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Abstract

This paper analyzes multifactor models in the presence of a large number of po-

tential observable risk factors and unobservable common and group-specific pervasive

factors. We show how relevant observable factors can be found from a large given set

and how to determine the number of common and group-specific unobservable factors.

The method allows consistent estimation of the beta coefficients in the presence of

correlations between the observable and unobservable factors. The theory and method

are applied to the study of asset returns for A-shares/B-shares traded on the Shanghai

and Shenzhen stock exchanges, and to the study of risk prices in the cross section of

returns.
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1 Introduction

The arbitrage pricing theory (APT) of Ross (1976), together with multifactor models of

asset returns, plays a central role in modern finance theory. Under a multifactor model,

the return of each security is expressed as a linear combination of a small number of

factor returns and an asset-specific return. In the capital asset-pricing model (CAPM)

of Sharpe (1964) and Lintner (1965), for example, the common factor is the market

return. There is a growing body of empirical evidence that stock returns are related

to factors based on macroeconomic, market- and firm-level characteristics.

Although multifactor models are widely used in practice, there is scope to develop

and to implement a new model-building procedure. For example, Goyal et al. (2008)

argued that the assumption that all factors influence a large number of assets, so-called

pervasive factors, are too strong if an economy is partitioned into several groups. They

emphasized that APT allows for the existence of common pervasive factors influencing

returns of securities in all groups, and of group-specific pervasive factors affecting

returns of securities only in some groups. Connor and Korajczyk (1993) pointed out

that industry-specific components may not be pervasive sources of uncertainty for the

entire economy. See also Cho et al. (1986), Bekaert et al. (2009). Here, we provide

three examples that illustrate the group structure in financial markets.

Example 1: A relevant instance of a group structure in financial markets is the Chinese

stock market. The Chinese market is divided into two segments, namely the once-

restricted A-shares and the B-shares. The A-shares were initially designated exclusively

for domestic investors and are denominated in Chinese renminbi (RMB), whereas the

B-shares were initially designated exclusively for foreign investors and are denominated

in foreign currency. Although the launch of the qualified foreign institutional investors

policy by the Chinese government allowed foreign investors to enter the domestic A-

share market, currency barriers may still hinder them from investing in A-shares. The

Chinese government also decided to open the B-share market to domestic investors.

There is evidence to suggest that the security returns for dual-listed shares on the

Chinese A- and B-share markets are priced differently because the two markets are

segmented (Ma, 1996; Su, 1999; and Fung et al., 2000).

Example 2: The two main stock exchanges in the United States, the New York

Stock Exchange (NYSE) and the National Association of Securities Dealers Automated

Quotations (NASDAQ), provide an additional instance of a grouped financial market

structure. The NYSE is a specialist-based auction system, whereas the NASDAQ is a

computer-based dealer market. Goyal et al. (2008) argued that “While the NYSE and

NASDAQ provide the same service, their underlying structures, rules, and governing
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principles are very different”. Empirical evidence indicates that the securities that

trade on these two exchanges are different (Naranjo and Protopapadakis, 1997; Fama

and French, 2004; Schwert, 2002; Malkiel and Xu, 2003; Baruch and Saar, 2009; Goyal

et al., 2008). See also a survey paper by Karolyi and Stulz (2003).

Example 3: Fama and French’s (1993) three-factor model uses the portfolio returns

formed by sorting stocks on total equity capitalization (size), the ratio of book value to

market value of common equity (book-to-market), and the market return. Fama and

French (1998) extended the model to a global context and analyzed international stock

returns. Griffin (2002) reported that country-specific versions of the three-factor model

were more useful in explaining stock returns than a global version of the three-factor

model. Fama and French (2012) studied stock returns using size, book-to-market, and

momentum factors for four regions (North America, Europe, Japan, and Asia–Pacific),

considering both integrated and local models. Lewis (2011) provided a useful review of

the current body of research addressing global asset-pricing challenges. This evidence

shows that the stock markets in the world can be analyzed by constructing several

market groups.

Despite these examples, little work has been done on pinpointing the differences

between factor structures across groups (Goyal et al. 2008). As a contribution, in this

paper, we develop a new multifactor-modeling procedure to deal with the situation

where there are several groups of assets. In particular, we use a factor structure that

consists of the common pervasive factors and group-specific pervasive factors. Grouped-

factor structure has been considered in a number of economic studies. For example,

Moench, Ng, and Potter (2012) proposed multilevel factor models by characterizing

within and between block variations as well as idiosyncratic noise in large dynamic

panels. Diebold et al. (2008) considered a hierarchical factor model for government

bond yield data from several different countries. Kose et al. (2008) used a multilevel

factor model to study international business cycle movements; also see Wang (2010)

and Moench and Ng (2011).

In addition to unobservable factors, observable factors that are based on some

economic theories that often used in a practical situation. Observable risk factors

may include macroeconomics variables (such as exchange rates, oil prices, and inflation

rates), financial market variables (such as volatility indices, trading volumes, liquidity,

and total market values), and firm-level characteristics (such as dividend yields, the

cost of capital, cash-flow-to-price ratios, and book-to-market equity ratios, etc). In

this paper, we try to select an appropriate set of observable factors among the huge

number of possible variables. As the second contribution in this paper, we develop a

procedure for efficiently identifying the set of observable risk factors. More specifically,
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we use the smoothly clipped absolute deviation (SCAD) penalty approach (Fan and Li,

2001). The non-zero coefficients are estimated as if the zero coefficients were known and

were imposed (the so called “oracle property’). This is obtained despite the existence

of many unobservable factors. The proposed procedure also identifies the number of

common pervasive factors and the number of group-specific pervasive factors in each

group simultaneously.

This paper includes further theoretical results. In a data-rich environment in which

a large number of cross-sectional securities and observable risk factors are available, we

investigate the consistency of the estimated regression coefficients on a set of observable

risk factors. We show that the proposed estimator is consistent, even in the presence of

error correlations and heteroscedasticity in both dimensions. Moreover, the asymptotic

normality of the proposed estimator is obtained. Monte Carlo simulations confirm that

the proposed multifactor-modeling procedure performs well.

In summary this paper makes the following theoretical contributions. First, we

consider a panel data model with heterogeneous slope coefficients in contrast to the

homogeneous regression coefficients in Bai (2009). This is a useful extension because

the sensitivity of the asset returns to the observable risk factors may vary over the

securities. Second, we provide a panel modeling procedure that allows the researcher

to identify the number of observable and unobservable factors that are relevant for

explaining the returns for different asset groups. We allow a large number of observable

risk factors and try to select the set of relevant observable risk factors. To achieve this

purpose, we develop the parameter estimation procedure using the SCAD penalty of

Fan and Li (2001). The latter procedure was proposed in the context of cross-section

regression (non panel data) without a factor structure, and under iid errors. In this

paper we establish the variable-selection consistency under much more general setting.

Third, we show that the proposed estimator is consistent as N and T getting large.

The result is developed under a general situation that allows weak dependence and

heteroskedasticity in the error term. Fourth, we propose a new measure for selecting

a proper model from among many candidates or, equivalently, determination of the

number of common/group-specific pervasive factors, determination of the magnitude

of the regularization parameter for implementing the shrinkage approach. We show

that the proposed criterion can identify the number of true common/group-specific

pervasive factors consistently.

Beyond the theoretical contributions, our paper also makes practical contributions.

We apply our proposed modeling procedure to the market structure of A- and B-share

markets in China. We address empirical questions such as: How many common and

group-specific pervasive factors exist in the stock market in mainland China? What

type of observable risk factors explains the market? And, how can the unobservable
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common factors be understood in terms of observable variables in the economy? For

example, by identifying the common and group-specific driving forces underpinning

macroeconomic variables, we can obtain a further understanding of the market struc-

ture. We find that there are, at most, two common pervasive factors across the groups

and four group-specific pervasive factors, three of which belong to the B-share mar-

kets. In addition, we find that some variables from overseas economies, such as stock

market returns of other countries, exchange rates, and commodity markets are related

to the security returns of the A- and B-shares. Moreover, we find that some domestic

macroeconomic variables are risk factors.

Briefly, this paper has the following features. First, we introduce a new multifactor

model that consists of a large number of observable risk factors as well as unobservable

common pervasive factors and group-specific pervasive factors. Asset-specific returns

are allowed to be correlated and heteroscedastic in both dimensions (time and cross

section). The number of securities can be much larger than the number of time periods.

We develop a model estimation procedure for such models. Second, the consistency

and the asymptotic normality of the parameter estimates are investigated. Third, we

develop a new model evaluation criterion that enables us to determine the relevant

observable factors for each asset as well as the number of common pervasive factors

and the number of group-specific pervasive factors in each group. Finally, our analysis

of the market structure of A- and B-share markets results in a number of interesting

empirical findings.

Notation. Let ‖A‖ = [tr(A′A)]1/2 be the usual norm of the matrix A, where

“tr” denotes the trace of a square matrix. The equation an = O(bn) states that the

deterministic sequence an is at most of order bn, cn = Op(dn) states that the random

variable cn is at most of order dn in terms of probability, and cn = op(dn) is of a smaller

order in terms of probability. All asymptotic results are obtained under large number

of securities N and large lengths of time series T . Restrictions on the relative rates of

convergence of N and T are specified in later sections.

2 Model

This paper considers a panel of asset returns with a large number of observable risk

factors, a set of common pervasive factors that affect the returns of all securities in all

groups, and group-specific pervasive factors that affect the returns of all securities only

in a specific group.
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2.1 Model setting

Let t = 1, ..., T be an index for time, G be the prespecified number of groups, N1,....NG

be the number of securities in each group, and N =
∑G

g=1 Ng be the total number of

securities. The asset return of the i-th security, yit, observed at time t, belonging to

group gi ∈ {1, ..., G}, is expressed as follows:

yit = x′itβi + f ′c,tλc,i + f ′gi,t
λgi,i + εi,t, i = 1, . . . , N, t = 1, . . . , T. (1)

In a vector form, the model (1) can be expressed as: yi = Xiβi + Fcλc,i + Fgi
λgi,i + εi,

i = 1, . . . , N , where:

yi =




yi1

yi2
...

yiT




, Xi =




x′i1
x′i2
...

x′iT




, Fc =




f ′c,1
f ′c,2

...
f ′c,T




, Fgi
=




f ′gi,1

f ′gi,2
...

f ′gi,T




, εi =




εi1

εi2
...

εiT




.

Here xit is the pi × 1 vector of observable risk factors, and the dimension of xit can

be very large and may vary over i, f c,t is an r × 1 vector of unobservable common

pervasive factors that affect the returns of all securities in all groups, and f gi,t
is an

rgi
× 1 vector of unobservable group-specific pervasive factors that affect the returns of

securities only in group gi. The pi×1 vectors βi are the unknown regression coefficients,

λc,i and λgi,i are factor loadings, and εit are the security-specific returns. Some of the

observable risk factors xit may be common to all firms (xit does not depend on i), or

common to some of the groups, or specific to a particular firm. Again, the dimension

of xit may be large.

