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Abstract

This paper derives the limiting distributions of least squares averaging estimators for linear

regression models in a local asymptotic framework. We show that the averaging estimators with

fixed weights are asymptotically normal and then develop a plug-in averaging estimator that

minimizes the sample analog of the asymptotic mean squared error. We investigate the focused

information criterion (Claeskens and Hjort, 2003), the plug-in averaging estimator, the Mal-

lows model averaging estimator (Hansen, 2007), and the jackknife model averaging estimator

(Hansen and Racine, 2012). We find that the asymptotic distributions of averaging estimators

with data-dependent weights are nonstandard and cannot be approximated by simulation. To

address this issue, we propose a simple procedure to construct valid confidence intervals with

improved coverage probability. Monte Carlo simulations show that the plug-in averaging estima-

tor generally has smaller expected squared error than other existing model averaging methods,

and the coverage probability of proposed confidence intervals achieves the nominal level. As an

empirical illustration, the proposed methodology is applied to cross-country growth regressions.
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1 Introduction

In recent years, interest has increased in model averaging from the frequentist perspective. Unlike

model selection, which picks a single model among the candidate models, model averaging incor-

porates all available information by averaging over all potential models. Model averaging is more

robust than model selection since the averaging estimator considers the uncertainty across different

models as well as the model bias from each candidate model. The central questions of concern are

how to optimally assign the weights for candidate models and how to make inference based on the

averaging estimator. This paper investigates the averaging estimators in a local asymptotic frame-

work to deal with these issues. The main contributions of the paper are the following: First, we

characterize the optimal weights of the model averaging estimator and propose a plug-in estimator

to estimate the infeasible optimal weights. Second, we investigate the focused information criterion

(FIC; Claeskens and Hjort, 2003), the plug-in averaging estimator, the Mallows model averaging

(MMA; Hansen, 2007), and the jackknife model averaging (JMA; Hansen and Racine, 2012). We

show that the asymptotic distributions of averaging estimators with data-dependent weights are

nonstandard and cannot be approximated by simulation. Third, we propose a simple procedure to

construct valid confidence intervals to address the problem of inference post model selection and

averaging.

In finite samples, adding more regressors reduces the model bias but causes a large variance. To

yield a good approximation to the finite sample behavior, we follow Hjort and Claeskens (2003a)

and Claeskens and Hjort (2008) and investigate the asymptotic distribution of averaging estimators

in a local asymptotic framework where the regression coefficients are in a local n−1/2 neighborhood

of zero. This local asymptotic framework ensures the consistency of the averaging estimator while

in general presents an asymptotic bias. Excluding some regressors with little information introduces

the model bias but reduces the asymptotic variance. The trade-off between omitted variable bias

and estimation variance remains in the asymptotic theory. Under drifting sequences of parameters,

the asymptotic mean squared error (AMSE) remains finite and provides a good approximation to

finite sample mean squared error. The O(n−1/2) framework is canonical in the sense that both

squared model biases and estimator variances have the same order O(n−1). Therefore, the optimal

model is the one that has the best trade-off between bias and variance in this context.

Under the local-to-zero assumption, we derive the asymptotic distributions of least squares

averaging estimators with both fixed weights and data-dependent weights. We show that the

submodel estimators are asymptotically normal and develop a model selection criterion, FIC, which

is an unbiased estimator of the AMSE of the submodel estimator. The FIC chooses the model that

achieves the minimum estimated AMSE. We extend the idea of FIC to the model averaging. We

first derive the asymptotic distribution of the averaging estimator with fixed weights, which allows

us to characterize the optimal weights under the quadratic loss function. The optimal weights are

found by numerical minimization of the AMSE of the averaging estimator. We then propose a plug-

in estimator of the infeasible optimal fixed weights, and use these estimated weights to construct

a plug-in averaging estimator of the parameter of interest. Since the estimated weights depend on
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the covariance matrix, it is quite easy to model the heteroskedasticity.

Estimated weights are asymptotically random, and this must be taken into account in the

asymptotic distribution of the plug-in averaging estimator. This is because the optimal weights

depend on the local parameters, which cannot be estimated consistently. To address this issue,

we first show the joint convergence in distribution of all candidate models and the data-dependent

weights. We then show that the asymptotic distribution of the plug-in estimator is a nonlinear

function of the normal random vector. Under the same local asymptotic framework, we show that

both MMA and JMA estimators have nonstandard asymptotic distributions.

The limiting distributions of averaging estimators can be used to address the important problem

of inference after model selection and averaging. We first show that the asymptotic distribution

of the model averaging t-statistic is nonstandard and not asymptotically pivotal. Thus, the tradi-

tional confidence intervals constructed by inverting the model averaging t-statistic lead to distorted

inference. To address this issue, we propose a simple procedure for constructing valid confidence

intervals. Simulations show that the coverage probability of traditional confidence intervals is gen-

erally too low, while the coverage probability of proposed confidence intervals achieves the nominal

level.

In simulations, we compare the finite sample performance of the plug-in averaging estimator

with other existing model averaging methods. Simulation studies show that the plug-in averag-

ing estimator generally produces lower expected squared error than other data-driven averaging

estimators. As an empirical illustration, we apply the least squares averaging estimators to cross-

country growth regressions. Our estimator has the smaller variance of the log GDP per capita in

1960, though our regression coefficient of the log GDP per capita in 1960 is close to those of other

estimators. Our results also find little evidence of the new fundamental growth theory.

The model setup in this paper is similar to that of Hansen (2007) and Hansen and Racine

(2012). The main difference is that we consider a finite-order regression model instead of an infinite-

order regression model. Hansen (2007) and Hansen and Racine (2012) propose the MMA and

JMA estimators and demonstrate the asymptotic optimality in homoskedastic and heteroskedastic

settings, respectively. However, it is difficult to make inference based on their estimators since there

is no asymptotic distribution available in both papers. By considering a finite-order regression

model, we are able to derive the asymptotic distributions of the MMA and JMA estimators in a

local asymptotic framework.

The idea of using the local asymptotic framework to investigate the limiting distributions of

model averaging estimators is developed by Hjort and Claeskens (2003a) and Claeskens and Hjort

(2008). Like them, we employ a drifting asymptotic framework and use the AMSE to approximate

the finite sample MSE. We, however, consider a linear regression model instead of the likelihood-

based model, and allow for heteroskedastic error settings. Furthermore, we characterize the optimal

weights of the averaging estimator in a general setting and propose a plug-in estimator to estimate

the infeasible optimal weights.

Other work on the asymptotic properties of averaging estimators includes Leung and Barron

(2006), Pötscher (2006), and Hansen (2009, 2010, 2013b). Leung and Barron (2006) study the
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risk bound of the averaging estimator under a normal error assumption. Pötscher (2006) analyzes

the finite sample and asymptotic distributions of the averaging estimator for the two-model case.

Hansen (2009) evaluates the AMSE of averaging estimators for the linear regression model with

a possible structural break. Hansen (2010) examines the AMSE and forecast expected squared

error of averaging estimators in an autoregressive model with a near unit root in a local-to-unity

framework. Hansen (2013b) studies the asymptotic risk of least squares averaging estimator in a

nested model framework. Most of these studies, however, are limited to the two-model case and

the homoskedastic framework.

There is a growing body of literature on frequentist model averaging. Buckland, Burnham,

and Augustin (1997) suggest selecting the weights using the exponential AIC. Yang (2000), Yang

(2001), and Yuan and Yang (2005) propose an adaptive regression by mixing models. Hansen

(2007) introduces the Mallows model averaging estimator for nested and homoskedastic models

where the weights are selected by minimizing the Mallows criterion. Wan, Zhang, and Zou (2010)

extend the asymptotic optimality of the Mallows model averaging estimator for continuous weights

and a non-nested setup. Liang, Zou, Wan, and Zhang (2011) suggest selecting the weights by

minimizing the trace of an unbiased estimator of mean squared error. Zhang and Liang (2011)

propose an FIC and a smoothed FIC averaging estimator for generalized additive partial linear

models. Hansen and Racine (2012) propose the jackknife model averaging estimator for non-

nested and heteroskedastic models where the weights are chosen by minimizing a leave-one-out

cross-validation criterion. DiTraglia (2013) proposes a moment selection criterion and a moment

averaging estimator for the GMM framework. In contrast to frequentist model averaging, there is a

large body of literature on Bayesian model averaging, see Hoeting, Madigan, Raftery, and Volinsky

(1999) and Moral-Benito (2013) for a literature review.

There is a large body of literature on inference after model selection, including Pötscher (1991),

Kabaila (1995, 1998), and Leeb and Pötscher (2003, 2005, 2006, 2008, 2012). These papers point

out that the coverage probability of the confidence interval based on the model selection estimator

is lower than the nominal level. They also argue that the conditional and unconditional distribu-

tion of post model selection estimators cannot be uniformly consistently estimated. In the model

averaging literature, Hjort and Claeskens (2003a) and Claeskens and Hjort (2008) show that the tra-

ditional confidence interval based on normal approximations leads to distorted inference. Pötscher

(2006) argues that the finite-sample distribution of the averaging estimator cannot be uniformly

consistently estimated.

There are also alternatives to model selection and model averaging. Tibshirani (1996) introduces

the LASSO estimator, a method for simultaneous estimation and variable selection. Zou (2006)

proposes the adaptive LASSO approach and presents its oracle properties. Hansen, Lunde, and

Nason (2011) propose the model confidence set, which is constructed based on an equivalence test.

White and Lu (2014) propose a new Hausman (1978) type test of robustness for the core regression

coefficients. They also provide a feasible optimally combined GLS estimator.

The outline of the paper is as follows. Section 2 presents the regression model, the submodel, and

the averaging estimator. Section 3 presents the asymptotic framework and assumptions. Section 4
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introduces the FIC and the plug-in averaging estimator. Section 5 derives the distribution theory of

FIC, plug-in, MMA, and JMA estimators, and proposes a procedure to construct valid confidence

intervals for averaging estimators. Section 6 examines the finite sample properties of averaging

estimators. Section 7 presents the empirical application and Section 8 concludes the paper. Proofs

are included in the Appendix.

2 The Model and the Averaging Estimator

Consider a linear regression model

yi = x′
iβ + z′iγ + ei, (2.1)

E(ei|xi, zi) = 0, (2.2)

E(e2i |xi, zi) = σ2(xi, zi), (2.3)

where yi is a scalar dependent variable, xi = (x1i, ..., xpi)
′ and zi = (z1i, ..., zqi)

′ are vectors of

regressors, ei is an unobservable regression error, and β(p×1) and γ(q×1) are unknown parameter

vectors. The error term is allowed to be heteroskedastic, and there is no further assumption on

the distribution of the error term. Here, xi are the core regressors, which must be included in the

model based on theoretical grounds, while zi are the auxiliary regressors, which may or may not be

included in the model.1 Note that xi may only include a constant term or even an empty matrix.

Let y = (y1, ..., yn)
′, X = (x1, ...,xn)

′, Z = (z1, ..., zn)
′, and e = (e1, ..., en)

′. In matrix notation,

we write the model as

y = Xβ + Zγ + e = Hθ + e (2.4)

where H = (X,Z) and θ = (β′,γ ′)′.

Suppose that we have a set of M submodels. Let Πm be the qm × q selection matrix which

selects the included auxiliary regressors. The m’th submodel includes all core regressors X and a

subset of auxiliary regressors Zm where Zm = ZΠ′
m. Note that the m’th submodel has p + qm

regressors and qm is the number of auxiliary regressors zi in the submodel m. The set of models

could be nested or non-nested.2 If we consider a sequence of nested models, then M = q+1. If we

consider all possible subsets of auxiliary regressors, then M = 2q.

