winning bid, then a winning bidder i can
choose xi + ε and gain at least vi

n − ε; hence, there is no pure-strategy equilibrium.
Second, in equilibrium any player that chooses zero with positive probability earns zero

profits. This is because there must be at least one player who chooses a strictly positive bid with
probability one. If not, a player bidding zero would be able to have a discrete jump in profits by
increasing his bid to some ε > 0.

Third, under symmetry (when vi = v for all i) all players make zero profits in equilibrium
(which is not necessarily symmetric). If one player makes a positive profit, then all players must
make a positive profit since any other player can bid at the top of the support of the player making
the positive profit (which must be less than v for him since he is making a positive profit). All
players cannot be making a positive profit since at least one player bidding at the bottom of the
union of supports of all strategies must be making zero profit (because if all players choose this
point with positive probability a player will be able to discretely increase profit by increasing his
bid by an arbitrarily small amount).

The following describes the equilibria in more detail.
If v1 = . . . = vm > vm+1 ≥ . . . ≥ vn with m ≥ 2, then there is an equilibrium where the first

m bidders bid symmetrically according to F (x) =
(
x
v1

) 1
m−1 and the remaining bidders bid zero and

all bidders make zero profit. For m ≥ 3, there is also a continuum of equilibria that are revenue
equivalent in which a subset of at least two of the first m bidders randomize continuously on [0, v1].
The remaining of the first m bidders randomize continuously on [bi, v1] and bid 0 with positive
probability if bi > 0. If two or more players randomize continuously over a common interval, their
CDFs are identical over that interval.

If n = 2 and v1 > v2 or if n > 2 and v1 > v2 > v3 ≥ . . . ≥ vn, then there is a unique
equilibrium. In that equilibrium, player i chooses his bid randomly according to the cumulative
distribution Fi where

F1(x) = x

v2
, 0 ≤ x ≤ v2, and F2(x) = x+ v1 − v2

v1
, 0 ≤ x ≤ v2, (2)

Fi(x) = 1 for x ≥ 0, i ≥ 3.

Notice that only the two players with the highest two values are active, and all players except player
1 are making zero profit, since all of them bid zero with positive probability (including player 2,
since F2(0) > 0). Since each player must be indifferent among all bids in his support and all players
i > 1 bid zero with positive probability while player 1 bids strictly above zero with certainty, player
i (> 1) bidding zero always loses and thus has no positive profit anywhere in his support.

If v1 > v2 = . . . = vm > vm+1 ≥ . . . ≥ vn with m ≥ 3, then there exists a continuum of
equilibria that are not necessarily revenue equivalent to each other and these are parameterized
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by {bi}mi=2 ∈ [0, v2]m−1 where bi = 0 for a least one i. Player 1 randomizes continuously on the
interval [0, v2] and players i ∈ {m + 1, . . . , n} bid zero. The remaining players {2, . . . , m} choose
0 with probability αi and randomize continuously on [bi, v2] where Πm

i=2αi = (v1 − v2)/v1. Each
of these equilibria has the property that for any i, j ∈ {2, . . . ,m} and x ≥ max{bi, bj}, we have
Fi(x) = Fj(x); that is, the CDFs of i and j are the same in the intersection of their supports.

For an example where revenue is not equivalent between two equilibria, take the case of
m = n = 3 with v1 = 2 and v2 = 1. One equilibrium (corresponding to b2 = 0 and b3 = 1) has

F1(x) = x, F2(x) = x+ 1
2 , 0 ≤ x ≤ 1, F3(0) = 1.

While another equilibrium (corresponding to b2 = b3 = 0) has

F1(x) = x

( 2
x+ 1

) 1
2
, F2(x) = F3(x) =

(
x+ 1

2

) 1
2
, 0 ≤ x ≤ 1.

The first generates revenue of 0.75 while the second generates revenue of 5−2
√

2
3 ≈ 0.724.

7.2 Incomplete Information

In the incomplete information models of all-pay auctions, values are drawn from commonly known
distributions, while a player’s value is his private information. Thus, this is a game of incomplete
information (a Bayesian game) in which the type of a player i is his value vi.

The symmetric all-pay auction with i.i.d. values drawn from distribution F has a unique
equilibrium in which each player bids

b(v) = F (v)n−1v −
∫ v

0
F (ṽ)n−1dṽ.

The asymmetric two-bidder case with common support was shown by Amann and Leininger
(1996) also to have a unique equilibrium. They also showed uniqueness and existence for more
general winning payments of the form (1− λ)xi + λx−i for λ ∈ [0, 1) (while the losing payment is
still xi).

Parreiras and Rubinchik (2010) examine the incomplete information case where there are
three or more heterogeneous bidders. They find that (unlike the two-bidder case) there can be
cases where an individual bidder will either not bid the entire range of equilibrium bids (including
having gaps in his support) or even completely drop out of the contest and bid 0.

7.3 Multiple Prizes

In this section, we consider contests where the prize is a divisible amount of money and address
the issue of how to divide the prize among the contestants according to their place. Galton (1902)
proposed that one should divide prize money between first and second places in a ratio of 3 to 1.
His objective (presumably out of fairness) was to make the ratio of the prizes equal to the ratio of
the difference between the first-place and third-place competitors’ efforts to the difference between
the second-place and third-place competitors’ efforts, notably ignoring any incentive effect of the
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prizes. This is a ratio of the difference between the first-order and the third-order statistic to the
difference between the second-order and the third-order statistic, and when efforts are i.i.d. from a
normal distribution this ratio is equal to 3. (Lazear and Rosen, 1981, note the loose connection to
the concept of marginal product.)

Glazer and Hassin (1988) is the first paper to analyze this problem of the allocation of
prize money in all-pay auctions with complete information and find that with symmetry and risk
aversion, the expected sum of the efforts is maximized by having homogeneous prizes: the prize
money is divided evenly among all but the last-place contestant, who should not get a prize. Under
the complete-information environment, Clark and Riis (1998) study homogeneous prizes when the
prizes are given either simultaneously or sequentially with the restriction that each participant can
win at most one prize. They find that both formats generate the same expected effort. Also under
complete information, Barut and Kovenock (1998) characterize the equilibria for heterogeneous
prizes and give the expected revenue.24

Moldovanu and Sela (2001) readdress Galton’s question of how to divide prize money for
an all-pay auction with incomplete information about costs when a designer wishes to maximize
total effort. More specifically, they use a cost function of the form c(x) · θi where 1/θi is the ability
of player i and is private information. If c(x) is linear or concave then a designer should use one
prize. If c(x) is convex, then using multiple prizes may be optimal. The general intuition is that
when c(x) is linear, then the incentive problem is equivalent to one obtained if we divide by θi

and transform the problem to one with incomplete information about the value of the prize, but
with complete information about ability (which is then the same for all players). But revenue
equivalence holds in this new formulation. Moreover, we can think of this as auctioning an object
(the prize money) where the probability of winning the prize for the n-th highest bid is pn rather
than giving a fraction fn of the prize to the n-th place bidder, where pn = fn. We know from
standard optimal auction results that it is revenue-maximizing for the object to be allocated (if it
is allocated at all) to the highest bidder (it is optimal to set p1 = 1.) This also holds when the
object must be allocated. Hence, we should only have one prize in an all-pay auction (since then
f1 = p1 = 1). Having a concave cost function in an all-pay auction further favors having just one
prize. With convex costs, the marginal cost of effort increases in effort. Thus, revenue-maximizing
design would provide incentives that increase effort of the lower types at the expense of the effort
of higher types. One way to do this is to have multiple prizes such that a lower type has a higher
chance of winning at least a part of the prize. This is also the intuition for having bid caps under
convex costs of bidding (see Gavious et al., 2002, and Section 7.7 of this chapter).

Glazer and Hassin (1988) is also the first paper to analyze the multiple prize problem under
incomplete information. As with Moldovanu and Sela (2001), they use the cost function c(x) · θi
but they have the additional assumption that 1/θi is uniformly distributed on (0, 1]. They find that
when the players are risk-neutral, then a revenue-maximizing designer would want one prize (which

24While Clark and Riis (1998) assume all prizes are the same, they allow the prize value to differ among players.
In contrast, Barut and Kovenock (1998) assume that prizes may be different, but each particular prize has the same
value for all players.
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Moldovanu and Sela proved more generally). Under risk-aversion, they find that multiple prizes are
indeed optimal (with three or more players). Here, the intuition is that multiple prizes are superior
for incentives since they reduce the chance that an agent exerting a high effort will receive any
reward. Overall, combining these results one sees that in general with either risk-aversion and/or
convex costs it is possible that multiple prizes will enhance revenue. For a longer review of the
multiple-prize literature see Sisak (2009).

7.4 Bid-Dependent Rewards

In many of the examples of contests, the reward for winning depends upon the winning bid. This
may occur naturally such as in patent races where an earlier patent (obtained from a higher level
of effort) is worth more in present-value terms. It may also be set by the designer of the contest.
A race director may set a higher prize for breaking a record time. The Longitude prize, described
above, had higher prizes set for more accurate methods. Kaplan et al. (2003) analyze a complete-
information all-pay auction with a reward for winning of v(x) and with the same cost of effort, c(x),
for all firms. We have a symmetric equilibrium where each firm chooses x randomly according to
the distribution F given by

F (x) = max
x′≤x

(
c(x′)
v(x′)

) 1
n−1

.

When c(x)
v(x) is nondecreasing in x, this simplifies to F (x) =

(
c(x)
v(x)

) 1
n−1 .

Kaplan et al. (2003) also analyze this environment with two asymmetric contestants. Here,
the equilibrium is more complicated. Siegel (2009) defines a player i’s reach as the highest bid at
which his utility of winning is 0, that is, the largest x such that vi(x) = ci(x). Designate player 1 as
the player with the largest reach. Denote by π1 the profit player 1 makes in equilibrium, which is
equal to maxx≥x∗ v1(x)−c1(x), where x∗ is the reach of player 2. We can then define q1(x) = c1(x)+π1

v1(x)

and q2(x) = c2(x)
v2(x) . Subsequently, we denote g1(x) = minx′≥x q1(x′) and g2(x) = minx′≥x q2(x′) and

G1 and G2 denote the sets where g1 and g2, respectively, are strictly increasing. We then have the
equilibrium distribution functions as Fi(x) = Max{1− gj(supx′<xGi), 0}.

This analysis is extended to three or more heterogeneous players in Siegel (2009, 2010,
2014b, 2014c). In addition to the analysis being an important and difficult technical achievement,
Siegel finds that the equilibrium with three or more heterogeneous players can have qualitatively
different behavior than in the two-heterogeneous-players model.