This paper assumes that the group membership gi (i = 1, 2, ..., N) is known. This

assumption is motivated by empirical applications such as Goyal et al. (2008) as well

as our own application in this paper. It might be of interest to let gi be unknown and

be estimated. This problem has been considered by Ando and Bai (2003) under the

setting that the slope coefficients are homogeneous (βi = β for all i ) or there are G set

of group-dependent coefficients. Such a model appears to be restrictive for asset pricing

models for which the beta coefficients should be asset dependent. It is an interesting

future research topic to allow both unknown group membership and asset-dependent

coefficients.

In the appendix, we provide the regularity conditions of the model. Here, we

briefly describe the assumptions. We assume the existence of r common pervasive

factors and rg group-specific pervasive factors g = 1, ..., G. Also, we allow weak serial

and cross-sectional correlations on εit. Heteroscedasticity is also allowed even though

εit is assumed to have a finite eighth moment. This moment condition is a technical

assumption that simplifies the theoretical analysis; it is not a necessary condition. For
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example, for the student-t distribution with 5 degrees of freedom, the simulation shows

that the procedure performs very well.

We point out that the observable risk factors can be correlated with the factor

loadings, or with the unobserved common/group-specific pervasive factors, or can be

correlated with both the factor loadings and the unobserved common/group-specific

pervasive factors. Such correlations are allowed in panel models with factor errors (e.g.,

Bai, 2009). A similar setting was previously considered by Bai (2009), in which the

regression coefficients are common (not varying with i), and there are only a small

number of explanatory variables, and there are no group-specific factors. We clarify

that the number of cross-sectional securities N is not fixed and is assumed to grow. In

addition, N can be much greater than the number of time periods, T .

In the absence of the component of observable risk factors and the component of

group-specific pervasive factors, model (1) reduces to a pure factor model, which has

attracted much research interest in recent years. Factor models are perhaps the most

commonly used statistical tool to simplify the analysis of huge panel data sets. Indeed,

lately, many efforts in the econometric and statistical literature have been devoted to

factor models for analyzing high-dimensional data. There are various types of factor

specifications, including a dynamic exact factor model (Geweke, 1977; Sargent and

Sims, 1977), a static approximate factor model (Chamberlain and Rothschild, 1983), a

generalized dynamic factor model (Forni et al., 2000; Forni and Lippi, 2001; Amengual

and Watson, 2007; Hallin and Liska, 2007), and Bayesian factor models (Aguilar and

West, 2000; Lopes and West, 2004; Lopes et al., 2008; Ando, 2009; Bhattacharya and

Dunson, 2011; Tsay and Ando, 2012).

Remark 1 When a component of xit is set to 1, the model includes alphas (αi). Al-

ternatively, let αit = x′itβi, the model allows a time-varying alpha that depends on the

observable variables xit. In general, xit may consist of two sets of variables, with one

set being the predictors of time-varying alphas, with the other being the state variables

in the context of intertemporal CAPM (Merton, 1973). Some components of xit can

be common (not varying in i), such as market indices, Fama and French (1993)’s three

factors (i.e., the excess return on the market, growth factor, size factor). Also, xit

may also contain some macroeconomic variables. Chen et al. (1986) studied the role

of macroeconomic variables in asset pricing models. They found that some macroeco-

nomic variables, including the spread between long and short interest rates, inflation

and industrial production, systemically affect stock market returns. In our empirical

applications, we examine whether the observable risk factors as well as unobservable

risk factors are priced in the cross section of returns.

Model (1) encompasses a number of often used asset pricing models. If there are
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no observable risk factors, the model reduces to a pure approximate factor model

(Chamberlain and Rothschild, 1983; Connor and Korajczyk, 1986, 1988; Jones, 2001;

Bai and Ng, 2002; Bai, 2003), or the grouped-factor model (Krzanowski, 1979; Flury,

1984; Bekaert et al., 2009; Korajczyk and Sadka, 2008; Wang, 2010).

As pointed out by Goyal et al. (2008), in an economy partitioned into several

groups, the existence of common pervasive factors and group-specific pervasive factors

is not ruled out by APT. Therefore, model (1) can be justified from the APT’s perspec-

tive. Model (1) is also empirically appealing. Our estimation method will determine

the existence of common and group-specific factors.

3 Estimation

There exist several studies in the absence of observable risk-factor components. To

estimate a model similar to the model (1) with βi = 0 for i = 1, ..., N . Bekaert et

al. (2009) proposed the two-step inference procedure. Flury (1984) considered the

situation in which the S groups have a common subspace for all groups. Schott (1999)

considered the estimation procedure for a different setting. Goyal et al. (2008) used

Schott’s (1999) results and proposed a multigroup factor analysis as an extension of

Connor and Korajczyk (1986,1988) in grouped factors. These studies either do not

consider observable factors or only a small number of them or there are no unobservable

factors. Pesaran (2006) and Song (2013) allow a small number of observable regressors,

without group-specific factors. The limitation of Pesaran’s estimation procedure is

discussed by Westerlund and Urbain (20013).

We consider a situation for which there are a large number of possible observable

risk factors, pi, for security i, whereas the number of truly relevant observable risk

factors is not large. In other words, the true underlying structure has a sparse rep-

resentation and almost all elements of βi are zero, but which coefficients being zero

are unknown. To identify the correct sparse representation of the regression coeffi-

cients βi, we use the lasso-based approach (Tibshirani, 1996) for variable selection.

Although the lasso method is widely used, shrinkage introduced by the lasso results in

a bias towards zero for large regression coefficients. To diminish this bias, we use the

smoothly clipped absolute deviation (SCAD) penalty approach (Fan and Li, 2001). As

the SCAD method estimates redundant parameters for the irrelevant observable risk

factors as zero (variable selection consistency), the computational cost is much less

than the traditional variable selection methods. While the number of observable fac-

tors can be large, needless to say, our method works with a small number of observable

factors.
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3.1 Estimation procedure

To estimate the unknown parameters given the number of common pervasive factors,

r, and the number of group-specific pervasive factors r1, ..., rS, we minimize the least-

squares objective function with a penalty term as follows:

`(β1, . . . , βN , Fc, F1, ..., FG, Λc, Λ1, ..., ΛG|r, r1, ..., rG, κ)

=
N∑

i=1

‖yi −Xiβi − Fcλc,i − Fgi
λgi,i‖2 + T

N∑

i=1

pκ,γ (|βi|) (2)

subject to the constraints F ′
cFc/T = Ir and Λ′cΛc being diagonal for the common per-

vasive factor and the corresponding r ×N factor-loading matrix Λc = (λc,1, ...., λc,N),

and F ′
gFg/T = Irg (g = 1, ..., G) and Λ′gΛg (g = 1, ..., G) being diagonal for the

group-specific pervasive factor and the corresponding rg × Ng factor-loading matrices

Λg = (λg,1, ...., λg,Ng). These restrictions are needed to avoid the model-identification

problem and are commonly used in the literature (Connor and Korajczyk, 1986; Bai

and Ng, 2002; Stock and Watson, 2002). For separating common pervasive and group-

specific pervasive factors, we further assume F ′
cFg = 0 for g = 1, ..., G. As shown by

Wang (2010), this orthogonality condition is necessary even for models without regres-

sors. But it can be shown that the estimated beta coefficients are invariant to whether

this normalization restriction is made.

Here,
∑N

i=1 pκ,γ (|βi|) is a function of the coefficients indexed by a parameter κ

that controls the tradeoff between the fitness and the penalty. To identify a smaller

subset of important variables from each Xi, we can search through subsets of potential

observable risk factors for an adequate model. However, Breiman (1996) pointed out

that this can be unstable and is computationally unfeasible. To avoid such problems,

we use penalized regression procedures by shrinking some coefficients so that they are

exactly equal to zero. This operation is equivalent to selection of the relevant observable

risk factors. Some methods have been introduced for this purpose, including the lasso

method (Tibshirani, 1996), the SCAD penalty (Fan and Li, 2001), and the minimax

concave penalty (Zhang, 2010). These methods were introduced for non-panel data

models. Here we use the penalty method for panel data models and with the presence

of factor errors.

The SCAD penalty is defined as pκ,γ(|βi|) =
∑pi

k=1 pκ,γ(|βik|) with:

pκ,γ(|βik|) =





κ|βik| (|βik| ≤ κ)
γκ|βik| − 0.5(β2

ik + κ2)

γ − 1
(κ < |βik| ≤ γκ)

κ2(γ2 − 1)

2(γ − 1)
(γκ < |βik|)

,

for κ > 0 and γ > 2. This penalty first applies the same rate of penalization as the

regular lasso and then reduces the rate to zero as it moves further away from zero.
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Theoretical property of the the SCAD penalty is investigated in Fan and Li (2001) in

the context of non-panel data.

If we take an extremely large value of the regularization parameter κ, almost all

estimated βi will be estimated as zero even the true values are nonzero. In such a

case, we might exclude important observable risk factors. Conversely, too small a

regularization parameter might include a number of unrelated observable risk factors

because almost all elements of βi will not vanish at zero. Therefore, we need to

balance these options and determine a proper size for the regularization parameter κ.

We provide the model-selection criterion to select an optimal penalty size in the next

section.

Joint minimization of the least-squares objective function with a penalty term can

be done using the method by Bai (2009). Under the homogeneous slope coefficients

(β = β1 = · · · = βN) and the absence of the group-specific pervasive factors, Bai

(2009) proposed to estimate the homogeneous slope coefficients jointly with the com-

mon pervasive factors and the corresponding factor loadings. His estimator of the

homogeneous slope coefficients is
√

NT consistent even in the presence of serial or

cross-sectional correlations and heteroscedasticities of unknown form in the error term.

Given {β1, . . . , βN}, and the effect from the group-specific pervasive factors Fgi
λgi,i

i = 1, ..., N , we can define the matrix Wc = (wc,1, . . . , wc,N) of dimension T ×N with:

wc,i = yi −Xiβi − Fgi
λgi,i.

Then, the original model (1) reduces to wc,i = Fcλc,i + εi, which implies that Wc has

a pure factor structure.

The least-squares objective function with the penalty is then:

tr
{
(Wc − FcΛ

′
c) (Wc − FcΛ

′
c)
′}

+ T
N∑

i=1

pκ,γ (|βi|) .