The least squares estimator of θ for the full model, i.e., all auxiliary regressors are included in

the model, is

θ̂f =

(
β̂f

γ̂f

)
= (H′H)−1H′y, (2.5)

1The auxiliary regressors can include any nonlinear transformations of the original variables and the interaction

terms between the regressors.
2The non-nested models include both the overlapping and the non-overlapping cases. The submodels m and ℓ are

called overlapping if Zm ∩ Zℓ 6= ∅, and non-overlapping otherwise.
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and the estimator for the submodel m is

θ̂m =

(
β̂m

γ̂m

)
= (H′

mHm)−1H′
my, (2.6)

where Hm = (X,Zm). Let I denote an identity matrix and 0 a zero matrix. If Πm = Iq, then we

have θ̂m = (H′H)−1H′y = θ̂f , the least squares estimator for the full model. If Πm = 0, then we

have θ̂m = (X′X)−1X′y, the least squares estimator for the narrow model, or the smallest model

among all possible submodels.

The parameter of interest is µ = µ(θ) = µ(β,γ), which is a smooth real-valued function. Let

µ̂m = µ(θ̂m) = µ(β̂m, γ̂m) denote the submodel estimates. Unlike the traditional model selection

and model averaging approaches, which assess the global fit of the model, we evaluate the model

based on the focus parameter µ. For example, µ may be an individual coefficient or a ratio of two

coefficients of regressors.

We now define the averaging estimator of the focus parameter µ. Let w = (w1, ..., wM )′ be a

weight vector with wm ≥ 0 and
∑M

m=1 wm = 1.3 That is, the weight vector lies in the unit simplex

in R
M :

Hn =

{
w ∈ [0, 1]M :

M∑

m=1

wm = 1

}
.

The sum of the weight vector is required to be one. Otherwise, the averaging estimator is not

consistent. The averaging estimator of µ is

µ̄(w) =
M∑

m=1

wmµ̂m. (2.7)

Note that both Hansen (2007) and Hansen and Racine (2012) consider an infinite-order regres-

sion model and make no distinction between core and auxiliary regressors, which is different from

our framework. Furthermore, both papers propose an averaging estimator for the conditional mean

function instead of the focus parameter µ. The empirical literature tends to focus on one particular

parameter instead of assessing the overall properties of the model. In contrast to Hansen (2007)

and Hansen and Racine (2012), our method is tailored to the parameter of interest instead of the

global fit of the model. We focus attention on a low-dimension function of the model parameters

and allow different model weights to be chosen for different parameters of interest.

3 Asymptotic Framework

The least squares estimator for the submodel has omitted variable bias. For nonzero and fixed

values of γ, the asymptotic bias of all models except the full model tends to infinity and hence the

3We have fewer restrictions on the weight function than other existing methods. Leung and Barron (2006),

Pötscher (2006), Liang, Zou, Wan, and Zhang (2011), and Zhang and Liang (2011) assume the parametric form of

the weight function. Hansen (2007) and Hansen and Racine (2012) restrict the weights to be discrete. Contrary to

these works, we allow continuous weights without assuming any parametric form, which is more general and applicable

than other approaches.
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asymptotic approximations break down. We therefore follow Hjort and Claeskens (2003a) and use

a local-to-zero asymptotic framework to investigate the asymptotic distribution of the averaging

estimator. More precisely, the parameters γ are modeled as being a local n−1/2 neighborhood of

zero.

Assumption 1. γ = γn = δ/
√
n, where δ is an unknown constant vector.

Assumption 1 is a technique to ensure that the asymptotic mean squared error of the averaging

estimator remains finite.4 It is a common technique to analyze the asymptotic and finite sample

properties of the model selection and averaging estimator, for example, Leeb and Pötscher (2005),

Pötscher (2006), Elliott, Gargano, and Timmermann (2013), and Hansen (2013b). This assumption

says that the partial correlations between the auxiliary regressors and the dependent variable are

weak, which is similar to the definition of the weak instrument, see Staiger and Stock (1997). This

assumption implies that as the sample size increases, all of the submodels are close to each other.

Under this framework, it is informative to know if we can improve by averaging the candidate

models instead of choosing one single model.

The O(n−1/2) framework is canonical in the sense that both squared bias and variance have

the same order O(n−1). Hence, in this context the optimal model is the one that achieves the best

trade-off between squared model biases and estimator variances. As shown in the proof of Lemma

1, we can decompose the least squares estimator for the submodel m as

θ̂m = θm +
(
H′

mHm

)−1
H′

mZ
(
Iq −Π′

mΠm

)
γn +

(
H′

mHm

)−1
H′

me

where the second term represents the omitted variable bias and (Iq −Π′
mΠm) is the selection

matrix that chooses the omitted auxiliary regressors. If γn converges to 0 slower than n−1/2, the

asymptotic bias goes to infinity, which suggests that the full model is the only one we should choose.

If γn converges to 0 faster than n−1/2, the asymptotic bias goes to zero, which implies that the

narrow model is the only one we should consider. In both cases, there is no trade-off between

omitted variable bias and estimation variance in the asymptotic theory.5

The following assumption is a high-level condition that permits the application of cross-section,

panel, and time-series data. Let hi = (x′
i, z

′
i)
′ and Q = E(hih

′
i) partitioned so that E (xix

′
i) = Qxx,

E (xiz
′
i) = Qxz, and E (ziz

′
i) = Qzz. Let Ω = limn→∞

1
n

∑n
i=1

∑n
j=1 E

(
hih

′
jeiej

)
partitioned

so that limn→∞
1
n

∑n
i=1

∑n
j=1 E

(
xix

′
jeiej

)
= Ωxx, limn→∞

1
n

∑n
i=1

∑n
j=1 E

(
xiz

′
jeiej

)
= Ωxz, and

limn→∞
1
n

∑n
i=1

∑n
j=1 E

(
ziz

′
jeiej

)
= Ωzz. Note that if the error term ei is serially uncorrelated and

identically distributed, Ω can be simplified as Ω = E
(
hih

′
ie

2
i

)
, and if the error term is i.i.d. and

homoskedastic, then Ω = σ2Q.

4There has been a discussion about the realism of the local asymptotic framework, see Hjort and Claeskens (2003b)

and Raftery and Zheng (2003).
5The standard asymptotics for nonzero and fixed parameters γ correspond to δ = ±∞, which is the first case.

The zero partial correlations between the auxiliary regressors and the dependent variable correspond to δ = 0, which

is the second case.
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Assumption 2. As n → ∞, n−1H′H
p−→ Q and n−1/2H′e

d−→ R ∼ N(0,Ω).

This condition holds under appropriate primitive assumptions. For example, if yi is a sta-

tionary and ergodic martingale difference sequence with finite fourth moments, then the condition

follows from the weak law of large numbers and the central limit theorem for martingale difference

sequences.

Let

S0 =

(
0p×q

Iq

)
and Sm =

(
Ip 0p×qm

0q×p Π′
m

)

be selection matrices of dimension (p + q) × q and (p + q) × (p + qm), respectively. Since the

extended selection matrix Sm is non-random with elements either 0 or 1, for the submodel m we

have n−1H′
mHm

p−→ Qm where Qm is nonsingular with

Qm = S′
mQSm =

(
Qxx QxzΠ

′
m

ΠmQzx ΠmQzzΠ
′
m

)
,

and n−1/2H′
me

d−→ N(0,Ωm) with

Ωm = S′
mΩSm =

(
Ωxx ΩxzΠ

′
m

ΠmΩzx ΠmΩzzΠ
′
m

)
.

The following lemma describes the asymptotic distributions of the least squares estimators. Let

θm = S′
mθ = (β′,γ ′Π′

m)′ = (β′,γ ′
m)′.

Lemma 1. Suppose Assumptions 1-2 hold. As n → ∞, we have

√
n
(
θ̂f − θ

)
d−→ Q−1R ∼ N

(
0,Q−1ΩQ−1

)
,

√
n
(
θ̂m − θm

)
d−→ Amδ +BmR ∼ N

(
Amδ, Q−1

m ΩmQ−1
m

)
,

where Am = Q−1
m S′

mQS0 (Iq −Π′
mΠm) and Bm = Q−1

m S′
m.

Lemma 1 implies that both θ̂f and θ̂m are consistent. Amδ represents the asymptotic bias of

submodel estimators. For the full model, the asymptotic bias is zero since (Iq −Π′
mΠm) = 0. For

the submodels, the asymptotic bias is zero if the coefficients of the auxiliary regressors are zero,

i.e., γ = 0, or the auxiliary regressors are uncorrelated, i.e., Q is a diagonal matrix. The magnitude

of the asymptotic bias is determined by two components, the local parameter δ and the covariance

matrix Q, which is illustrated in Figure 1.

Figure 1 shows the asymptotic mean squared error (AMSE) of
√
n(β̂2−β2) of the narrow model

estimator, the middle model estimator, the full model estimator, and the averaging estimator in a

three-nested-model framework. The left panel shows that the best submodel, which has the lowest
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Figure 1: The AMSE of
√
n(β̂2 − β2) of submodel estimators and the averaging estimator in a three-nested-model

framework. The situation is that of p = 2, q = 2, M = 3, δ = (c, c)′, and Ω = σ2Q. The diagonal elements of Q

are 1, and off-diagonal elements are ρ. The left panel corresponds to ρ = 0.5, and the right panel corresponds to

c = 0.75.

AMSE, varies with δ. When |δ| is small, the omitted variable bias is relatively small. Therefore,

we prefer the narrow model which has an omitted variable bias but a much smaller estimation

variance. On the other hand, when |δ| is large we should prefer the full model. Note that the

standard asymptotics for nonzero and fixed parameters γ correspond to δ = ±∞. The left panel

implies that we should always choose the full model if all regression coefficients are modeled as

fixed.

The right panel of Figure 1 shows that the best submodel varies with ρ, and the full model is not

always better in the local asymptotic framework. When the auxiliary regressors are uncorrelated,

i.e., ρ = 0, all submodel estimators have the same AMSE. For larger ρ, the asymptotic variance

increases much faster than asymptotic bias. Therefore, we should consider the smaller model. We

also compare the AMSE of the submodel estimators with the AMSE of the averaging estimator with

the optimal weight derived in (4.6). The striking feature is that the averaging estimator achieves a

much lower AMSE than all submodel estimators in both panels.

4 Focused Information Criterion and Plug-In Averaging Estima-

tor

In this section, we derive a focused information criterion (FIC) model selection for the focus pa-

rameter. We also characterize the optimal weights of the averaging estimator and present a plug-in

method to estimate the infeasible optimal weights.
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4.1 Focused Information Criterion

Let Dθm =
(
D′

β,D
′
γm

)′
, Dβ = ∂µ/∂β, and Dγm = ∂µ/∂γm, with partial derivatives evaluated

at the null points (β′,0′)′. Assume the partial derivatives are continuous in a neighborhood of the

null points. Lemma 1 and the delta method imply the following theorem.

Theorem 1. Suppose Assumptions 1-2 hold. As n → ∞, we have

√
n
(
µ(θ̂m)− µ(θ)

)
d−→ Λm = D′

θCmδ +D′
θP

′
mR ∼ N

(
D′

θCmδ, D′
θPmΩPmDθ

)

where Cm = (PmQ− Ip+q)S0 and Pm = Sm (S′
mQSm)−1

S′
m.

Theorem 1 implies joint convergence in distribution of all submodels since all asymptotic dis-

tributions can be expressed in terms of the same normal random vector R. A direct calculation

yields

AMSE(µ̂m) = D′
θ

(
Cmδδ′C′

m +P′
mΩPm

)
Dθ. (4.1)

SinceDθ depends on the focus parameter µ, we can use (4.1) to select a proper submodel depending

on the parameter of interest. This is the idea behind FIC proposed by Claeskens and Hjort (2003).