Kaplan et al. (2002) analyze a variant of this environment with incomplete information
about the value of the reward when it is bid-dependent. When types θi are i.i.d. from the uniform
distribution and the reward is multiplicatively separable in effort and type θi, that is, total reward
is θi ·R(x), where R(x) is a function of effort, the equilibrium effort is given by b(θ) = u−1(θn) where
u(x) = R(x)−

n
n−1

∫ x
0

n
n−1c

′(t)R(t)
1

n−1dt. Interestingly, they find that an increase in the costs or a
reduction in rewards may increase the expected sum of the efforts and/or the maximum effort. This
is because the information rents (the equilibrium expected profit given one’s private information)
may be lowered by such an increase.

32



To see this, by the envelope theorem, the information rent of a type θ is given by∫ θ

0
F (θ̂)n−1R(x(θ̂))dθ̂.

From this equation we can see why a decrease in the rewards may increase bids. If there is a
decrease only for low values of the reward function R, keeping bids constant, this will decrease
the rents for all types, not just low types. This requires that the equilibrium profit decrease for
all types, even those whose reward function for their equilibrium bid is unaffected by the change.
Thus, those types must see an increase in their bid in order for the profits to decrease. Thus, the
overall effect can be an increase in bids.

An optimal design approach has been applied to such rewards. Cohen et al. (2008) determine
the optimal bid-dependent reward in an all-pay auction under incomplete information when a
designer cares about the sum of the efforts or the maximum effort. Kaplan and Wettstein (2013)
find the optimal bid-dependent reward under complete information when the designer cares about
the maximum effort.

7.5 Contests versus Lotteries

A contest may also be used as a method to allocate good. For instance, colleges routinely use
waiting in line as a means to distribute the right to buy basketball tickets. In other cases, instead
of a contest, tickets are distributed by means of a lottery such as with tickets to Michael Jackson’s
funeral. In both of these examples, the objective was to maximize welfare rather than revenue.
Chakravarty and Kaplan (2013) find the optimal mechanism when an agent of type θ, exerting
effort x, has a utility v(θ) − c(x)g(θ) where g(θ) represents the agent’s waiting cost and v(θ) is
the agent’s value and the type θ drawn i.i.d. from the uniform distribution on [0, 1].25 The agent’s
willingness to pay in terms of cost of effort is then v(θ)

g(θ) , that is, how high an agent would be willing

to set cost c(x) in order to obtain the object. They find that if
(
v(θ)
g(θ)

)′′
≤ 0, then a lottery is

optimal. On the other hand, the condition
(
v(θ)
g(θ)

)′′
≥ 0 is necessary for a contest to be optimal.

Still, the optimal mechanism does not only depend upon the willingness to pay. For instance, when
v(θ) = θ and g(θ) = (1 − θ)2, a contest is optimal. When v(θ) = θ(1 − θ) and g(θ) = (1 − θ)3, a
lottery is optimal while v(θ)

g(θ) is the same in both cases.
Hartline and Roughgarden (2008), Condorelli (2012), and Yoon (2011) also made contribu-

tions in the analysis of maximizing the bidder’s surplus as opposed to the revenue. This objective
is closely related to the objective of the work of McAfee and McMillian (1992) in which a bidding
ring wants to maximize expected surplus of its members. In earlier literature, Taylor et al. (2003)
and Koh et al. (2006) compare lotteries to contests rather than looking at when either of these is
an optimal mechanism. Boyce (1994) made an early contribution comparing lotteries to auctions
and to queues in both the case where (after the lottery) post-allocation selling is permitted and in
the case where it is not permitted.

25Following Milgrom (2004, page 111), there is no loss of generality.
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7.6 All-Pay Auctions with Spillovers

Baye et al. (2012a) generalize the complete information all-pay auctions allowing for spillovers. If
player 1 bids x and player 2 bids y, then player 1’s payoff for winning is v1−W (x, y) and for losing
is −L(x, y) (with ties broken by a coin toss). The degree to which y affects these two payoffs is the
spillover. They assume that W (x, y) and L(x, y) are linear functions of x and y. Even with the
restriction of linearity, this model covers many economic environments: the all-pay auction that
corresponds to W (x, y) = L(x, y) = x, the first-price auction that corresponds to W (x, y) = x

and L(x, y) = 0, and the second-price auction that corresponds to W (x, y) = y and L(x, y) = 0.
A case with a negative spillover is when W (x, y) = L(x, y) = x + y

2 . Other cases include: R&D
with spillovers (D’Aspremont and Jacquemin, 1988), Varian’s model of sales (Varian, 1980), and
competition with price-matching policies (Baye and Kovenock, 1994). Baye et al. characterize all
the possible equilibria, both pure and mixed.

Baye et al. (2005) analyze an incomplete information version of this framework in application
to litigation systems where the value from winning is private information. Here, they consider the
following spillover functions:

W (x, y) = βx+ (1− α)y,

L(x, y) = αx+ (1− β)y.

They classify the legal systems according to the values of α and β.
In the American legal system each side pays his own cost; thus β = α = 1. In the British

system α = 1, β = 0, the loser pays both costs. In the (Dan) Quayle system (a system suggested
by the former vice president of the United States, 1989-1993), we have α = 2, β = 1; that is, the
loser pays his own costs and reimburses the winner up to his (the loser’s) costs. In the Matthew
system (from the Gospel of Matthew 5:39-41) the winner should pay not only his own costs but
reimburse the loser for a fraction of them (the winner’s costs) too: α = 1, β > 1. Of these systems,
the British yields the highest legal costs and the lowest litigant utility while the Matthew system
yields the lowest legal costs and the highest litigant utility.

7.7 Bid Caps

In the two-player all-pay auction under complete information, Che and Gale (1998) analyze the
results of the imposition of a bid cap. In many situations that are modelled as all-pay auctions such
caps are in place. For instance, in sports many leagues including four major U.S. sports leagues
impose a salary cap.26 In many political contests, there are spending caps in place on campaign
spending. The application in their paper was lobbying. In their model, the value of the prizes are
v1, v2 such that v1 > v2 and there is a bid cap of m imposed where m < v2. Without a bid cap,
the equilibrium is given by (2). The expected revenue in this case is v2(v1+v2)

2v1
, which is less than

v2.
26In professional sports, teams can be thought of as competing with each other in their spending for players. Higher

spending increases the team’s chances of winning the league championship.
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When m ≤ v2
2 , both players bidding at the cap of m is an equilibrium. (When m = v2

2 ,
there are also equilibria where player 1 bids m with probability of 2m

v1
or more.) Thus, for m such

that v2(v1+v2)
4v1

< m < v2
2 , in equilibrium there is higher revenue (equal to 2m) with a cap than

without a cap.
Kaplan and Wettstein (2006) argue that in many contests a designer lacks the ability to

impose a hard cap. They show that in the Che and Gale (1998) model imposing a flexible cap
decreases revenues. While Che and Gale (2006) show that adding asymmetry of costs to their
model (in addition to asymmetry of values), imposing a flexible cap (resulting in raised costs) may
also increase revenue. Gavious et al. (2002) show that with incomplete information about values
and a convex bid function, imposing a rigid cap may increase revenues. Pastine and Pastine (2010)
study bid caps when the seller prefers to sell to one of the bidders (as can happen in the context
of political lobbying). Pastine and Pastine (2013) extend their analysis to include soft (flexible)
bid caps. In general, there is also a strong connection between bid caps and financially contained
bidders, which have been studied by Che and Gale (1996) and Pai and Vohra (2014) in all-pay
auctions.

7.8 Research Contests

A significant motivation provided by many authors for the study of contests (as we do in this
chapter) is the use of contests to spur innovation. There have been a number of papers that
have specifically tailored contests to this application. Dasgupta (1986) and Kaplan et al. (2003)
specifically use an all-pay auction with complete information, while Pérez-Castrillo and Wettstein
(2012) use an all-pay auction with incomplete information. Taylor (1995) considers an innovation
contest where a firm attempting an innovation takes a draw from a distribution F (q) for a quality
q at cost c. For cost x · c, the firm can take x independent draws and use the highest quality. (This
is equivalent to one draw from the distribution F x(q).) The buyer gives a prize to the firm with
the highest quality. Interestingly, the success function is mathematically equivalent to a Tullock
success function with r = 1 (see equation (1) on page 28).27 Fullerton and McAfee (1999) solve
this for asymmetric costs of draws. Fullerton et al. (2002) replace the prize in a Taylor (1995)
style tournament with a first-price auction using a ‘scoring rule’ that takes both price and quality
into account.28 Schöttner (2008) uses the Lazear-Rosen success function to model the innovation
draw. Ding and Woffstetter (2011) have each firm only take one draw (for a fixed cost of entry)
but model the case where firms that have too high a quality will not enter the contest and try to
bargain separately.

In an interesting variant of an all-pay auction, Che and Gale (2003) have a scoring rule
similar to Fullerton et al. (2002). In their paper, a buyer wishes to purchase an innovation from
one of several potential firms. Each firm i expends effort c(xi) to create innovation with a quality

27To see this for discrete xs: if firm 1 chooses x1 draws and firm 2 chooses x2 draws, then there are x1 + x2 draws
in all. Each draw has an equal chance of having the highest quality. Thus, the chance of the highest quality being
among the x1 draws is x1/(x1 + x2).

28See Che (1993) and Asker and Cantillon (2008, 2010) for design competitions with a ‘scoring rule’ but without
an all-pay component.
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xi (measured in monetary units). Afterwards, each firm offers its design to the buyer for a price pi
(chosen by the firm). The buyer chooses the firm offering highest surplus si which equals xi − pi
(the quality minus the price). Denote by Gi(si) the probability that firm i with surplus si will be
offering the highest surplus, that is, Gi(si) = P (si > max{s−i}). Then, firm i chooses effort xi,
surplus si, and price pi to solve

max
xi,si,pi

Gi(si)pi − c(xi) s.t. xi − pi = si.

Substituting the constraint into the maximand and the first-order conditions w.r.t. xi and
pi yields G′i(si)pi = c′(xi) and G′i(si)pi = Gi(si), respectively. Combining the two yields: Gi(si) =
c′(xi). For arguments similar to the all-pay auction with complete information, firms also make
zero profits. Hence Gi(si)pi = c(xi). Together, we find that firms set prices pi = c(xi)/c′(xi) and
choose surpluses by the cumulative distribution set by Gi(si) = c′(xi).

