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REPUTATION IN REPEATED MORAL HAZARD GAMES1

Alp E. Atakan and Mehmet Ekmekci

We study an infinitely repeated game where two players with equal discount

factors play a simultaneous-move stage game. Player one monitors the stage-

game actions of player two imperfectly, while player two monitors the pure stage-

game actions of player one perfectly. Player one’s type is private information and

he may be a “commitment type,” drawn from a countable set of commitment

types, who is locked into playing a particular strategy. Under a full-support as-

sumption on the monitoring structure, we prove a reputation result for repeated

moral hazard games: if there is positive probability that player one is a particular

type whose commitment payoff is equal to player one’s highest payoff, consistent

with the players’ individual rationality, then a patient player one secures this

type’s commitment payoff in any Bayes-Nash equilibrium of the repeated game.
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1. Introduction

The desire to maintain one’s reputation is a powerful incentive in a long-run relationship as

a strong reputation can lend credibility to an individual’s (or an institution’s) commitments,

threats, or promises. It can help a firm commit to fight competitors planning to enter its

market, it can assist a government in committing to its monetary and fiscal policies, or it

can facilitate trade based on trust when formal institutions are lacking. In fact, a patient

player’s reputation concerns are the dominant incentives that determine equilibrium payoffs

in repeated games where a patient player faces a myopic opponent. And this is true regardless

of the monitoring structure.1

Building a reputation when facing an equally patient opponent, however, is more diffi-

cult. A patient opponent might be willing to sacrifice short-term payoffs to test whether

the player, who is trying to build a reputation, will go through with his threats or promises.

This makes it prohibitively expensive to build a reputation in certain repeated simultaneous-

move games played against a patient opponent if stage-game actions are perfectly monitored

(Cripps and Thomas (1997)). In this paper, we instead focus on repeated simultaneous-

move games played by equally patient players where the opponent’s stage-game actions are

imperfectly monitored. A leading example of significant economic interest is the repeated

principal-agent game. We show that reputation effects are prominent under imperfect mon-

itoring even in certain repeated games where reputation effects are absent under perfect

monitoring.

Specifically, suppose that player one’s type is private information and that he may be a

“commitment type” who is locked into playing a particular strategy. We explore whether

an uncommitted or “normal” player can exploit his opponent’s uncertainty to establish a

reputation for a particular behavior. We also address two related questions. First, we ask

which behavior (strategy or strategic posture) would a “normal” player mimic in order to

successfully build a beneficial reputation? In other words, which types, if available, facilitate

reputation building for player one?2 Second, we ask in which strategic situations (i.e., for

which class of stage games) can player one successfully build a reputation?

Our central finding is a reputation result in repeated games where player one (he) observes

only an imperfect public signal of his opponent’s stage-game action while his opponent (she)

perfectly monitors player one’s actions. We show that a patient player one can guarantee his

highest payoff compatible with the players’ individual rationality (player one’s highest IR

1See Fudenberg and Levine (1989) for the case of perfect monitoring, Fudenberg and Levine (1992) for
imperfect public monitoring, and Gossner (2011) for imperfect private monitoring.

2 We say that a certain type is available if player two believes that player one is this type with positive
probability.
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payoff) in any Bayesian-Nash equilibrium of the repeated game. For our reputation result,

we assume that a certain commitment type, which satisfies two properties, is available. The

first property, which we call no shortfall, requires that the type’s commitment payoff is

equal to player one’s highest IR payoff.3 The second requires that the per period cost of

not best responding to this type is positive, even for an arbitrarily patient player two. If

this type is available, then player one guarantees this type’s commitment payoff simply by

mimicking its strategy, even if player two believes that player one is another commitment type

with arbitrarily higher probability. In other words, this commitment type with no shortfall

facilitates reputation building.

For our reputation result, we also assume that the stage game has locally nonconflicting

interests (LNCI).4 There are LNCI in a game if player two’s payoff, in the payoff profile

where player one receives his highest IR payoff, strictly exceeds her pure minimax payoff.

This restriction on the stage game ensure the existence of a commitment type that satisfies

the aforementioned two properties.

One key assumption, which we have not yet discussed at length, is that player one does not

observe player two’s intended action, but only sees an imperfect signal of it, as in a model of

moral hazard. We also assume that the support of the distribution of signals is independent

of how player two plays; we call this the full-support imperfect-monitoring assumption. This

assumption is indispensable and, intuitively, ensures that every reward and punishment in

player one’s strategy will occasionally be triggered, so that player two will learn how player

one responds to all sequences of public outcomes.

We obtain our reputation result by calculating a lower bound, which holds across all

equilibria, on player one’s payoff when he mimics a commitment type that plays a pure

strategy (as in Fudenberg and Levine (1989)). In this context, our assumption that player

one’s stage-game actions are perfectly monitored greatly aids our analysis. This is because

the perfect-monitoring assumption simplifies the dynamics of how player one’s reputation

evolves. In particular, because player two perfectly monitors player one’s stage-game actions

and because the commitment type plays a pure strategy, player one’s reputation level weakly

increases - but only as long as player two observes him play the same stage-game action as

the action the commitment type would have played; otherwise, his reputation level collapses

to zero.5 If we relax the assumption that player one’s actions are perfectly monitored, then a

3The commitment payoff of a type is the payoff that player one can guarantee by publicly committing
to play the repeated-game strategy that this type plays. A type’s (or strategy’s) shortfall is the difference
between player one’s highest IR payoff and the type’s commitment payoff.

4We also assume that the stage-game satisfies a certain technical genericity property. Specifically, we
assume that the payoff profile in which player one obtains his highest IR payoff is unique. We term this
genericity property no gap.

5We use these dynamics in proving both reputation results and our non reputation results.
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technically challenging statistical learning problem arises. Whether an appropriate statistical

learning technique can be developed or applied for this framework remains an open question

beyond the scope of this paper.6,7

Lastly, the reputation results in games with asymmetric discounting (Fudenberg and Levine

(1989, 1992) or Celentani et al. (1996)) are robust to the introduction of two-sided un-

certainty, while the reputation result that we present in this paper is not. In order to

obtain our one-sided reputation result, we allow for only one-sided uncertainty. In other

words, we replace asymmetric discount factors as in Fudenberg and Levine (1989, 1992) or

Celentani et al. (1996) with one-sided asymmetric information.

1.1. Related literature and our contribution. This paper is most closely related to

work on reputation effects in repeated simultaneous-move games with equally patient agents

(see Cripps and Thomas (1997), Cripps et al. (2005), and Chan (2000)).8 We make three

main contributions to this literature. First, we provide the first reputation result for all

games with a strong Stackelberg action and games LNCI.9 Previous reputation results are

for only a strict subset of stage games with a strong Stackelberg action: those with strictly

conflicting interests (Cripps et al. (2005)) or strictly-dominant-action stage games (Chan

(2000)).10 Second, we are the first to explore reputation effects under imperfect monitoring.

Previous work assumed perfect monitoring. Finally, our work highlights the role that full-

support imperfect monitoring plays for a reputation effect in repeated games with LNCI.

Without full-support imperfect monitoring, our reputation result may fail to obtain for

repeated games with LNCI (Cripps and Thomas (1997) and Chan (2000)).

This paper also relates to work on reputation effects in repeated games where a pa-

tient player one faces a nonmyopic, but arbitrarily less patient, opponent (Schmidt (1993),

Celentani et al. (1996), Aoyagi (1996), Cripps et al. (1996), Evans and Thomas (1997)). In

repeated games where a patient player faces a less patient opponent, Celentani et al. (1996)

and Aoyagi (1996) establish reputation results under full-support imperfect monitoring. How-

6Fudenberg and Levine (1992)’s learning result (Theorem 4.1) does not help in our framework with equally
patient agents.

7Note that we place no restriction on player one’s other commitment types. In fact, we allow player
one’s other commitment types to be any countable set of finite automata including those which play mixed
strategies. For example, if there is a strong Stackelberg action in the stage-game, and the set of player one’s
types is any set of finite automata that includes the simple type that plays the pure strong Stackelberg action
in each period, then player one guarantees his highest IR payoff.

8By equal patience, we mean that the players share the same discount factor. There is also a literature on
reputation effects in repeated games without discounting. See, for example, Cripps and Thomas (1995).

9Atakan and Ekmekci (2011) also present a reputation result for repeated games with LNCI and equally
patient players. However, in that paper the stage game is an extensive-form game of perfect information as
opposed to the simultaneous-move game that we assume here.

10For a precise definition of a strictly-dominant-action stage game, see Mailath and Samuelson (2006),
Page 540.
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ever, as in the case with equal discounting, under perfect monitoring a reputation result is

obtained only in games with conflicting interests (see Schmidt (1993) and Cripps et al. (1996)

for a generalization).

Although the results in repeated games with a less patient opponent are similar in spirit to

the results we establish here, we should point out three important differences. First, against

a less patient opponent, player one can build a reputation by mimicking a commitment type

with positive shortfall, i.e., player one can guarantee a compromise payoff (Celentani et al.

(1996) and Cripps et al. (1996)). In contrast, this is not possible when player one faces an

equally patient opponent. Second, with equally patient agents, the limitation on the types

that facilitate reputation building to those with no shortfall implies a restriction on the class

of stage games (i.e., those with a strong Stackelberg action or LNCI). Again, this contrasts

with the case where player one faces a less patient opponent, as in Celentani et al. (1996).

Because player one can guarantee a compromise payoff against a less patient opponent,

Celentani et al. (1996) are able to establish a reputation result which applies to all stage

games when there is full-support imperfect monitoring. Third, the arguments for reputation

results in repeated games where player one faces a less patient opponent rely on the learning

result (Theorem 4.1) in Fudenberg and Levine (1992). In our framework with equally patient

players, this learning result has no traction. We instead introduce a dynamic-programming

methodology where the state variable is player two’s beliefs.11

This paper is also closely related to Atakan and Ekmekci (2011), which proves a repu-

tation result for repeated extensive-form games of perfect information with equally patient

players. The three main differences between the two papers are as follows: First, in this

paper we study the Bayesian equilibria of repeated simultaneous-move games whereas the

focus of Atakan and Ekmekci (2011) is on the perfect Bayesian equilibria of a repeated game

where the two players never move simultaneously. In particular, the reputation result of

Atakan and Ekmekci (2011) leverages the particular form of sequential rationality, implied

by perfect Bayesian equilibrium for games where the two players move sequentially, in a way

that one cannot if the two players move simultaneously or if the focus is on Bayesian equi-

libria. Two, this paper assumes imperfect monitoring whereas Atakan and Ekmekci (2011)

assumes that both players’ moves are perfectly monitored. Three, here we assume that the

other commitment types (i.e., the commitment types other than the type that player one

mimics) are finite automata but we place no restriction on player two’s prior. In contrast, the

reputation result in Atakan and Ekmekci (2011) depends on the set of other commitment

11Also, see Cripps and Thomas (2003) for an asymptotic contrast of the equilibrium payoff sets of
incomplete-information repeated games where the players share the same discount factor with those games
where the informed player is arbitrarily more patient than his opponent.
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types having sufficiently low prior probability.