From the analysis of pure factor models estimated by the method of least squares (i.e.,

principal components; see Connor and Korajczyk, 1986; Bai and Ng, 2002; Stock and

Watson, 2002; Bai, 2009). By concentrating out Λc = W ′
cFc(F

′
cFc)

−1 = W ′
cFc/T , the

objective function becomes:

tr {W ′
cWc} − tr {F ′

cWcW
′
cFc} /T + T

N∑

i=1

pκ,γ (|βi|) . (3)

Therefore, minimizing the objective function (3) with respect to Fc is equivalent to

maximizing tr {F ′
cWcW

′
cFc}, subject to the constraint F ′

cFc/T = Ir. Noting that the

penalty term is not related to Fc, The asymptotic principal-component estimate of

Fc subject to the constraint, F̂c, is
√

T times the eigenvectors corresponding to the r
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largest eigenvalues of the T ×T matrix WcW
′
c. Given F̂c, the factor-loading matrix can

be obtained as Λ̂′c = F̂ ′
cWc/T . See also Bai and Ng (2002:197–198).

Next, given {β1, . . . , βN}, and the common pervasive factor structure FcΛc, we

define the variable Wg = (wg,1, . . . , wg,Ng) with wg,i = yi −Xiβi − Fcλc,i as the set of

Ng asset return series belonging to the g-th group. Note that only the Ng asset return

series will be used for the estimation of the group-specific pervasive factor structures

Fgλg,i of the g-th group. Then, based on a similar argument to that made above, the

original model (1) reduces to the structure wg,i = Fgλg,i + εg,i. Again, this implies

that the data matrix Wg (dimension of T ×Ng) has a pure factor structure and we can

estimate Fg and λg,i using the asymptotic principal-component method. Estimates of

the group-specific pervasive factor Fg and the corresponding factor loading λg,i can be

obtained by minimizing the objective function:

tr
{(

Wg − FgΛ
′
g

) (
Wg − FgΛ

′
g

)′}
,

subject to the constraint F ′
gFg/T = Irg , for g = 1, ..., G. The asymptotic principal-

component estimate subject to the constraint can be obtained in a similar manner as

described in the estimation of Fc and Λc.

Although the estimates of {β1, . . . , βN}, {Fc, Λc}, and {Fg, Λg; g = 1, ..., G} depend

on each other, the estimators are obtained by using the following iterative algorithm.

Estimation algorithm

Step 1. Fix the regularization parameter, κ, the number of common pervasive factors,

r, and the number of group-specific factors {r1, ..., rG}. Initialize the unknown regres-

sion coefficients {β(0)
1 , . . . , β

(0)
N }, the pervasive common factors, and the corresponding

factor-loading matrix {F (0)
c , Λ(0)

c }, as well as the group-specific pervasive factors and

the corresponding factor-loading matrices {F (0)
g , Λ(0)

g ; g = 1, ..., G}.
Step 2. Given values of {β1, . . . , βN} and {Fg, Λg; g = 1, ..., G}, update {Fc, Λc}.
Step 3. Given values of {β1, . . . , βN} and {Fc, Λc}, update {Fg, Λg} for g = 1, ..., G.

Step 4. Given values of {Fc, Λc} and {Fg, Λg; g = 1, ..., G}, update {β1, . . . , βN}.
Step 5. Repeat Steps 2 and 4 until convergence.

In Step 1, starting values for {β1, . . . , βN}, {Fc, Λc}, and {Fg, Λg; g = 1, ..., S} are

needed. In the next section, we discuss how to prepare initial parameter values for

these parameters.

3.2 Initial parameter values

We can set initial values as follows. First, by ignoring the common pervasive factor

structure for all group {Fc, Λc} and the group-specific pervasive factor structure for
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each group {Fg, Λg; g = 1, ..., G}, an initial estimate of {β(0)
1 , . . . , β

(0)
N } is obtained

using the pure SCAD approach. Second, given values of {β(0)
1 , . . . , β

(0)
N }, an initial

estimate of the factor structures {Fc, Λc} is estimated by ignoring the group-specific

pervasive factor structure for each group {Fg, Λg; g = 1, ..., G}. Finally, given values of

{β(0)
1 , . . . , β

(0)
N } and the common pervasive factor structure for all of group {F (0)

c , Λ(0)
c },

we obtain the starting values of the group-specific pervasive factor structure {F (0)
g , Λ(0)

g }
for g = 1, ..., G.

It is known that the least-squares objective function is not globally convex (see also

Bai, 2009). In other words, an arbitrary starting value will not necessarily provide the

global optimal solution. To maximize the chance of obtaining the global minimum,

one may prepare several starting values. After the convergence, one may choose the

estimators that give a smaller value of the objective function.

Here is an alternative parameter initialization. First, by ignoring the effect from

the observable risk factors, {Xiβi; i = 1, ..., N}, and the group-specific factor struc-

tures {Fg, Λg; g = 1, ..., G}, we obtain an initial estimate of the common pervasive

factor structure {F (0)
c , Λ(0)

c }. Then, given {F (0)
c , Λ(0)

c }, by ignoring the effect from the

observable risk factors, {Xiβi; i = 1, ..., N}, we obtain a starting value of the group-

specific factor structures {Fg, Λg} for g = 1, ..., G. Finally, we obtain an initial value

of {β(0)
1 , . . . , β

(0)
N }.

Simulation results in Section 5 indicate that the estimation method above is robust

to the starting values. The results reveal that among the 1000 Monte Carlo repetitions,

the converged parameter values β̂i with the above two starting values reached the same

point more than 95% of times. If the converged values are different, we then select the

one that minimizes the objective function.

Remark 2 In principle, when markets are segmented or when markets have different

structures and rules, it is reasonable to expect that different factors affect different

segments. When one knows a priori that two or more markets are different, one could

also conduct separate analyses for each asset group. This would be a good strategy

if there exist no common pervasive factors. Separate analysis for each group makes it

difficult to tell if these groups share common-pervasive factors, especially unobservable

ones. In addition, pooling groups together allows more efficient estimation of unobserv-

able common factors. Therefore, it is desirable to model simultaneously the common

pervasive structures, the group-specific pervasive structures, the observable risk factor

components by pooling groups.

Remark 3 Instead of the variable selection approach in selecting the observable fac-

tors for each asset i, one might use the methodology of Stock and Watson (2005) to

12



extract some principal components from the explanatory variables Xi or other macroe-

conomic and financial variables. These principal components could be used as regres-

sors in the model and one could evaluate which principal components are important for

which asset groups. This principal component method is an alternative way to reduce

the dimensionality problem since the dimension of Xi (pi×T ) can be large (pi is large).

This two-step procedure is very useful for forecasting, it is less desirable than the pro-

cedure introduced in this paper. The regressors Xi depend on i, they are not common

to all individual assets; many observable risk factors in Xi are security-specific, e.g.,

profitability, firm size, etc. The number of firm-specific risk factors can be large, so

that penalty method is a useful approach.

Remark 4 It is straightforward to put an additional penalty term that penalizes the

factor loadings on group-specific pervasive factors in (2). However, by the definition,

the group-specific pervasive factors affect almost all security returns within each group

by the pervasive nature, penalizing these coefficients may not be desirable. Moreover,

it is uncommon to face the parameter estimation instability due to the factor loading

estimation as the dimension of the group-specific pervasive factors is usually small.

Therefore, the penalty term on the factor loadings is not used. In contrast, the number

of possible observable risk factors may be potentially very large at the initial modeling

stage. For these reasons, we use the shrinkage method only on the observable parame-

ters. Also, the group factor structure has implicitly put many zero restrictions on the

loadings (zero loadings for assets outside its own group). Furthermore, the method

does apply penalty when estimating the number of factors.

Remark 5 The proposed model can also be estimated by the Bayesian procedure. In-

stead of using penalization, shrinkage priors on βi can be used, e.g., Hans (2009),

Park and Casella (2008), and Polson and Sccot (2012). Also, the priors on the

common/group-specific pervasive factors and corresponding factor loadings are con-

sidered in the literature, e.g., Tsay and Ando (2012). Because the joint posterior

density does not have an analytical expression, one needs to implement the Markov

chain Monte Carlo (MCMC) approach. The details are beyond the scope of this paper.

Remark 6 The SCAD penalty shrinks some elements of βi (i = 1, ..., N) to exactly

zero. This operation is equivalent to selecting relevant observable risk factors. So the

set of observable risk factors are automatically determined once the size of regulariza-

tion parameter κ is fixed. That is, the selection of the set of relevant observable risk

factors is equivalent to the determination of the size of regularization parameter κ. In

practice, however, we need to determine the size of regularization parameter κ. This

problem is considered in Section 5.
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Remark 7 As in Assumption D (See Appendix A1), we exclude the situation in which

the observable risk factors and underlying unobservable common factors are correlated

perfectly. If they are perfectly correlated, then the dimension of unobservable common

factors is automatically reduced since they are already included in the regressors. The

dimension of the common factors is determined by the information criterion, which

will not select a common factor that is already a part of observable factors. Thus the

assumption of non-perfect correlation is without loss of generality.

4 Asymptotic theory for statistical test

The previous sections described the model, its assumptions, and the estimation proce-

dure. This section investigates the asymptotic properties of the parameter estimates.

We denote the true value of regression coefficients as β0
i , the true value of common

pervasive factors that affect the returns of all securities as F 0
c , and the true value of

group-specific pervasive factors by F 0
g .

We first consider the consistency of the estimators of the regression coefficients βi

i = 1, ..., N , the common pervasive factors Fc, and the group-specific pervasive factors

Fg, g = 1, ..., G. As the dimensions of Fc and {Fg, g = 1, ..., S} are increasing, we

prove consistency in terms of a matrix norm. Also, we emphasize that the appropriate

size of the regularization parameter depends on the length of the time series T , and

thus denote κT . Then, we have the following theorem.

Theorem 1 Under Assumptions A-E given in the appendix, and κT → 0 and
√

TκT →
∞ as T →∞, the estimator β̂i is consistent such that

β̂i →p β0
i ,

In addition, the estimators of the common pervasive factors F̂c and the group-specific

pervasive factors {F̂g, g = 1, ..., G} are consistent in the sense of the following norm:

T−1/2‖F̂c − F 0
c Hc‖ = op(1), T−1/2‖F̂g − F 0

g Hg‖ = op(1),

where: H−1
c = Vc,NT (F 0

c F̂c/T )−1(Λ′cΛc/N)−1, H−1
g = Vg,NgT (F 0

g F̂g/T )−1(Λ′gΛg/Ng)
−1,

and Vc,NT and Vg,NgT satisfies:

 1

NT

G∑

g=1

∑

i;gi=g

(yi −Xiβ̂i − F̂gi
λ̂gi,i)(yi −Xiβ̂i − F̂gi

λ̂gi,i)
′

 F̂c = F̂cVc,NT

and

 1

NgT

∑

i;gi=g

(yi −Xiβ̂i − F̂cλ̂c,i)(yi −Xiβ̂i − F̂cλ̂c,i)
′

 F̂g = F̂gVg,NgT .
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The proof of Theorem 1 is presented in the Appendix. Given the consistency, we

further establish the asymptotic normality of the estimated parameters. Also, we show

that our proposed method can identify the set of true explanatory variables. Let β0
i =

(βi10
′, βi20

′)′ be the true parameter value, and β̂i = (β̂
′
i1, β̂

′
i2)

′ be the corresponding

parameter estimate. Without loss of generality, assume that βi20 = 0. We assume the

dimension of βi10 is small (uniformly bounded over i) but the dimension of βi20 can

be large. We show that the estimator possesses the sparsity property, β̂i2 = 0. We

denote β̂i1 as the parameter estimate of non-zero true coefficients βi10. We impose

the following assumption, which is necessary for the asymptotic normality of β̂i. The

limiting results are useful for hypothesis testing.