To use (4.1) for model selection, we need to estimate the unknown parameters Dθ, Cm, Pm,

Ω, and δ. Define D̂θ = ∂µ(θ̂f )/∂θ where θ̂f is the estimate from the full model. Since θ̂f is a

consistent estimator of θ, it follows that D̂θ is a consistent estimator of Dθ. Note that both Cm

and Pm are functions of Q and selection matrices, which can be consistently estimated by the

sample analogue.6 The consistent estimator for Ω is also available.7

We now consider the estimator for the local parameter δ. Unlike Dθ, Cm, Pm, and Ω, there

is no consistent estimator for the parameter δ due to the local asymptotic framework. We can,

however, construct an asymptotically unbiased estimator of δ by using the estimator from the full

model. That is, δ̂ =
√
nγ̂f where γ̂f is the estimate from the full model. From Lemma 1, we know

that

δ̂ =
√
nγ̂f

d−→ Rδ = δ + S′
0Q

−1R ∼ N(δ,S′
0Q

−1ΩQ−1S′
0). (4.2)

As shown above, δ̂ is an asymptotically unbiased estimator for δ and converges in distribution to a

linear function of the normal random vector R. Since the mean of RδR
′
δ is δδ′ + S′

0Q
−1ΩQ−1S′

0,

δ̂δ̂′ − S′
0Q̂

−1Ω̂Q̂−1S0 provides an asymptotically unbiased estimator of δδ′.

6Let Q̂ = 1

n

∑n
i=1

hih
′
i and then Q̂

p−→ Q under Assumption 2.
7If the error term is serially uncorrelated and identically distributed, then Ω can be consistently estimated by

the heteroskedasticity-consistent covariance matrix estimator proposed by White (1980). The estimator is Ω̂ =
1

n

∑n
i=1

hih
′
iê

2
i where êi is the least squares residual from the full model. If the error term ei is serially correlated and

identically distributed, then Ω can be estimated consistently by the heteroskedasticity and autocorrelation consistent

covariance matrix estimator. The estimator is defined as Ω̂ =
∑n

j=−n k(j/Sn)Γ̂(j), Γ̂(j) =
1

n

∑n−j
i=1

hih
′
i+j êiêi+j for

j ≥ 0, and Γ̂(j) = Γ̂(−j)′ for j < 0, where k(·) is a kernel function and Sn the bandwidth. Under some regularity

conditions, it follows that Ω̂
p−→ Ω; for serially uncorrelated errors, see White (1980) and White (1984), and for

serially correlated errors, see Newey and West (1987) and Andrews (1991b).
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Following Claeskens and Hjort (2003), we define the FIC of the m’th submodel as

FICm = D̂′
θ

(
Ĉm

(
δ̂δ̂′ − S′

0Q̂
−1Ω̂Q̂−1S0

)
Ĉ′

m + P̂mΩ̂P̂m

)
D̂θ, (4.3)

which is an asymptotically unbiased estimator of AMSE(µ̂m). We then select the model with the

lowest FIC.

4.2 Plug-In Averaging Estimator

We extend the idea of FIC to the averaging estimator.8 Instead of comparing the AMSE of each

submodel, we derive the AMSE of the averaging estimator with fixed weight in a local asymptotic

framework. This result allows us to characterize the optimal weights of the averaging estimator

under the quadratic loss function. We then propose a plug-in estimator to estimate the infeasible

optimal weights. The following theorem shows the asymptotic normality of the averaging estimator

with fixed weights.

Theorem 2. Suppose Assumptions 1-2 hold. As n → ∞, we have

√
n (µ̄(w)− µ)

d−→ N
(
D′

θCwδ, V
)

where Cw =
∑M

m=1 wmCm and V =
∑M

m=1w
2
mD′

θPmΩPmDθ + 2
∑∑

m6=ℓ wmwℓD
′
θPmΩPℓDθ.

The asymptotic bias and variance of the averaging estimator are D′
θCwδ and V , respectively.

The asymptotic variance has two components. The first component is the weighted average of

the variance of each model, and the second component is the weighted average of the covariance

between any two models.

Theorem 2 implies that the AMSE of the averaging estimator µ̄(w) is

AMSE(µ̄(w)) = w′Ψw (4.4)

where Ψ is an M ×M matrix with the (m, ℓ)th element

Ψm,ℓ = D′
θ

(
Cmδδ′C′

ℓ +PmΩPℓ

)
Dθ. (4.5)

The optimal fixed-weight vector is the value that minimizes AMSE(µ̄(w)) over w ∈ Hn:

wo = argmin
w∈Hn

w′Ψw. (4.6)

8Hjort and Claeskens (2003a) propose a smoothed FIC averaging estimator, which assigns the weights of each

candidate model by using the exponential FIC. The weight function is a parametric form and is defined as

ŵ = exp
(

−αFICm/2κ2
)

/
∑M

ℓ=1
exp

(

−αFICℓ/2κ
2
)

where κ2 = D′
θQ

−1ΩQ−1Dθ. The simulation shows that the

performance of the smoothed FIC averaging estimator is sensitive to the choice of the nuisance parameter α and

there is no data-driven method available to choose α. They also consider the averaging estimator, which selects

weights to minimize the estimated risk in the likelihood framework for a two-model case, the full model and the

narrow model.
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Since the optimal weights depend on the covariance matrix Ω, it is quite easy to model the

heteroskedasticity. When we have more than two submodels, there is no closed-form solution to

(4.6). In this case, the weight vector can be found numerically via quadratic programming for

which numerical algorithms are available for most programming languages.

The optimal weights are infeasible because they depend on the unknown parameters Dθ, Cm,

Pm, Ω, and δ. Furthermore, we cannot estimate the optimal weights directly because there is no

closed form expression when the number of models is greater than two. A straightforward solution

is to estimate the AMSE of the averaging estimator given in (4.4) and (4.5), and to choose the

data-dependent weights by minimizing the sample analog of the AMSE.

As mentioned by Hjort and Claeskens (2003a), we can estimate AMSE(µ̄(w)) by inserting δ̂ for

δ or using unbiased δ̂δ̂′ − S′
0Q̂

−1Ω̂Q̂−1S0 for δδ′. The plug-in estimator of (4.4) is w′Ψ̂w where

Ψ̂ is the sample analog of Ψ with the (m, ℓ)th element

Ψ̂m,ℓ = D̂′
θ

(
Ĉmδ̂δ̂′Ĉ′

ℓ + P̂mΩ̂P̂ℓ

)
D̂θ. (4.7)

The plug-in averaging estimator is defined as

µ̄(ŵ) =

M∑

m=1

ŵmµ̂m and ŵ = argmin
w∈Hn

w′Ψ̂w. (4.8)

The alternative estimator of Ψm,ℓ is

Ψ̂m,ℓ = D̂′
θ

(
Ĉm

(
δ̂δ̂′ − S′

0Q̂
−1Ω̂Q̂−1S0

)
Ĉ′

ℓ + P̂mΩ̂P̂ℓ

)
D̂θ. (4.9)

As shown in the next section, the estimator (4.7) has a simpler limiting distribution than the estima-

tor (4.9). Also, the simulation shows that the estimator (4.7) has better finite sample performance

than the estimator (4.9).

5 Asymptotic Distributions of Averaging Estimators

In this section, we present the asymptotic distributions of the FIC model selection estimator, the

plug-in averaging estimator, the Mallows model averaging (MMA) estimator, and the jackknife

model averaging (JMA) estimator.9 We also propose a valid confidence interval for the model

averaging estimator.

5.1 Asymptotic Distributions of FIC and Plug-In Averaging Estimator

The model selection estimator based on information criteria is a special case of the model averaging

estimator. The model selection puts the whole weight on the model with the smallest value of the

information criterion and gives other models zero weight. The weight function of the model selection

estimator can be expressed by the indicator function.

9In an earlier version of this paper, we also obtained the distribution results for the AIC model selection estimator

and S-AIC model averaging estimator.
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The weight function of the FIC estimator is thus

ŵm = 1 {FICm = min(FIC1,FIC2, ...,FICM )} ,

where 1{·} is an indicator function that takes value 1 if FICm = min(FIC1,FIC2, ...,FICM ) and 0

otherwise.

Note that D̂θ, Ĉm, P̂m, and Ω̂ are consistent estimators. Since δ̂ =
√
n

d−→ Rδ = δ+S′
0Q

−1R,

we can show that

FICm
d−→ D′

θ

(
Cm

(
RδR

′
δ − S′

0Q
−1ΩQ−1S0

)
C′

m +PmΩPm

)
Dθ.

This result implies that the FIC estimator has a nonstandard limiting distribution. The following

theorem presents the asymptotic distribution of the plug-in averaging estimator defined in (4.7)

and (4.8).10

Theorem 3. Let ŵ = argmin
w∈Hn

w′Ψ̂w be the plug-in weights. Assume Ω̂
p−→ Ω. Suppose Assump-

tions 1-2 hold. As n → ∞, we have

w′Ψ̂w
d−→ w′Ψ∗w (5.1)

where Ψ∗ is an M ×M matrix with the (m, ℓ)th element

Ψ∗
m,ℓ = D′

θ

(
CmRδR

′
δC

′
ℓ +PmΩPℓ

)
Dθ. (5.2)

Also, we have

ŵ
d−→ w∗ = argmin

w∈Hn

w′Ψ∗w, (5.3)

and

√
n
(
µ̄(ŵ)− µ

) d−→
M∑

m=1

w∗
mΛm (5.4)

where Λm is defined in Theorem 1.

Rather than impose regularity conditions, we assume there exists a consistent estimator for Ω.

The sufficient condition for the consistency is that ei is i.i.d. or a martingale difference sequence with

finite fourth moment. For serial correlation, data is a mean zero α-mixing or ϕ-mixing sequence.

Theorem 3 shows that the estimated weights are asymptotically random under the local asymptotic

assumption. This is because the local parameter δ cannot be consistently estimated and thus the

estimate δ̂ is random in the limit.

In order to derive the asymptotic distribution of the plug-in averaging estimator, we show that

there is joint convergence in distribution of all submodel estimators µ̂m and estimated weights ŵ.

10For the plug-in averaging estimator defined in (4.9), the limiting distribution is the same except (5.2) is replaced

by Ψ∗
m,ℓ = D′

θ

(

Cm

(

RδR
′
δ − S′

0Q
−1ΩQ−1S0

)

C′
ℓ +PmΩPℓ

)

Dθ.
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The joint convergence in distribution comes from the fact that both Λm and w∗
m can be expressed

in terms of the normal random vector R. It turns out the limiting distribution of the plug-in

averaging estimator is not normally distributed. Instead, it is a nonlinear function of the normal

random vector R. The non-normal nature of the limiting distribution of the averaging estimator

with data-dependent weights is also pointed out by Hjort and Claeskens (2003a) and Claeskens and

Hjort (2008).

5.2 Mallows Model Averaging Estimator

Hansen (2007) proposes the Mallows model averaging estimator for the homoskedastic linear re-

gression model. He extends the asymptotic optimality from model selection in Li (1987) to model

averaging. He shows that the average squared error of the MMA estimator is asymptotic equivalent

to the lowest expected squared error. The MMA estimator, however, is not asymptotically optimal

in our framework. This is because the condition (15) of Hansen (2007) does not hold in the local

asymptotic framework. The condition requires that there is no submodel m for which the bias is

zero, which does not hold in our framework since the full model has no bias.