2. The model

We consider an infinitely repeated game in which a finite, two-player, simultaneous-move

stage game Γ is played in periods t ∈ {0, 1, 2, ...}. The players discount payoffs using a

common discount factor δ ∈ [0, 1). For any set X, ∆(X) denotes the set of all probability

distribution functions over X. The set of pure actions for player i in the stage game is Ai,

and the set of mixed stage-game actions is ∆(Ai). After each period, player two’s stage-game

action is imperfectly observed through a public signal while player one’s pure stage-game

action is perfectly observed.12 Let Y denote the set of public signals generated by player two’s

actions. Thus, after each period, a public signal (a1, y) ∈ A1×Y is observed. The probability

of signal y if player two chooses action a2 ∈ A2 is πy(a2). For any mixed action α2 ∈ ∆(A2),

πy(α2) :=
∑

a2∈A2
α2(a2)πy(a2). We maintain the following full-support imperfect-monitoring

assumption throughout the paper:

Assumption (FS) Define π := min(a2,y)∈A2×Y πy(a2). We assume that π > 0.

If the stage game satisfies FS, then player one is never exactly sure about player two’s

action. The assumption does not, however, put any limits on the degree of imperfect moni-

toring.13

In the stage game, the payoff for any player i is given by the function ri : A1 × Y → R

and depends only on publicly observed outcomes a1 and y. Let M = max{|ri(a1, y)| : i ∈

{1, 2}, a1 ∈ A1, y ∈ Y }. The payoff function for player i is gi(a1, a2) :=
∑

y∈Y ri(a1, y)πy(a2)

for (a1, a2) ∈ A1 × A2. The mixed minimax payoff for player i is ĝi, and the pure minimax

payoff for player i is ĝp
i . Let ap

1 ∈ A1 be such that g2(a
p
1, a2) ≤ ĝp

2 for all a2 ∈ A2. The set of

feasible payoffs F is the convex hull of the set {g1(a1, a2), g2(a1, a2) : (a1, a2) ∈ A1×A2} ; and

the set of feasible and individually-rational payoffs is G = F ∩ {(g1, g2) : g1 ≥ ĝ1, g2 ≥ ĝ2}.

Let ḡ1 = max{g1 : (g1, g2) ∈ G}; hence, ḡ1 is player one’s highest payoff compatible with the

players’ individual rationality (player one’s highest IR payoff).

In the repeated game Γ∞, the players have perfect recall and can observe past out-

comes. The set of period t public histories is H t = At
1 × Y t, a typical element is ht =

(a0
1, y

0, a1
1, y

1, ..., at−1
1 , yt−1) for t > 0, and h0 = ∅. The set of all public histories is H =

12 If player one plays a mixed action, then only the pure action that he eventually chooses is observed
publicly. The mixed action he uses is not observed.

13 In extensive-form stage games, where player one’s pure action is a full contingent plan, the perfect
monitoring assumption that we impose is stringent. This is because it requires that player one’s whole
contingent plan be observed at the end of the period. We can relax this assumption by requiring that player
one’s moves are observed perfectly while player two’s moves are observed with full-support noise. The results
we present in this paper go through with this weaker assumption, and we discuss this further in section ??.
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⋃∞
t=0 H t. The set of period t private histories for player two is H t

2 = At
1 ×At

2 × Y t , a typical

element is ht
2 = (a0

1, a
0
2, y

0, ..., at−1
1 , at−1

2 , yt−1), and H2 =
⋃∞

t=0 H t
2 is the set of all private

histories for player two. The set of private histories of player one coincides with the public

histories, i.e., H t
1 = H t.

2.1. Types and strategies. A behavior strategy for player i is a function σi : Hi →

∆(Ai), and Σi is the set of all behavior strategies for player i. A behavior strategy chooses

a mixed stage-game action given player i′s period t private history. A behavior strategy for

player i is a function σi : Hi → ∆(Ai) and Σi is the set of all behavior strategies for player

i.14 We use σ to denote a strategy profile (σ1(N), σ2) and the set of all such strategy profiles

is Σ = Σ1 × Σ2.

For any strategy σ1 ∈ Σ1, H(σ1) denotes the set of public histories that are compatible

with σ1. More precisely, hT = (y0, a0
1, ..., y

T−1, aT−1
1 ) ∈ H(σ1) if and only if ak

1 ∈ supp(σ1(h
k))

for all k ≤ T −1, where hk is any history that is identical to the first k periods of hT . For any

period t public history ht and for any σi ∈ Σi, the expression σi|ht denotes the continuation

strategy induced by ht. The probability measure over the set of (infinite) histories induced

by (σ1, σ2) ∈ Σ1 × Σ2 is Pr(σ1,σ2).

Before time 0, nature selects player one as a normal type N or a commitment type ω,

from an at most countable set of types Ω ⊂ Σ1 ∪{N} according to a prior µ that is common

knowledge. Each type ω ∈ Ω \ {N} is committed to playing the repeated-game strategy

ω ∈ Σ1. Player two is known to be a normal type with certainty and she maximizes her

expected discounted payoffs. Player two’s belief over player one’s types, µ : H → ∆(Ω), is a

probability measure over Ω after each period t public history.

A finite automaton ω = (Θ, θ0, o, τ) consists of a finite set of states Θ, an initial state

θ0 ∈ Θ, an output function o : Θ → ∆(A1) that assigns a (possibly mixed) stage-game action

to each state, and a transition function τ : Y ×A1 ×Θ → Θ that determines the transitions

across states as a function of the outcomes of the stage game. Abusing notation, we denote

the strategy that an automaton induces by the automaton itself. For any finite automaton ω

and any history ht ∈ H(ω), θ(ht) denotes the unique state θ which is the automaton’s state

at history ht. A pure-strategy finite automaton is a finite automaton ω = (Θ, θ0, o, τ), where

the output function o is deterministic. For a finite automaton ω, a state θ ∈ Θ is recurrent

if θ is visited infinitely often under the probability measure Pr(ω,σ2) for any σ2 ∈ Σ2. A finite

automaton is irreducible if all of its states are recurrent (see Definition A.1 in the appendix).

For any particular commitment type ω ∈ Ω, let w(ht) = {ω′ : ω′|ht = ω|ht}; in words,

w(ht) denotes the set of types that play the same repeated-game strategy as type ω plays

14For player one, any behavior strategy is also a public behavior strategy because H1 = H .
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after history ht. Consequently, Σ1 \ {ω} is the set of commitment types other than ω, and

Σ1 \ ω(ht) is the set of commitment types that play a strategy that is not identical to the

strategy of ω, given that history ht has been reached.

Given automaton ω = (Θ, θ0, o, τ), we say that player two’s strategy σ2 is stationary with

respect to ω if σ2(h
t) = σ2(h

k) for any two histories ht and hk such that θ(hk) = θ(ht) ∈ Θ,

where θ(hk) = τ(ak−1
1 , yk−1, θ(hk−1)) and θ(h0) = θ0. Abusing notation slightly, we will

denote a stationary strategy by a function σ2 : Θ → ∆(A2), i.e., player two plays mixed

action σ2(θ) whenever the state of ω is θ.

2.2. Payoffs. A player’s repeated-game payoff is the normalized discounted sum of the

stage-game payoffs. For any infinite public history h, define ui(h, δ) = (1 − δ)
∑∞

k=0 δkri(a
k
1, y

k),

and ui(h
−t, δ) = (1 − δ)

∑∞
k=t δ

k−tri(a
k
1, y

k), where h−t = (at
1, y

t, at+1
1 , yt+1, ...). Player one

and player two’s expected continuation payoffs, following a period t public history ht and

under strategy profile σ = ({ω}ω∈Ω\{N}, σ1(N), σ2), are given by the following two equations,

respectively:

U1(σ, δ|ht) = U1(σ1(N), σ2, δ|h
t),

U2(σ, δ, µ|ht) =
∑

ω∈Ω\{N}
µ(ω|ht)U2(ω, σ2, δ|h

t) + µ(N |ht)U2(σ1(N), σ2, δ|h
t),

where Ui(ω, σ2, δ|h
t) = E(ω,σ2)[ui(h

−t, δ)|ht] is the expectation over continuation histories h−t

with respect to Pr(ω|ht ,σ2|ht). Also, U1(σ, δ) = U1(σ, δ|h0) and U2(σ, δ, µ) = U2(σ, δ, µ|h0).

2.3. Repeated game and equilibrium. The repeated game of complete information,

that is, the repeated game without any commitment types, with discount factor equal to

δ ∈ [0, 1), is denoted as Γ∞(δ). The repeated game of incomplete information, with the

prior over the set of commitment types given by µ ∈ ∆(Ω) and the discount factor equal to

δ ∈ [0, 1), is denoted as Γ∞(µ, δ).

The analysis in this paper focuses on Bayesian Nash equilibria (NE) of the game of incom-

plete information Γ∞(µ, δ). In particular, a pair of strategies (σ1(N), σ2) ∈ Σ1 × Σ2 is a NE

of Γ∞(µ, δ) if σ1(N) ∈ arg maxσ1∈Σ1
U1(σ1, σ2, δ) and σ2 ∈ arg maxσ2∈Σ2

U2(σ1(N), σ2, δ, µ).

Let

UNE
1 (δ, µ) = inf{U1(σ, δ) : σ ∈ NE(Γ∞(δ, µ))},

where NE(Γ∞(δ, µ)) denotes the set of all NE of the repeated game Γ∞(δ, µ). In words,

UNE
1 (δ, µ) is player one’s the worst NE payoff. Also, let UNE

1 (µ) = lim infδ→1 UNE
1 (δ, µ).

Again in words, UNE
1 (µ) is the worst NE payoff for a patient player one.

7



Remark 1 Suppose σ is a NE strategy profile of Γ∞(µ, δ).