For example, if c(x) = x2 and n = 2, then pi = xi
2 . This implies si = xi

2 and Gi(si) =
Fi(si) = 2xi = 4si. Hence, in the equilibrium each firm chooses a surplus si according to the
uniform distribution on [0, 4], and sets xi = 2si and pi = si. Note that an all-pay auction with
a bid-dependent reward of x

2 with a cost function of x2 has a symmetric equilibrium of each firm
choosing x according to F (x) = 2x. Thus, it has an equivalent equilibrium. Kaplan and Wettstein
(2013) prove that the profit from the Che-Gale innovation contest is also the highest expected profit
the buyer can earn in a bid-dependent all-pay auction.29

7.9 Blotto Games

Introduced by Borel (1921), a Colonel Blotto game has two players (Colonels) each deciding how
to divide their respective army across n > 2 battles; that is, they each must choose the size of the
force xi to place in battle i such that the sum of their forces in each battle is less than or equal
to the size of their total army. The player with the largest force in a particular battle wins that
battle. Winning each battle is worth the same and a tie in a battle is worth half as much as a win.
Note that the winner of each battle can also be determined by different success functions (such as
Tullock) and overall payoffs can be determined by a winner-take-all for the player who wins most
of the battles.

The Blotto game is in essence n all-pay auctions run simultaneously when the cost of using
part of one’s army in one battle is the opportunity cost of using the troops in another battle. For
now assume that both armies are the same size (and equal to one). For similar reasons to those
in the all-pay auction with complete information, there is no pure-strategy Nash equilibrium and
there cannot be a specific size of force in a battle strictly greater than zero chosen with positive
probability (also, at most one player can place an atom at zero for each particular battle). Denote
Fi as the distribution played in battle i. Given the other player’s choice of Fis, we can now write
the Lagrangian of a player’s problem where the Lagrange multiplier λ is the shadow price that
represents the opportunity cost of using the troops. Hence, a player will choose his strategy to

29This is not the case when there is asymmetry among firms.
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maximize:
max

x1,x2,...,xn,λ≥0
F1(x1) + F2(x2) + . . .+ Fn(xn) + λ(1−

∑
i

xi). (3)

The first-order condition is F ′i (xi) = λ and must hold for all xi in the support of Fi.
Integrating, yields Fi(xi) = λxi + ci. However, for the player to be indifferent to shifting forces
between two different battles, we must have ci = cj for all i, j. Thus, expectation of this uniform
distribution is (1 − c)λ/2. Hence for

∑
i xi = 1 to hold, we must have λ = 2

n(1−c) . However, since
the support of each distribution must be the same for both players and they both cannot have an
atom at the bottom of the support, we must have c = 0 and each player chooses, for each battle,
the xi according to a uniform distribution on [0, 2

n ].
While each player deploys an army in each battle according to a uniform distribution,

there must be a connection between each battle since the total size of the army equals one for
each realization and not just in expectation. This joint distribution is what is called a copula in
mathematics, but it requires the additional property that the sum of the armies in each battle
always be equal. Borel and Ville (1938) provide a solution for n = 3 by choosing x1 ∼ U [0, 2

3 ]
and half the time setting x2 = 2

3 −
x1
2 and x3 = 1

3 −
x1
2 , while the other half of the time swapping

how one sets x2 and x3. Gross and Wagner (1950) extend Borel and Ville’s result to n armies and
provide an additional method for finding a joint distribution.30

Roberson (2006) gives the complete set of equilibrium marginal distributions for general n
and asymmetric army sizes. Roberson shows that when the ratio r of army sizes is between 2

n and
n
2 , the equilibrium is similar to asymmetric complete-information all-pay auctions given by (2).31

For intermediate asymmetries in army sizes where 1
n−1 ≤ r <

2
n or n

2 < r ≤ n− 1, the equilibrium
is similar to Che and Gale (1998) but with a bid cap placed only on the weaker firm. He also
provides a specific method for finding a joint distribution (making use of n-copulas).

Notice that having battles worth different amounts is just a matter of adding different
weights in front of the Fis. This yields a solution where the upper bound of each uniform distribution
of each battle is proportional to its weight. This case was studied for symmetric army sizes and
general n by Gross (1950), Laslier (2002), and Thomas (2013). Also, Gross and Wagner (1950)
solved the case of n = 2 with heterogeneous values of battles and asymmetric army sizes. The case
for n > 2 with heterogeneous values of battles and asymmetric army sizes has not been generally
solved. Another version of the game has all the utility going to the player winning the majority
of the battles. This version for the n = 3 case with symmetric army sizes was solved in Borel and
Ville (1938).

Adamo and Matros (2009) solve the Blotto game when the army size is incomplete informa-
tion. Namely, if the distribution of each army size G is concave, then equally dividing one’s army is
an equilibrium. Hart (2008) solves the Blotto game when the armies can be divided only discretely.

30Laslier and Picard (2002) measure the inequality of the equilibria in Gross and Wagner (1950) using the Gini
coefficient. Weinstein (2012) provides another method of finding a joint distribution and examines Laslier and Picard’s
analysis.

31The difference is that vi is replaced by the respective army size times n
2 .
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Roberson and Kvasov (2012) extend the analysis of Blotto games to an environment where a player
saves an expense proportional to the portion of his army that is not used in a battle.

There is a reason for the strong connection to the all-pay auction with complete information
(Roberson, 2006). While the size of the army is fixed and it does not cost more to field the whole
army than to field half the army, there is an opportunity cost in that using part of the army in one
battle means that it cannot be used in a different battle. This is represented by the shadow price
equal to λ in (3). Hence, it is no surprise that both the all-pay auction and the Colonel Blotto
game have similar equilibria since they both consist of strategies that are uniform distributions.

7.10 Other Topics

There are many topics on all-pay auctions not covered in detail in this chapter. For instance, several
papers use the basic contest building block in a more complex environment: Moldovanu and Sela
(2006) analyze if it is optimal to run one contest or break it down into playoff contests. Konrad
and Kovenock (2009) study a sequence of contests where there is a prize for the winner of each
individual contest and another for the majority winner of the sequence.32 There are also studies
where the prize is not exactly a monetary prize but rather the utility for winning depends upon
the number of prizes given out, as with As in a course (see Modovanu et al., 2007, and Dubey and
Geanakoplos, 2010), or losing the contest can come at an additional loss of utility (beyond wasted
effort) at a cost to the designer of such a punishment (see Moldovanu et al., 2012, and Thomas and
Wang, 2013). Under incomplete information, there is also progress beyond the IPV case (see Lizzeri
and Persico, 2000, and Siegel, 2014a). There is also a large body of literature on experiments in
all-pay auctions (see Dechenaux et al., 2012, for a review). For a more detailed theoretical review
on contests, see Konrad (2009).

8 Incorporating Behavioral Economics

In recent years both the literature and the public have paid increased attention to behavioral
economics. Since in many auction experiments, subjects do not bid according to standard theory,
auction theory has begun to follow the trend. Probably the most natural behavioral factor to
incorporate is a utility for winning the auction. Mathematically this is equivalent to shifting
the distribution of values (see Cox et al., 1988). Other more complex ways in which behavioral
economics has been incorporated into auction theory are explored in this section.

8.1 Regret

In an auction, there are two types of regret: winner’s regret and loser’s regret. With winner’s
regret, the winning bidder regrets if he overpaid and could have won with a lower bid. With loser’s
regret, a losing bidder regrets if he could have profitably won the auction by submitting a higher
bid.

32For other papers on sequential contests where the values of winning each contest are not independent, see Sela
(2011, 2012).
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For a single-object first-price auction, Engelbrecht-Wiggans (1989) (henceforth EW) ex-
presses the utility of the buyer in an auction as the expected profit from winning minus α1 times
the expectation of an increasing function of the overpayment (winner’s regret) minus α2 times the
expectation of an increasing function of the missed surplus (loser’s regret):

P (b > B) · (v − b)− α1 · E[h(b−B)]− α2 · E[g(v −B)] (4)

where B is the maximum bid of the other buyers and g(x) and h(x) are two functions that are
both positive (and typically monotone increasing) for x > 0 and 0 for x ≤ 0. For the special case
g(x) = h(x) = x+ and α1 = α2 = α,33 EW proved that the equilibrium bid function is the same
with and without regret.

To see this, let F be the cumulative distribution of B and let f = F ′ be its density. Now,
in the special case we can rewrite (4) as:

F (b)(v − b)− α
(∫ b

0
(b−B)f(B)dB +

∫ v

b
(v −B)f(B)dB

)
.

The first-order condition for the maximization of this function of b is:

f(b)(v − b)− F (b) + α

(∫ b

0
f(B)dB − (v − b)f(b)

)
= 0

or
f(b)(v − b)− F (b) + α (f(b)(v − b)− F (b)) = 0. (5)

Equation (5) is the same whether α = 0 (without regret) or α > 0 (with regret).
EW also shows that when α1 > α2 (and g(x) = h(x) = x+), the equilibrium bid function

is lower than without regret, and vice versa when α1 < α2. Logically, when the costs of increasing
his bid go up relative to the benefits, a buyer will decrease his bid. Engelbrecht-Wiggans and
Katok (2008) (henceforth EWK) show that with n buyers having values drawn from the uniform
distribution starting at 0, the equilibrium bid function will be

b(v) = n− 1
n+ α1−α2

1+α2

· v.

With the restrictions that h(x) = g(x) = 0 for x ≤ 0 and h(x), g(x), h′(x), and g′(x)
positive for x > 0, Filiz-Ozbay and Ozbay (2007) (henceforth FOO) prove the rather intuitive
result that when there is only loser’s regret, α1 = 0 and α2 > 0, the equilibrium bid functions
are higher than in the no-regret equilibrium and when there is only winner’s regret, α1 > 0 and
α2 = 0, the equilibrium bid functions are lower than in the no-regret equilibrium. Consequently,
revenue is higher with only loser’s regret and lower with only winner’s regret than in the no-regret
equilibrium.

FOO run a one-shot first-price auction experiment with these three regret conditions as
the three treatments by varying the feedback. For the no-regret treatment, there is no feedback

33The notation x+ denotes x if x > 0 and 0 otherwise.
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except that one has won or lost. For the winner’s-regret treatment, in addition the winner sees the
second-highest bid. For the loser’s-regret treatment, the winning bid is announced. Using groups
of four buyers having values drawn from the uniform distribution, they find that indeed the relative
ordering of bidding among treatments matches the theoretical predictions.

EWK also run an experiment but with subjects playing repeatedly against computerized
strategies. They go further in developing the feedback treatments by telling the winner explicitly
the difference between his bid and the second-highest for winner’s regret (rather than leaving it up
to them to calculate), or telling the losers the exact amount of the money left on the table (the
difference between their value and the winning bid for loser’s regret). They also add a treatment
with both types of regret. As with FOO, they find the bidding among the treatments rank according
to theory and that bids with no regret are similar to those with both types of regret, which is
consistent with the theory under the assumptions that α1 = α2 and g(x) = h(x) = x+.

These results suggest that a seller would have higher revenue by announcing the winning
bid and keeping the losing bids secret as opposed to only announcing the winner’s identity or
publicizing all bids. Regret need not be purely psychological. A situation with regret can also exist
when an agent is bidding on behalf of a client. The agent wishes to avoid the displeasure of his
client. This possibility also holds true for many of the other topics in this section.