Let ê(w) = y − Hθ̄(w) be the averaging residual vector and θ̄(w) =
∑M

m=1 wmSmθ̂m the

averaging estimator of θ. Hansen (2007) suggests selecting the model weights by minimizing the

Mallow’s criterion:

Cn(w) = ê(w)′ê(w) + 2σ2k′w, (5.5)

where σ2 = E(e2i ), k = (k1, ..., kM )′, and km = p+ qm.

Let êf = y − Hθ̂f and êm = y −Hmθ̂m be the residual vectors from the full model and the

submodel m, respectively. To derive the asymptotic distribution of the MMA estimator, we add

and subtract the sum of squared residuals of the full model and rewrite the Mallow’s criterion (5.5)

as

Cn(w) = w′ζnw + 2σ2k′w + ê′f êf , (5.6)

where ζn is an M ×M matrix with the (m, ℓ)th element ζm,ℓ = ê′mêℓ− ê′f êf . Note that ê
′
f êf is not

related to the weight vector w. Therefore, minimizing (5.6) over w = (w1, ..., wM ) is equivalent to

minimizing

C̃n(w) = w′ζnw + 2σ2k′w. (5.7)

Since the criterion function C̃n(w) is a quadratic function of the weight vector, the MMA weights

can be found by quadratic programming as the optimal fixed-weight vector and the plug-in weight

vector. However, unlike the plug-in averaging estimator where the weights are tailored to the pa-

rameter of interest, the MMA estimator selects the weights based on the conditional mean function.

In practice, we use s2 = ê′f êf/(n − p − q) to estimate σ2. Under some regularity conditions, it
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follows that s2 is consistent for σ2. The following theorem shows the limiting distribution of the

MMA estimator.11

Theorem 4. Let ŵ = argmin
w∈Hn

C̃n(w) be the MMA weights. Suppose Assumptions 1-2 hold. As

n → ∞, we have

C̃n(w) = w′ζnw + 2σ2k′w
d−→ w′ζ∗w + 2σ2k′w (5.8)

where ζ∗ is an M ×M matrix with the (m, ℓ)th element

ζ∗m,ℓ = R′
mQRℓ and Rm = Cmδ +

(
Pm −Q−1

)
R. (5.9)

Also, we have

ŵ
d−→ w∗ = argmin

w∈Hn

(
w′ζ∗w + 2σ2k′w

)
(5.10)

and

√
n
(
µ̄(ŵ)− µ

) d−→
M∑

m=1

w∗
mΛm (5.11)

where Λm is defined in Theorem 1.

The main difference between Theorem 3 and 4 is the limiting behavior of the weight vector. Since

the plugin averaging estimator chooses the weight based on the focus parameter, the asymptotic

distribution of the selected weight involves the partial derivatives Dθ. Therefore, for a different

parameter of interests, we have different asymptotic distributions. Unlike the plug-in averaging

estimator, the MMA estimator selects the weights based on the conditional mean function. As a

result, the limiting distribution of the weight function does not depend on the parameter of interest.

5.3 Jackknife Model Averaging Estimator

Hansen and Racine (2012) propose the jackknife model averaging estimator for the linear regres-

sion model and demonstrate the asymptotic optimality of the JMA estimator in the presence of

heteroskedasticity. They extend the asymptotic optimality from model selection for heteroskedas-

tic regressions in Andrews (1991a) to model averaging. Similar to the MMA estimator, the JMA

estimator is not asymptotically optimal in the linear regression model with a finite number of

regressors.

Hansen and Racine (2012) suggest selecting the weights by minimizing a leave-one-out cross-

validation criterion:

CVn(w) =
1

n
w′ẽ′ẽw (5.12)

11Hansen (2013b) also derives the asymptotic distribution of the MMA estimator. He derives the asymptotic

distribution of the MMA estimator in a nested model framework where the regressors can be partitioned into groups,

while our results can apply to both nested or non-nested models.
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where ẽ = (ẽ1, ..., ẽM ) is a n × M matrix of leave-one-out least squares residuals and ẽm are the

residuals of submodel m obtained by least squares estimation without the i′th observation.

To derive the asymptotic distribution of the JMA estimator, we adopt the same strategy and

rewrite (5.12) as

CVn(w) =
1

n
w′ξnw +

1

n
ê′f êf (5.13)

where ξn is an M ×M matrix with the (m, ℓ)th element ξm,ℓ = ẽ′mẽℓ− ê′f êf . Note that minimizing

CVn(w) over w = (w1, ..., wM ) is equivalent to minimizing

C̃Vn(w) = w′ξnw. (5.14)

Like the MMA estimator, the JMA estimator chooses the weights based on the conditional mean

function instead of the focus parameter. Similar to the plug-in averaging estimator and the MMA

estimator, the weight vector of the JMA estimator can be found by quadratic programming.12 The

following assumption is imposed on the data generating process.

Assumption 3. (a) {(yi,xi, zi) : i = 1, ..., n} are i.i.d. (b) E(e4i ) < ∞, E(x4ji) < ∞ for j = 1, ..., p,

and E(z4ji) < ∞ for j = 1, ..., q.

Condition (a) in Assumption 3 is the i.i.d. assumption, which is also made in Hansen and Racine

(2012). The result in Theorem 5 can be extended to the stationary case. Condition (b) is the

standard assumption for the linear regression model. Note that Assumption 3 implies Assumption

2. Therefore, the results in Lemma 1, Theorem 1, and Theorem 2 hold under Assumptions 1 and

3.

Theorem 5. Let ŵ = argmin
w∈Hn

C̃Vn(w) be the JMA weights. Suppose Assumptions 1 and 3 hold.

As n → ∞, we have

C̃Vn(w) = w′ξnw
d−→ w′ξ∗w (5.15)

where ξ∗ is an M ×M matrix with the (m, ℓ)th element

ξ∗m,ℓ = R′
mQRℓ + tr

(
Q−1

m Ωm

)
+ tr

(
Q−1

ℓ Ωℓ

)
, (5.16)

where Rm is defined in Theorem 4. Also, we have

ŵ
d−→ w∗ = argmin

w∈Hn

w′ξ∗w, (5.17)

and

√
n
(
µ̄(ŵ)− µ

) d−→
M∑

m=1

w∗
mΛm (5.18)

where Λm is defined in Theorem 1.

12However, the computational burden of the JMA estimator is heavier than the plug-in averaging estimator and

MMA estimator when both the sample size and the number of regressors are large.
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Note that the first term of ξ∗m,ℓ in (5.16) is the same as ζ∗m,ℓ in (5.9). This is because both

the JMA and MMA estimators select weights based on the conditional mean function. Under

conditional homoskedasicity E(e2i |xi, zi) = σ2, we have Ω = σ2Q. Thus, in this case, the second

and third terms in (5.16) are simplified as σ2km and σ2kℓ.

5.4 Valid Confidence Interval

We now discuss how to make inference based on the distribution results derived from previous

sections. Let w(m|δ̂) denote a data-dependent weight function for the m’th model. Consider an

averaging estimator of the focus parameter µ as

µ̄ =

M∑

m=1

w(m|δ̂)µ̂m (5.19)

where the weights w(m|δ̂) take the values in the interval [0, 1] and the sum of the weights is required

to sum to 1. Following Theorem 2, we define the standard error of µ̄ as s(µ̄) = n−1/2
√

V̂ where

V̂ =
M∑

m=1

w(m|δ̂)2D̂′
θP̂mΩ̂P̂mD̂θ + 2

∑∑

m6=ℓ

w(m|δ̂)w(ℓ|δ̂)D̂′
θP̂mΩ̂P̂ℓD̂θ. (5.20)

Since µ is a scalar, we can construct the confidence interval by using the t-statistic. Consider

the t-statistic of the averaging estimator of µ

tn(µ) =
µ̄− µ

s(µ̄)
. (5.21)

Unfortunately, the asymptotic distribution of the t-statistic tn(µ) is nonstandard. Furthermore,

tn(µ) is not asymptotically pivotal. Suppose w(m|δ̂) d−→ w(m|Rδ) where Rδ = δ + S′
0Q

−1R.13

Then we can show that

tn(µ)
d−→ (V (Rδ))

−1/2
M∑

m=1

w(m|Rδ)Λm (5.22)

where Λm is defined in Theorem 1 and

V (Rδ) =

M∑

m=1

w(m|Rδ)
2D′

θPmΩPmDθ + 2
∑∑

m6=ℓ

w(m|Rδ)w(ℓ|Rδ)D
′
θPmΩPℓDθ.

Equation (5.22) shows that the limiting distribution of the t-statistic tn(µ) is a nonlinear function

of the normal random vector R and the local parameter δ. In Figure 2, we simulate the asymptotic

distribution of the model averaging t-statistic in a three-nested-model framework for three different

ρ. The density functions are computed by kernel estimation using 5000 random samples. The figure

shows that the asymptotic distributions of tn(µ) for large ρ are quite different from the standard

normal probability density function. As a result, the traditional confidence intervals based on

normal approximations lead to distorted inference.

13For example, if w(δ̂) = (w(1|δ̂), ..., w(M |δ̂)) are the plug-in weights, then w(δ̂)
d−→ w(Rδ) = argmin

w∈Hn

w′Ψ∗w as

shown in Theorem 3.
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Figure 2: Density functions of the model averaging t-statistic in a three-nested-model framework. The situation is

that of p = 2, q = 2, M = 3, δ = (1, 1)′, and Ω = σ2Q. The diagonal elements of Q are 1 and off-diagonal elements

are ρ. The three situations correspond to ρ = 0.25, ρ = 0.50, and ρ = 0.75.

As shown above, the asymptotic distribution of the t-statistic of the averaging estimator depends

on unknown parameters, and thus cannot directly be used for inference. Furthermore, we cannot

simulate the asymptotic distribution of tn(µ) since the local parameters are unknown and cannot

be estimated consistently. To address this issue, we propose a simple procedure for constructing

valid confidence intervals. The following theorem presents a general distribution theorem for the

averaging estimator with data-dependent weights.

Theorem 6. Assume w(m|δ̂) d−→ w(m|Rδ). Suppose Assumptions 1-2 hold. As n → ∞, we have

√
n (µ̄− µ)

d−→ D′
θQ

−1R+D′
θ

(
M∑

m=1

w(m|Rδ)Cm

)
Rδ

where Rδ = δ + S′
0Q

−1R.

Theorem 6 shows that the limiting distribution of the averaging estimator with data-dependent

weights is nonstandard in general since the estimated weights are asymptotically random. As

discussed above, a direct construction of a confidence interval based on the t-statistic is not valid

since the limiting distribution of
√
n (µ̄− µ) is a nonlinear function of the normal random vector

R and the local parameters δ.

We follow Hjort and Claeskens (2003a), Claeskens and Carroll (2007), and Zhang and Liang

(2011) to construct a valid confidence interval as follows. Let κ̂2 be a consistent estimator of

D′
θQΩQDθ. Since there is a simultaneous convergence in distribution, it follows that

[
√
n (µ̄− µ)− D̂′

θ

(
M∑

m=1

w(m|δ̂)Ĉm

)
δ̂

]/
κ̂

d−→ N (0, 1) .
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Let b(δ̂) = D̂′
θ

(∑M
m=1 w(m|δ̂)Ĉm

)
γ̂f . Then, we define the confidence interval for µ as

CIn =

[
µ̄− b(δ̂)− z1−α/2

κ̂√
n
, µ̄− b(δ̂) + z1−α/2

κ̂√
n

]
(5.23)

where z1−α/2 is 1−α/2 quantile of the standard normal distribution. Thus, we have Pr(µ ∈ CIn) →
2Φ(z1−α/2) − 1 where Φ(·) is a standard normal distribution function, which means the proposed

confidence interval (5.23) has asymptotically the correct coverage probability.