(i). FS implies that if ht ∈ H(N), then Prσ(ht) > 0, that is, if ht is compatible with player

one’s strategy, then it has positive probability under σ. This is because, under FS, any

finite sequence of signals has positive probability regardless of which strategy player two

uses.

(ii). For any history ht ∈ H, if ht has positive probability under σ, that is, if Prσ(ht) > 0,

then (σ1|ht , σ2|ht) is a NE profile of Γ∞(µ(ht), δ), where µ(ht) is the posterior belief

over player one’s types given history ht.

(iii). Consequently, if ht ∈ H(N), then (σ1(N)|ht , σ2|ht) is a NE profile of Γ∞(µ(ht), δ), i.e.,

(σ1(N)|ht, σ2|ht) is a NE profile of the continuation game.

2.4. Commitment payoff and shortfall of a strategy. The commitment payoff of a

repeated-game strategy σ is the payoff that a patient player one can guarantee through

public commitment to this strategy. The formal definition is as follows:

Definition (Commitment Payoff) For any repeated-game strategy σ1, define

UC
1 (σ1, δ|h

t) = min{U1(σ1, σ2, δ|h
t) : σ2 ∈ BR(σ1, δ)},

where BR(σ1, δ) denotes the set of best responses of player two to σ1 in the repeated game

of complete information Γ∞(δ). The commitment payoff of a repeated-game strategy σ1 after

history ht is defined as UC
1 (σ1|h

t) = lim infδ→1 UC
1 (σ1, δ|h

t).15

The shortfall of a repeated-game strategy σ is the difference between the commitment

payoff of the strategy and player one’s highest IR payoff. The shortfall of a commitment

type is an important concept in our analysis because, as we show, only those types with no

shortfall can facilitate successful reputation building for player one. The formal definition is

as follows:

Definition (Shortfall) The shortfall of a repeated-game strategy σ1 is defined as follows:

d(σ1) = ḡ1 − sup
ht∈H(σ1)

UC
1 (σ1|h

t).

A type ω has no shortfall if d(ω) = 0, i.e., if the best commitment payoff among all histories

for type ω is equal to player one’s highest IR payoff.

15 Although we define the commitment payoff using lim infδ→1 UC
1

(σ1, δ|ht), in the context of this paper
the limit limδ→1 UC

1
(σ1, δ|ht) exists.
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If the shortfall of the commitment type ω is positive, then there is typically a range of

feasible and individually-rational payoffs for player two, given that player one receives UC
1 (ω)

(see figure 1).

d(ω)

ḡ1

b

b

b

b

b

UC
1 (ω)

g′′
2

g′
2

(ĝ1, ĝ2)

P2

P1

Figure 1: Shortfall of a strategy. Player two can receive any payoff between g′
2 and g′′

2 while
player one receives UC

1 (ω).

2.5. Class of stage games. Below we define the various restrictions on the set of stage

games that we will utilize in the remainder of the paper. We say a game has no gap if the

payoff profile where player one receives his highest IR payoff is unique. The formal definition

is as follows:

Definition (No gap) Let gb
2 = max{g2 : (ḡ1, g2) ∈ G}. A stage game has no gap if

(ḡ1, g2) ∈ G implies that g2 = gb
2. Otherwise, we say that the stage game has a positive gap.

For our reputation result we assume that the stage game has no gap, an assumption that

is generically satisfied. The implication of the assumption is as follows: If the stage game has

no gap, then there are linear bounds on the feasible payoffs for player two that pass through

the point (ḡ1, g
b
2); hence, player two’s payoffs are in a narrow range if player one’s payoff is

close to ḡ1. In contrast, if the stage game has a positive gap, then there is a range of payoffs

that are feasible and individually rational for player two if player one’s payoff is equal to ḡ1

(see figure 2).

Our main reputation result focuses on stage games that have either a strong Stackelberg

action or LNCI, and we denote the set of such stage games by G. A stage game has LNCI

9



b

b

b

b

ḡ1

gb
2

gb
2 − γ

(ĝ1, ĝ2)

γ

P2

P1

(a) A game with a positive gap: there is
a range of feasible payoffs that player two
can receive while player one receives ḡ1.

ḡ1

b

b

b (ḡ1, g
b
2)

(ĝ1, ĝ2)

P2

P1

(b) A game with no gap: The set F is
bounded by the lines that go through
(ḡ1, g

b
2). Hence, player two’s feasible

payoffs are in a narrow range if player
one’s payoff is close to ḡ1.

Figure 2: The gap of a game.

if player two’s payoff is strictly higher than her pure strategy minimax in the payoff profile

where player one receives his highest IR payoff. The formal definitions of a strong Stackelberg

action and LNCI are as follows:

Definition (LNCI) For any g ∈ G, if g1 = ḡ1, then g2 > ĝp
2.

Definition (Strong Stackelberg action) There exists as
1 ∈ A1 such that any best re-

sponse to as
1 yields player one a payoff equal to ḡ1.

If player one has a strong Stackelberg action in Γ, then there is a pure strategy Nash

equilibrium of Γ where player one plays the strong Stackelberg action as
1, player two best

responds to as
1, and player one’s payoff is equal to ḡ1. The battle-of-the-sexes (figure 3d),

the common-interest game (figure 3a), and the chain-store game (figure 3c) all have strong

Stackelberg actions. The stage-game actions U , F , and A are strong Stackelberg actions for

the battle-of-the-sexes, the common-interest game, and the chain-store game, respectively.

In contrast, the principal-agent game (figure 3b) has LNCI but does not have a strong

Stackelberg action. In this game, player one gets his highest IR payoff in the action profile

(U, W ). However, W is not a best response to U because player two would rather play S.

We will establish our main reputation result for stage games in G with no gap. The two

10



L R
U 1, 0 1/2,−1
D 0,−1 1/2,−1

(a) Common-interest game.

W (ork) S(hirk)
U 3, 1 0, 2
D 0, 0 0, 0

(b) Principal-agent game.

I(n) O(ut)
F (ight) −1,−2 4, 0

A(ccom.) 2, 1 4, 0

(c) Chain-store game.

A B
A 2, 1 0, 0
B 0, 0 1, 2

(d) The battle-of-the-sexes.

Figure 3: Stage games with a strong Stackelberg action (3a, 3d, and 3c) or a game with
LNCI but without a Stackelberg action (3b).

main implications of these restrictions, which we utilize heavily in proving our reputation

result, are as follows: First, as we discussed above, if Γ has no gap, then player two’s payoffs

are in a narrow range whenever player one’s payoff is close to ḡ1. Second, if Γ is in G, i.e., if

Γ has a strong Stackelberg action or LNCI, then there is a type ω∗ which has the following

two properties:

First, ω∗ has no shortfall, that is, ω∗’s commitment payoff is equal to player one’s highest

IR payoff. For example, in the battle-of-the-sexes (figure 3d), ω∗ is the commitment type

which plays A in each period. Playing A is player two’s unique best response to ω∗, and

hence ω∗ is equal to player one’s highest IR payoff. Second, the unit cost to a sufficiently

patient player two of forcing a player one who is playing ω∗ to receive a payoff less than ḡ1

is strictly positive. For example, in the battle-of-the-sexes, in each period that player two

forces ω∗ to get a payoff of one (which is a unit short of ḡ1 = 2) by playing B instead of A,

she also loses a payoff equal to one.

Therefore, for stage games in G with no gap we have the following: if player one’s repeated-

game payoff is close to the commitment payoff of ω∗ (i.e., ḡ1), then player two’s feasible and

individually rational repeated-game payoffs are in a narrow range determined by linear bounds

that pass through (ḡ1, g
b
2). Moreover, if player one is committed to playing strategy ω∗, then

the unit cost to a patient player two of forcing him to receive a repeated-game payoff less

than ḡ1 is strictly positive for a patient player two.

The games that have a strong Stackelberg action are prominent in our analysis when all of

player one’s commitment types are finite automata. This is because if the stage game satisfies

has a strong Stackelberg action, then there is a pure strategy finite automaton ω∗ with no

shortfall; moreover, choosing not to best respond to this commitment type is costly for player

two. To see this, consider a game that has a strong Stackelberg action and the pure-strategy

11



finite automaton that plays as
1 in each period of the repeated game. It is straightforward to

see that any best response to ω∗ gives player one a payoff equal to ḡ1, that is, ω∗ has no

shortfall. For example, in the battle-of-the-sexes (figure 3d), ω∗ plays A in each period and

player two’s unique best response to ω∗ entails playing A in each period. Moreover, choosing

not to best respond to ω∗ is strictly costly for player two. This is because if player two plays

B instead of A in any period, then she gets zero instead of one against ω∗, i.e., the cost of

choosing not to best respond is equal to one.

As we discussed above, there is a pure-strategy finite automaton with no shortfall if the

stage game has a strong Stackelberg action. The following lemma, which is proved in appendix

A, shows that the converse is also true: if the stage game does not have a strong Stackelberg

action, then a pure-strategy finite automaton with no shortfall does not exist. Nevertheless,

in Theorem 1 and in section 3.1 we show that there is an infinite automaton with no shortfall

if the stage game is in G.

Lemma 1 Suppose that Γ satisfies FS and has no gap. There exists a pure strategy finite

automaton with no shortfall if and only if Γ has a strong Stackelberg action.

Proof: See Atakan and Ekmekci (2012), Lemma 1. �

For an intuition about the “only if” part of the above lemma, consider the principal-agent

game (figure 3b). Player one’s highest IR payoff is equal to three in this game. If player two’s

actions were observed without noise, then player one could obtain a payoff equal to three by

using the following repeated-game strategy: player one starts the game by playing U ; if player

two does not play W in any period in which player one plays U , then player one punishes

player two for two periods by playing D; after the two periods of punishment, player one

again plays U . The best response of a sufficiently patient player two to this repeated-game

strategy involves playing W in any period where player one plays U .

However, if player two’s actions are monitored with noise, then for player one to commit to

the strategy described in the previous paragraph does not necessarily guarantee him a high

payoff. This is because player one cannot observe whether player two has played W or S when

he plays U but can observe only an imperfect signal. Consequently, in certain periods player

one will mistakenly punish player two, even if she played W against U ; or he will mistakenly

fail to punish player two, even if she played S against U . Thus, player one cannot guarantee

a payoff equal to three. The situation is also similar with any other finite automaton. Any

finite automaton ω whose commitment payoff is equal to three must punish player two by

playing D if player two plays W against U . However, the finite automaton will punish player

two even if player two plays W in each period because player two’s actions are monitored

12



with noise. Thus, player one’s payoff from strategy ω will remain strictly below three even

if player two plays W in each period. However, even though there is no finite automaton

with no shortfall for the principal-agent game, in Theorem 1 and in section 3.1 we show that

there is always an infinite automaton with no shortfall that facilitates reputation building if

the stage game is in G and, consequently, for the principal-agent game.