8.2 Impulse Balance

Impulse Balance Theory was introduced by Ockenfels and Selten (2005) (henceforth OS). It is
similar to regret except that rather than a utility function being explicitly specified, bidders have
an impulse to adjust their bid functions upwards or downwards whenever ex post it is rational to
do so. This impulse is proportional to the potential gains (if measurable). For instance, if in a
first-price auction one bids 10 and the second-highest bid is 7, then the downwards impulse of the
winner is proportional to 3. If instead one loses to a bid of 12 when one’s value is 14, then his
upwards impulse is proportional to 2. These impulses are in balance if the upward impulse is equal
to λ times the downward impulse, where λ is a weight constant that is specific to the agent. If half
the time one faces a bid of 7 and half the time one faces a bid of 12 (always with a value of 14),
then bidding 10 would be impulse-balanced if λ = 2/3.

OS analyze impulse balance in an n-bidder first-price auction when values are drawn from
the uniform distribution on [0, 1]. The approach is not that of best reply and equilibrium. Rather,
they define the notion of a bidder’s strategy to be impulse-balanced given the strategy of the other
bidders. More specifically, they assume that all bidders use a linear bid function b(v) = av, and
determine for which value of the parameter a each bidder’s strategy is impulse-balanced (for a given
impulse weight λ).

As a theory attached to an experimental work, OS consider two repeated auction treatments:
the full-feedback treatment (denoted F ) in which all bids (in particular, the highest and second-
highest) are announced at the end of the auction, and the no-feedback treatment (denoted NF ) in
which only the winning bid is announced. The F treatment is similar to the both-regrets treatments
of EWK and the NF treatment is similar to the loser’s-regret treatments of OO and EWK. The
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main differences in design is that OS is repeated with random matching (unlike the one-shot OO)
and against human bidders (unlike EWK). (Note also that OS have two bidders rather than four
bidders in OO.)

In the F treatment, the downward and upward impulses are defined as the expected forgone
profits in case of winning and losing respectively and they are given by:

IF− = E[(b−B)+] = a

n(n+ 1) , (6)

and
IF+ = E[(v −B)+ · 1b<B] = (1− a)2(n− 1)

2(n+ 1) . (7)

In the NF treatment, as the foregone profit is not observable for the winner (he does
not know how much further he could have lowered his bid and still have won), the impulses are
driven just by the fact of winning or losing the auction. Therefore, OS define the impulses to be
the probability of these events respectively; that is, the downwards impulse is the probability of
winning and the upwards impulse is the probability that a bidder loses when it would be profitable
to increase his bid so as to win the auction. For this model, these impulses are given by:

INF− = P (b > B) = 1
n
, (8)

INF+ = P (b < B & v > B) = (1− a)(n− 1)
n

. (9)

The condition that the strategy b(v) = av be impulse balanced is IF+ = λIF− in the F
treatment and INF+ = λINF− in the NF treatment. Solving these equalities shows that if 0 <

λ < 1
2 , then a

NF > aF > n−1
n . Recalling that b(v) = n−1

n v is the equilibrium bid of this auction
without impulse biases, this means that there is overbidding in both conditions, and there is more
overbidding without feedback. This is in agreement with both regret theory and OS’s experimental
results (which are consistent with the experimental results of OO and EWK).

8.3 Reference Points

Rosenkranz and Schmitz (2007) (henceforth RS) analyze a model in which the utility of the buyer
may depend upon a reference point r; any price paid above this number decreases the buyer’s utility
and any price below it increases his utility. Formally, a buyer with value v purchasing the object
at price p has utility

u(v, p, r) = v − p+ z(r − p) (10)

where z is a function satisfying z′ ≥ 0 and z(0) = 0.
While RS analyze this model with a linear z, their solution can be generalized, using the

envelope theorem, to any non-decreasing function z. In a second-price auction, for the usual reasons,
a buyer will set a bid bs(v, r) such that u(v, bs(v, r), r) = 0. If z(r − v) > 0 then bs(v, r) > v.
Likewise, if z(r − v) < 0, then bs(v, r) < v.
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In a first-price auction, if we define the strictly increasing function w(b, r) := b − z(r − b)
and its inverse w.r.t. b by w−1

r (·), then the equilibrium bid function is

b(v, r) = w−1
r

(
v −

∫ v
0 F

n−1(ṽ)dṽ
Fn−1(v)

)
. (11)

RS show that if the reference point r is affected by the minimum bid, then unlike the
standard case without reference points, the optimal minimum bid would depend upon the number
of bidders. RS also show that in some cases revenue increases if the minimum bid is kept secret
and, in which case the buyers have only an exogenous reference point. Finally, RS prove revenue
equivalence for the case of linear z (which does not hold for non-linear z). This equivalence does
not hold if the reserve price is kept secret.

8.4 Buy-It-Now Options

A buy-it-now option allows a bidder to buy an object for a specified price before the auction finishes.
This option is typically available only for a limited time (for instance, until someone bids on the
item or until the reserve price is reached), after which the option vanishes and the auction proceeds
normally. The buy-it-now option is available in auctions on eBay (since 1999) and accounts for a
large portion of their sales.34

Reynolds and Wooders (2009) show that theoretically under risk-neutrality a buy-it-now
option cannot improve revenue, but there can be gains if the buyers are risk averse. Shunda (2009)
shows that if the buy-it-now option can influence the reference point (in the utility function), then
it can improve revenue even under risk-neutrality. The intuition is that a buy-it-now option can
push up the reference point and thereby increase revenue.

8.5 Level-K Bidding

The level-k model was introduced by Stahl and Wilson (1994, 1995) and Nagel (1995). In Nagel’s
(1995) experimental study of the guessing game, subjects choose a number from 0 to 100 and the
number that was closest to 2/3 the average won a prize (ties were broken randomly). Many guesses
were bunched around 33 and 22. According to Nagel, a subject who chooses 33 believes that other
subjects are choosing a number randomly is classified as L0 level. Thus, the subjects who choose
33 think one level ahead of L0 subjects and are classified as level L1. Those who choose 22 are level
L2 since they think one level ahead of level L1; that is, if all other subjects are level L1 players and
thus choose 33, it is best to choose 22. The limit of this iterative process goes to the equilibrium
of 0.

Crawford and Iriberri (2007) use this type of analysis to derive behavior in auctions. A
level L0 player will bid randomly by choosing a bid uniformly over the whole range of possible bids
(from 0 to the highest possible value).35 Like in the guessing game, a level Lk player (k > 0) will

34Before being discontinued, Yahoo! Auctions also had a buy-it-now option that allowed the seller to change the
price during the auction as opposed to eBay that only permits the price to be set at the beginning.

35Also considered by Crawford and Iriberri (2007) is a “truthful” L0 that bids his value.
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best-react under the assumption that all other players are level Lk−1 players. As an example, in a
first-price auction with two buyers and a minimum bid of m, a level L1 player with a value above
m will choose a bid b = max{arg maxb̃ b̃(v − b̃),m} = max{v2 ,m}. Note that this is independent
of the distribution of the players’ values since level L0 is assumed to bid uniformly. In particular,
if the values are drawn independently from a distribution on [0, 1] and m = 0, level L1 bidding
coincides with equilibrium bidding under the uniform distribution and hence bidding is the same
for all levels Lk for k ≥ 1. On the other hand, if the values of the two players are affiliated, as the
level L1 bidding will still be v

2 if both players are level L1 players, they will not take into account
the winner’s curse and potentially overbid in the auction (and in expectation lose money).

Crawford et al. (2009) explore the possibility of a different choice of the level L0 player,
letting such a player bid uniformly on the range from the minimum bid m to the highest possible
value. Hence, now a level L1 player with a value above m will choose a bid b = arg maxb̃ (b̃−m) ·
(v − b̃) = v+m

2 . (And a level L2 player with v > m will choose b = arg maxb̃ F (2b̃ −m)(v − b̃)).
Their assumption is somewhat unpalatable in that such an L0 player will always bid more than m
(even if v < m). We suggest that perhaps a more reasonable L0 player for a first-price auction will
be one that bids only above the minimum bid if v > r and never bids above his value. In this case
for m = 0 and uniform values on [0, 1], an L1 player will choose b = arg maxb̃(b̃ +

∫ 1
b̃
b̃
ṽdṽ)(v − b̃).

An L1 player’s inverse bid function would be v(b) = −b+2b ln(b)
ln(b) . However, an L2 player will then

in turn bid the highest possible bid from an L1 player (approximately 0.34) for a range of possible
values.

For experimental studies on level-k models see the chapter “Behavior Game Theory Exper-
iments and Modeling” in this Handbook.

8.6 Spite

The behavioral considerations thus far have looked only at individual biases, traits, and reasoning.
Yet bidders may also have preferences about the surpluses of the other bidders. In particular, they
may have spiteful preferences; namely, they are willing to sacrifice some of their own surplus in
order to lower the surplus of the other bidders.

Morgan et al. (2003) present a two-bidder model in which a bidder’s utility when losing is
inversely related to the surplus of the winner. More specifically, for some α > 0, in a first-price
auction the utility equals

P (b > B) · (vi − b)− α · E[v−i −B|b < B] (12)

and in a second-price auction, the utility equals:

P (b > B) · (vi − E[b−i|b > B)− αP (b < B) · E[v−i − b|b < B]. (13)

The equilibrium bid function in the first-price auction is:

b(v) = v −
∫ v

0 F (ṽ)1+αdṽ

F (v)1+α .
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By taking the derivative w.r.t. α, it is straightforward to show that the second term is decreasing
in α and thus, for α > 0, the bid function is higher than the bid function without spite (α = 0)
and bidding is increasing in spite. The equilibrium bid function in the second-price auction is

b(v) = v +
∫ 1
v (1− F (ṽ))

1+α
α dṽ

(1− F (v))
1+α
α

.

Since this is clearly greater than v and is increasing in α (by straightforward verification), there
is overbidding in the second-price auction. Again, the bid function is higher than the bid function
without spite and it is increasing in the spite α. It is thus possible that the winner in fact loses in
the sense that he has negative utility and would be better off not having won. Morgan et al. (2003)
also demonstrates a similar result for English auctions.