6 Simulation Study

In this section, we investigate the finite sample mean square error of the averaging estimators via

Monte Carlo experiments. We also provide the comparison of the coverage probability between the

proposed confidence intervals and traditional confidence intervals.

6.1 Simulation Setup

We consider a linear regression model with a finite number of regressors

yi =

k∑

j=1

θjxji + ei, i = 1, ..., n, (6.1)

where x1i = 1 and (x2i, ..., xki)
′ ∼ N(0,Q). The diagonal elements of Q are 1, and off-diagonal

elements are ρ. The error term is generated from a normal distribution N(0, σ2
i ) where σi = 1 for

the homoskedastic simulation and σi = (1 + 6x22i)/11 for the heteroskedastic simulation. We let

x1i, x2i, and x3i be the core regressors and consider all other regressors auxiliary. The regression

coefficients are determined by the rule

θ = c

(
1

a
,
1

a
,
1

a
,

1√
n

(
1,

q − 1

q
, ...,

1

q

))
(6.2)

where q is the number of the auxiliary regressors. The parameter c is selected to control the

population R2 = θ̃′Qθ̃/(1 + θ̃′Qθ̃) where θ̃ = (θ2, ..., θk)
′ and R2 varies on a grid between 0.1 and

0.9. The local parameters are determined by δj =
√
nθj = c(k − j + 1)/q for j ≥ 4. We consider

all possible submodels, that is, the number of models is M = 2k−3.

We consider five estimators: (1) optimal frequentist model averaging estimator (labeled OFMA),

(2) Mallows model averaging estimator (labeled MMA), (3) jackknife model averaging estimator

(labeled JMA), (4) focused information criterion model selection (labeled FIC), and (5) plug-in

averaging estimator (labeled Plug-In).14 The optimal frequentist model averaging estimator is

14We only report the results of the plug-in averaging estimator defined in (4.7) since the estimator (4.7) outperforms

the estimator (4.9) in most simulations.
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Figure 3: Normalized risk functions for averaging estimators under homoskedastic errors in row (a) and under

heteroskedastic errors in row (b). The situation corresponds to a = 12, ρ = 0.5, and n = 100.

proposed by Liang, Zou, Wan, and Zhang (2011), and suggests selecting the weights by minimizing

the trace of an unbiased estimator of the mean squared error of the averaging estimator.15

Our parameter of interest is µ = θ1 + θ2 + θ3, the sum of the coefficients of the core regressors.

To evaluate the finite behavior of the averaging estimators, we compute the risk based on the

quadratic loss function. The risk (expected squared error) is calculated by averaging across 5000

random samples. We follow Hansen (2007) and normalize the risk by dividing by the risk of the

infeasible optimal least squares estimator, i.e., the risk of the best-fitting submodel m.

15Liang, Zou, Wan, and Zhang (2011) consider a parametric form of the weight function. The weight

function is defined as wm =
(

akm(n− km)b(σ̂2
m)

)

/
(

∑M
ℓ=1

akℓ(n− kℓ)
b(σ̂2

ℓ )
)

where km = p + qm and pa-

rameters (a, b, c) are chosen by minimizing the criterion function Cn(a, b, c) = σ̂2tr(X′X)−1 − σ̂2tr(Q̃Q̃′) +

w′(a, b, c)C1w(a, b, c) − 4

n
cσ̂2w′(a, b, c)C2w(a, b, c) + 2σ̂2w′(a, b, c)φ + 4

n
cσ̂2w′(a, b, c)diag(C2) where w(a, b, c) =

(w1, ..., wM )′, Q̃ = (X′X)−1X′Z(Z′MxZ)
−1/2, Mx = In − X(X′X)−1X, C1 is an M × M matrix with

(m, ℓ) element C1
m,ℓ = θ̃′(Iq − W̃m)Q̃′Q̃(Iq − W̃ℓ)θ̃, θ̃ = (Z′MxZ)

1/2γ̂f , W̃m = Iq − P̃m, P̃m =

(Z′MxZ)
−1/2Π′

m(Πm(Z′MxZ)
−1Π′

m)−1Πm(Z′MxZ)
−1/2, C2 is an M × M matrix with (m, ℓ) element C2

m,ℓ =

(σ̂2
m)−1θ̃′W̃′

mQ̃′Q̃(Iq − W̃ℓ)θ̃, φ = (φ1, ..., φM ) with φm = tr(Q̃W̃mQ̃′), and diag(C2) is the diagonal of C2.
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Figure 4: Normalized risk functions for averaging estimators under homoskedastic errors in row (a) and under

heteroskedastic errors in row (b). The situation corresponds to a = 12, M = 16, and n = 100.

6.2 Simulation Results

The normalized risk functions are displayed in Figures 3-6. In each figure, the homoskedastic and

heteroskedastic simulations are displayed in row (a) and (b), respectively. The main observations

from the simulations are (i) MMA and JMA have similar normalizes risk in both homoskedastic

and heteroskedastic setups; (ii) Plug-In achieves lower normalized risk than FIC, and both FIC and

Plug-In have much lower normalized risk than MMA and JMA in most cases; (iii) OFMA performs

noticeably better than other estimators when R2 is small but performs worse than other estimators

when R2 is large under homoskedastic errors.

Figure 3 shows the effect of the number of models on the normalized risk. When we only consider

two models, the restricted and nonrestricted models, all estimators have similar normalized risk

in both homoskedastic and heteroskedastic simulations. The normalized risk of most estimators

increases as the number of models increases, while the risk of Plug-In is close to that of the infeasible

optimal least squares estimator in most ranges of the parameter space. Figure 4 shows the effect

of the correlation between regressors on the normalized risk. All estimators have larger risk when

ρ and R2 are larger. JMA has lower normalized risk than MMA for larger ρ under heteroskedastic

errors.

Figure 5 shows the effect of the sample size on the normalized risk. As the sample size increases,

20



25 75 200 800 2000
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
R2 = 0.25

n

R
is

k

 

 
OFMA
MMA
JMA
FIC
Plug−In

25 75 200 800 2000
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
R2 = 0.5

n

R
is

k

25 75 200 800 2000
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
R2 = 0.75

n

R
is

k

25 75 200 800 2000
0.9

1

1.1

1.2

1.3
R2 = 0.25

n

R
is

k

25 75 200 800 2000
0.9

1

1.1

1.2

1.3
R2 = 0.5

n

R
is

k

25 75 200 800 2000
0.9

1

1.1

1.2

1.3
R2 = 0.75

n

R
is

k

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

(a)

(b)

Figure 5: Normalized risk functions for averaging estimators under homoskedastic errors in row (a) and under

heteroskedastic errors in row (b). The situation corresponds to a = 12, M = 16, and ρ = 0.5.

the normalized risk of both MMA and JMA increase. Therefore, it shows that both estimators are

not asymptotically optimal in a linear regression model with a finite number of regressors. Unlike,

MMA, JMA, and OFMA, the normalized risk of FIC and Plug-In are getting close to one as n

increases. Figure 6 shows the effect of the importance of the auxiliary regressors on the normalized

risk. Note that the parameter a measures the importance of the auxiliary regressors relative to the

core regressors. The larger a implies that the auxiliary regressors have a greater influence on the

model. The result shows that FIC and Plug-In are relatively unaffected by the value of a and R2,

while OFMA, MMA, and JMA have larger normalized risk when a and R2 are larger.

6.3 Coverage Probabilities

We now examine the finite sample performance of proposed and traditional confidence intervals.

The traditional confidence intervals of OFMA, MMA, JMA, FIC, and Plug-In estimators are con-

structed by inverting the model averaging t-statistic defined in (5.21), that is,

CIn =
[
µ̄− z1−α/2s(µ̄), µ̄+ z1−α/2s(µ̄)

]
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Figure 6: Normalized risk functions for averaging estimators under homoskedastic errors in row (a) and under

heteroskedastic errors in row (b). The situation corresponds to M = 16, ρ = 0.5, and n = 100.

while the proposed valid confidence intervals (labeled Valid) are computed based on (5.23).16 The

data generating process is based on (6.1) and (6.2). The number of simulations is 5000.

The finite-sample coverage probabilities of the 90% confidence intervals for homoskedastic errors

and heteroskedastic errors are reported in Tables 1 and 2, respectively. Overall, the coverage

probabilities of the valid confidence intervals are generally close to the nominal values, while the

traditional confidence intervals are much lower than the level 90%. When ρ gets bigger, the coverage

probabilities of the traditional confidence intervals are substantially smaller than the nominal values.

Among these averaging estimators, the coverage probabilities of Plug-In are closer to the nominal

level than other estimators. It is also worth mentioning that the coverage probabilities of OFMA

are close to the level 90% when R2 is small but are lower than other estimators when both R2 and

ρ are large.

16Since the coverage probabilities of the valid confidence intervals of OFMA, MMA, JMA, FIC, and Plug-In are

quite similar, we only report the results of the valid confidence intervals of the plug-in averaging estimator for space

considerations.
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Table 1: Coverage Probabilities of 90% Confidence Intervals under homoskedastic errors

n R2 ρ OFMA MMA JMA FIC Plug-In Valid

100 0.25 0.00 0.867 0.866 0.868 0.861 0.863 0.874

0.25 0.852 0.842 0.842 0.853 0.853 0.875

0.50 0.861 0.793 0.795 0.816 0.826 0.888

0.75 0.883 0.723 0.724 0.702 0.730 0.876

0.50 0.00 0.863 0.868 0.867 0.864 0.863 0.869

0.25 0.824 0.838 0.840 0.856 0.857 0.877

0.50 0.774 0.773 0.773 0.818 0.826 0.863

0.75 0.807 0.698 0.699 0.777 0.777 0.877

0.75 0.00 0.865 0.871 0.868 0.867 0.866 0.873

0.25 0.836 0.848 0.848 0.863 0.867 0.877

0.50 0.761 0.787 0.781 0.849 0.853 0.877

0.75 0.707 0.719 0.715 0.820 0.825 0.875

500 0.25 0.00 0.899 0.898 0.899 0.900 0.900 0.901

0.25 0.836 0.853 0.851 0.876 0.879 0.892

0.50 0.804 0.793 0.793 0.844 0.848 0.887

0.75 0.869 0.743 0.743 0.801 0.793 0.895

0.50 0.00 0.901 0.901 0.901 0.901 0.900 0.901

0.25 0.854 0.872 0.870 0.892 0.895 0.903

0.50 0.788 0.814 0.814 0.873 0.876 0.892

0.75 0.736 0.731 0.731 0.844 0.849 0.902

0.75 0.00 0.896 0.897 0.897 0.894 0.896 0.898

0.25 0.872 0.879 0.879 0.892 0.892 0.895

0.50 0.815 0.835 0.835 0.884 0.884 0.897

0.75 0.731 0.750 0.749 0.865 0.868 0.894

7 An Empirical Example

In this section, we apply the model averaging methods to cross-country growth regressions. The

challenge of empirical research on economic growth is that one does not know exactly what explana-

tory variables should be included in the true model. Many studies attempt to identify the variables

explaining the differences in growth rates across countries by regressing the average growth rate of

GDP per capita on a large set of potentially relevant variables, see Durlauf, Johnson, and Temple

(2005) for a literature review. Due to limited number of the observations and a large amount of the

candidate variables, the empirical growth literature has been heavily criticized for its kitchen-sink

approach.