3. Reputation effects

In this section we present our main reputation result. Recall that the set G contains all

games that have a strong Stackelberg action or LNCI. Our main reputation result, which

applies to stage games in G that have no gap, is as follows. The proof of this theorem is in

appendix B.3.

Theorem 1 Suppose that the stage game Γ is an element of G, satisfies FS, and has no

gap. There exists a commitment type ω∗ such that if µ(ω∗) > 0 and if Ω−ω∗ is a set of finite

automata, then UNE
1 (µ) = UC

1 (ω∗) = ḡ1.

Under the stated assumption, Theorem 1 establishes that there exists a particular com-

mitment type ω∗ such that if this commitment type is available for player one to mimic (i.e.,

µ(ω∗) > 0) and if all the other commitment types are finite automata, then a patient player

one can guarantee a payoff equal to the commitment payoff of ω∗ in all NE. Moreover, the

commitment payoff of ω∗ is equal to player one’s highest IR payoff. To establish Theorem

1, we use Lemma 2 stated below. This lemma, which is proved in appendix B.2, provides a

lower bound on player one’s NE payoffs as a function of the commitment payoff, the shortfall,

and the prior probability of any irreducible pure-strategy finite automata.

Lemma 2 Suppose that Γ satisfies FS and has no gap, and suppose that all the commitment

types are finite automata. For any irreducible pure-strategy finite automaton ω ∈ Ω, if µ(ω) >

0, then

UNE
1 (µ) ≥ UC

1 (ω) − f(ω, µ(ω))d(ω),

where f is a positive-valued function as defined in equation (3) in the appendix, which satisfies

limx→0 f(ω, x) = ∞.

Proof: See Atakan and Ekmekci (2012), Theorem 1. �

To better understand Lemma 2, suppose that Γ satisfies FS and has no gap. Also, suppose

that Ω = {N, ω∗} where ω∗ is an irreducible pure-strategy finite automaton. We will investi-

gate the implications of Lemma 2 in two cases. First, suppose that the commitment type ω∗
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has no shortfall (i.e., d(ω∗) = 0 and therefore UC
1 (ω∗) = ḡ1). In this case, if ω∗ is available

(i.e., µ(ω∗) > 0), then Lemma 2 shows that player one can guarantee his highest IR payoff

in any NE. In other words, Lemma 2 delivers a reputation result because it establishes that

UNE
1 (µ∗) ≥ UC

1 (ω∗) = ḡ1 if ω∗ is available and if d(ω∗) = 0.

Now suppose that ω∗ has a positive shortfall (i.e., d(ω∗) > 0). In this case, the lower bound

that Lemma 2 provides is vacuous if µ(ω∗) is sufficiently small. This is because Lemma 2

implies only that UNE
1 (µ) ≥ UC

1 (ω∗) − f(ω∗, µ(ω∗))d(ω). However, if µ(ω∗) goes to zero,

then f(ω∗, µ(ω∗)) approaches infinity and therefore, UC
1 (ω∗) − f(ω∗, µ(ω∗))d(ω) approaches

negative infinity.

In summary, Lemma 2 delivers a reputation result (that is, the mere availability of type

ω∗ guarantees player one a high payoff in any NE) if ω∗ has no shortfall and if Γ has no gap.

Otherwise, Lemma 2 does not provide a meaningful lower bound on player one’s NE payoff

when the chosen commitment type is sufficiently unlikely.

As the above discussion suggests, Lemma 2 depends on the existence of a pure strategy

finite automaton with no shortfall; in turn, the existence of such a finite automaton crucially

depends on the properties of the stage game under consideration (Lemma 1). In particular, if

the stage game has a strong Stackelberg action, then the commitment type ω∗, which plays

as
1 in every period of the repeated game, is a pure-strategy finite automaton with no shortfall.

Therefore, Lemma 2 immediately delivers a reputation result for stage games with no gap

that have a strong Stackelberg action: if all the commitment types are finite automata and

if type ω∗ is available, then player one can guarantee type ω∗’s commitment payoff which is

equal to ḡ1 in any NE. In other words, player one can guarantee his highest IR payoff if the

set of commitment types is sufficiently rich that ω∗ is available. For example, the set of types

is sufficiently rich if all types which play the same action in every period are available or,

more generally, if all the pure-strategy finite automata are available. The following corollary

summarizes this:

Corollary 1 Suppose that Γ satisfies FS, has a strong Stackelberg action, and has no gap;

and suppose that all the commitment types are finite automata. Let ω∗ denote the commitment

type which plays as
1 in each period of the repeated game. If µ(ω∗) > 0, then UNE

1 (µ) ≥ ḡ1.

Proof: See Atakan and Ekmekci (2012), Corollary 1. �

For stage games that do not have a strong Stackelberg action, there is no pure-strategy

finite automaton which has no shortfall (see Lemma 1). Therefore, Lemma 2 does not deliver a

reputation result for such games. Nevertheless, our main reputation result, stated as Theorem

1, is for all stage games in G with no gap, and not just for those which satisfy SA. These

14



findings are reconciled as follows: We establish the reputation result for stage games that do

not have a strong Stackelberg action by first constructing a commitment type with infinitely

many states that has no shortfall. We then show that player one can guarantee this type’s

commitment payoff if this particular type is available. In section 3.1 below we discuss how

we use Lemma 2 as an intermediate step to prove a reputation result for stage games that

do not have a strong Stackelberg action.

3.1. Games without a strong Stackelberg action. The proof of Theorem 1 shows

that, for any stage-game in G with no gap which does not have a strong Stackelberg action,

there exists a commitment type with no shortfall. In this case, however, the commitment type

ω∗ is an automaton with an infinite number of states. Moreover, Theorem 1 demonstrates

that player one can guarantee a payoff equal to ḡ1 by simply mimicking ω∗. In this section,

we sketch how we construct this commitment type by describing ω∗ for the principle-agent

game which does not have a strong Stackelberg action (figure 3b).

As a first step in describing the infinite automaton ω∗, we describe a finite automaton

ωǫ which plays a review strategy with shortfall ǫ > 0 (see also Radner (1981, 1985) and

Celentani et al. (1996)). The finite automaton ωǫ has two phases: a review phase and a

punishment phase. Each review phase lasts for J(ǫ) periods and the automaton plays U

in each period of the review phase. Each punishment phase lasts for 2J(ǫ) periods and the

automaton plays D in each period of the punishment phase. The automaton begins the game

in the review phase. If player one’s average payoff in a review phase is at least 3−ξ(ǫ), where

ξ(ǫ) > 0 is the cutoff value for the review, then ωǫ enters a new review phase. Otherwise, ωǫ

moves to a punishment phase and plays D, i.e., minimaxes player two, for 2J(ǫ) periods. At

the end of that punishment phase, the automaton again returns to a review phase.

Notice that, had there been perfect monitoring, a patient player two who faces ωǫ would

have strictly preferred playing W in each period in order to avoid ever entering the punish-

ment phase. Under imperfect monitoring a patient player two’s incentives are similar to the

case of perfect monitoring, but only for appropriately chosen J(ǫ) and ξ(ǫ). In particular,

for any ǫ, we pick the length J(ǫ) of the review stage and the cutoff value ξ(ǫ) such that a

sufficiently patient player two’s best response to ωǫ entails entering the punishment phase

after a review phase with arbitrarily small probability; a patient player one’s repeated game

payoff is thus at least 3 − ǫ.16 In other words, the commitment payoff of ωǫ is at least 3− ǫ.

The type ω∗ first plays T1 repetitions of a review strategy with shortfall ǫ where each

repetition includes the review phase and, if it is triggered, the subsequent punishment phase.

Then ω∗ plays T2 repetitions of the review strategy with shortfall ǫ/2, and then Tn repetitions

16See Celentani et al. (1996) which shows that J(ǫ) and ξ can indeed be chosen in this way.
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B(uy) N(ot Buy)
H(igh) 2,−1 0, 0
L(ow) 1, 1 0, 0

Figure 4: A product choice game.

of the review strategy with shortfall ǫ/n; and so on. As δ approaches one, the commitment

payoff of type ω∗ converges to three, i.e., the shortfall of ω∗ is equal to zero. This is because,

for any n ≥ 1, the initial periods in which ω∗ plays a review strategy with a shortfall more

than ǫ/n become payoff-irrelevant as the discount factor approaches one.

The choice of how many repetitions Tn are played by ω∗ of each review strategy with

shortfall ǫ/n is delicate. In the appendix, we make the choices in a way that ensures that

our reputation result applies. Intuitively, we choose the number of repetitions to ensure the

following three conditions hold: first, UC
1 (ω∗, δ) is increasing in δ; second, the cost of not best

responding to this type is strictly positive for any δ; third, player two can distinguish the

strategy of ω∗ from any finite automaton’s strategy regardless of which strategy she plays.

3.2. Games outside of the class G. A stage game falls outside of the class G if the payoff

profile in which player one receives his highest IR payoff is equal to his pure minimax payoff

but the game does not have a strong Stackelberg Action. A prominent example of a game

that falls outside of the class G is the product-choice game depicted in figure 4. In this game

player one’s highest IR payoff is equal to 1.5, player two receives her minimax payoff (zero)

in the unique payoff profile in which player one gets 1.5, and the game has no gap. However,

there is no action, whether pure or mixed, such that committing to it would guarantee player

one a payoff equal to 1.5 in this game.17 We discuss the repeated product-choice game to

illustrate what can go wrong in games outside of the class G.

This game is does not have a strong Stackelberg action; hence, we cannot obtain a reputa-

tion result with pure-strategy finite automata. In addition, an argument similar to Lemma

1 implies that any finite automata, including one that plays a mixed strategy, has a positive

shortfall. However, consider the type ω that plays H with probability 1/2+(1/2)2 in periods

{1, ..., 4}, plays H with probability 1/2 + (1/2)3 in periods {5, ..., 8}, and more generally

plays H with probability 1/2 + (1/2)k in periods {2(k−1) + 1, ..., 2k}. Player two’s unique

best response to ω is to play B in each period. Moreover, the commitment payoff of this

type UC
1 (ω) is equal to 1.5 (player one’s highest IR payoff). Consequently, ω is an infinite

17 Player one gets 1.5 if he plays H and L with equal probability and if player two best responds by
playing B. However, both B and N are best responses for player two, and if she best responds by playing
N instead of B, then player one’s payoff is equal to zero. Therefore, player one cannot guarantee 1.5 by
committing to play H and L with equal probability.
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automaton with no shortfall.