Let us now look at the case where there is asymmetry in values. Take the same preferences
but where one bidder has a value equal to 9 and the other bidder has a value equal to 0 and there
is complete information about values. Assume that α = 1/2 and consider a second-price auction
in which when both bidders submit the same bid, the high-value bidder wins. In this case, we
claim that both bidders submitting the same bid b∗, where 3 < b∗ < 6, is an equilibrium. The
high-value buyer will win at price b∗ and have utility 9− b∗. The low-value bidder will have utility
−(9− b∗)/2. To see that this is an equilibrium, the only candidate for a profitable deviation of the
high-value bidder is to bid just below b∗ and lose the auction in which case his utility will be b∗/2.
For the low-value bidder, the only candidate for a profitable deviation is to bid just above b∗, win
the auction, and have a utility of −b∗. For 3 < b∗ < 6 we have 9−b∗ ≥ b∗/2 and −(9−b∗)/2 ≥ −b∗;
hence, both deviations are not profitable.

In this simple example, we have the low-value bidder overbidding (b∗ > 0) because of spite
and the high-value underbidding (b∗ < 9) to essentially counterbalance this spite. Nishimura et
al. (2011) show that such spite and counter-spite hold more generally in both English and second-
price auctions.

8.7 Ambiguity

In analyzing auction models, we usually assume that bidders know the probability of winning given
a certain bid. In many cases, the bidder may be uncertain about this probability. This can be due
to not knowing the distribution of values or strategies of the other bidders. Uncertainty about the
relevant probabilities is known as ambiguity and its effects on behavior have been demonstrated and
studied in a large number of papers starting from the seminal work of Ellsberg (1961). In general,
decision makers are, as pointed out by Ellsberg, ambiguity-averse. Theoretical models for studying
ambiguity and explaining its effects were laid out by Gilboa (1987), Gilboa and Schmeidler (1989),
Schmeidler (1989), Sarin and Wakker (1992), and others.

One main method for incorporating ambiguity into theory is to replace the additive prob-
ability of the agent with a non-additive probability measure known as capacity. This is a real
function c(·) defined on the subsets of the probability space Ω and satisfying c(∅) = 0, c(Ω) = 1,
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and A ⊆ B ⇒ c(A) ≤ c(B) for any A ⊆ Ω and B ⊆ Ω. The additivity condition of a prob-
ability measure: P (A) + P (B) = p(A ∪ B) + P (A ∩ B) is replaced by the convexity condition:
c(A) + c(B) ≤ c(A ∪ B) + c(A ∩ B) for any A ⊆ Ω and B ⊆ Ω. The degree of the convexity (that
is, the difference between the two sides of the inequality) reflects the degree of ambiguity aversion.

To see this, let A and B be two complementary events, that is, A ∪B = Ω and A ∩B = ∅.
Now the convexity condition is c(A) + c(B) ≤ 1. If the decision maker has symmetric information
about the occurrence of the two events, then he assigns to them equal probabilities, i.e., c(A) = c(B).
But, as Schmeidler says, this equal probability need not be 1

2 each if the information about the
occurrence of these events is meager. This is, for example, the case for the events of drawing a red
(R) or a black (B) ball from the Ellsberg urn containing 100 balls with an unknown composition
of red and black balls. If c(R) = c(B) = 3

7 then c(A) + c(B) < c(A ∪ B) + c(A ∩ B) = 1 and the
difference between the two sides (1

7 in this case) is a measure of the uncertainty, or the ambiguity,
of the decision maker about the probability of the events.

A convex capacity can be conveniently represented as a composition c = φ ◦ P where P
is an additive probability measure and the probability transformation φ is a function φ : [0, 1] →
[0, 1], where the degree of ambiguity aversion is reflected in the convexity of φ. In the absence
of ambiguity, an agent with utility function u : Ω → R defined on the state space Ω on which
he has subjective (additive) probability P considers the expected utility, which can be written as∫
τ P ({ω ∈ Ω|u(ω) ≥ τ})dτ . In the presence of ambiguity, the agent considers what is called the
Choquet Expected Utility (CEU), which is the expectation according to the transformed probability
c = φ ◦ P , which can be written as:∫

τ
φ(P ({ω ∈ Ω|u(ω) ≥ τ}))dτ. (14)

Instead of maximizing expected utility, an ambiguity-averse agent will maximize this Choquet
Expected Utility. Salo and Weber (1995) study the effects of ambiguity in first-price auctions. In
their model, an ambiguity-neutral bidder assumes that the other bidders’ values are independent
and uniformly distributed on [0, v]. The bidder’s CEU profit πi(v) can thus be written as:

πi(v) = φ

(B−1(bi)
v

)N−1
 (vi − bi) (15)

where the random variable B is the highest bid of the other bidders. Using the envelope theorem
to find π′i(v) and then integrating and setting πi(0) = 0, we find the equilibrium bid function is

B(vi) = vi −
∫ vi

0 φ([ τv ]N−1)dτ
φ([ viv ]N−1) . (16)

If one restricts the ratio φ(αx)
φ(x) to only depend upon α, then it would have the form φ(x) =

x
1
K . Here, K < 1 expresses ambiguity aversion (φ(x) < x) and the smaller K implies more

ambiguity aversion. K > 1 expresses ambiguity-loving (φ(x) > x). The bid function now reduces
to:

B(vi) = N − 1
N − 1 +K

vi. (17)
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We see here the somewhat intuitive result that increasing ambiguity aversion increases the bid
function in a first-price auction (and vice versa for ambiguity-loving). Other models of ambiguity
have been applied to auctions with similar theoretical results (see Lo, 1998, Ozdenoren, 2002, Chen
et al., 2007). However, experimentally, Chen et al. (2007) find that bidding behavior is consistent
with ambiguity-loving behavior (lower bids when faced with ambiguity).36

Ambiguity could exist about the number of bidders in the auction. Salo and Weber (1995)
also examine this ambiguity with CEU and find that the bids are higher (indicating the seller should
not reveal the number). Levin and Ozdenoren (2004) revisit this question with maxmin expected
utility and also find that bidding should be higher in a first-price auction than in a second-price
auction. They also find that if the buyers are more pessimistic than the seller, the seller will want
to maintain the ambiguity of the bidders and to refrain from revealing his information about the
number of bidders.

When looking at ambiguity aversion of a seller, Turocy (2008) finds that an ambiguity-
averse seller will prefer a first-price auction to a second-price auction if bidders make small payoff
errors, that is, errors in choosing strategies that result in lowering payoffs by ε or smaller.

For detailed discussion of non-expected utility theory and its implications on auctions when
the object itself is a risky prospect (such as a lottery ticket), see the chapter “Ambiguity and
Nonexpected Utility” in this Handbook.

9 Position Auctions in Internet Search

Here we discuss research on a fairly recent auction mechanism that has been the main revenue-
driving force behind several large internet companies: the auctioning off of advertisements based
upon the keywords used in an internet search. In such a mechanism, several advertisement place-
ments per search are sold. The placements intrinsically vary in quality with the better positions
going to the higher bidders.

In 1998, Goto.com introduced the first successful position auction for search results (see
Davis et al. U.S. Patent 6,269,361). When a particular term was searched, Goto.com listed the
results in the order of the advertisers’ willingness to pay per click (the advertiser’s bid was listed
along with the results). This company founded by Bill Gross’s Idealab was eventually rebranded
as Overture and sold to Yahoo! in 2003 for $1.6 billion. In 2002, Google used the advertisers’
quality along with their bids to determine the position of advertisements in their AdWords auction
(while listing search results independent of bids). This generated $42 billion in revenues in 2012.
In 2004, Google agreed to pay Yahoo! 2.7 million shares (worth $300 million at the time) for patent
infringement.

The main driving force behind these auctions is that not only is having an ad posted or link
listed valuable, but placement matters too. Being listed first makes it more likely to be chosen. In
politics, Orr (2002) argues that in Australia voters were more likely to choose the candidates the
higher they were on the ballot.

36See Dickhaut et al., 2011, for a first-price auction experiment with ambiguity and a common value.
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9.1 First-Price Pay-Per-Click Auctions

In its typical form, a position auction is somewhat of a misnomer: the advertisers do not bid on
positions but rather on clicks; that is, the bid represents an amount to be paid when a user is
directed to their site.

Assume there are n advertisers. Each advertiser a submits a bid ba for a click whose value
for that advertiser is va. There are also a limited number of positions where each position i gets xi
clicks (note that at this stage we assume that the number of clicks per ad depends only upon ad
position and not also on ad quality). The lower i indicates the better location, that is, xi > xi+1.
Thus, the value for position i for advertiser a is vaxi. Assume that there is complete information
about the bidders’ values.

The initial Goto.com position auction was run using the natural extension of first-price
auctions. The advertisers are listed in decreasing order of their bids. The advertiser with the
highest bid gets the most-preferred position of 1. The advertiser with the second-highest bid gets
the second-highest position of 2. This is continued until we run out of advertisers or positions. Ties
are broken randomly. The price paid for each click is equal to the bid of the advertiser receiving
that click. Advertiser i (that is, the one in position i) will receive (vi − bi)xi.

Since many users searched using the same keywords, the same keywords were auctioned off
repeatedly. Bids were solicited for a number of searches in advance with an option of changing
one’s bid at a later time. This created a problem with first-price position auctions. To see this,
assume that there are two advertisers and two positions. When first place has an x > 0 chance of a
click and second place has a y > 0 chance of a click (and x > y), then under complete information,
there is no pure-strategy Nash equilibrium. The advertiser who is listed second will either wish
to lower his bid to zero (if it is not already at zero) and stay in second place or raise his bid just
enough to come in first. If the second-place advertiser submitted a bid of zero, then the first-
place advertiser would wish to lower his bid to $0.01. This cannot be an equilibrium since then
the second-place advertiser would like to bid $0.02. Through similar logic, ties can be ruled out.
Although this example resembles a first-price auction for the right to be listed first (which would
have a pure-strategy Nash equilibrium), it differs in that the loser pays also for the second-place
listing.

In position auctions, mixed-strategy equilibria are problematic in that the equilibrium is not
efficient (sometimes the low-valued advertiser will be listed higher than an advertiser with a higher
value), and effort is then wasted in altering bids and strategizing. Edelman and Ostrovsky (2007)
show a sawtooth pattern of cycles in prices in data from June 2002 to June 2003 on Overture.37

For this reason, Yahoo! switched to using a second-price position auction, which is referred to by
Edelman et al. (2007) (henceforth, EOS) as a Generalized Second-Price Auction.

37This sawtooth pattern occurs for a similar reason in Edgeworth prices (see Maskin and Tirole, 1988 and Noel,
2008) and empirically is found elsewhere in gasoline markets (see Noel, 2007a, 2007b).
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9.2 Second-Price Pay-Per-Click Auctions

In second-price position auctions, advertisers are ordered according to their bids and assigned
positions in the same manner as in the first-price position auction. For all positions strictly less
than n, the price paid per click for the advertiser assigned to position i is now pi = bi+1. The price
per click of the advertiser ordered last is zero.