Define the projection matrices

MFc = I − Fc(F
′
cFc)

−1F ′
c

MFc,Fg = MFc −MFcFg(F
′
gMFcFg)

−1F ′
gMFc

The second projection matrix is also equal to MG = I−G(G′G)−1G with G = [Fc, Fg].

Theorem 2 Suppose that the i-th security belongs to group g and that Assumptions A-

H hold. Furthermore, the regularization parameter satisfies κT → 0 and
√

TκT → ∞
as T → ∞. Then, as T, N → ∞ with

√
T/N → 0, the following variable-selection

consistency holds:

P (β̂i2 = 0) → 1, N, T →∞.

Moreover,
√

T (β̂i1−βi10) is asymptotically normal with mean 0 and variance-covariance

matrix Ri(F
0
c , F 0

g ),

√
T (β̂i1 − βi10) →d N

(
0, Ri(F

0
c , F 0

g )
)
,

where

Ri(F
0
c , F 0

g ) = Di(F
0
c , F 0

g )−1Ji(F
0
c , F 0

g )Di(F
0
c , F 0

g )−1,

and Di(F
0
c , F 0

g ) and Ji(F
0
c , F 0

g ) are the probability limits (in terms of T →∞) of:

1

T

(
X ′

i,β0
i 6=0MF 0

c ,F 0
g
Xi,β0

i 6=0 + Σi(κT )
)
, and

1

T

(
X ′

i,βi 6=0MF 0
c ,F 0

g
E[εiε

′
i]MF 0

c ,F 0
g
Xi,βi 6=0

)
,

respectively, with

Σi(κT ) = diag
{
p′κT ,γ(|β0

i1|)/|β0
i1|, . . . , p′κT ,γ(|β0

iqi
|)/|β0

iqi
|
}

.
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A proof of Theorem 2 is given in the Appendix. Note that
√

T/N → 0 is not a

strong assumption; the number of securities N can be much larger than the number

of time periods T , and the number of time periods T can also be much larger than

N . Although restrictions between N and T are needed in terms of simultaneous limit

(N, T →∞), the theorem holds not only for a particular relationship between N and

T , but also for many combinations of N and T . The theorem allows us to perform

statistical significance test for coefficients βi. We discuss the estimators of Di(F
0
c , F 0

g )

and Ji(F
0
c , F 0

g ) in Section 5.

5 Model specification

In practice, however, the number of common pervasive factors, r, and the number of

group-specific pervasive factors, {r1, ..., rG}, are unknown. Moreover, we have to select

the size of the regularization parameter κ such that the relevant observable risk factors

are included, while excluding irrelevant observable risk factors. In this section, we

propose a new criterion to select these quantities.

5.1 A new model-selection criterion

Suppose that z1, . . . , zN are replicates of the asset returns y1, . . . , yN , given the true

value of common pervasive factors Fc and the corresponding factor loadings Λc, group-

specific pervasive factors Fg, the corresponding factor loadings Λg g = 1, ..., G, and

the observable factors Xi (i = 1, . . . , N). In other words, we assume that the zi’s

are generated from the true underlying structure of the economy. This situation is

commonly considered in Bayesian and non-Bayesian model-selection studies; see, for

example, Konishi and Kitagawa (1996), Hansen (2005), Ando (2007), Ando and Tsay

(2011), and references therein.

To assess the goodness of fit of the estimated model, we use the expected mean

squared errors (MSE):

η(k, k1, ..., kG, κ) := Ez


 1

NT

G∑

g=1

∑

i;gi=g

∥∥∥zi −Xiβ̂i − F̂cλ̂c,i − F̂gλ̂gi,i

∥∥∥
2


 , (4)

where k is the number of common pervasive factors, k1, ..., kG are the number of group-

specific pervasive factors for each group, κ is the regularization parameter, and the

expectation is taken with respect to the joint distribution of z1, . . . , zN . The quantities

k, k1, ..., kG, κ are chosen by minimizing the expected MSE.

A natural estimator of the expected MSE in (4) is the sample-based MSE:

η̂(k, k1, ..., kG, κ) :=
1

NT

G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ̂i − F̂cλ̂c,i − F̂gλ̂gi,i

∥∥∥
2
.
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This quantity is formally calculated by replacing the replicates zi with observed values

yi. This sample-based MSE generally has some bias with respect to the expected MSE

because, among other reasons, the same data are used to estimate the parameters of

the model. We therefore consider a bias-corrected version of the measure.

The bias b of the sample-based MSE with respect to the expected MSE is given by:

b(k, k1, ..., kG, κ) := Ey [η(k, k1, ..., kG, κ)− η̂(k, k1, ..., kG, κ)] , (5)

where the expectation is taken with respect to the joint distribution of yi(i = 1, . . . , N).

We assume that the bias b(k, k1, ..., kG, κ) can be estimated by some appropriate proce-

dures, yielding b̂(k, k1, ..., kG, κ). Taking into account the consistency of the proposed

model-selection criterion, we suggest minimization of the predictive measure:

η̂(k, k1, ..., kG, κ) + b̂(k, k1, ..., kG, κ)

=
1

NT

G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ̂i − F̂cλ̂c,i − F̂gi
λ̂gi,i

∥∥∥
2
+ b̂(k, k1, ..., kG, κ). (6)

The first term on the right-hand side, η̂(k, k1, ..., kG, κ), measures the goodness of fit

of the model, whereas the second term, b̂(k, k1, ..., kG, κ), is a penalty that depends on

the complexity of the model. The remaining task is to construct a proper estimator of

the penalty term. Another contribution of this paper is the following theorem.

Theorem 3 Suppose that Assumptions A–E and the condition
√

T/N → 0 hold. The

penalty term is then:

b̂(k, k1, ..., kG, κ) =
1

NT

G∑

g=1

∑

i;gi=g

tr
[
KiRi(F

0
c , F 0

gi
)
]

+k × h(T, N,N1, ..., NG) +
G∑

g=1

kg × hg(T, N,N1, ..., NG),

where Ki = 2X ′
i,β̂i 6=0

Xi,β̂i 6=0/T and Xi,β̂i 6=0 is the submatrix of Xi such that the cor-

responding columns have a nonvanishing component of the parameter estimate, and

Ri(F
0
c , F 0

gi
) is defined in Theorem 2. The functions h(T, N, N1, ..., NG) and hg(T, N, N1, ..., NG)

satisfy (a) h(T, N, N1, ..., NG) → 0 and (b)
√

Th(T, N, N1, ..., NG) →∞ as T, N →∞,

and similarly for hg.

A derivation of the theorem is given in the Appendix.

The first term of b̂(k, k1, ..., kG, κ) in Theorem 3 controls the size of the regularization

parameter. In other words, it is the term for including the relevant observable risk

factors only among a large number of observable risk factors. The second term is

relevant to the identification of the true number of common pervasive factors. Also,
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the quantity kg×hg(T, N, N1, ..., NG) in the third term is used for selecting the number

of group-specific pervasive factors rg in the group g.

An example of the function h(T, N, N1, ..., NG) that satisfies conditions (a) and (b)

of the theorem is:

h(T,N, N1, ..., NG) =
(

T + N

TN

)
log (TN) .

Also, the similar function
(

T+Ng

TNg

)
log (TNg) is used for hg(T, N, N1, ..., NG). Substi-

tuting these quantities into the predictive measure (6), we have the following model-

selection criterion:

Cp(k, k1, ..., kG, κ) = η̂(k, k1, ..., kG, κ) +
1

NT

N∑

i=1

tr
[
KiR(F̂c, F̂gi

, κ)
]

+k × σ̂2
(

T + N

TN

)
log (TN) +

G∑

g=1

kg × σ̂2

(
T + Ng

TNg

)
log (TNg) , (7)

where R(F̂c, F̂gi
, κ) is a consistent estimate of Ri(F

0
c , F 0

gi
), to be discussed in Section

5.2, and σ̂2 is a consistent estimate of

(NT )−1
G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ̂i − F̂cλ̂c,i − F̂gλ̂gi,i

∥∥∥
2
.

We can choose the number of common pervasive factors, k, the number of group-specific

pervasive factors, rg (g = 1, ..., G), and the size of the regularization parameter, κ, by

minimizing the Cp over a specified range of models.

We can regard the proposed model-selection criterion as a generalization of the Cp

criterion of Mallows (1973). Like the original Cp criterion, σ̂2 provides proper scaling

for the penalty term. In applications, it can be replaced by (NT )−1 ∑G
g=1

∑
i;gi=g ‖yi−

Xiβ̂i − F̂cλ̂c,i − F̂gλ̂gi,i‖2, which is obtained under the maximum possible dimension

of Xi, the maximum possible number of common pervasive factors rc,max, and the

maximum possible number of group-specific pervasive factors rg,max (g = 1, ..., G).

The model-specification algorithm for determining the number of common pervasive

factors r, the number of group-specific pervasive factors rg, and the size of regularization

parameter κ, is summarized as follows.

Model-specification algorithm

Step 1. Prepare a set of candidate values of the regularization parameter κ, the number

of common pervasive factors k, and the number of group-specific pervasive factors

{k1, ..., kG}. Then, fix their initial values.

Step 2. Fix the value of regularization parameter κ as one of the candidate values.
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Step 3. Given the value of the regularization parameter κ and the number of group-

specific pervasive factors {k1, ..., kG}, optimize the number of common pervasive factors

k by minimizing the proposed Cp criterion.

Step 4. Given the value of the regularization parameter κ and the number of common

pervasive factors k, optimize the number of group-specific pervasive factors {k1, ..., kG}
by minimizing the proposed Cp criterion.

Step 5. Repeat Steps 3 and 4 until convergence.

Step 6. Repeat Steps 2–5 for each of the prepared regularization parameters κ. Then,

select the combination of the regularization parameter κ, the number of global factors k,

and the number of local factors {k1, ..., kG}, which minimize the proposed Cp criterion.