Suppose that ω is the only commitment type available for player one to mimic. Even

though ω has no shortfall, our reputation result does not apply here. This is because the

type ω uses a mixed strategy. And, as we explained in the introduction, our approach is

unable to provide a reputation bound for types that play mixed strategies.

Now, for the sake of argument, suppose that player one’s stage-game action is to choose

the probability p ∈ [0, 1] with which he plays H , and that player two observes his choice of

p at the end of each period. Given this modification, ω plays a pure strategy.18 Even under

this modification, however, our reputation result still does not apply. This is because the cost

to player two of playing action N instead of best responding to ω by playing B converges

to zero as player two becomes increasingly patient. Consequently, a patient player two can

resist playing a best response to ω at no cost to herself, and can thereby make it sufficiently

difficult for player one to build a reputation.

Without this modification, one can also imagine a pure-strategy dynamic type that plays

H in portion p of periods of a block of periods, plays L in the remaining periods of the

block, and minimaxes player two for an appropriate number of periods if she fails to play

B in many periods in the block. The length of the blocks and the length of the punishment

periods can be carefully chosen to ensure that this dynamic type has a commitment payoff

equal to 1.5. However, a patient player two can again resist best responding to this type at

no cost to herself. Whether a reputation result can be established for this game is an open

question.

A. Finite automata and learning

In this part of the appendix we prove some auxiliary results concerning finite automata

which we repeatedly use in our subsequent arguments. Also, we prove our main learning

result which we state as Lemma A.2. Our main learning result and its corollary, that we

state as Corollary A.1, play central roles in the proofs of Lemma 2 and Theorem 1 presented

in Appendix B.

Fix a pure strategy finite automata ω∗ ∈ Ω and a finite subset W ⊂ Σ1. Consider a new

finite set of states Θ, which is the product of the set of states of W and ω∗ with typical

element ~θ = (θω∗ , θ1, ..., θ|W |). In the following development, we fix player one’s strategy ω∗,

but the strategy of player 2, σ2 varies. Notice that a period t public history ht uniquely

identifies the state ~θt that the types are in at the start of period t. Let a∗(~θ) denote the pure

stage game action ω∗ plays in state θω∗ . Every strategy profile (ω∗, σ2) generates a stochastic

18 A mixed strategy is then a probability distribution over choices of p ∈ [0, 1], i.e., a mixed strategy is
an element of ∆([0, 1]).
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process over the vector of states. In particular, the transition are given by the following

equation:

~θt+1 =
(

τ(ω, y, a∗(~θt), θt
ω)

)

ω∈W∪{ω∗}
≡ ~τ(y, ~θt).

Let Pr(~θt+n|~θt, ht, σ2) denote the probability that the state in period t+n is equal to ~θt+n ∈ Θ

given that the state in period t is equal to ~θt, the game is at history ht and player two is

using strategy σ2. For example, when n = 1,

Pr(~θt+1|~θt, ht, σ2) ≡
∑

y∈{y:~τ (y,~θt)=~θt+1}

∑

a2∈A2

πy(a2)σ2(a2, h
t)

In other words, Pr(~θt+1|~θt, ht, σ2) is the transition probability that governs the evolution

of the states.

Definition A.1 (Recurrence and Transience) A state ~θ∗ is transient if, given that the

initial state is ~θ∗, there is a non-zero probability (in Pr(ω∗,σ2)) that the state ~θ∗ is never visited

again. A state is recurrent if it is not transient. A subset of states Θj ⊂ Θ is a recurrent

class if for each ~θ′, ~θ′′ ∈ Θj there exists an n > 0 such that Pr(~θt+n = ~θ′|~θt = ~θ′′, ht, σ2) > 0

for all ht, and for each ~θ′′ ∈ Θj and ~θ′ /∈ Θj we have Pr(~θt+n = ~θ′|~θt = ~θ′′, ht, σ2) = 0 for

all ht and all n > 0. A subset of states Θ0 ⊂ Θ is a transitory class if each ~θ ∈ Θ0 is a

transient state. A finite automaton is irreducible if its states form a single recurrent class.

Lemma A.1 Assume that Γ satisfies FS. For any ~θ′ ∈ Θj and n > 0 we have Pr(~θt+n =
~θ′|~θt = ~θ(ht), ht, σ2) > 0 for some σ2 and ht if and only if Pr(~θk+n = ~θ′|~θk = ~θ(ĥk), ĥk, σ′

2) > 0

for all k ≥ 0, σ′
2, and all ĥk such that ~θ(ĥk) = ~θ(ht). Consequently, the finite set of possible

states Θ can be uniquely partitioned into a transitory class Θ0, and a collection of disjoint

recurrent classes Θj such that Θ = ∪M
i=0Θ

i; and this partition is independently of σ2.

Proof: FS implies that the probability to transition from ~θt+1 to ~θt after history ht is

bounded from below as follows:

Pr(~θt+1|~θt, ht, σ2) =
∑

y∈{y:~τ(y,~θt)=~θt+1}

∑

a2∈A2

πy(a2)σ2(a2, h
t)

≥
∑

y∈{y:~τ (y,~θt)=~θt+1}
π = |{y : ~τ (y, ~θt) = ~θt+1}|π

So FS implies that Pr(~θt+1|~θt, ht, σ2) > 0 if and only if |{y : ~τ (y, ~θt) = ~θt+1}| ≥ 1. But if

|{y : ~τ (y, ~θt) = ~θt+1}| ≥ 1 then Pr(~θk+1|~θt(ĥk), ĥk, σ′
2) ≥ |{y : ~τ (y, ~θt) = ~θt+1}|π ≥ π > 0

for any ĥk such that ~θ(ĥk) = ~θk. Iterating this argument generalizes the above to the case
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of n > 1. Also, see Billingsley (1995), Chapter 1, Section 8, or Stokey et al. (1989), Chapter

11.1 for more on partitioning the set of states. �

Definition A.2 (Speed of learning between ω∗ and W ) Let

p̄(ω∗, W ) := max~θ∈{p(ω∗,ω,~θt)6=1,ω∈W} p(ω, ~θ),

where p(ω∗, ω, ~θt) := o(ω, a∗(~θt), θt
ω). That is, p(ω∗, ω, ~θt) is the probability that type ω plays

the same action as ω∗ in state ~θt (a∗(~θt)) and p̄(ω∗, W ) is the maximum of p(ω∗, ω, ~θ) over the

set of types W and the set of states where p(ω, ω∗, ~θ) differs from 1. Notice that p̄(ω∗, W ) <

1.19

Define the likelihood ratio recursively as Lω
t (h) = p(ω, ~θt(h))Lω

t−1(h) and let Lω
0 (h) =

Lω
0 = µ(ω)/µ(ω∗). Hence, Lω

t (h) = µ(ω|ht)/µ(ω∗|ht) and (Lω
t , ht) is a supermartingale under

Pr(ω∗,σ2) (Fudenberg and Levine (1992) Lemma 4.1). Also, let LW
0 = µ(W )/µ(ω∗).

Lemma A.2 Assume that Γ satisfies FS and p̄(ω∗, W ) ≤ ξ ∈ [0, 1). For any ǫ > 0 and

φ > 0 there exists T (|Θ|, |W |, ξ, ǫ, φ) such that

Pr(ω∗,σ2)

{

h :
µ(W−ω∗(ht)|h

t)

µ(ω∗|ht)
< φLW

0

}

> 1 − ǫ,

for any t > T (|Θ|, |W |, ξ, ǫ, φ), any µ such that µ(ω∗) > 0, and any strategy σ2 of player two.

Proof: For any nonnegative integer k and even number l let E(l, k) denote the set

of infinite histories such that for any h ∈ E(l, k) the process has entered a recurrent

class Θi(h) ⊂ Θ by period l/2 and all states ~θ ∈ Θi(h) have been visited at least k

times by period l. For each nonnegative integer k and ǫ > 0 there exists l(k, |Θ|, ǫ) such

that Pr(ω∗,σ2){E(l(k, |Θ|, ǫ), k)} > 1 − ǫ for any σ2. This is because FS implies that the

probability the process enters a recurrent class after |Θ| periods is at least π|Θ|. FS also

implies that for any two states ~θ′ and ~θ′′ in the same recurrent class Θj we have that

Pr(~θt+|Θj | = ~θ′|~θt = ~θ′′, ht, σ2) > π|Θj | ≥ π|Θ| for any ht and any σ2.

Let k∗ = K(|W |, ξ, φ) = ln φ−ln |W |
ln ξ

. Pick l∗ such that Pr(σ1(ω∗),σ2){E(l∗, k∗)} > 1− ǫ for any

σ2. We show that choosing T (|Θ|, |W |, ξ, ǫ, φ) = l∗ achieves the claim of the lemma.

Suppose that h ∈ E(l∗, k∗). If ω ∈ W−ω∗(hl∗), then there exists a state ~θω ∈ Θi(h) such that

p(ω, ~θω) ≤ p̄(ω∗, W ) < ξ < 1. Because state ~θω has been visited more than k∗ times by time l∗,

19The maximum is well defined since W is a finite set and {~θ : p(ω, ~θ) 6= 1, ω ∈ W} 6= ∅ because for each

ω ∈ W ⊂ Ω−ω∗ there is a state such that p(ω, ~θ) 6= 1
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and because Lω
t (h) is a supermartingale, we have Lω

t (h) ≤ p̄(ω∗, W )k∗

Lω
0 ≤ ξk∗

Lω
0 ≤ ξk∗

LW
0

for any t ≥ l∗. Our initial choice of k∗ implies that if t > l∗ and if ω ∈ W−ω∗(hl) = W−ω∗(ht),

then Lω
t (h) = µ(ω|ht)/µ(ω∗|ht) ≤ φLW

0 /|W |. Consequently, if h ∈ E(l∗, k∗) and if t > l∗,

then µ(W−ω∗(ht)|h
t)/µ(ω∗|ht) ≤ φLW

0 . Moreover, Pr(ω∗,σ2){E(l∗, k∗)} > 1 − ǫ proving the

result. �

Corollary A.1 Assume that Γ satisfies FS. For any µ such that µ(ω∗) > 0 and χ > 0

there exists T (ω∗, µ, χ) such that

Pr(σ1(ω∗),σ2){h : µ(Σ1 \ ω∗(ht)|ht)/µ(ω∗|ht) < χ} > 1 − χ,

for any t ≥ T (ω∗, µ, χ) and any strategy σ2 of player two.