Varian (2007) (henceforth, VAR) shows that the Nash equilibria of the second-price po-
sition auctions (under complete information) must satisfy constraints consisting of an advertiser
in position i not wanting to move up to a higher position j, j < i (recall that a higher position
corresponds to a lower index) and not wanting to move down to a lower position j, j > i. To
move higher, an advertiser would need to bid slightly above the bid of the advertiser in position j
and pay that bid, bj , which is equal to pj−1 (we define p0 = b1). To move to a lower position, an
advertiser needs to pay the price of the advertiser in position j, pj (by bidding slightly under his
bid). Hence, the incentive constraints are:

(vi − pi)xi ≥ (vi − pj−1)xj for j < i, (18)

(vi − pi)xi ≥ (vi − pj)xj for j > i. (19)

VAR also shows that in the case of complete information (about the values) there are multiple
equilibria, as with the standard second-price auction under complete information. However, EOS
show that, unlike in the standard second-price auction, truthtelling is no longer a dominant strategy
nor even always an equilibrium. To see this let us look at an example where the highest position
has a 60% chance of a click, second place has a 50% chance of a click, and third place has a 20%
chance of a click. There are three advertisers: one with a value of 3 per click, another with a value
of 2, and the last with a value of 1. If everyone bid truthfully, then the advertiser with a value of
3 would be in first place with utility (v1 − p1)x1 = (3 − 2)0.6 = 0.6. However, by bidding 1.9, he
could be in second place with utility (v1 − p2)x2 = (3− 1)0.5 = 1. Hence, there is an incentive for
this advertiser to deviate.

If we define envy as desiring to swap positions and prices paid with another advertiser, then
we can define the envy-free equilibrium as an outcome in which there is no envy between any two
advertisers,38 that is,

(vi − pi)xi ≥ (vi − pj)xj for all i, j. (20)

Note that, as the name suggests, this concept is indeed a refinement of the notion of equi-
librium, since (20) is equivalent to (19) for j > i, and implies (18) for j < i since pj < pj−1.

An envy-free equilibrium is in particular locally envy-free; that is, an advertiser does not
envy the advertiser located one position above or below his position, that is,

(vi − pi)xi ≥ (vi − pj)xj for all i, j = i± 1. (21)
38This is called Symmetric Nash Equilibrium by Varian (2007). Note that there are other equilibria. As Borges et

al. (2013) mention, if x1 = 3, x2 = 2, x3 = 1, and v1 = 16, v2 = 15, v3 = 14, then under complete information one
advertiser bidding 11, another 9, and another 7 will be a Nash equilibrium. Thus, a non-symmetric equilibrium could
be inefficient since in this example the one valuing a click at 14 could be in the first position.
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This concept defined by EOS was proved by VAR to be equivalent to the (global) envy-free
equilibrium defined by (20). Indeed, (20) implies (21), while (21) implies (20) using the ‘directional’
transitivity of the envy-free conditions (that is, the transitivity of ‘not envying someone above you’
and ‘not envying someone below you’).39

VAR shows that the equilibrium with the highest revenue is the highest revenue envy-free
equilibrium given by bn+1 = 0 and bi+1 = (bi+2xi+1 + vi(xi − xi+1))/xi (in this case, (21) holds
with equality for j = i + 1). In our example, we would thus have b3 = 1.2, b2 = 1.5, and b1 > 1.5
with prices p1 = 1.5, p2 = 1.2, and p3 = 0. Notice that while this is envy-free, it does require
advertiser 3 to bid above his value (of 1).

The Vickrey-Groves-Clark (VCG) mechanism with position auctions will induce truthtelling
as dominant strategies. With this mechanism, each advertiser i has to pay the externality that he
imposes on the other advertisers. Without advertiser i, the advertisers above him would not change
their position while each advertiser j positioned below him (j > i) would move up one position
gaining vj(xj−1−xj), which is the advertiser j’s value times the difference in position clicks. Hence,
the entire gain would be

∑n
j=i+1 vj(xj−1 − xj). Thus, the VCG mechanism would ask advertisers

their true valuations ṽ and sort them into positions according to the reported valuations. It would
then require the advertiser in position i to pay a total of Pi =

∑n
j=i+1 ṽj(xj−1 − xj). That is,

Pi−1 = Pi + vi(xi−1− xi) where Pn = 0. Notice that these payments would cause (21) to hold with
equality (where pixi = Pi and j = i−1). As shown by both VAR and EOS, this corresponds to the
envy-free equilibrium and Nash equilibrium with the lowest revenue to the seller. In our example,
this is where p1 = 0.833, p2 = 0.6, and p3 = 0.

9.3 Other Formats

An English position auction (called a Generalized English Auction by EOS) is one in which the
auctioneer increases the price per click. Advertisers decide when to drop out. The first advertiser
to drop out when the remaining advertisers are fewer than the number of positions pays zero and
receives the last position. The advertisers dropping out after that pay the price at which the
previous advertiser dropped out and get the position one higher than that advertiser. EOS shows
that under incomplete information this has a unique perfect Bayesian equilibrium that is equivalent
to the VCG mechanism.

Another way to obtain the VCG outcome is for the advertisers to use a mediator. Ashlagi et
al. (2009) give conditions under which the VCG outcome will be implemented as an equilibrium of
a mediated second-price position auction, that is, a mechanism in which a mediator bids on behalf
of the advertisers based upon messages received from them. The advertisers also have the option
of ignoring mediation and bidding independently but they have incentives to agree to mediation.
Because of this option, the mediator cannot simply utilize the English position auction (which EOS

39If i prefers position i to position j (i.e., i does not envy j) and j prefers position j to position k (i.e., j does
not envy k) where either i > j > k or i < j < k, then (vi − pi)xi ≥ (vi − pj)xj = (vj − pj)xj + (vi − vj)xj ≥
(vj − pk)xk + (vi − vj)xj = (vi − pk)xk + (vi − vj)(xj − xk) ≥ (vi − pk)xk. Thus, i also prefers position i to position
k (i.e., i does not envy k).
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showed leads to the VCG outcome) and use the results to bid in the second-price position auction
resulting in the VCG outcome. Reaching the VCG outcome through a mediator is more difficult,
since the mediator must be able to induce the advertisers bidding in the auction to use his service.

So far we have discussed the current pay per click. There are two other methods for
collecting payments: pay per action, meaning pay based upon the business resulting from the
click, and pay for impression (position). For the advertiser, pay per action is ideal as it eliminates
several problems that arise in pay per click: the expected value of a click is still uncertain to the
advertiser, learning the distribution is costly, and even if the expectation is known, many small
advertisers prefer to pass the risk on to the search engine. Moreover, pay per click is subject to click
fraud (where owners of websites click fictitiously). However, Agarwal et al. (2009) demonstrate a
weakness in pay per action for the seller. Namely, the advertisers know better the potential actions
of the searcher and exploit this. For instance, they can use a bait-and-switch technique where the
searcher clicks on an ad for a 50-inch TV and winds up buying a 60-inch TV since the other is
out of stock. The advertiser could offer less in return for the purchase of the 60-inch TV than the
50-inch TV while the seller would think that the action of purchasing the 50-inch TV is likely.

Some websites, rather than pay per click, use pay for impression. With paying for impres-
sion, an advertiser in position i with bid Bi would pay Bi+1 independently of the number of clicks
obtained in that position. Note the effective bid per click would be Bi/xi and the effective payment
per click would be Bi+1/xi, which is different from the effective bid per click of the advertiser in
position i + 1. However, any envy-free equilibrium under pay for click is equivalent to one in pay
per impression with Bi = bixi−1. If the {bi} are an envy-free equilibrium under pay per click, by
(20) we have:

(vi − bi+1)xi ≥ (vi − bj+1)xj for all i, j. (22)

By substitution, this implies that

vixi −Bi+1 ≥ vixj −Bj+1 for all i, j. (23)

These are sufficient conditions for an envy-free equilibrium in the pay-for-impression auction.
The method Google actually uses for position auctions is to take into account the ad quality

of the advertiser in addition to his bid per click. Two different advertisers in the same position may
receive a different number of clicks. Varian (2007) models this such that advertiser a in position j
will have a click-through rate of xjea where ei is the advertiser’s quality. Rather than being ordered
by his pay-per-click bid of bi, an advertiser is ordered by his quality-adjusted bid-per-click of biei.
Thus, whereas before an advertiser wanting to move up from position i to position j < i would need
to raise his bid to slightly above bi−i, the advertiser now needs to raise his quality-adjusted bid
from biei to slightly above bi−1ei−1. This entails raising his bid to slightly above bi−1ei−1/ei and
paying bi−1ei−1/ei per click as compared to bi+1ei+1/ei per click in his current position i. Likewise,
whereas before an advertiser wanting to move down from position i to position j > i needed to
lower his bid from bi to slightly below bi+1, the advertiser now needs to lower his quality-adjusted
bid from biei to slightly below bi+1ei+1. This entails lowering his bid to slightly below bi+1ei+1/ei
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and paying bi+2ei+2/ei per click as compared to bi+1ei+1/ei per click. The incentive constraints for
not wanting to move up or down are then:

xiei(vi − bi+1ei+1/ei) ≥ xjei(vi − bjej/ei) for j < i, (24)

xiei(vi − bi+1ei+1/ei) ≥ xjei(vi − bj+1ej+1/ei) for j > i. (25)

Bringing the ei inside the parentheses yields:

xi(viei − bi+1ei+1) ≥ xj(viei − bjej) for j < i, (26)

xi(viei − bi+1ei+1) ≥ xj(viei − bj+1ej+1) for j > i. (27)

This is the same structure as before in (18) and (19) except that, in the pay-per-click
auction, the value vi is replaced by viei and the bid bi is replaced by biei. Hence, all the properties
stated for the pay per click hold.

Borges et al. (2013) generalize the second-price position auction to include values that are
position-dependent and click-through-rates that are advertiser-dependent. Advertiser a in position
k will have a value of vka and receive cka clicks. Being in a particular position may also enhance ad-
vertiser utility independent of clicks received. This enhancement, called impression value, depends
upon advertiser a and position k and is denoted by wka . Hence, the advertiser paying price p would
have utility

(vka − p)cka + wka . (28)

Borges et al. find that as long as vkacka > vk+1
a ck+1

a , a symmetric Nash equilibrium exists. They also
collected data from 2004 Yahoo! auctions that used this method and found empirical support for
the hypothesis that v1

a > v2
a > . . . > vna .

Unlike auctioning off inanimate objects such as cars, the consumer viewing these adver-
tisements is a player in the game and his surplus and strategy are of concern. An early business
model of Goto.com assumed that consumers would prefer to have search results displayed in the
order of those willing to pay the most for a click. While Goto.com’s business model did not sur-
vive (against Google’s page rank method), the question of which design benefits the consumer the
most is important. Furthermore, once the consumer is considered to be a player, the value of each
position and the number of ads that each player clicks should be endogenously determined. Athey
and Ellison (2009) do just that (for ads rather than search results) and find that click-weighted
auctions are socially optimal as search costs go to zero, whereas this need not be the case with
strictly positive search costs. They also find that advertisers hide information about themselves in
the click-weighted auction but not in the pay-per-click auction.