Remark 8 The matrices Di(F
0
c , F 0

gi
) and Ji(F

0
c , F 0

gi
) in the Cp criterion can be ob-

tained by using their empirical versions. If we assume an absence of serial and cross-

section correlations in the idiosyncratic errors (E[εitεis] = 0 (t 6= s), E[εitεjt] = 0

(i 6= j)), then the calculation of Ji(F
0
c , F 0

gi
) can be simplified as follows:

Ji(F̂c, F̂gi
) =

1

T
X ′

i,β̂i 6=0
MF̂c,F̂g

Ω̂iMF̂c,F̂g
Xi,β̂i 6=0, (8)

where Ω̂i = diag{ε̂2
i1, ..., ε̂

2
iT} is the diagonal matrix, and ε̂it = yit − β̂ixit − f̂

′
c,tλ̂c,i −

f̂
′
gi,t

λ̂gi,i. If we further assume the absence of heteroskedasticity (E[ε2
it] = σ2), we can

estimate Ji(F
0
c , F 0

gi
) by:

Ji(F̂c, F̂gi
) =

1

T
σ̂2

i X
′
i,β̂i 6=0

MF̂c,F̂g
Xi,β̂i 6=0,

where σ̂2
i = (NT )−1 ∑T

t=1

∑N
i=1 ε̂2

it is the variance estimator. Also, thanks to an advan-

tage of the SCAD procedure, the proposed criterion Cp is applicable even when pi > T ,

where pi is the number of possible observable risk factors.

Remark 9 The estimated number of common and group-specific pervasive factors

allows us to measure the financial integration of markets. Consider a case in which the

estimated number of group-specific pervasive factors in each group is zero, while the

common pervasive factors exist. In this case, it is natural to regard the corresponding

sub-markets are integrated. As a second case, the result may reveal that the number of

common pervasive factors is identified as zero, while there exit group-specific pervasive

factors in each group. In contrast to the first case, one would naturally think that the

market decoupling is observed. In our empirical analysis, both common and group-

specific pervasive factors exist. It implies that the Chinese A and B share markets are

integrated, while each market has its own characteristics.
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Remark 10 Finally, we point out several references that considered the model selec-

tion on the standard linear models with factor-augmented regressions. Soofi (1988)

studied an information theoretic criterion for factor-augmented regression models. Un-

der the assumption that the response variable follows an exponential family of dis-

tributions, Ando and Tsay (2009) proposed information criteria for generalized linear

models. Ando and Tsay (2011) developed model-selection criteria for evaluating the

quantile regression models with factor-augmented explanatory variables. Ando and

Tsay (2014) considered a diffusion-index model-selection problem. These results are

not for panel data models. Ando and Tsay (2010) investigated the model-selection

problem for large panel data models with the interactive fixed effects of Bai (2009),

where the slope coefficients are common to each unit.

5.2 Data-generating processes

The first data-generating model considered is yi = Xiβi + Fcλc,i + Fgi
λgi,i + εi, the

r-dimensional common pervasive factor f c,t is a vector of N(0, 1) variables, the rg-

dimensional group-specific pervasive factor f g,t j = 1, .., S is also a vector of N(0, 1)

variables, and each element of the factor-loading matrix Λc, {Λ1, ..., ΛG} follows N(0, 1).

The N -dimensional vector εt has a multivariate normal distribution with a mean of

0 and covariance matrix IN . The number of columns of Xi is set to pi = 80, while

the true number of regressors is qi = 3 for i = 1, . . . , N . Each of the elements of Xi

is generated from the uniform distribution over [−2, 2]. The nonzero true parameter

values of βi are set to be (−1, 2, 2). These nonzero elements are put into the first

three elements of βi and thus the true parameter vector is βi = (−1, 2, 2, 0, 0, ..., 0)′

for i = 1, ..., N . The true number of common pervasive factors is r = 5, and the true

numbers of group-specific pervasive factors are r1 = 2 r2 = 3, r3 = 4, r4 = 4, and

r5 = 5. We next investigate a case in which the noise term is nonhomoscedastic.

The second data-generating model considered is yi = Xiβi+Fcλc,i+Fgi
λgi,i+εi and

εit = e1
it + δte

2
it, where δt = 1 if t is odd and is zero if t is even, and the N -dimensional

vectors e1
t = (e1

1t, . . . , e
1
Nt)

′ and e2
t = (e2

1t, . . . , e
2
Nt)

′ follow multivariate normal distri-

butions, with a mean of 0 and covariance matrix S = (sij), with sij = 0.3|i−j|, and

e1
t and e2

t are independent. The noise terms are not serially correlated. The common

pervasive factors, the group-specific pervasive factors, the loading matrices, the design

matrix Xi, and the true parameter vector βi are generated by the same method as

before. The key feature of the model is that the noise terms are not homoscedastic.

As a third example, we investigated the performance of the proposed method when

the idiosyncratic errors had some serial and cross-sectional correlations. The model

is yi = Xiβi + Fcλc,i + Fgi
λgi,i + εi with εit = eit + 0.2εi,t−1, where t = 1, . . . , T ,
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the N -dimensional vector et = (e1t, . . . , eNt)
′ follows multivariate normal distributions

with mean 0 and covariance matrix S = (sij), where sij = 0.3|i−j|. Other variables are

defined as before.

As a fourth example, we generated the data under a situation where the set of

true observable risk factors Xi are correlated with a set of r common pervasive factors.

Again, the model is yi = Xiβi +Fcλc,i +Fgi
λgi,i +εi with εit = eit +0.2ei,t−1, where t =

1, . . . , T , the noise values et = (e1t, . . . , eNt)
′ follow multivariate normal distributions

with mean 0 and covariance matrix S = (sij), where sij = 0.3|i−j|. Also, we generated a

set of r+2 dimensional random variables zt = (z1t, ...., zr+2,t)
′, which follow multivariate

normal distributions with mean 0 and covariance matrix S = (sij), with sij = 0.3|i−j|.

Each of the elements of Xi is generated from the uniform distribution over [−2, 2].

Then, the first r elements of zt, (z1t, ...., zr,t)
′ are used for the common pervasive factors

f c,t and the remaining part of zt = (zr+1,t, zr+2,t)
′ is added to the first two elements of

observable risk factors xit, i = 1, ..., N . This operation creates a situation in which the

common pervasive factors and the observable risk factors have correlation structures.

Other variables are defined as before.

As a fifth example, we generated the data under a situation where the set of true

observable risk factors Xi are correlated with group-specific pervasive factors. Each

of the elements of the observable risk factors Xi is generated from the uniform dis-

tribution over [−2, 2]. We generated a set of r1 + 2 dimensional random variables

zt = (z1t, ...., zr1+2,t)
′, which follow multivariate normal distributions with mean 0 and

covariance matrix S = (sij), with sij = 0.3|i−j|. Then, the first r1 elements of zt,

(z1t, ...., zr1,t)
′ are used for the group-specific pervasive factors f 1,t of group S1, and

then the remaining part of zt, (zr+1,t, zr+2,t)
′ was added to the first elements of ob-

servable risk factors xit, i = 1, ..., N . This operation creates a situation where the

group-specific pervasive factors and the true observable risk factors have correlation

structures. Other variables are defined as before.

In these simulation settings, we consider two cases: (1) the number of securities in

each group is equal, i.e., N1 = N2 = · · · = N5, and (2) the number of securities in each

group are different.

5.3 Results

We generated 1,000 replicates using each of the five data-generating models. We then

applied the proposed model-selection criterion, Cp, to select simultaneously the number

of common pervasive factors, the number of group-specific pervasive factors, and the

size of regularization parameter κ. We set the possible numbers of both common and

group-specific pervasive factors to range from 0 to 10. Thus, the maximum number
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of common and group-specific pervasive factors were set to 10, respectively. Possible

candidates for the regularization parameter κ are κ = {10, 1, 0.1, 0.01, 0.001}. To speed

up the computation of our Cp criterion in (7), we used an estimator of Ji(F̂c, F̂gi
) in

(8), which assumes the absence of serial correlations, to calculate the penalty term

of our Cp score. However, as our results show that our criterion performs well, even

if this assumption, i.e., the absence of serial correlation, does not hold. The model-

selection results for the third example indicate that our Cp criterion is robust to the

misspecification of the noise characteristics.

Tables 1 ∼ 4 report the percentages for correct, under-, and overidentification of the

proposed Cp criterion under the five data-generating models. This presentation style is

followed by Tsay and Ando (2012). If the proposed method identifies the true number

of common pervasive factors (r) 1,000 times out of 1,000 trials, the corresponding three

columns with respect to r become 0, 100, and 0 under U, C, and O, respectively. As

shown in the tables, the proposed Cp criterion is capable of selecting the true num-

ber of common and group-specific pervasive factors. Table 5 shows the identification

performance for the true observable risk factors Xi. We measured the identification

performance using the true positive rate (TPR) and the true negative rate (TNR):

TPR =

∑N
i=1

∑
k I{β̂ik 6= 0 and βik 6= 0}

∑N
i=1

∑
k I{βik 6= 0} =

∑N
i=1

∑
k I{β̂ik 6= 0 and βik 6= 0}

N × 3

TNR =

∑N
i=1

∑
k I{β̂ik = 0 and βik = 0}

∑N
i=1

∑
k I{βik = 0} =

∑N
i=1

∑
k I{β̂ik = 0 and βik = 0}

N × (80− 3)
,

where I(·) is the indicator function, which takes a value of 1 if it is true and 0 otherwise.

As we have the TPR and TNR for each of N securities, we take their averages. As

shown in Table 5, the proposed criterion is capable of selecting the true set of observable

risk factors. We can also see that the performance improves as T increases.

Finally, we discuss the regression coefficient estimation results. For simplicity, we

shall report the results obtained under the fourth data-generating model only, because

other data settings have similar results. Simulation results for the parameter estimates

of β̂i are reported in Table 1. Because the theoretical properties of the parameter

estimates β̂i are common for each i, we report the results for β̂1 only. Again, given

T and N , similar results are obtained for others β̂2,...,β̂N . As shown in Table 6, the

parameters are well estimated in the simulation studies. Because the length of β̂1 is

very long (a vector of length 80), we report the estimation results for the true regressors

(β̂1,1, β̂1,2, β̂1,3)
′, and those for the first three irrelevant regressors, (β̂1,4, β̂1,5, β̂1,6). We

point out that the remaining elements of β̂1 (i.e., β̂1,7, β̂1,8, ..., β̂1,80) are similar to the

estimation results of (β̂1,4, β̂1,5, β̂1,6) as they are the irrelevant set of predictors. We can

see that the time periods T mainly controls the precision of the parameter estimates.