Proof: Choose finite set W ⊂ Σ1 such that µ(W ) ≥ 1−χ/2. Set ξ = p̄(ω∗, W ), φ = χ/2LW
0

and ǫ = χ. Notice that |Θ|, |W |, LW
0 , and ξ depend only on µ (through the choice of the set

W ) and on ω∗. Observe that µ(Σ1 \ ω∗(ht)|ht)/µ(ω∗|ht) ≤ µ(W \ ω∗(ht)|ht)/µ(ω∗|ht) + χ/2

for any ht and apply Lemma A.2. �

Lemma A.3 (Blackwell Optimality) Suppose Γ satisfies FS and that ω = (Θ, θ0, o, τ) is an

irreducible pure strategy finite automaton. For any σ2 ∈ Σ2, let

Ûi(ω, σ2) = lim supN→∞

1

N
E(ω,σ2)

∑N

t=0
gi(a

t
1, a

t
2),

i.e., Ûi(ω, σ2) is player i’s long-run average payoff. Let O2 = {σ2 : Θ → A2} denote the finite

set of pure stationary strategies for player two. Let F (ω, δ) = co{(U1(ω, σ2, δ), U2(ω, σ2, δ)) :

σ2 ∈ Σ2} and F (ω) = co{(Û1(ω, σ2), Û2(ω, σ2)) : σ2 ∈ Σ2}.

(i). For any stationary strategy σ2 ∈ O2, limδ→1 Ui(ω, σ2, δ) = Ui(ω, σ2) = Ûi(ω, σ2).

(ii). The set F (ω, δ) = co{(U1(ω, σ2, δ), U2(ω, σ2, δ)) : σ2 ∈ O2} and F (ω) = co{(U1(ω, σ2), U2(ω, σ2)) :

σ2 ∈ O2}, i.e, the finite set of vectors {(U1(ω, σ2), U2(ω, σ2)) : σ2 ∈ O2} are extreme

points of F (ω).

(iii). There exist a δ∗ ∈ (0, 1) and a pure stationary strategy o2 ∈ O2 such that o2 ∈ BR(ω, δ)

and UC
1 (ω, δ) = U1(ω, o2, δ) for all δ ∈ (δ∗, 1).

(iv). Moreover, for any stationary σ2, we have |U2(ω, σ2, δ|h
t)−U2(ω, σ2, δ|h

k)| ≤ K, |U2(ω, σ2, δ|h
t)−

U2(ω, σ2|h
k)| ≤ K, |UC

1 (ω, δ|ht)−UC
1 (ω, δ|hk)| ≤ K, and |UC

1 (ω, δ|ht)−UC
1 (ω|hk)| ≤ K,

for any ht, hk ∈ H(ω) and any stationary σ2 where K = (1 − δ|Θ
i|)M/(δπ)|Θ

i|.

Proof: Part (i) follows from Bertsekas (2007), chapter 4, Proposition 1.2. Part (ii) follows

from Dutta (1995), Lemma 1 because the sets F (ω, δ) and F (ω) are the set of feasible payoffs
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for a discounted and undiscounted stochastic game, respectively, where the state space is Θ,

the unique action available to player one in state θ is o(θ) and the transition function is τ .

For part (iii), first notice that against a fixed ω finding player two’s best response is a

standard discounted dynamic programming problem. Thus, a standard argument shows that

a pure stationary best response exists (see Bertsekas (2007), Chapter 1). Also notice, if σ is

a stationary strategy profile, then Ui(σ, δ|ht) = Ui(σ, δ|hk) for any ht, hk ∈ H(ω) such that

θ(ht) = θ(hk). Let U2(ω, δ|ht) denote player two’s payoff after ht given that she best responds

to ω. Since a stationary best response exists U2(ω, δ|ht) = U2(ω, δ|hk) for any ht, hk ∈ H(ω)

such that θ(ht) = θ(hk). Player one’s commitment payoff is given by the following dynamic

program: UC
1 (ω, δ|ht) = minα2∈∆(A2)(1 − δ)g1(ω, α2) + δEy[U

C
1 (ω, δ|ht, ω, y)|α2] subject to

(1 − δ)g2(ω, α2) + δE[U2(ω, δ|θ′)|θ, α2] = U2(ω, δ|θ), where U2(ω, δ|θ) is player two’s payoff

in state θ given that she best responds. A standard argument shows that a pure stationary

solution to this dynamic program exists. The existence of δ∗ and o2 follows from the existence

of a Blackwell optimal policy in finite state and finite action dynamic programs. See Bertsekas

(2007), Chapter 4, Proposition 2.2.

Part (iv). Lemma A.1 implies that Pr(θ(hk+|Θ|)|θ(hk), σ2(h
k)) ≥ π|Θ| for any θ(ht), θ(hk) ∈

Θ. Let history hk be such that Ui(ω, σ2, δ|h
k) = max{hl:θ(hl)∈Θ} Ui(ω, σ2, δ|h

l) and let history

ht be such that Ui(ω, σ2, δ|h
t) = min{hl:θ(hl)∈Θ} Ui(ω, σ2, δ|h

l). We have the following two

equations

Ui(ω, σ2, δ|h
t) ≥ −(1 − δ|Θ|)M + π|Θ|δ|Θ|Ui(ω, σ2, δ|h

k) + δ|Θ|(1 − π|Θ|)Ui(ω, σ2, δ|h
t)

Ui(ω, σ2, δ|h
k) ≤ (1 − δ|Θ|)M + π|Θ|δ|Θ|Ui(ω, σ2, δ|h

t) + δ|Θ|(1 − π|Θ|)Ui(ω, σ2, δ|h
k).

Solving delivers the result. The argument for |UC
1 (ω, δ|ht)−UC

1 (ω, δ|hk)| is identical because

there is a stationary strategy for player two that delivers player one his commitment payoff.

Also, see Bertsekas (2007), Chapter 4, Proposition 1.2 for the remainder of the inequalities.

�

B. Proof of Lemma 2 and Theorem 1

B.1. Preliminaries. Fix a stage game Γ that satisfies FS and that has no gap. Normalize

payoffs such that (ḡ1, g
b
2) = (0, 0). For this game, there exists a finite constant ρ ≥ 0 such

that the following inequalities holds:

g2 ≤ −ρg1, for any (g1, g2) ∈ F ; and g2 ≥ ρg1, for any (g1, g2) ∈ G.(1)
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In addition, if ĝ2 < 0, then the following inequality also holds:

(2) g2 ≥ ρg1, for any (g1, g2) ∈ F.

Fix a pure strategy finite automata ω∗ = (Θ∗, θ∗, o∗, τ ∗). Let ω∗
θ = (Θ∗, θ, o∗, τ ∗), that is,

ω∗
θ is a pure strategy finite automaton which is identical to ω∗ except that it may have a

different initial state θ ∈ Θ∗. Recall that the set of commitment types is a countable subset of

the set of repeated game strategies of player one Σ1. For any z ∈ (0, 1] and φ ≥ 0, let ∆ω∗,φ,z

denote the set of all measures µ over {N} ∪Σ1 with countable support such that µ(ω∗) ≥ z

and µ(Σ1 \ {ω
∗})/µ(ω∗) ≤ φ, let ∆ω∗,z denote the set of all measures µ over {N} ∪ Σ1 with

countable support such that µ(ω∗) ≥ z, and let ∆ω∗ denote the set of all measures µ over

{N} ∪ Σ1 with countable support such that µ(ω∗) > 0.

Definition B.1 For any z ∈ (0, 1], φ ≥ 0, and δ ∈ [0, 1) let U(δ, φ, z) = min{v(δ, φ, z), 0}

where

v(δ, φ, z) = inf{U1(ω
∗
θ , σ2, δ) : θ ∈ Θ∗, µ ∈ ∆ω∗

θ ,φ,z, σ2 is part of a NE of Γ∞(δ, µ)}.

In words, U(δ, φ, z) is player one’s worst payoff if he plays strategy ω∗
θ for some θ, if player

two plays an equilibrium strategy, if the probability of ω∗
θ is at least z, and if the relative

likelihood of the other commitment types is at most φ.

Lemma B.1 Fix any δ ∈ [0, 1), z ∈ (0, 1], φ ≥ 0. Let b ≥ 0 be a constant such that

UC
1 (ω∗

θ , δ) > −b for all θ ∈ Θ∗. Define ǫ := max{b, (1− δ|Θ
∗|)/(δπ)|Θ

∗|, φ}. Assume that there

exists constants l(ω∗) > 0 and K1(ω
∗) > 0 such that if U1(ω

∗
θ , σ2, δ) ≤ −b− x for any x > 0,

then U2(ω
∗
θ , σ2, δ) ≤ −l(ω∗)x + K1(ω

∗)ǫ. If z ≥ z, then we have the following inequality:

U(δ, φ, z) ≥ −b − f(l(ω∗), z)ǫ, where(3)

f(l(ω∗), z) := K̄ n̄,(4)

K̄(l(ω∗)) :=
1

zlπ
max{2l(ω∗), 8ρ, 4M + l(ω∗) + K1 + ρ(5 + 8M)},(5)

n̄(z, l(ω∗)) := the smallest integer j s.t.

(

1 −
πl(ω∗)z

4ρ

)j−1

< z.(6)

Proof: See Atakan and Ekmekci (2012). �

B.2. Proof of Lemma 2. We will first show, in the following lemma, that any irreducible

finite automaton satisfies the hypothesis of Lemma B.1. Then we will then use Lemma B.1

and Corollary A.1 to establish Lemma 2.
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Lemma B.2 (Unit cost lemma) If ω∗ is a irreducible finite automaton, then UC
1 (ω∗

θ , δ) ≥ −b

where b = d(ω∗) + M(1 − δ|Θ
∗|)/(δπ)|Θ

∗| for any θ ∈ Θ∗. Moreover, there exists a constant

l(ω∗) > 0 such that if U1(ω
∗
θ , σ2, δ) ≤ −b−x for some θ ∈ Θ∗ and x > 0, then U2(ω

∗
θ , σ2, δ) ≤

−lx + K1ǫ where K1 = ρ + lM + 1.