Jerath et al. (2009) show that once consumers’ actions are taken into account, the position
of the advertisers may no longer be sorted by the one with the highest value first. A clear example
is two brands of a product: a well-known brand and a lesser-known brand. A well-known brand
may get the same number of clicks per position in all positions while the number of clicks of the
lesser-known brand may vary significantly more based upon position. In this case, the lesser-known
brand may be willing to pay more for the improvement of position and thus be listed in a higher
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position. For example, when typing “JFK Car rentals” the advertised list on the RHS listed a site
called Jfkcarrentals.net first and Avis second. Likewise, when searching for “shoes” in the UK, it
listed Schuh first and Clarks second.

10 Spectrum Auctions

One of the most celebrated achievements of auction theory is the widespread use of spectrum auc-
tions.40 Many auction theorists are hired either to advise governments on design or help companies
on bidding strategies (see McMillan, 1994, for those hired just in the earlier auctions).

In the early spectrum auctions (pre-2000) several issues arose: the exposure problem (anal-
ogous to the danger of buying a left shoe without buying a right shoe), strategic demand reduction,
and tacit collusion (see Section 3 of this chapter for a detailed description of the former two). The
exposure problem was particularly problematic in the U.S. where the spectrum was divided up into
more than 200 geographical regions and there were complementarities in owning spectrum in neigh-
boring regions. This pushed economists to develop solutions that were eventually implemented in
the 4G auctions.

Strategic demand reduction was a major concern in European spectrum auctions, in particu-
lar, where no entry was allowed or occurred. For example, in the 1999 German GSM auction, there
were four incumbents competing essentially for ten identical blocks of spectrum.41 The auction
was over after just three rounds of bidding with jump-bidding occurring in the first round followed
by strategic reduction. While this may be considered a case of collusion, Grimm et al. (2003)
(and more generally Riedel and Wolfstetter, 2006) demonstrate that such an auction has a unique
subgame-perfect equilibrium where a drastic demand reduction occurs immediately. (Essentially,
bidders immediately reduce demand to the number of blocks they would acquire if everyone bid
truthfully.) Goeree et al. (2013) confirmed this behavior in an experiment.

10.1 3G Auctions

In April 2000, the 3G rights were sold off in the UK for 39 billion Euros (£22 billion) (630 Euros per
capita). This was coined at the time “the biggest auction ever” (Binmore and Klemperer, 2002).
This record lasted all of four months until in Germany the rights were sold off for 51 billion Euros
(615 euros per capita).

Besides the magnitude of the revenue, the European 3G auctions are a particularly inter-
esting case study to examine since all the countries had roughly the same spectrum to auction off
at roughly the same time. They varied only slightly in the number of incumbents and in GDP per
capita.42 Also, there were only three different designs used. Furthermore, there were no combina-

40The idea of selling spectrum rights by auction dates back to Coase (1959). There is a large literature on the
design of spectrum auctions including Banks et al. (2003), Cramton (1997), Klemperer (2004), Plott (1997), Plott
and Salmon (2004), Porter and Smith (2006), and Weber (1997). See Hoffman (2011) and Wolf (2012) for a recent
summaries.

41One was slightly larger and ownership of that block was determined in a secondary auction.
42The incumbents were firms that were already in the telecom industry that owned 2G licenses.
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toric considerations and networks could successfully operate solely in one country. Each country
had roughly 120MHz of spectrum to auction off. This can be divided into six blocks of 2 x 10MHz,
four blocks of 2 x 15MHz, or three small blocks of 2 x 10MHz and two large blocks of 2 x 15MHz.

The three basic designs used were: UK-Ascending, Anglo-Dutch, and German-Endogenous.
In the UK design, licenses were specified ahead of time and grouped into categories. Initially,
the exact spectrum was not specified within a category. An ascending auction was used. Rounds
continued as long as there were more active bidders than licenses. Bidders could remain active and
continue bidding if they held or beat the previous high bid for a license. Once license ownership was
determined for licenses within the same category, there would be an additional sealed-bid auction
to determine who gets which specific frequencies.43

In the Anglo-Dutch design, the auction begins the same way as the UK design, but switches
once the number of active bidders dropped to one plus the number of licenses. At this point, a
sealed-bid auction occurs. If K was the number of licenses, then the K top bidders each would
get one license for the same price equal to the lowest winning bid. For instance, if there were four
licenses, the price would be set to the fourth-highest bid. For determining the specific blocks, the
last stage again resembles the UK design.

The German design had an endogenous number of licenses in that the number of owners
could range from four to six. The spectrum was divided into 12 lots. Firms were permitted to bid
on either two or three lots. If a firm did not remain active on at least two lots, they were considered
dropped from the auction. If the auction stopped with a firm owning a single lot, then that firm is
dropped and there is an auction for the single lot. Afterwards, a specific spectrum is determined
in a way similar to the UK design.

Results from six countries are displayed in Table 2.44 Of these, the two successful auctions
were Germany and the UK. Between them, Germany appears more successful since it not only
generated higher revenue overall, but did so adjusting for GDP.45 Furthermore, it granted six
licenses rather than five, which means a more competitive market afterwards. While it had the
same number of incumbents as the UK, it had fewer entrants, making the outcome more impressive
in its competitiveness given that overall there were fewer bidders (although, as Klemperer, 2004,
points out, this smaller number of entrants could have been a function of the auction design).

Other 3G auctions did not fare so well. Using the UK design, Switzerland with the highest
GDP per capita and the lowest number of incumbents was poised for a high per capita sales price
(Wolfstetter, 2003). There were also ten firms vying for the four licenses. However, in the end,
there were only four entrants competing for the four licenses that went for the reserve price which
was set too low (despite a governmental attempt to change the rules at the last minute). This drop
in numbers was in part due to the government allowing joint bidding (Klemperer, 2004).

In Austria, the use of the German design failed to push bids much beyond the reserve price.
43This stage is also useful in ameliorating the exposure problem where there is an additional advantage of holding

the same specific frequencies in neighboring countries.
44The table is from Wolfstetter (2003) with added data from Klemperer (2004).
45In the UK, it was 630/25415=0.0248 Euros per Euro of GDP, while in Germany it was 615/23020=0.0267 Euros

per Euro of GDP. See Table 2.
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The six bidders each received a license. Apparently, the stronger bidders preferred to have a smaller
license with a market size of six to trying to get a larger license (and with fewer competitors) by
bidding on a second smaller license since that would run the risk of increasing all the prices without
changing the outcome.

The main weakness of the UK ascending auction is that if there is little private information,
even if the number of potential bidders is higher than the number of licenses, then the weaker bidders
will realize when they cannot win and will choose not to enter. We then have the same number
of bidders as licenses and this leads to the licenses going at the reserve prices. This is particularly
problematic if the number of licenses equals the number of incumbents since who is strong is clear.
Determining who is strongest among the entrants can take more time. Thus, the fact that the UK
ran first may have helped it attract more entrants, while in Switzerland this was not the case.

The Anglo-Dutch design gives a weaker bidder a chance of winning and hence can attract
more entrants (at the cost of efficiency). After the failures of the UK ascending design, with four
incumbents and four licenses, Denmark used the Anglo-Dutch design (albeit only at the second
stage).46 The auction not only attracted an entrant, but the newcomer replaced one of the incum-
bents. While the price was 95 Euros per capita, given the drop in the stock market due to the 2000
dot.com crash, this result was successful.

Using an ascending auction for at least part of the auction is problematic in that bidders
can communicate indirectly through the auction. In the German auction, bidding at the end of day
11, after 138 rounds, had two top bids by T-Mobile and one by Mannesmann Mobilfunk equal to
DM6.666 billion:47 potentially implying that they should split six ways. Although it was expensive
to communicate in such a manner, it is conceivable that it was an attempt to collude. It is also
possible to communicate one’s strength by entering a jump bid and thereby increasing the bid
significantly.

The flexibility of the German design garnered criticism in that it left more combinations
for which the bidders could collude. There were also complaints about the complexity of its rules.
Also, it was not clear whether the government had the knowledge to optimally set the number of
different companies owning licenses at the end of the auction. On the other hand, allowing the
auction to endogenously determine this number, runs the risk of resulting in too small a number of
companies, and hence hurting the competitiveness of the industry. Limiting the number of licenses
that one firm can own ensures a minimum level of after-auction firm participation. The advantage
of the German design is that when the auction would normally end in a typical ascending auction
where each bidder was permitted only one unit, there is potential for the stronger bidders to push
the price up further by bidding for an additional unit (and keeping entrants out). As we saw
with the German auction, this can end in higher prices without reducing the after-auction firm
participation.48

46In the end, it did not matter since there were only five bidders.
47While bidding was in Deutsch Marks, which was the currency in circulation at the time, the exchange rate was

fixed to the Euro.
48Ironically, the two entrants returned their licenses within one year (although they could not recover the money

spent) in order to avoid the obligation of building infrastructure to provide nationwide coverage. Telefonica was one
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Country Date Bidders Licenses Incum. Euro/capita GDP per capita
UK Mar.-Apr. 2000 13 5 4 630 25,415
Netherlands July 2000 9/6 5 5 170 24,250
*Germany July-Aug. 2000 12/7 4-6 4 615 23,020
Italy Oct. 2000 8/6 5 4 210 R 19,451
*Austria Oct. 2000 6 4-6 4 103 R 24,045
Switzerland Nov.-Dec. 2000 10/4 4 3 19 R 35,739
**Denmark Sept. 2001 -/5 4 4 95 30,034

Table 2: The European 3G auctions in 2000. A * indicates used the German Design. A ** indicates
using the second phase of the Anglo-Dutch auction. All others used the UK design (Italy had the
additional rule that they would reduce the number of licenses if there was not an excess of serious
bidders). An R indicates sold at or close to reserve price. For bidders x/y, represents that x
bidders were thinking of entering bids but in the end only y bidders entered. Both the German
and Austrian auction ended with six licenses awarded. GDP per capita is in 2000 dollars (from the
IMF) using then current exchange rates.

See Illing and Klüh (2004) for a collection of papers that interpret and debate the 3G
auctions in Europe.

10.2 4G Auctions

After the 3G auctions, there was the start of a new wave of spectrum auctions, the 4G auctions.
These were different from the 3G auctions in many ways. For one, the market had matured. While
smart phones were in widespread use, the expectations had been reduced from the dot.com boom.
The competition was more Bertrand like resulting in lower profit for the firms. For these reasons,
revenue was markedly smaller. Also, the number and type of licenses up for sale was much more
varied across countries. In such a mix, there were many complementarities in the blocks. Finally,
the number of firms considering entry and incumbents in the market were better known in advance.
The need to attract new entrants seemed less of an issue than the need to ensure efficiency in fitting
the new licenses to existing ownerships.