This investigation coincides with the asymptotic theory, developed in Section 4.
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In summary, our simulation results show that the proposed Cp criterion works well

in selecting the number of common pervasive factors, the number of group-specific

pervasive factors, and the set of relevant observable risk factors.

6 Analysis of Chinese A- and B-share markets

There are two stock exchange markets in mainland China: the Shanghai and Shenzhen

stock exchanges. In these markets, two types of shares are traded, namely A- and

B-shares. Although A- and B-shares are listed and traded in the mainland market,

the former are denominated in RMB and were originally traded only among Chinese

citizens, whereas the latter are denominated in foreign currencies and were originally

traded among non-Chinese citizens or Chinese residing overseas. The Chinese gov-

ernment launched the qualified foreign institutional investors (QFII) policy in 2003

and introduced foreign investors into the domestic A-share market. Although Chinese

mainlanders have been eligible to trade B-shares with legal foreign currency accounts

since March 2001, the mainlanders may prefer to trade only in A-shares owing to the

currency barrier. It therefore seems plausible that the underlying asset return structure

of A-shares is different from that of B-shares. It is also important to know how these

two stock exchange markets respond to the global economy. This paper investigates

empirical questions such as the following: How many common and group-specific per-

vasive factors exist in the stock market in mainland China? What type of observable

risk factors explain the market? And, how can the unobservable common factors be

understood in terms of observable variables in the economy?

6.1 The Data

We use monthly excess returns of Chinese A- and B-shares from Standard & Poor

(S&P)’s Datastream Database. We consider a roughly 11-year sample, covering the

March 2002 to December 2012 period, and systematically exclude stocks with missing

returns data. We calculate excess returns by subtracting the interest rate on the one-

month interbank offered rate from the individual stock returns. Ideally, we would use

the one-month Treasury bill rate instead of the interbank offered rate. However, the

one-month Treasury bill rate is only available from 2007. Our reported results are

robust to the analysis of the returns, which are not subtracted by the interest rate on

the one-month interbank offered rate. We partition our original universe of stocks into

two groups, the first containing A-shares, and the second containing B-shares. This

implies that the number of groups is S = 2. The above filtering procedure yields 1,039

A-share firms and 102 B-share firms.
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Table 7 provides the descriptive statistics on the asset returns. For each group,

we computed these statistics from the time series of each stock and we then report

the cross-sectional average. The statistics can therefore be interpreted as those for a

representative stock. As shown in Table 7, the size of the panel in this application

is sufficiently large. Because the A-share market is the main market on the China

mainland, the number of stocks in each group is not quite the same, with the A-share

group having a much higher number of stocks. The volatility of stocks on the A- and

B-share markets are comparable. It is apparent from the table that B-shares have a

higher skewness than their counterparts on the A-share market. We can also see that

the kurtosis of the B-share market is higher than that of stocks on the A-share market.

Numerous studies have analyzed the stock market reaction of the developed coun-

tries to changes in macroeconomic variables (Fama, 1981, 1990; Mandelker and Tan-

don, 1985; Chen et al., 1986; Fama and French, 1989; Cheung and Ng, 1998). If the

economic outlook reflects the stock market, such information would be helpful for cap-

turing the stock return characteristics. With a view that the effective investment style

will change overtime, it has become more common to consider a variety of types of

economic information. Therefore, for the observable risk factors, we employed several

types of macroeconomic variables, including macroeconomic climate indexes (leading,

coincident, and lagging indexes), the money supply, and the inflation rate (the con-

sumer price index). Monetary policy may affect stock prices (Thorbeke, 1997) through

at least two channels. Generally, the growth of the money supply is positively related

to the inflation rate. An increase in the money supply may lead to an increase in the

inflation rate (e.g., Fama, 1981), which may increase the nominal risk-free interest rate

(with the real interest rate is fixed), resulting in a negative relationship between the

money supply and stock prices. This is because the higher discount rate level lowers

the value of the firm through the valuation formula. On the other hand, a corporate

earning effect may result in increased future cash flow and stock prices, while the effect

of a higher discount rate would be neutralized if cash flows increase with inflation. Also,

investors would expect higher dividend payments and hence increase their demand for

the stocks. Inflation may also be caused through real factors such as consumption.

In Marshall (1992), an expected increase in inflation decreases the expected return

to money, and this reduces demand for money and increases the demand for equity,

resulting in a positive correlation between inflation and stock prices. On the other

hand, there are empirical studies (Fama and Schwert, 1977; Geske and Roll, 1983) that

report a negative relationship between inflation and stock prices.

Commodity prices are a major cost factor in various economic activities in China.

Therefore, commodity price information is used for the observable risk factors, includ-

ing the industrial metal price, the aluminum price, the copper price, the crude oil price,
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the natural gas price, and the nickel price. In addition to these, we use the gold price

and the silver price, which affect the price of alternatives to the traditional financial

instruments, including stocks and bonds.

Currency movements directly affect the earnings of Chinese firms. There is an

exchange rate risk for holding foreign currency. Also, the value of a firm’s assets with

foreign operations, and its revenue through exports, will be affected by fluctuations

in exchange rates. Moreover, the firms that sell goods that compete with imports

are subject to the price elasticity of consumer demand and impacted by the cost of

imported raw materials. In this paper, we consider the Chinese yuan to the US dollar

exchange rate, the Chinese yuan to the Japanese yen exchange rate, the Chinese yuan

to the euro exchange rate, the Chinese yuan to the UK pound exchange rate, and the

Chinese yuan to the HK dollar exchange rate.

Finally, the international stock market conditions may affect the China mainland

stock market. Therefore, we use the S&P 500 index, the MSCI World index, the FTSE

100 index, the MSCI Europe index, the TOPIX index, the Hang Seng index, as well as

the MSCI China index. Table 8 provides descriptive statistics of the monthly returns

of the above-mentioned observable risk factors. Some observable risk factors are highly

skewed. Also, we can see that some variables have heavier tails than normal as their

kurtosis levels are above 3.

Figure 1 shows the correlation matrix of the set of 25 observable risk factors. The

ordering of the variables in the correlation matrix is identical to the ordering of those

in Table 8. The plot indicates that the set of six stock market indexes (S&P 500,

MSCI World, FTSE 100, MSCI Europe, TOPIX, Hang Seng, MSCI China) are highly

correlated. This implies that the stock markets seem to be connected to each other. We

can also see from Figure 1 that some commodity prices (industrial metal, aluminum,

copper, crude oil, nickel) have a high level of correlation. Figure 1 also indicates that

the Chinese yuan to the Japanese yen exchange rate is negatively correlated with some

commodity prices (industrial metal, aluminum, copper) as well as with some stock

market indexes (S&P 500, MSCI World, FTSE 100, TOPIX). The MSCI World index

is correlated with many other variables, with the exception of the China money supply,

the China macroeconomic climate indexes (lagging), the inflation rate (consumer price

index), the Chinese yuan to the HK dollar exchange rate, the gold price, and the gas

price.

6.2 How many pervasive factors?

We fit the model (1) by minimizing the objective function. Then, we applied the pro-

posed model-selection criterion, Cp, to select simultaneously the number of common
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pervasive factors, the number of group-specific pervasive factors, and the size of the

regularization parameter κ. The possible numbers of both common and group-specific

pervasive factors range from 0 to 10. Possible candidates for the regularization pa-

rameter κ are κ = {10, 1, 0.1, 0.01, 0.001}. The estimated numbers of common/group-

specific pervasive factors are: r̂ = 2 common pervasive factors, r̂1 = 1 group-specific

pervasive factors with respect to A-shares, and r̂2 = 3 group-specific pervasive factors

with respect to B-shares. This suggests that there are at least six pervasive factors in

the Chinese mainland stock markets.

We next explore the economic meanings of six constructed factors. Here, we use the

methods in Bai (2003) and Bai and Ng (2006a). Suppose we observe st, the time series

of an observable economic variable. We are interested in the relationship between the

variable st and the unobservable common/group-specific pervasive factors.

Consider the case where we try to explore the meaning of the common pervasive

factors f c,t. As pointed out by Bai and Ng (2006a), one may regress εc
i = yit −

x′itβ̂i − f̂
′
gi,t

λ̂gi,i on st and then use some measure to assess the explanatory power of

st. However, Bai and Ng (2006a) mentioned that this is not a satisfactory test because

even if st is exactly equal to one of the elements of the common pervasive factors f c,t,

st might still be weakly correlated only with εc
i if the variance of the idiosyncratic error

is large. In this paper, following Bai and Ng (2006a), we regress st on the estimated

common pervasive factors st = f̂
′
c,tγc+ec,t, and then conduct the statistical significance

test of the least squared estimate γ̂c. Then, we use the result of Theorem 1 of Bai

and Ng (2006b). Under
√

T/N → 0, they showed that
√

T (γ̂c − γc) asymptotically

follow the multivariate normal with zero mean and the covariance matrix Σγc with its

consistent estimator, in our setting, is:

Σ̂γc =

(
1

T

T∑

t=1

f̂ c,tf̂
′
c,t

)−1 (
1

T

T∑

t=1

ê2
c,tf̂ c,tf̂

′
c,t

) (
1

T

T∑

t=1

f̂ c,tf̂
′
c,t

)−1

,

with êc,t = st − γ̂ ′cf̂ c,t. See Bai and Ng (2006b) for more details. We can implement

the same idea for exploring the meaning of the group-specific pervasive factors.

To make a link between the estimated common and group-specific pervasive fac-

tors, we considered the following six observable economic/market variables: consumer

confidence index in China, the Chicago Board Options Exchange (CBOE) volatility

index, market excess returns of A-shares, market excess returns of B-shares, and two

factors considered by Fama and French (1993), HML and SMB, but computed using the

Chinese data. Note that the market excess returns (MSCI China index) were already

used as an observable risk factor. The consumer confidence index measures consumer

confidence, which is defined as the degree of optimism on the state of the economy. The

CBOE volatility index is a key measure of market expectations of near-term volatility
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conveyed by S&P 500 stock index option prices, and has been considered by many to be

the world’s premier barometer of investor sentiment and market volatility. Because the

market excess returns of A- and B-shares represents the group-specific market factor,

it is expected that the estimated group-specific factors relate to these observable risk

factors. In particular, the first asymptotic principal component of the A-share group,

corresponding to the largest eigenvalue, is related to the market excess returns of A-

shares. A similar argument is made in relation to the B-share market. HML factor

accounts for the spread in returns between value and growth stocks, and thus shows

the value premium. SMB measures the historic excess returns of small caps over big

caps. HML and SMB factors are calculated based on the stock returns of Shanghai and

Shenzhen stock exchanges. Except for the CBOE volatility index, these 6 variables are

from market data in China.