Proof: See proof of Lemma B.2 in Atakan and Ekmekci (2012). �

Notice that the bound in Lemma B.1 depends on both φ and δ. The learning result

in Corollary A.1 implies that the likelihood of other commitment types becomes arbitrarily

small if player one mimics type ω∗ for a sufficiently long number of periods. To prove Lemma

2 we will use the learning result in Corollary A.1 and take the limit as δ goes to 1 to show

that the bound in Lemma B.1 can be written independent of φ at the limit.

Proof of Lemma 2: See proof of Theorem 1 in Atakan and Ekmekci (2012). �

B.3. Proof of Theorem 1. For games that have a strong Stackelberg action, the proof of

Theorem 1 follows immediately from Lemma 2 as described in the main text. In this section,

we instead assume that the stage game Γ is in G but does not have a strong Stackelberg

action.

In order to prove Theorem 1, we construct the commitment type ω∗ which is an automaton

with an infinite number of states with no shortfall. Recall that for a game that does not have

a strong Stackelberg action there is no finite automaton with no shortfall. In constructing

the infinite automaton ω∗, first we describe a finite automaton that we term a “review type”

in the next section, second we establish a reputation bound for this review type (Lemma

B.5) which is a strengthened version of Lemma B.1, third we construct type ω∗ using an

infinite sequence of review types, and finally we prove the bound for ω∗ that is claimed in

Theorem 1.

B.3.1. Review types. Here we describe a pure strategy finite automaton review type with

shortfall at most ǫ which we denote as ωǫ. If a stage game has LNCI, then there exists a

positive integer P and a positive constant l > 0 such that

(7) g2(a
s
1, a2) + Pg2(a

p
1, a

′
2) < −Ml(P + 1)

for any a2 ∈ A2 such that g1(a
s
1, a2) < 0 and a′

2 ∈ A2.

In the following we first consider a KJ-fold finitely repeated game ΓKJ(δ).20 We partition

ΓKJ into blocks of length J , ΓJ,k, k = 1, ..., K. Let uk
i denote player i’s time average payoff in

20This development closely follows Celentani et al. (1996), Lemma 4. Also, see the lemma’s proof in that
paper’s appendix.
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block ΓJ,k and let uKJ
i (δ) denote player i’s discounted payoff in the KJ-fold finitely repeated

game ΓKJ(δ). Let σKJ
1 be the following strategy: in block ΓJ,1 player one plays as

1 in each

period. We call a block where player one chooses to play as
1 in each period a review phase.

In the beginning of block ΓJ,2, player one reviews play in the previous block. If u1
1 ≥ −η,

then player one again chooses to play as
1 in each period of block ΓJ,2 and so on. If for any

k, uk
1 < −η, then player 1 plays action ap

1, for the next P repetitions of ΓJ,k and then plays

as
1 in ΓJ,k+P+1. We call the blocks where player one chooses to play ap

1 in each period a

“punishment phase”.

Lemma B.3 Given ǫ > 0 there are numbers η(ǫ), K(ǫ), J(ǫ) and discount factor δ(ǫ)

such that for any δ > δ(ǫ) and for any best response σ∗
2 to σ

K(ǫ)J(ǫ)
1 in ΓKJ(δ) player one’s

discounted payoff u
K(ǫ)J(ǫ)
1 (σ

K(ǫ)J(ǫ)
1 , σ∗

2, δ) > −ǫ.

Proof: This construction is directly taken from Celentani et al. (1996) Lemma 4. A proof

can be found in the appendix of Celentani et al. (1996). �

Definition B.2 (Review type) Let σ∗
1 denote the repeated game strategy that infinitely

repeats the strategy σ
K(ǫ)J(ǫ)
1 , that is, σ∗

1 plays according to σ
K(ǫ)J(ǫ)
1 in periods 1 through

K(ǫ)J(ǫ), then again plays according to σ
K(ǫ)J(ǫ)
1 , in periods K(ǫ)J(ǫ)+ 1 through 2K(ǫ)J(ǫ)

and so on. The type ωǫ is the finite automaton which implements σ∗
1 with a minimal number

of states.

The following lemma is a strengthened version of Lemma B.2 which holds for any review

type.

Lemma B.4 (Unit cost lemma for the review type) For each ǫ > 0, there exists δǫ ∈ [0, 1)

such that for all δ > δǫ

(i) UC
1 (ωǫ, δ) > −ǫ,

(ii) If U1(ωǫ, σ2, δ) = −ǫ − r and r > 0, then U2(ωǫ, σ2, δ) ≤ ρǫ − lr.

Proof: Pick δǫ > δ(ǫ) where δ(ǫ) is the cutoff identified in Lemma B.3. Part (i) follows

immediately from Lemma B.3. Proof of part (ii) is as follows: The fact that inequality (7)

holds implies that there exists a δ∗ < 1 such that

(8)
Jǫ−1
∑

t=0

δtg2(a
s
1, a2) +

J(ǫ)+J(ǫ)P−1
∑

t=J(ǫ)

δtg2(a
p
1, a

′
2) < −lMJ(ǫ)(P + 1)

for all δ > δ∗. Also, pick δǫ to be strictly greater than δ∗, i.e., δǫ > max{δ(ǫ), δ∗}. For public

history ht+J(ǫ)−1 = {a0
1, y

0, a1
1, y

1, ..., a
t+J(ǫ)−1
1 , yt+J(ǫ)−1}, let i(t+J(ǫ)−1) = 1, if

∑t+J(ǫ)−1
j=t δj−tg1(a

j
1, y

j) <
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−η(ǫ) and period t is the start of a review stage; and i(ht) = 0, otherwise. If i(ht+J(ǫ)−1) = 1,

then player 1 receives at least −M in period t through period t + J(ǫ) + J(ǫ)P − 1. Con-

sequently, U1(ωǫ, σ2, δ) ≥ −η(ǫ) − J(ǫ)(1 + P )(1 − δ)M(Eωǫ,σ2
[
∑∞

t=0 δti(ht)]). By construc-

tion η(ǫ) < ǫ and so (1 − δ)E(ωǫ,σ2) [
∑∞

t=0 δti(ht)] ≥ r/J(ǫ)(1 + P )M . If i(ht+J(ǫ)−1) = 1,

then player two receives a total discounted payoff of at most −J(ǫ)(P + 1)l(1 − δ) for

periods t through t + J(ǫ)(P + 1) − 1, if δ > δǫ by equation (8). In any block where

player one receives at least −η(ǫ), player two receives at most ρη(ǫ) < ρǫ. Consequently,

U2(ωǫ, σ2) ≤ ǫρ − J(ǫ)(1 + P )l(1 − δ)E(ωǫ,σ2) [
∑∞

t=0 δti(ht)] ≤ ǫρ − lr, if δ > δǫ. �

B.3.2. Reputation bound for review types. In the following we establish a reputation bound,

Lemma B.5, for the review type described above. The reputation bound is similar to Lemma

2 and the proof of the bound also uses Lemma B.1 and Lemma A.2 as the main building

blocks.

Definition B.3 For any integer n ≥ 1, define W n as the set of all finite automaton which

have fewer states than ωǫ/n and define W n,n = {W : W ⊂ W n, |W | ≤ n} as the set of all

subsets of W n with cardinality not more than n.

The following lemma presents the reputation bound for the review type. We use this lemma

extensively in constructing ω∗.

Lemma B.5 Given n ≥ 1 and T ≥ 1, suppose that ω(n, T ) is a finite automaton whose

strategy coincides with ωǫ/n after period T . There exists a δ(n, T ) < 1 such that for any

z > 0, any µ ∈ ∆ω(n,T ),z, any δ ≥ δ(n, T ), any set W ⊂ W n,n, and any σ ∈ NE(Γ∞(µ, δ))

the following inequality is satisfied:

U1(σ, δ) > −2ǫ/n −
ǫ/n + µ(Ω \ W )

z
f(l, z),

where l is the constant given in Lemma B.4 and f is the function defined in Lemma B.1.

Proof: Clearly, there is a cutoff δ such that for all discount factors that exceed this cutoff,

the conclusions of Lemma B.4 hold for ω(n, T ).

Notice that p̄(W n, ωǫ/n) = ξ > 0, this is because ωǫ/n /∈ W n and because W n is a compact

set. Consequently, for any set W ⊂ W n,n, p̄(W, ωǫ/n) ≥ ξ. Let N be such that

Pr(ω∗,σ2)

{

h :
µ(W |ht)

µ(ω(n, T )|ht)

µ(ω(n, T ))

µ(W )
< ǫ/n

}

> 1 − ǫ/n,

for any t ≥ N . Such a N exists by Lemma A.2 and only depends on ǫ, T , and n. The result
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then follows from Lemma B.1 and is analogous to the proof of Lemma 2. �

In what follows, we drop the reference to l in f(l, z) because the uniform cost l we use (as

defined in Lemma B.4) for establishing the above bound for ω(n, T ) is always the same for

any n and any T .

B.3.3. Constructing type ω∗. The type ω∗ starts by playing a strategy that coincides with

the strategy of the review type with shortfall at most ǫ, i.e., ωǫ, for T1 periods, then plays

a strategy that coincides with the strategy of the review type with shortfall at most ǫ/2 for

T2 periods, and plays a strategy that coincides with the strategy of the review type with

shortfall at most ǫ/n for Tn periods, and so on. Therefore, this type is identified by a sequence

of period lengths, T1, T2, .., Tn, ... which we will pick recursively. We will also simultaneously

pick a sequence of intervals of discount factors, [δ1, δ̄1], [δ2, δ̄2], ..., such that limi→∞ δi = 1.

Definition B.4 ΓN(δ, µ) is a N period repeated game, where the stage game is Γ. The

types in ΓN(δ, µ) belong to the set ΩN that is obtained as follows: For every ω ∈ Ω, there

exists a corresponding ωN whose strategy coincides with the strategy of ω during the finitely

repeated game, i.e., ωN is the projection of the infinitely repeated game strategy ω on the first

N periods. Moreover, the probability of ωN in the beginning of the finitely repeated game is

µ(ω).

Definition B.5 For any ξ > 0, let NEξ(Γ
N(µ, δ)) denote the set of ξ Bayes-Nash equilibria

of the finitely repeated game ΓN(µ, δ) (see Radner (1981)).

For the following, recall that δǫ/n is the cutoff level of the discount factor that achieves the

desiderata of Lemma B.4. (i.e., the δǫ/n in Lemma B.4 that exists for the review type with

shortfall at most ǫ/n). Notice that δ(n, T ) ≥ δǫ/n.