The two main designs used are the Simultaneous Multi-Round Auction (SMRA) and the
Combinatorial Clock Auction (CCA).49 These designs combine elements from both the Anglo-Dutch
design and the German design. The CCA is significantly more complex than even the German 3G
design50 and allows for combinatoric bids. Like the German design, the CCA has a built-in flexibility

of those firms and even more ironically took over an incumbent and in 2010 bought back its returned license.
49Among the other designs, Rothkopf et al. (1998) propose using Hierarchical package bidding. This combinatorial

auction limits the combinations that can be bid upon to hierarchies of blocks. For instance, one can bid for blocks A,
B, C, and D separately, A and B together, C and D together, or A, B, C, and D all together, but one cannot bid on
B and C together. This restriction makes computing the maximum revenue significantly easier and allows subjects
to better understand the pricing tradeoffs. It was used in practice by the FCC (see Goeree and Holt, 2010). One
drawback is that the packages must be predetermined by the auctioneer. The FCC also tried using Modified Package
Bidding (also known as Resource Allocation Design) designed by Kwasnica et al. (2005). This design sets shadow
prices for the blocks such that the revenue-maximizing bidders are willing to pay the prices (given their bids) and
the other bidders are not. This is helpful in price discovery.

50Indeed, in the recent auctions in Switzerland and Austria, a bidder could submit more than 1500 bids in the last
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about the amount of spectrum each winning firm can obtain but many implementations have caps
imposed on how much spectrum a single bidder can win.

The SMRA is, in essence, an enhanced version of the UK-ascending auction (although a
version of it proposed by McAfee, Milgrom, and Wilson has been used by the FCC since 1994). It
has been used recently in Germany, Hong Kong, Belgium, Spain, Norway, Sweden, Finland, and
other countries. In this format, each specific block of spectrum is bid on separately. In each round,
bidders are allowed to bid in each block in which they are active. Bids can be increased in only
specified increments (to avoid information transmitted in jump bids). One remains active in round
t by either having the leading bid in round t− 2 or submitting a higher bid than the t− 1 leading
bid in round t − 1. In some versions, in earlier rounds of the auction one can also remain active
for x blocks by satisfying those conditions in only a fraction of the blocks (such as half) for which
one was active in round t− 1. Depending upon the specific rules chosen, either the highest bid or
all the bids are shown after each round. The overall auction ends when there is no improvement
on the bids in the previous round. The main differences from the UK auction are that the activity
rules are block-specific, the bidders are allowed to win more than one block, and the bid increases
are restricted. As mentioned, there is a possibility of a cap on the number of blocks one can be
active on.

The CCA was introduced by Cramton (2009, 2013), which incorporated many elements
of the Proxy-Clock auction proposed by Ausubel et al. (2006). Maldoom (2007) describes an
implementation by a private company, dotEcon, that ran many of the European 4G auctions using
this format (UK, Ireland, Holland, Denmark, Switzerland). Here, bidders are allowed to bid on
lots: combinations of spectrum blocks (with a potential cap on the total spectrum size a bidder can
own). The CCA has two main stages: the clock stage, during which bidders can bid on just one
package in each round, followed by the sealed-bid stage, in which bidders can bid on all possible
combinations, restricted by their activity during the clock stage.51

Rather than asking the bidders to choose the bids, the clock increases the price and the
bidders decide which package of blocks (if any) to bid on. Each block is worth a number of
eligibility points and buyers can choose only licenses whose total points are within their eligibility
point budget (and spectrum cap). The initial budgets are set by the financial considerations of
the bidders and the budgets are reduced to the number of points used in the previous round. The
price increase for various lots is determined by the interest in that lot. The clock stops when the
demand is less than or equal to the supply. This can lead to overshooting where the demand is
strictly less than the supply or it can lead to the highest bid on a single lot below the set threshold.
To fix this, there is sealed-bid auction where bids must be consistent with the initial pattern of
bids. (The sealed-bid phase also serves to fight strategic demand reduction and collusion.) The
auctioneer then chooses the combination of bids (subject to feasibility) that maximizes revenue

stage.
51In order to reduce the number of combinations, as with the 3G auctions some blocks are classified as equivalent

and bid upon as abstract blocks. After the two main stages, there is a subsequent stage in which (as similar to the
UK 3G auction) specific blocks are bid upon among winners of the auction in each equivalent class of blocks.
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(which is also efficient if bids are truthful) from both the sealed-bid stage and all rounds of the
clock stage. The prices paid are determined by what is called Vickrey-nearest-core pricing. While
in Vickrey pricing each individual must pay the externality that they impose on other bidders, in
Vickrey-nearest-core pricing each collection of winning bidders must pay the joint externality that
is imposed on the other non-winning bidders.

To demonstrate Vickrey-nearest-core pricing, we use an example from Cramton (2013).
There are two lots: A and B. Bidder 1 values A at 28. Bidder 2 values B at 20. Bidder 3 values
the package of A and B together at 32. Bidder 4 values A at 14. Bidder 5 values B at 12. The
efficient allocation gives A to bidder 1 and B to bidder 2. In Vickrey-Clark-Groves (VCG) pricing,
the price of A is 14 and B is 12.52 However, this is below what the value of A and B together for
bidder 3. In order to get a set of prices in the core, the sum of the prices for A and B must be at
least 32 (their combined value for bidder 3). This constraint is satisfied by the set of prices that
has the minimum revenue within the core (MRC). The closest set of prices (geometrically) from
the MRC to the Vickrey prices is 17 for bidder 1 and 15 for bidder 2. This also has the advantage
of higher revenue than the Vickrey pricing.

Using Vickrey-nearest-core pricing is motivated by the fact that using Vickrey pricing may
lead not only lead to outcomes that are not in the core, but to lower revenue, as shown by Day
and Milgrom (2008). Day and Milgrom also show that pure VCG pricing may give the bidders an
advantage of using a shill bidder (entering as two bidders), and may be non-monotonic revenue-wise
in the number of bidders. They provide an example with two licenses: A and B. Bidder 1 values
them together at 10 and each separately at 0. Bidder 2 values the first license at 10 and the second
at 0. Bidder 3 values the first license at 0 and the second at 10. With all 3 bidders, the VCG price
for either item is 0. With just bidders 1 and 3, the price of item A is 0 but that of item B is 10.
Hence in this case, bidder 3 can gain by entering a bidder to bid for item A, thereby, reducing B’s
price. (Remember that in VCG pricing, a bidder pays the externality he causes by receiving his
allocation. With all three bidders, bidders 2 and 3 receive A and B, respectively, each receiving 10
in value. Without bidder 3, either bidder 2 gets A or bidder 1 gets A and B. In either case, the
value is 10. Hence, bidder 3 does not impose an externality on the other bidders.)

In support of using Vickrey-nearest pricing, Day and Raghavan (2007) show that the
Vickrey-nearest-core prices minimize the sum of the maximum gains of deviating from truthful
bidding. Day and Milgrom (2008) suggest that the Vickrey-nearest-core prices maximize the in-
centive for truth telling among the prices in the core and Day and Cramton (2013) show that the
Vickrey-nearest-core prices are unique. However, Goeree and Lien (2012) show that it still distorts
incentives for truthful bidding and Erdil and Klemperer (2010) claim that incentives for truthful
bidding are superior with a reference point other than VCG, one that does not depend upon the
bids of the bidders involved. This would be minimizing incentives locally for small deviations from

52With VCG, the efficient allocation is chosen and a bidder pays the externality he imposes on others. If bidder 1
does not receive the allocation of A, the next-best allocation is bidder 4 gets A and bidder 2 gets B. This has a total
value of 34. This is 14 above the value that the other bidders get when bidder 1 gets A (and bidder 2 gets B). Hence
the VCG price for package A is 14.
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truthful bidding.
The CCA consistency rules (see Bichler et al., 2013, for a description) are essentially that the

final-round bids must be consistent by revealed preferences from the earlier rounds. For instance,
if lot A and lot B are the same price in a preliminary round and a bidder chooses to bid on A and
not on B, then in the final, sealed-bid round, that bidder cannot bid more for lot B than for lot
A. (Similar rules apply for quantity reductions.)

While neither design has emerged as dominant in recent auctions, there are some concerns.
For the SMRA auction, when there are complementaries, larger bidders may worry about being
left exposed by purchasing only part of a complementary lot of blocks. Because of this the SMRA
can result in smaller bidders winning at low prices and thus excluding bidders may be beneficial
for seller revenue (see Goeree and Lien, 2014). There are other potential problems as well, as in
the case in which a large bidder that has complementarities over a large number of lots is held up
by a small bidder. For instance, if bidder A values ten specific licenses together at 100 and each
individually only at 1, then a bidder B can speculate by buying one of the ten and then demand
a large amount from bidder A. In the Advanced Wireless Services (AWS) auction run by the FCC
(see Cramton, 2013), blocks of spectrum were divided up differently geographically. Because of
this holdup problem, a block of spectrum sold for 12 times the price of the combined price of a
similar block that could be created by buying several geographically divided blocks. Despite these
problems, Bichler et al. (2013) experimentally find that the CCA does worse than the SMRA in
both efficiency and revenue. Due to its complexity, one may question the feasibility of subjects
comprehending the CCA design,53 but experiments done on teams of bidders recruited from a class
on auction theory, who also had two weeks to prepare, yielded similar results. Cramton (2013)
claims that part of the problem is that bidders were not provided with the right bidding tools that
would have enabled them to easily place bids on the relevant packages.

11 Concluding Remarks

As mentioned in the Introduction, we could not hope to provide a fair representation of all the
work going on in auctions in the past two decades. There are many important topics that we did
not cover, among them, collusion and corruption, budget constraints, and experiments.54

Even in the topics covered in the chapter, we were not exhaustive, but we hope to have given
the reader a place to start. Some topics are covered more deeply and formally in other chapters of
this handbook: Combinatorial Auctions and Algorithmic Mechanism Design.

53See Guala (2001) for a discussion on how experiments are a useful part of spectrum auction design.
54We refer the reader to the book of Marshall and Marx (2012) and papers by Skrzypacz and Hopenhayn (2004),

Che and Kim (2006, 2009), Pavlov (2008), Garratt et al. (2009), and Rachmilevitch (2013a, 2013b, 2014) for collusion
in auctions, Che and Gale (1996, 1998), Zheng (2001), Pitchik (2009), and Kotowski (2013) for budget constraints,
and Kagel (1995) and Kagel and Levin (2014) for surveys of auction experiments.
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