Table 9 summarizes the results. Here, we standardized each of the observable

economic/market variables gt before we regressed them on the estimated factors. In

Table 9, for each factor, the first row corresponds to the estimated regression coeffi-

cients, whereas the second and third rows correspond to their standard deviations and

t-values, respectively. If the absolute value of the t-value is above 2.56, 1.96, or 1.64,

the estimated regression coefficient is statistically significant at 1%, 5% and 10% level,

respectively. We can see from Table 9 that the first common pervasive factor, the first

element of f c,t, is relating to the market excess returns of A-shares, the market excess

returns of B-shares, and the size factor, SMB. The second common pervasive factor

is also relating to SMB. Contrary to findings for the US market, the book-to-market

ratio is not included in the common pervasive factors across group. However, as shown

in the result for Group B, the third group-specific factor of B-share is relating to HML

at the 10% level. This implies that HML factor is effective in the B-share market only.

As we expected, the first group-specific factor of the B-share market relates strongly

to the market excess returns of B-shares. However, none of the six observable factors

relate to the first group-specific factor of the A-shares. It would be an interesting topic

to investigate what type of economic/market variables relate to the first group-specific

factor of A-shares. This also applies to the second group-specific factor of B-shares.

With respect to two of the market risk factors (VIX and CCI, explained below), we

could not find the relationships with the estimated factors.

6.3 What types of observable risk factors explain the market?

From Theorem 2, we can implement a statistical significance test for the estimated

regression coefficients. Thus, we can check whether the regression coefficients β̂i for

each security are statistically significant. Table 10 shows the percentage of statistically
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significant conclusions of each of the observable risk factors. The percentage for the

k-th observable risk factor is calculated as follows:

1

Ng

∑

i;gi=g

I{β̂ik is statistically significant},

where I(·) is the indicator function, which takes a value of 1 if it is true and 0 otherwise,

and Ng is the size of group g. The significance level was set as α = 0.05. As shown

in Table 10, we can make the following investigations. First, among the five Chinese

macroeconomic variables, the leading indicator of the macroeconomic climate index,

the money supply, and the lagging indicator of the macroeconomic climate index are

important in explaining the excess returns of individual stocks both in the A- and B-

share markets. On the other hand, the consumer price index does not seem to explain

the excess returns of individual stocks during the March 2002 to December 2012 period.

Second, the exchange rate of the Chinese yuan to the UK pound has a large impact

on the excess returns of individual stocks in the A-share market. Interestingly, its

explanatory power in relation to B-shares, as indicated by the percentage in Table 10,

is half that of the A-shares. This implies that the investors in B-shares are greatly

concerned with the exchange rate of the Chinese yuan to the UK pound. Although

they are smaller than the percentage for the Chinese yuan to the UK pound, the

percentages in the table for the exchange rates of the Chinese yuan to the US dollar

and the Japanese yen are an important source of A- and B-share market fluctuations.

Again, the impact of these exchange rates on the A-share market is half of that on the

B-share market.

Third, the commodity prices are important observable risk factors. We can see

some contrasts between the A- and B-share markets in this respect. The gold and

silver price indexes appear to be more important for A-share investors than they are

for B-share investors. On the other hand, the metal, oil, and aluminum price indexes

seem to be more important for B-share investors than A-share investors.

Fourth, Table 10 shows that the MSCI China index is important for almost all B-

shares, but the index is less important for about half of the A-shares. The MSCI China

index consists of securities of B, H, Red Chip and P Chip share classes, but excludes

securities of A-share class. Also, the correlation between the market excess returns

of A- and B-shares is above 0.8. This may be a reason why half of the A-shares are

explained by the MSCI China index, even though the index excludes A-share securities.

Also, as shown in Table 9, the first unobserved common factor is mainly the Chinese

market excess return, and thus for interpretation, we regard the first unobserved factor

as the market excess return.

Fifth, the B-share market participants are more concerned with the FTSE 100 index

than are the A-share market participants. The impact of the European, Hong Kong,
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and Japanese stock markets appears to be less important than that of the China main-

land, the US and the UK stock markets for the B-share market participants. Although

the European, Hong Kong, and Japanese stock market indexes are not included in

almost all βi’s, this does not imply that these markets are irrelevant. As shown in Fig-

ure 1, the six stock market indexes (S&P 500, MSCI World, FTSE 100, MSCI Europe,

TOPIX, Hang Seng, MSCI China) are highly correlated and, thus, some of the indexes

are sufficient to explain the variations of individual stock returns of A- and B-shares.

Similar arguments apply to the other group of observable risk factors.

6.4 Price of risk

In the APT framework, the expected returns on assets are approximatively linear

in their sensitivities to the factors E[r] = ν0 + λ′ν, where ν0 is a constant, ν is a

vector of factor risk premiums, and λ is a vector of factor sensitivities. Here, we

partition the excess returns into two groups (A-shares and B-shares) and investigate

the subset pricing relations based on Fama and MacBeth (1973) type approach. Two

stage approach was also used in Goyal et al. (2008), in which the factor structure of

excess returns on stocks traded on the NYSE and Nasdaq (two groups) were studied.

Through the model construction process, we have already obtained the matrix of factor

sensitivities Λ̂c (common pervasive factors), Λ̂1 (group-specific pervasive factors with

respect to A-shares), and Λ̂2 (group-specific pervasive factors with respect to B-shares).

We then run the following cross-sectional regression for each group:

r̂g = ν0,g1 + Λ̂cνG,g + Λ̂gνg + Λ̂FF3,gνFF3,g + ξg, (g = 1, 2),

where 1 is a vector of ones, ξg is a vector of pricing errors, Λ̂FF3,1 is the matrix of

sensitivities to Fama and French’s 3 factors for A-shares (i.e., ER-A, HML, SMB in

Table 9), Λ̂FF3,2 is the matrix of sensitivities to Fama and French’s 3 factors for B-

shares (i.e., ER-B, HML, SMB in Table 9), and r̂g is a vector of average excess returns,

which are observable-risk adjusted, i.e., for the i-th security, T−1 ∑T
t=1(yit − x′itβ̂i) is

used. Here xit are listed in Table 8 and do not include HML, SMB , ER-A and ER-B

factors. Table 11 reports the results of this cross-sectional regression. The estimates

for the risk premium on the common-pervasive factors are statistically significant in

each group. Almost all factors seem to be priced. This indicates that our method

extracted useful factors that are priced.

One of the main contributions of this paper is to propose a procedure to select

the set of relevant observable risk factors. It is also interesting to see whether these

selected observable risk factors are priced in the cross-section of asset returns. Similar

to the above analysis, we run the following cross-sectional regression for each group:

r̂g = ν0,g1 + Λ̂β,gνβ,g + Λ̂FF3,gνFF3,g + ξg, (g = 1, 2),

29



where 1 is a vector of ones, Λ̂β,1 is the matrix of sensitivities to the set of observable

risk factors for A-shares in Table 10, Λ̂β,2 is the matrix of sensitivities to the set of

observable risk factors for B-shares in Table 10, and r̂g is a vector of average excess

returns, which are unobservable common/group-specific pervasive factor adjusted, i.e.,

for the i-th security, T−1 ∑T
t=1(yit − f̂

′
c,tλ̂c,i − f̂

′
gi,t

λ̂gi,i) is used. Table 12 reports the

results of this cross-sectional regression. The statistically significant estimates for the

risk premium on the observable risk factors varies over the groups. We can see that the

estimates on the macroeconomic climate coincident index, Yuan/Yen exchange rate,

natural gas, are priced in both groups. Like this, we can investigate the observable risk

factors that are priced.

We can see that the number of priced observable risk factors for the A-shares market

is much greater than for the B-shares market. Together with the number of priced

factors of unobservables, the results imply that the A-shares market exhibits more

heterogeneity than the B-shares market in terms of price of risk. Historically, A-shares

market investors were mainlanders until 2003. Due to the entry of the qualified foreign

institutional investors into the domestic A-share market, the degree of heterogeneity

has been increased as the A-share market consists of mainlanders and newly entered

foreign investors after 2003. On the other hand, due to the currency barrier of the

mainlanders, the investors in B-shares market are still foreign investors. This might be

one of the reasons why such differences are observed.

6.5 Robustness check

A unique feature of the Chinese stock market is that many companies issue “twin” A

and B shares. Here, the “twin” share has two classes of common shares with identical

voting and dividend rights, listed on the same exchanges (Shanghai or Shenzhen stock

exchanges), but traded by different participants (see, for instance, Mei et al. (2009)).

The dataset contains 50 “twin” A and B shares. To check the robustness of the ob-

tained result, we exclude the 50 “twin” A shares from the dataset, resulting in 989

A-share firms and 102 B-share firms. We then implement the same model construction

procedure as in the previous section. The selected numbers of common/group-specific

pervasive factors are identical to the case of without excluding the “twin” A shares.

Also, similar results are obtained with respect to the observable risk factors. This

suggests that the previous results are robust to the presence of twin shares.

The effect from foreign denominated currencies is another market characteristic

to be investigated. B-shares are denominated in foreign currencies with Shanghai B-

shares traded in U.S. dollars while Shenzhen B-shares in Hong Kong dollars. In the

previous section, we analyzed B-shares based on the foreign-currency denominated
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returns. Here, we take the effect of exchange rates into account. More specifically, we

express the B-share returns in Chinese yuan, and then implement the the same model

construction procedure as in the previous sections. We use the same dataset without

excluding the “twin” A shares. Again, the previously reported results are robust to this

change. This is not surprising because the dataset covers a time period in which the

value of Chinese yuan was pegged to the U.S. dollar. Although Chinese yuan exchange

rate has been allowed to float since 2005, it was in a narrow margin around a fixed

base rate determined with reference to a basket of world currencies.

7 Conclusion

We proposed a new econometric modeling procedure for the multifactor asset-pricing

model, which has three main features: high-dimensional observable risk factors, unob-

servable common pervasive factors that influence a large number of assets, and group-

specific pervasive factors that influence a subset of assets. Both the number of assets

and the number of potential observable risk factors can be larger than the sample size

(the number of time periods). We developed a procedure to identify the relevant ob-

servable factors from a large number of potentially related factors. We showed that the

proposed procedure delivers consistent estimation of the unknown beta coefficients; the

estimated beta coefficients are also asymptotically normal. The analysis is nonstandard

because of the selection problem in the presence of unobservable factors and a large

number of observable factors. We also studied how to determine the number of (unob-

servable) common pervasive factors and the number of group-specific factors. Monte

Carlo simulations demonstrated that the proposed modeling procedure performs well.