In order to take into account the model uncertainty, Bayesian model averaging techniques

have been applied to empirical growth, including Fernandez, Ley, and Steel (2001), Sala-i Martin,

Doppelhofer, and Miller (2004), Durlauf, Kourtellos, and Tan (2008), and Magnus, Powell, and

Prufer (2010). We apply frequentist model averaging approaches as an alternative to Bayesian

model averaging techniques to economic growth. We estimate the following cross-country growth
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Table 2: Coverage Probabilities of 90% Confidence Intervals under heteroskedastic errors

n R2 ρ OFMA MMA JMA FIC Plug-In Valid

100 0.25 0.00 0.845 0.844 0.845 0.836 0.838 0.847

0.25 0.822 0.824 0.824 0.822 0.825 0.852

0.50 0.832 0.801 0.804 0.805 0.807 0.861

0.75 0.863 0.761 0.769 0.756 0.757 0.866

0.50 0.00 0.846 0.846 0.847 0.839 0.838 0.847

0.25 0.825 0.828 0.829 0.828 0.830 0.857

0.50 0.784 0.780 0.782 0.795 0.798 0.848

0.75 0.800 0.732 0.747 0.764 0.769 0.860

0.75 0.00 0.846 0.846 0.844 0.837 0.837 0.847

0.25 0.822 0.828 0.827 0.832 0.832 0.850

0.50 0.785 0.799 0.796 0.816 0.825 0.853

0.75 0.728 0.729 0.725 0.784 0.786 0.857

500 0.25 0.00 0.895 0.895 0.895 0.896 0.894 0.894

0.25 0.860 0.871 0.871 0.869 0.869 0.885

0.50 0.843 0.842 0.841 0.852 0.854 0.883

0.75 0.867 0.795 0.797 0.815 0.820 0.892

0.50 0.00 0.895 0.895 0.895 0.892 0.894 0.896

0.25 0.870 0.881 0.881 0.881 0.883 0.895

0.50 0.819 0.837 0.836 0.855 0.859 0.883

0.75 0.789 0.782 0.782 0.846 0.850 0.897

0.75 0.00 0.890 0.890 0.890 0.888 0.888 0.890

0.25 0.875 0.874 0.874 0.882 0.881 0.888

0.50 0.840 0.853 0.853 0.867 0.871 0.881

0.75 0.779 0.794 0.791 0.859 0.863 0.894

regression

gi = x′
iβ + z′iγ + ei (7.1)

where gi is average growth rate of GDP per capita between 1960 and 1996, xi are the Solow

variables from the neoclassical growth theory, and zi are fundamental growth determinants such

as geography, institutions, religion, and ethnic fractionalization from the new fundamental growth

theory. Here, xi are core regressors, which appear in every submodel, while zi are the auxiliary

regressors, which serve as controls of the neoclassical growth theory and may or may not be included

in the submodels.

We follow Magnus, Powell, and Prufer (2010) and consider two model specifications to compare

the neoclassical growth theory with the fundamental new growth theory. Model Setup A includes

six core regressors and four auxiliary regressors. The six core regressors are the constant term

(CONSTANT), the log of GDP per capita in 1960 (GDP60), the 1960-1985 equipment investment

share of GDP (EQUIPINV), the primary school enrollment rate in 1960 (SCHOOL60), the life

expectancy at age zero in 1960 (LIFE60), and the population growth rate between 1960 and 1990

(DPOP). The four auxiliary regressors are a rule of law index (LAW), a country’s fraction of tropical
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area (TROPICS), an average index of ethnolinguistic fragmentation in a country (AVELF), and

the fraction of Confucian population (CONFUC), see Magnus, Powell, and Prufer (2010) for a

detailed description of the data. Model Setup B contains two core regressors, the constant term

and GDP60, and all other variables in Model Setup A are auxiliary regressors.17 The parameter of

interest is the convergence term of the Solow growth model, that is, the coefficient of the log GDP

per capita in 1960. The total number of observations is 74. We consider all possible submodels,

that is, we have 16 submodels in Model Setup A and 128 submodels in Model Setup B.

We consider seven estimators: (1) the least squares estimator for the full model (labeled Full),

(2) the averaging estimator with equal weights (labeled Equal), (3) optimal frequentist model

averaging estimator (labeled OFMA), (4) Mallows model averaging estimator (labeled MMA),

(5) jackknife model averaging estimator (labeled JMA), (6) focused information criterion model

selection (labeled FIC), and (7) plug-in averaging estimator (labeled Plug-In). The standard errors

of data-dependent model averaging estimators are calculated by the equation (5.20).

The estimation results for Model Setup A and B are given in Tables 3 and 4, respectively. We

also report the estimation results for the weighted-average least squares (WALS) estimator proposed

by Magnus, Powell, and Prufer (2010) for comparison. The WALS estimator is a Bayesian model

averaging technique that uses a Laplace distribution instead of the normal prior as the parameter

prior. The results in Tables 3 and 4 show that all coefficients have the same signs across different

estimation methods except the estimated coefficient of DPOP by FIC in Model Setup A.

In Model Setup A, the coefficient estimate and standard error of GDP60 are similar across

different estimators while OFMA has a relative lower coefficient estimate of GDP60. In Model

Setup B, the plug-in averaging estimate of GDP60 is quite close to the least squares estimate

from the full model and is higher in absolute value than other estimates. As we expected, the

90% confidence interval of the plug-in averaging estimate for GDP60 calculated by the proposed

method (−0.0213,−0.0097) is wider than the traditional confidence interval (−0.0193,−0.0115).

The important finding from our results is that the plug-in averaging estimator has the smaller

standard error of GDP60 as compared to other estimators.

It is also instructive to contrast the results of Plug-In and WALS estimators. In Model Setup

A, the estimation results are similar between Plug-In and WALS. In Model Setup B, the estimated

coefficient of GDP60 is slightly higher in absolute value for Plug-In than for WALS, while the esti-

mated standard error of GDP60 is smaller for Plug-In than for WALS. Therefore, the convergence

speed of the growth model implied by our result is higher than that found by Magnus, Powell, and

Prufer (2010). Comparing the results between Model Setup A and Model Setup B, we find that the

plug-in averaging estimator chooses different fundamental growth determinants in different model

specifications. Therefore, our results support the findings of Durlauf, Kourtellos, and Tan (2008)

and Magnus, Powell, and Prufer (2010) that the fundamental variables are not robustly correlated

with growth.

17Model Setup B is slightly different than that in Magnus, Powell, and Prufer (2010). They treat the constant term

as the only core regressor. Since GDP60 is the parameter of interest, as suggested by one referee, we also include

GDP60 as the core regressor in Model Setup B.
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Table 3: Coefficient estimates and standard errors, Model Setup A

Full Equal OFMA MMA JMA FIC Plug-In WALS

CONSTANT 0.0609 0.0603 0.0489 0.0558 0.0559 0.0587 0.0641 0.0594

(0.0193) (0.0192) (0.0203) (0.0199) (0.0201) (0.0202) (0.0182) (0.0221)

GDP60 -0.0155 -0.0157 -0.0138 -0.0150 -0.0156 -0.0160 -0.0156 -0.0156

(0.0030) (0.0028) (0.0030) (0.0029) (0.0029) (0.0028) (0.0027) (0.0033)

EQUIPINV 0.1366 0.1835 0.1623 0.1526 0.1511 0.2405 0.2263 0.1555

(0.0400) (0.0361) (0.0369) (0.0382) (0.0390) (0.0353) (0.0349) (0.0551)

SCHOOL60 0.0170 0.0173 0.0161 0.0173 0.0181 0.0184 0.0137 0.0175

(0.0085) (0.0081) (0.0081) (0.0081) (0.0081) (0.0079) (0.0085) (0.0097)

LIFE60 0.0008 0.0009 0.0008 0.0008 0.0009 0.0010 0.0010 0.0009

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004)

DPOP 0.3466 0.1736 0.1707 0.2596 0.2465 -0.0341 0.0055 0.2651

(0.1911) (0.1706) (0.1722) (0.1788) (0.1760) (0.1635) (0.1718) (0.2487)

LAW 0.0174 0.0094 0.0113 0.0144 0.0166 0.0147

(0.0058) (0.0028) (0.0039) (0.0047) (0.0052) (0.0065)

TROPICS -0.0075 -0.0040 -0.0036 -0.0057 -0.0043 -0.0055

(0.0036) (0.0018) (0.0016) (0.0025) (0.0018) (0.0037)

AVELF -0.0077 -0.0048 -0.0019 -0.0039 -0.0026 -0.0104 -0.0053

(0.0066) (0.0033) (0.0015) (0.0025) (0.0016) (0.0065) (0.0048)

CONFUC 0.0562 0.0317 0.0622 0.0521 0.0430 0.0251 0.0443

(0.0129) (0.0062) (0.0124) (0.0108) (0.0088) (0.0045) (0.0163)

Note: Standard errors are reported in parentheses. The column labeled WALS displays the weighted-average

least squares estimates of Magnus, Powell, and Prufer (2010, Table 2).

Table 4: Coefficient estimates and standard errors, Model Setup B

Full Equal OFMA MMA JMA FIC Plug-In WALS

CONSTANT 0.0609 0.0575 0.0606 0.0554 0.0533 0.0856 0.0801 0.0691

(0.0193) (0.0154) (0.0177) (0.0149) (0.0149) (0.0139) (0.0133) (0.0212)

GDP60 -0.0155 -0.0120 -0.0149 -0.0134 -0.0139 -0.0150 -0.0154 -0.0148

(0.0030) (0.0023) (0.0029) (0.0025) (0.0025) (0.0022) (0.0020) (0.0031)

EQUIPINV 0.1366 0.1080 0.1415 0.1271 0.1315 0.1389 0.1246

(0.0400) (0.0171) (0.0375) (0.0190) (0.0212) (0.0144) (0.0470)

SCHOOL60 0.0170 0.0131 0.0153 0.0155 0.0144 0.0406 0.0153

(0.0085) (0.0035) (0.0067) (0.0034) (0.0027) (0.0069) (0.0082)

LIFE60 0.0008 0.0006 0.0008 0.0007 0.0008 0.0008 0.0007

(0.0003) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001) (0.0003)

DPOP 0.3466 0.0094 0.2046 0.1486 0.1764 0.1038

(0.1911) (0.0788) (0.1207) (0.0463) (0.0692) (0.2171)

LAW 0.0174 0.0112 0.0155 0.0131 0.0152 0.0348 0.0165 0.0149

(0.0058) (0.0024) (0.0052) (0.0026) (0.0033) (0.0039) (0.0031) (0.0058)

TROPICS -0.0075 -0.0042 -0.0058 -0.0053 -0.0041 -0.0026 -0.0065

(0.0036) (0.0017) (0.0029) (0.0020) (0.0016) (0.0020) (0.0035)

AVELF -0.0077 -0.0056 -0.0057 -0.0045 -0.0033 -0.0137 -0.0152 -0.0071

(0.0066) (0.0031) (0.0046) (0.0023) (0.0017) (0.0063) (0.0061) (0.0052)

CONFUC 0.0562 0.0374 0.0594 0.0524 0.0443 0.0471

(0.0129) (0.0060) (0.0126) (0.0092) (0.0081) (0.0140)

Note: Standard errors are reported in parentheses.
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Table 5: Weights placed on each submodel, Model Setup A

Model MMA JMA FIC Plug-In

1 0.000 0.000 1.000 0.000

4 0.000 0.070 0.000 0.000

5 0.000 0.000 0.000 0.624

6 0.069 0.000 0.000 0.000

8 0.076 0.243 0.000 0.000

9 0.000 0.071 0.000 0.000

10 0.000 0.424 0.000 0.000

11 0.173 0.000 0.000 0.000

12 0.450 0.192 0.000 0.000

13 0.000 0.000 0.000 0.376

14 0.232 0.000 0.000 0.000

Table 6: Weights placed on each submodel, Model Setup B

Model MMA JMA FIC Plug-In

36 0.000 0.088 0.000 0.000

66 0.000 0.000 0.000 0.309

82 0.000 0.000 0.000 0.122

83 0.000 0.000 1.000 0.000

84 0.000 0.262 0.000 0.000

117 0.000 0.000 0.000 0.570

125 0.241 0.000 0.000 0.000

134 0.116 0.210 0.000 0.000

148 0.149 0.054 0.000 0.000

164 0.316 0.000 0.000 0.000

179 0.032 0.000 0.000 0.000

189 0.017 0.386 0.000 0.000

213 0.128 0.000 0.000 0.000
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Table 7: Regressor set of the submodel, Model Setup A