Lemma B.6 Suppose that [δ, δ̄] ⊂ [δ(n, T ), 1). Then there exists a ξ([δ, δ̄]) > 0 and an

integer T ∗([δ, δ̄]) such that: for any z > 0, any µ ∈ ∆ω(n,T ),z, any set W ∈ W n,n, any

δ ∈ [δ, δ̄], any ξ ≤ ξ([δ, δ̄]), any N ≥ T ∗([δ, δ̄]), and any σ ∈ NEξ(Γ
N(µ, δ)) the following

inequality is satisfied:

U1(σ, δ) ≥ −3ǫ/n −
ǫ/n + µ(Ω \ W )

z
f(z).

Proof: On the way to a contradiction, suppose that the lemma is not true. Then we can

pick a convergent sequence of ξk, discount factors, sets of finite automata, priors, and strategy

profiles {ξk, δk, µk, Wk, zk, σk}
∞
k=1 with ξk > 0 and limk→∞ ξk = 0, δk ∈ [δ, δ̄], µk ∈ ∆ω(n,T ),zk

,
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Wk ∈ W n,n and σk ∈ NEξk
(Γk(µk, δk)) such that

U1(σk, δk) < −3ǫ/n − f(zk)
ǫ/n + µk(Ω \ Wk)

zk
.

Let the limit of the sequence be {0, δ, µ, W, z, σ} satisfying δ ∈ [δ, δ̄] and µ ∈ ∆ω(n,T ),z.
21 We

have σ ∈ NE(Γ∞(µ, δ)) since limk→∞ ξk = 0 and all other terms converge to a limit.22

We will now consider two cases: First, if z = 0, then the right hand side of the displayed

inequality in the lemma will be arbitrarily small because f(0) = ∞. However U1(σk, δk) is

bounded below a finite number since player 1’s minimax is a finite number. So it cannot

be that z = 0. Second, if z > 0, then U1(σ, δ) ≤ −3ǫ/n − f(z) ǫ/n+µ(Ω\W )
z

which contradicts

Lemma B.5. �

Choosing T1 and the interval [δ1, δ̄1]. We pick δ1 > δ(1, 0) and δ̄1 > δǫ/2. Hence, the interval

[δ1, δ̄1] satisfies the hypothesis of Lemma B.6. By Lemma B.6 there exists a ξ > 0 and integer

T ∗ such that for any z > 0, any µ ∈ ∆ω(1,0),z , any set W ∈ W 1,1, any δ ∈ [δ1, δ̄1], any T ≥ T ∗,

and any σ ∈ NEξ(Γ
T (µ, δ)) the following inequality is satisfied:

U1(σ, δ) ≥ −3ǫ −
ǫ + µ(Ω \ W )

z
K n̄.

We pick T1 so that T1 ≥ T ∗ and δ̄T1

1 M ≤ min{ǫ, ξ}. Consequently, we have the following:

Remark 2 Let ω be an infinitely repeated game strategy that coincides with ω(1, 0) during

the first T1 periods. We claim that for any δ ∈ [δ1, δ̄1], any W ∈ W 1,1, any z > 0, any

µ ∈ ∆ω,z and any σ that is a NE profile of Γ∞(µ, δ)

U1(σ, δ) ≥ −4ǫ −
ǫ + µ(Ω \ W )

z
K n̄.

Proof: Let σT1
be the projection of σ on the first T1 periods. Since δ̄T1

1 M ≤ ξ, σT1
is a ξ

Bayes Nash equilibrium of ΓT1(µ, δ). Therefore U1(σT1
, δ) > −3ǫ − ǫ+µ(Ω\W )

z
f(z) by Lemma

B.6. We now use the inequality δ̄T1

1 ≤ ǫ to argue that |U1(σ, δ) − U1(σT1
, δ)| ≤ δ̄T1

1 M ≤ ǫ and

we conclude that U1(σ, δ) ≥ −4ǫ − ǫ+µ(Ω\W )
z

f(z). �

Now we choose Tn and the interval [δn, δ̄n] given {T1, ..., Tn−1} and {[δ1, δ̄1], ..., [δn−1, δ̄n−1]}.

Let T̂n =
∑n−1

i=1 Ti. For n = 1, define the strategy Dǫ/n := ωǫ and for n > 1, define Dǫ/n

21We use the Euclidean distance for ξk, δk, and inherent product topology for convergence of µk and
the strategies σk.

22This is standard see for instance Myerson (1991) page 144, Theorem 3.4 or Fudenberg and Levine (1986)
Proposition 4.1.
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recursively as follows: Dǫ/n coincides with Dǫ/(n−1) up to a time T̂n and then coincides with

ωǫ/n.

Lemma B.7 Suppose that [δ, δ̄] ⊂ [max{δǫ/n, δ(n−1, T̂n−1)}, 1). Then there exists a ξ([δ, δ̄]) >

0 and an integer T ∗([δ, δ̄]) such that: for any z > 0, any µ ∈ ∆Dǫ/n,z, any set W ∈ W n−1,n−1,

any δ ∈ [δ, δ̄], any ξ ≤ ξ([δ, δ̄]), any T ≥ T ∗([δ, δ̄]), and any σ ∈ NEξ(Γ
T (µ, δ)) the following

inequality is satisfied:

U1(σ, δ) ≥ −3ǫ/(n − 1) −
ǫ/(n − 1) + µ(Ω \ W )

z
f(z).

Proof: This argument is similar to the argument for Lemma B.6. We again obtain a

contradiction to Lemma B.5. We arrive at the contradiction by using the facts that for

all δ ≥ max{δǫ/n, δ(n − 1, T̂n−1)} we have first UC
1 (Dǫ/n, δ) > −ǫ/(n − 1), and second if

U1(Dǫ/n, σ2, δ) = −ǫ/(n − 1) − r and r > 0, then U2(Dǫ/n, σ2, δ) ≤ ρǫ/(n − 1) − lr. In other

words the conclusions of Lemma B.4 hold and thus Lemma B.5 applies for Dǫ/n. �

We pick interval of discount factors [δn, δ̄n] as follows: Let δn be such that δn > δ̄n−1

and δn > δ(n, T̂n), and for the upper end, δ̄n > δn, δ̄n > δǫ/(n+1). Notice that the interval

[δn, δ̄n] satisfies the hypothesis of Lemma B.6 by construction because δn > δ(n, T̂n). Also,

the interval [δ̄n−1, δ̄n] satisfies the hypothesis of Lemma B.7 by construction because δ̄n−1 ≥

max{δǫ/n, δ(n − 1, T̂n−1)}.

We now pick T n. Let ξ∗ > 0 be the cutoff ξ([δ̄n−1, δ̄n]) obtained in Lemma B.7, ξ∗∗ > 0

be the cutoff ξ([δn, δ̄n]) obtained in Lemma B.6, and let ξn := min{ξ∗, ξ∗∗, ǫ/n)} > 0. First,

Lemma B.6 implies that there exists T ∗∗ such that for all δ ∈ [δn, δ̄n], all N ≥ T ∗∗ + T̂n, all

W ∈ W n,n, all µ ∈ ∆Dǫ/n,z and all σN ∈ NEξn(ΓN (µ, δ))

(9) U1(σN , δ) > −3ǫ/n − f(z)
ǫ/n + µ(Ω \ W )

z
.

Second, Lemma B.7 implies that there exists T ∗∗∗ such that for all δ ∈ [δn−1, δ̄n], all N ≥

T ∗∗∗ + T̂n, all W ∈ W n−1,n−1, all µ ∈ ∆Dǫ/n,z and all σN ∈ NEξn(ΓN(µ, δ))

(10) U1(σN , δ) > −3ǫ/(n − 1) − f(z)
ǫ/(n − 1) + µ(Ω \ W )

z
.

We pick Tn such that Tn ≥ max{T ∗∗, T ∗∗∗} and δ̄T̂n+Tn
n M < min{ξn, ǫ/n}.

Lemma B.8 Suppose that ω that coincides with Dǫ/n during the periods zero through T̂n+Tn.

For all W ∈ W n−1,n−1, all z > 0, all µ ∈ ∆ω,z, all δ ∈ [δn−1, δ̄n], and all σ ∈ NE(Γ∞(µ, δ)),
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we have

(11) U1(σ, δ) > −4ǫ/(n − 1) − f(z)
ǫ/(n − 1) + µ(Ω \ W )

z
.

Proof: Let σ be a NE of Γ∞(µ, δ) for some δ ∈ [δn−1, δ̄n]. Our choice of Tn was such

that δ̄T̂n+Tn
n M < min{ξn, ǫ/n}. Therefore, if δ ≤ δ̄n, then the projection of σ on the first

N = T̂n + Tn periods, σN is a ξn Bayes-Nash equilibrium of ΓN(µ, δ). Therefore, inequalities

(9) and (10) together imply that U1(σN , δ) > −3ǫ/(n − 1) − f(z) ǫ/(n−1)+µ(Ω\W )
z

. However,

because δ̄N
n M < ǫ/n, the payoffs after period N affect player 1’s payoffs by at most ǫ/n as

long as δ ≤ δ̄n. Hence, U1(σ, δ) ≥ U1(σN , δ) − ǫ/(n − 1). �

B.3.4. Completing the proof of Theorem 1.

Proof: We show that if µ ∈ ∆ω∗,z, z > 0, and all the commitment types other than ω∗

in the support of µ are finite automata, then, UNE
1 (µ) = 0. Fix any χ > 0. There exists

an n > 1 and a W ∈ W n−1,n−1 such that for every n′ ≥ n, 4ǫ
n′−1

+ f(z) ǫ/(n′−1)+µ(Ω\W )
z

< χ.

This follows from the fact that Ω is a countable set of finite automata. Also, by Lemma B.8,

U1(σ, δ) ≥ − 4ǫ
n−1

−f(z) ǫ/(n−1)+µ(Ω\W )
z

, for any δ ≥ δn, and any σ ∈ NE(Γ∞(µ, δ)). Therefore,

we have the following inequalities:

limδ̂→1 infδ≥δ̂,σ∈NE(Γ∞(µ,δ)) U1(σ, δ) ≥ infδ≥δn,σ∈NE(Γ∞(µ,δ)) U1(σ, δ)

≥ −
4ǫ

n − 1
− f(z)

ǫ/(n − 1) + µ(Ω \ W )

z
≥ −χ.

Since χ is arbitrary, lim infδ→1,σ∈NE(Γ∞(µ,δ)) U1(σ, δ) = UNE
1 (µ) = 0. �
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