Model Regressor Set

1 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP

4 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP, LAW, TROPICS

5 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP, AVELF

6 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP, LAW, AVELF

8 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP, LAW, TROPICS, AVELF

9 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP, CONFUC

10 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP, LAW, CONFUC

11 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP, TROPICS, CONFUC

12 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP, LAW, TROPICS, CONFUC

13 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP, AVELF, CONFUC

14 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LIFE60, DPOP, LAW, AVELF, CONFUC

Table 8: Regressor set of the submodel, Model Setup B

Model Regressor Set

36 CONSTANT, GDP60, EQUIPINV, SCHOOL60, TROPICS

66 CONSTANT, GDP60, EQUIPINV, AVELF

82 CONSTANT, GDP60, EQUIPINV, LAW, AVELF

83 CONSTANT, GDP60, SCHOOL60, LAW, AVELF

84 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LAW, AVELF

117 CONSTANT, GDP60, LIFE60, LAW, TROPICS, AVELF

125 CONSTANT, GDP60, LIFE60, DPOP, LAW, TROPICS, AVELF

134 CONSTANT, GDP60, EQUIPINV, LIFE60, CONFUC

148 CONSTANT, GDP60, EQUIPINV, SCHOOL60, LAW, CONFUC

164 CONSTANT, GDP60, EQUIPINV, SCHOOL60, TROPICS, CONFUC

179 CONSTANT, GDP60, SCHOOL60, LAW, TROPICS, CONFUC

189 CONSTANT, GDP60, LIFE60, DPOP, LAW, TROPICS, CONFUC

213 CONSTANT, GDP60, LIFE60, LAW, AVELF, CONFUC
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Tables 5 and 6 report the weights placed on each submodel, and Tables 7 and 8 report the

regressor sets for each submodel. We only report the results of MMA, JMA, FIC, and Plug-In

estimators, since OFMA weights are spread out across all submodels. One interesting observation

is that the submodels chosen by Plug-In are completely different from those chosen by MMA and

JMA in both Model Setup A and B. The submodels chosen by MMA and JMA cover the entire

regressor set, while Plug-In excludes the regressors LAW and TROPICS in Model Setup A and the

regressors SCHOOL60, DPOP, and CONFUC in Model Setup B.

8 Conclusion

In this paper we study the limiting distributions of least squares averaging estimators for het-

eroskedastic regressions. We show that the asymptotic distributions of averaging estimators with

data-dependent weights are nonstandard in the local asymptotic framework. To address the in-

ference after model selection and averaging, we provide a formula to calculate the standard error

and a simple procedure to construct valid confidence intervals. Simulation results show that the

coverage probability of proposed confidence intervals achieves the nominal level while the coverage

probability of traditional confidence intervals is generally too low.

While this paper has focused on the least squares estimator, the proposed averaging method

can be easily extended to the generalized least squares procedure.18 It would be greatly desirable

to extend the methodology to average across different candidate models and different procedures.

Yang (2000), Yang (2001), and Yuan and Yang (2005) propose an adaptive regression to combine

multiple regression models or procedures under the normality assumption. However, it is still

unclear how to extend the analysis to the general setup. Another possible extension would be to

investigate the asymptotic risk of least squares averaging estimators and to study the minimax

efficient bound. Recently, Hansen (2013b) applies Stein’s Lemma to examine the asymptotic risk

of averaging estimators in a nested model framework. It would be an important research topic to

extend the analysis to a more general model setting.

18Let V = diag(σ2
1, ..., σ

2
n) denote the n× n positive definite variance-covariance matrix of the error terms. Then,

the generalized least squares (GLS) estimator for the submodel m is θ̂m = (H′
mV−1Hm)−1H′

mV−1y, and the

asymptotic distribution of the GLS estimator is
√
n
(

θ̂m − θm

) d−→ Amδ +BmR ∼ N
(

Amδ, (S′
mΩSm)

−1
)

, where

Ω = E
(

σ−2

i hih
′
i

)

, Am = (S′
mΩSm)

−1
S′
mΩS0 (Iq −Π′

mΠm), and Bm = (S′
mΩSm)

−1
S′
m. Similarly, the results

in Theorems 1-3 still hold except the definitions of Cm and Pm are replaced by Cm = (PmΩ− Ip+q)S0 and

Pm = Sm (S′
mΩSm)

−1
S′
m. Thus, we can construct the plug-in averaging estimator in the same way as (4.8).
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Appendix

A Proofs

Proof of Lemma 1: We first show the asymptotic distribution of the least squares estimator for

the full model. By Assumption 2 and the application of the continuous mapping theorem, it follows

that

√
n
(
θ̂f − θ

)
=

(
1

n
H′H

)−1( 1√
n
H′e

)
d−→ Q−1R ∼ N(0,Q−1ΩQ−1).

We next show the asymptotic distribution of the least squares estimator for each submodel.

Note that Hm = (X,ZΠ′
m) = HSm and Z = HS0. By some algebra, it follows that

θ̂m = (H′
mHm)−1H′

my

=
(
H′

mHm

)−1 (
H′

m

(
Xβ + ZΠ′

mΠmγ + Z(Iq −Π′
mΠm)γ + e

))

=
(
H′

mHm

)−1
H′

mHmθm +
(
H′

mHm

)−1
H′

mZ
(
Iq −Π′

mΠm

)
γ +

(
H′

mHm

)−1
H′

me

= θm +
(
H′

mHm

)−1
S′
mH′HS0

(
Iq −Π′

mΠm

)
γ +

(
H′

mHm

)−1
S′
mH′e.

Therefore, by Assumptions 1-2 and the application of the continuous mapping theorem, we have

√
n
(
θ̂m − θm

)
=
( 1
n
H′

mHm

)−1( 1
n
S′
mH′HS0

) (
Iq −Π′

mΠm

)√
nγ +

( 1
n
H′

mHm

)−1
S′
m

( 1√
n
H′e

)

d−→ Q−1
m S′

mQS0

(
Iq −Π′

mΠm

)
δ +Q−1

m S′
mR

= Amδ +BmR ∼ N
(
Amδ, Q−1

m ΩmQ−1
m

)

where Am = Q−1
m S′

mQS0 (Iq −Π′
mΠm) and Bm = Q−1

m S′
m. This completes the proof. �

Proof of Theorem 1: Define γmc = {γ : γj /∈ γm, for j = 1, ..., q}. That is, γmc is the set of

parameters γj which are not included in submodel m. Hence, we can write µ(θ) as µ(β,γm,γmc).

Also, µ(θm) = µ(β,γm,0).

Note that γ = O(n−1/2) by Assumption 1. Then by a standard Taylor series expansion of µ(θ)

about γmc = 0, it follows that

µ(β,γm,γmc) = µ(β,γm,0) +D′
γmcγmc +O(n−1)

= µ(β,γm,0) +D′
γ

(
Iq −Π′

mΠm

)
γ +O(n−1).

That is, µ(θ)− µ(θm) = D′
γ (Iq −Π′

mΠm)γ +O(n−1).

Let Pm = Sm (S′
mQSm)−1

S′
m. By Assumptions 1-2 and the application of the delta method,
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we have

√
n
(
µ(θ̂m)− µ(θ)

)
=

√
n
(
µ(θ̂m)− µ(θm)

)
−

√
n
(
µ(θ)− µ(θm)

)

d−→ D′
θm

(Amδ +BmR)−D′
γ

(
Iq −Π′

mΠm

)
δ

= D′
θm

Amδ −D′
γ

(
Iq −Π′

mΠm

)
δ +D′

θm
BmR

=
(
D′

θSm

(
S′
mQSm

)−1
S′
mQS0 −D′

θS0

) (
Iq −Π′

mΠm

)
δ +D′

θSmQ−1
m S′

mR

=
(
D′

θSm

(
S′
mQSm

)−1
S′
mQS0 −D′

θS0

)
δ +D′

θSm

(
S′
mPmSm

)−1
S′
mR

= D′
θ (PmQ− Ip+q)S0δ +D′

θPmR

≡ Λm ∼ N
(
D′

θCmδ, D′
θPmΩPmDθ

)
,

where the fifth equality holds by the fact that S0Π
′
m = Sm

(
0′p×qm, Iqm

)′
.

This completes the proof. �

Proof of Theorem 2: From Theorem 1, there is joint convergence in distribution of all
√
n
(
µ(θ̂m)− µ(θ)

)
to Λm since all of Λm can be expressed in terms of R. Since the weights are

non-random, it follows that

√
n (µ̄(w)− µ) =

M∑

m=1

wm

√
n (µ̂m − µ)

d−→
M∑

m=1

wmΛm ≡ Λ.

Therefore, the asymptotic distribution of the averaging estimator is a weighted average of the

normal distributions, which is also a normal distribution.

By Theorem 1 and standard algebra, we can show the mean of Λ as

E

(
M∑

m=1

wmΛm

)
=

M∑

m=1

wmE (Λm) =

M∑

m=1

wmD′
θCmδ = D′

θ

M∑

m=1

wmCmδ = D′
θCwδ

where Cw =
∑M

m=1wmCm.

Next we show the variance of Λ. For any two submodels, we have

Cov(Λm,Λℓ) = E
[(
D′

θCmδ +D′
θPmR− E

(
D′

θCmδ +D′
θPmR

))

×
(
D′

θCℓδ +D′
θPℓR− E

(
D′

θCℓδ +D′
θPℓR

))]

= E
(
D′

θPmRD′
θPℓR

)
= D′

θPmE
(
RR′

)
P′

ℓDθ = D′
θPmΩP′

ℓDθ

where the second equality holds by the fact that Dθ, Cm, Pm, and δ are constant vectors and

R ∼ N(0,Ω). Therefore, variance of Λ is

var

(
M∑

m=1

wmΛm

)
=

M∑

m=1

w2
mV ar(Λm) + 2

∑∑

m6=ℓ

wmwℓCov(Λm,Λp)

=

M∑

m=1

w2
mD′

θPmΩP′
mDθ + 2

∑∑

m6=ℓ

wmwℓD
′
θPmΩP′

ℓDθ ≡ V.
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This completes the proof. �

Proof of Theorem 3: We first show the limiting distribution of Ψ̂m,ℓ. By Lemma 1, we have

θ̂f
p−→ θ, which implies that D̂θ

p−→ Dθ. Since D̂θ, Q̂, and Ω̂ are consistent estimators for Dθ,

Q, and Ω, we have D̂′
θP̂mΩ̂P̂ℓD̂θ

p−→ D′
θPmΩPℓDθ by the continuous mapping theorem. Recall

that δ̂
d−→ Rδ = δ + S′

0Q
−1R. Then by the application of Slutsky’s theorem, we have

Ψ̂m,ℓ = D̂′
θ

(
Ĉmδ̂δ̂′Ĉ′

ℓ + P̂mΩ̂P̂ℓ

)
D̂θ

d−→ D′
θ

(
CmRδR

′
δC

′
ℓ +PmΩPℓ

)
Dθ = Ψ∗

m,ℓ.

Since all of Ψ∗
m,ℓ can be expressed in terms of the normal random vector R, there is joint convergence

in distribution of all Ψ̂m,ℓ to Ψ∗
m,ℓ. Hence, it follows that w

′Ψ̂w
d−→ w′Ψ∗w.

We next show the limiting distribution of ŵ. Note that w′Ψ∗w is a convex minimization

problem since w′Ψ∗w is quadratic and Ψ∗ is positive definite. Hence, the limiting process w′Ψ∗w

is continuous in w and has a unique minimum. Also note that ŵ = Op(1) by the fact that Hn is

convex. Therefore, by Theorem 3.2.2 of Van der Vaart and Wellner (1996) or Theorem 2.7 of Kim

and Pollard (1990), the minimizer ŵ converges in distribution to the minimizer of w′Ψ∗w, which

is w∗.

Finally, we show the asymptotic distribution of the plug-in averaging estimator. Since both Λm

and w∗
m can be expressed in terms of the same normal random vector R, there is joint convergence

in distribution of all µ̂m and ŵm. By Theorem 1, (4.8), and (5.3), it follows that

√
n
(
µ̄(ŵ)− µ

)
=

M∑

m=1

ŵm

√
n (µ̂m − µ)

d−→
M∑

m=1

w∗
mΛm.

This completes the proof. �

Proof of Theorem 4: We first show the limiting distribution of ζm,ℓ. Since ê
′
mêf = ê′f êf and

êm − êf = −H(Smθ̂m − θ̂f ), we have

ζm,ℓ = ê′mêℓ − ê′f êf = (êm − êf )
′ (êℓ − êf ) =

√
n(Smθ̂m − θ̂f )

′

(
1

n
H′H

)√
n(Sℓθ̂ℓ − θ̂f ).

From Lemma 1, it follows that

√
n(Smθ̂m − θ̂f ) = Sm

√
n(θ̂m − θm) +

√
n(Smθm − θ)−

√
n(θ̂f − θ)

d−→
(
SmQ−1

m S′
mQS0 − S0

) (
Iq −Π′

mΠm

)
δ +

(
SmQ−1

m S′
m −Q−1

)
R

=
(
SmQ−1

m S′
mQS0 − S0

)
δ +

(
SmQ−1

m S′
m −Q−1

)
R

= Cmδ +
(
Pm −Q−1

)
R = Rm

where the third equality holds by the fact that S0Π
′
m = Sm

(
0′p×qm, Iqm

)′
. Then, by the application

of Slutskys theorem, we have ζm,ℓ
d−→ R′

mQRℓ = ζ∗m,ℓ. Since all of ζ∗m,ℓ can be expressed in terms

of the normal random vector R, there is joint convergence in distribution of all ζm,ℓ to ζ∗m,ℓ. This

implies (5.8). Following a similar argument to the proof of Theorem 3, we can show (5.10) and

(5.11). This completes the proof. �

32



Proof of Theorem 5: We first show the limiting distribution of ξm,ℓ. Define hi = h′
i(H

′H)−1hi.

Note that hi = op(1), see Theorem 6.20.1 of Hansen (2013a). Then it follows that ẽ = êi(1−hi)
−1 ≈

êi(1 + hi) where êi is the least squares residual and ẽ is the leave-one-out least squares residual

from the full model. For the submodel m, we have hmi = S′
mhi, hmi = h′

iSm(H′
mHm)−1S′

mhi, and

ẽmi ≈ êmi(1 + hmi). Then it follows that

n∑

i=1

ẽmiẽℓi ≈
n∑

i=1

êmiêℓi +

n∑

i=1

êmiêℓi(hmi + hℓi) +

n∑

i=1

êmiêℓihmihℓi

=

n∑

i=1

êmiêℓi +

n∑

i=1

êmiêℓi
(
h′
iSm(H′

mHm)−1S′
mhi + h′

iSℓ(H
′
ℓHℓ)

−1S′
ℓhi

)
+ op(1)

=

n∑

i=1

êmiêℓi + tr

((
Sm

(
H′

mHm

)−1
S′
m + Sℓ

(
H′

ℓHℓ

)−1
S′
ℓ

) n∑

i=1

hih
′
iêmiêℓi

)
+ op(1)

=

n∑

i=1

êmiêℓi + tr
(
SmQ̂−1

m S′
mΩ̃
)
+ tr

(
SℓQ̂

−1
ℓ S′

ℓΩ̃
)
+ op(1),

where Q̂m = 1
n

∑n
i=1 hmih

′
mi, Q̂ℓ = 1

n

∑n
i=1 hℓih

′
ℓi, and Ω̃ = 1

n

∑n
i=1 hih

′
iêmiêℓi. In Lemma 2,

we show that Ω̃
p−→ Ω. By Assumption 3 and the application of the continuous mapping the-

orem, it follows that tr
(
SmQ̂−1

m S′
mΩ̃
) p−→ tr

(
SmQ−1

m S′
mΩ
)
= tr

(
Q−1

m Ωm

)
. Similarly, we have

tr
(
SℓQ̂

−1
ℓ S′

ℓΩ̃
) p−→ tr

(
Q−1

ℓ Ωℓ

)
. As shown in Theorem 4, we have ê′mêℓ− ê′ê

d−→ R′
mQRp. There-

fore, it follows that

ξm,ℓ = ẽ′miẽℓi − ê′f êf

=
(
ê′mêℓ − ê′f êf

)
+ tr

(
SmQ̂−1

m S′
mΩ̃
)
+ tr

(
SℓQ̂

−1
ℓ S′

ℓΩ̃
)
+ op(1)

d−→ R′
mQRℓ + tr

(
Q−1

m Ωm

)
+ tr

(
Q−1

ℓ Ωℓ

)
= ξ∗m,ℓ

Since all of ξ∗m,ℓ can be expressed in terms of the normal random vector R, there is joint convergence

in distribution of all ξm,ℓ to ξ∗m,ℓ. Hence, it follows that w′ξnw
d−→ w′ξ∗w. Following a similar

argument to the proof of Theorem 3, we can show (5.17) and (5.18). This completes the proof. �

Lemma 2. For m, ℓ = 1, ...,M , let Ω̃ = 1
n

∑n
i=1 hih

′
iêmiêℓi where êmi and êℓi are the least squares

residuals from the submodel m and ℓ. Suppose Assumptions 1 and 3 hold. As n → ∞, we have

Ω̃
p−→ Ω = E(hih

′
ie

2
i ).

Proof of Lemma 2: The proof is similar to that of Theorem 6.7.1 of Hansen (2013a). Let ‖ · ‖
be the Euclidean norm. That is, for a k × 1 vector xi, ‖xi‖ = (

∑k
j=1 x

2
ij)

1/2. Observe that

Ω̃ =
1

n

n∑

i=1

hih
′
iêmiêℓi =

1

n

n∑

i=1

hih
′
iê

2
i +

1

n

n∑

i=1

hih
′
i

(
êmiêℓi − ê2i

)
.
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By Assumption 3 and the weak law of large number, we have

1

n

n∑

i=1

hih
′
iê

2
i

p−→ E(hih
′
ie

2
i ) = Ω.

We next show the second term converges in probability to zero. By the Triangle Inequality,

∥∥∥∥∥
1

n

n∑

i=1

hih
′
i

(
êmiêℓi − ê2i

)
∥∥∥∥∥ ≤ 1

n

n∑

i=1

∥∥hih
′
i

(
êmiêℓi − ê2i

)∥∥ =
1

n

n∑

i=1

‖hi‖2 |êmiêℓi − ê2i |.

Note that ẽmi = yi−h′
miθ̂m = ei−hi(Smθ̂m−θ). Similarly, we have ẽℓi = ei−hi(Sℓθ̂ℓ−θ). Thus,

êmiêℓi = e2i − eih
′
i

((
Smθ̂m − θ

)
+
(
Sℓθ̂ℓ − θ

))
+
(
Smθ̂m − θ

)′
hih

′
i

(
Sℓθ̂ℓ − θ

)
.

Therefore, by the Triangle Inequality and the Schwarz Inequality, it follows that

|êmiêℓi − ê2i | ≤
∣∣∣eih′

i

((
Smθ̂m − θ

)
+
(
Sℓθ̂ℓ − θ

))∣∣∣+
∣∣∣
(
Smθ̂m − θ

)′
hih

′
i

(
Sℓθ̂ℓ − θ

)∣∣∣

≤ |ei| ‖hi‖
(∥∥∥Smθ̂m − θ

∥∥∥+
∥∥∥Sℓθ̂ℓ − θ

∥∥∥
)
+ ‖hi‖2

∥∥∥Smθ̂m − θ
∥∥∥
∥∥∥Sℓθ̂ℓ − θ

∥∥∥ .

Thus, we have

∥∥∥∥∥
1

n

n∑

i=1

hih
′
i

(
êmiêℓi − ê2i

)
∥∥∥∥∥ ≤

(
1

n

n∑

i=1

‖hi‖3 |ei|
)(∥∥∥Smθ̂m − θ

∥∥∥+
∥∥∥Sℓθ̂ℓ − θ

∥∥∥
)

+

(
1

n

n∑

i=1

‖hi‖4
)∥∥∥Smθ̂m − θ

∥∥∥
∥∥∥Sℓθ̂ℓ − θ

∥∥∥ (A.1)

By Assumption 1, Lemma 1, the Triangle Inequality, and the Schwarz Inequality,

∥∥∥Smθ̂m − θ
∥∥∥ ≤

∥∥∥Sm

(
θ̂m − θm

)∥∥∥+ ‖Smθm − θ‖

≤‖Sm‖
∥∥∥
(
θ̂m − θm

)∥∥∥+
∥∥S0

(
Iq −Π′

mΠm

)∥∥ ‖γn‖ = op(1) (A.2)

Similarly, we have
∥∥∥Sℓθ̂ℓ − θ

∥∥∥ = op(1). Then, by Assumption 3, the weak law of large number, and

Hoölder’s Inequality, we have
(

1
n

∑n
i=1 ‖hi‖4

)
p−→ E ‖hi‖4 < ∞ and

(
1

n

n∑

i=1

‖hi‖3 |ei|
)

p−→ E
(
‖hi‖3 |ei|

)
≤
(
E ‖hi‖4

)3/4 (
E|ei|4

)1/4
< ∞. (A.3)

Combining (A.1), (A.2), and (A.3), we have
∥∥ 1
n

∑n
i=1 hih

′
i

(
êmiêℓi − ê2i

)∥∥ = op(1). This completes

the proof. �

Proof of Theorem 6: From Theorem 1, there is joint convergence in distribution of all
√
n
(
µ(θ̂m)− µ(θ)

)
to Λm since all of Λm can be expressed in terms of R. Also, w(m|δ̂) d−→
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w(m|Rδ) where w(m|Rδ) is a function of the random vector R. Therefore,

√
n (µ̄− µ) =

M∑

m=1

w(m|δ̂)
√
n(µ̂m − µ)

d−→
M∑

m=1

w(m|Rδ)
(
D′

θCmδ +D′
θPmR

)

= D′
θ

M∑

m=1

w(m|Rδ)
(
PmQ−CmS′

0

)
Q−1R+D′

θ

M∑

m=1

w(m|Rδ)CmRδ

= D′
θQ

−1R+D′
θ

(
M∑

m=1

w(m|Rδ)Cm

)
Rδ

where the last equality holds by the fact that

PmQ−CmS′
0 = PmQ−

(
PmQ

[
0p×p 0p×q

0q×p Iq

]
−
[

0p×p 0p×q

0q×p Iq

])

= PmQ

[
Ip 0p×q

0q×p 0q×q

]
+

[
0p×p 0p×q

0q×p Iq

]

= Sm

(
S′
mQSm

)−1
S′
mQSm

[
Ip 0p×q

0qm×p 0qm×q

]
+

[
0p×p 0p×q

0q×p Iq

]
= Ip+q.

This completes the proof. �
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