We then applied the proposed method to the analysis of the Chinese stock markets

and presented a number of empirical findings. Application of the method to the A-

share and B-share markets identifies the commonalities and differences in the return

structure of the assets across the two markets. The study revealed that the observable

risk factors affect the two markets in different ways. The study further demonstrated

the existence of two common pervasive factors across the two markets, a single group-

specific factor in the A-share market, and three group-specific factors in the B-share

market. We also studied the price of risk in the cross section of returns. The findings are

robust to the presence of “twin” shares, and robust to the exchange rate fluctuations.
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Table 5: The entries are the true positive rate (TPR) and true negative rate (TNR)
for the observable risk factors. TPR and TNR are averages taken over i (i = 1, .., N)
for 1,000 replicates. The panel size settings are: (a) T = 200, N = 1, 000, N1 = 200,
N2 = 200, N3 = 200, N4 = 200, and N5 = 200; (b) T = 150, N = 1, 000, N1 = 200,
N2 = 200, N3 = 200, N4 = 200, and N5 = 200; (c) T = 130, N = 920, N1 = 180,
N2 = 150, N3 = 140, N4 = 250, and N5 = 200; and (d) T = 150, N = 2000, N1 = 400,
N2 = 400, N3 = 400, N4 = 400, and N5 = 400.

(a) (b) (c) (d)
Data TPR TNR TPR TNR TPR TNR TPR TNR

1 0.9999 0.8991 0.9927 0.8475 0.9912 0.8312 0.9920 0.8469
2 0.9999 0.8989 0.9920 0.8450 0.9908 0.8346 0.9917 0.8444
3 0.9999 0.8915 0.9916 0.8528 0.9878 0.8384 0.9901 0.8511
4 0.9999 0.8927 0.9973 0.8440 0.9954 0.8459 0.9853 0.8390
5 0.9999 0.8930 0.9910 0.8461 0.9948 0.8290 0.9908 0.8412
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Table 6: Simulation results of the parameter estimates for β̂1 based on 1,000 repetitions,
under the data-generating process 4. We report the mean and standard deviation
(SD) of the regression coefficient estimates. Because the theoretical properties of β̂i

are common for each i, we report the results for β̂1 only. Also, the true number of
regressors are three and thus the first three elements of β̂i take nonzero values. Because
the length of β̂1 = (β̂1,1, ..., β̂1,p)

′ is very long, we report (β̂1,1, β̂1,2, β̂1,3, β̂1,4, β̂1,5, β̂1,6)
′.

Similar results are obtained for the remaining elements β̂1,7,...,β̂1,p, which are similar

to β̂1,4, β̂1,5, β̂1,6.

T = 50, N = 2000, N1 = 400, N2 = 400, N3 = 400, N4 = 400, N5 = 400.
β11 = −1 β12 = 2 β13 = 2 β14 = 0 β15 = 0 β16 = 0

Estimate -0.9690 2.0019 2.0121 0.0060 -0.0061 0.0065
SD 0.2990 0.2987 0.3127 0.2301 0.2307 0.2878

T = 100, N = 2000, N1 = 400, N2 = 400, N3 = 400, N4 = 400, N5 = 400.
β11 = −1 β12 = 2 β13 = 2 β14 = 0 β15 = 0 β16 = 0

Estimate -0.9956 1.9955 2.0160 -0.0047 -0.0055 0.0045
SD 0.0955 0.0961 0.1076 0.0364 0.0389 0.0354

T = 200, N = 2000, N1 = 400, N2 = 400, N3 = 400, N4 = 400, N5 = 400.
β11 = −1 β12 = 2 β13 = 2 β14 = 0 β15 = 0 β16 = 0

Estimate -0.9984 1.9959 1.9951 0.0000 0.0012 0.0011
SD 0.0541 0.0553 0.0616 0.0000 0.0118 0.0116

T = 50, N = 1000, N1 = 200, N2 = 200, N3 = 200, N4 = 200, N5 = 200.
β11 = −1 β12 = 2 β13 = 2 β14 = 0 β15 = 0 β16 = 0

Estimate -0.9733 1.9816 2.0132 0.0131 -0.0205 -0.0069
SD 0.3101 0.3196 0.3209 0.2426 0.2465 0.2354

T = 100, N = 1000, N1 = 200, N2 = 200, N3 = 200, N4 = 200, N5 = 200.
β11 = −1 β12 = 2 β13 = 2 β14 = 0 β15 = 0 β16 = 0

Estimate -0.9948 2.0159 2.0112 0.0051 -0.0057 0.0061
SD 0.0991 0.0984 0.1094 0.0366 0.0386 0.0395
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Table 7: Descriptive statistics for asset returns of the sample period: March 2002 to
December 2012. Each of these statistics is calculated using the time series of individual
stocks and then cross-sectionally averaged across stocks.

A-share market B-share market
N1 1039 N2 102
Mean (%) -0.084 Mean -0.096
SD (%) 14.496 SD 14.03
Skewness 0.057 Skewness 0.599
Kurtosis 5.725 Kurtosis 6.950
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Table 8: Descriptive statistics of the monthly returns of the observable risk factors.
The mean and the standard deviations (SD) are multiplied by 100. The sample periods
are from March 2002 to December 2012.

Variables Mean(%) SD(%) Skew. Kurtosis
China macroeconomic variables

MACROECONOMIC CLIMATE
INDEX (LEADING) -0.007 0.467 -0.260 3.174

MONEY SUPPLY - M2 1.375 1.076 0.305 3.690
MACROECONOMIC CLIMATE

INDEX (COINCIDENT) 0.020 0.598 -0.544 4.362
MACROECONOMIC CLIMATE

INDEX (LAGGING) 0.039 0.678 -0.342 3.328
CONSUMER PRICE INDEX 0.013 0.661 -0.419 4.658

Exchange rates
CHINESE YUAN to US DOLLAR -0.218 0.424 -1.704 6.538
CHINESE YUAN to YEN (JAPAN) 0.192 2.674 0.306 2.840
CHINESE YUAN to EURO 0.097 3.026 -0.060 4.129
CHINESE YUAN to POUND (UK) -0.126 2.797 -0.875 5.122
CHINESE YUAN to HK DOLLAR -0.213 0.449 -1.482 5.970

Commodity price index
S&P GSCI Industrial Metals Spot 0.787 7.245 -1.040 7.418
S&P GSCI Aluminum Spot 0.284 6.178 -0.381 4.248
S&P GSCI Copper Spot 1.279 8.994 -1.094 8.527
S&P GSCI Crude Oil Spot 1.142 10.657 -0.682 4.398
S&P GSCI Gold Spot 1.383 5.073 -0.160 4.072
S&P GSCI Natural Gas Spot 0.370 14.802 0.260 2.919
S&P GSCI Nickel Spot 0.807 11.185 -0.669 5.165
S&P GSCI Silver Spot 1.545 9.630 -0.503 3.941

Major stock market indexes
S&P 500 INDEX 0.220 5.472 -1.766 8.622
MSCI WORLD INDEX 0.264 5.692 -1.731 8.287
FTSE 100 INDEX 0.117 5.320 -1.294 5.789
MSCI EUROPE INDEX 0.257 6.925 -1.438 7.181
TOPIX INDEX -0.211 6.081 -0.745 3.243
HANG SENG INDEX 0.540 6.897 -0.504 4.541
MSCI CHINA INDEX 0.520 8.838 -0.295 4.008
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Table 9: The result of regression of the observable economic/market risk factors st

on the estimated common/group-specific factors. For example, when we regress st on

the estimated common pervasive factors f̂ c,t, the regression model is st = f̂
′
c,tγc + ec,t,

where γc are the regression coefficients, and ec,t is the error term. The six observable
economic/market risk factors st are the consumer confidence index in China (CCI),
the CBOE volatility index (VIX), market excess returns of A-shares (ER–A), market
excess returns of B-shares (ER–B), the book-to-market ratio (HML), and the market
capitalization (SMB). HML and SMB are based on Chinese stock returns. For each
factor, the first row corresponds to the estimated regression coefficients γ̂c, whereas
the second and third rows are the corresponding standard deviations and t-values. If
the absolute value of the t-value is above 2.56, 1.96, and 1.64, the estimated regression
coefficient is statistically significant at 1%, 5%, and 10% level, respectively.

CCI VIX ER–A ER–B HML SMB
Common factors

First -0.070 -0.017 0.579 0.425 -0.066 0.443
SD 0.077 0.116 0.084 0.099 0.085 0.083
t-value -0.915 -0.151 6.873 4.277 -0.783 5.306

Second -0.107 -0.021 0.084 -0.039 0.046 -0.172
SD 0.079 0.081 0.075 0.091 0.069 0.076
t-value -1.355 -0.262 1.109 -0.434 0.670 -2.246

Group A
First 0.026 0.005 0.067 0.018 0.056 0.005
SD 0.073 0.077 0.096 0.081 0.063 0.098
t-value 0.356 0.068 0.698 0.222 0.892 0.052

Group B
First 0.073 -0.058 -0.079 -0.357 -0.094 -0.239
SD 0.081 0.059 0.101 0.11 0.074 0.095
t-value 0.903 -0.988 -0.779 -3.235 -1.261 -2.507

Second -0.126 -0.097 -0.019 0.065 -0.077 0.057
SD 0.100 0.085 0.092 0.098 0.079 0.085
t-value -1.26 -1.133 -0.204 0.658 -0.978 0.678

Third 0.043 0.062 -0.095 -0.024 -0.167 -0.029
SD 0.084 0.060 0.098 0.114 0.085 0.113
t-value 0.513 1.027 -0.972 -0.214 -1.958 -0.264
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Table 10: The percentage of statistically significant observable risk factors across
markets. The percentage for the k-th observable risk factor is calculated as∑

i;gi=g I{β̂ik is statistically significant}/Ng, where I(·) is the indicator function, which
takes a value of 1 if it is true and 0 otherwise, and Ng is the size of group g. The
significance level was set as α = 0.05.

Variables A-shares B-shares
China macroeconomic variables

MACROECONOMIC CLIMATE
INDEX (LEADING) 50.33 67.64

MONEY SUPPLY - M2 35.12 24.50
MACROECONOMIC CLIMATE

INDEX (COINCIDENT) 4.52 0.98
MACROECONOMIC CLIMATE

INDEX (LAGGING) 63.90 60.78
CONSUMER PRICE INDEX 0.00 0.98

Exchange rates
CHINESE YUAN to US DOLLAR 18.76 32.35
CHINESE YUAN to YEN 16.55 28.43
CHINESE YUAN to EURO 4.13 1.96
CHINESE YUAN to UK POUND 35.70 73.52
CHINESE YUAN to HK DOLLAR 3.75 1.96

Commodity price index
S&P GSCI Industrial Metals Spot 7.12 22.54
S&P GSCI Aluminum Spot 3.17 34.31
S&P GSCI Copper Spot 17.22 0.00
S&P GSCI Crude Oil Spot 5.10 28.43
S&P GSCI Gold Spot 18.09 9.80
S&P GSCI Natural Gas Spot 0.76 0.00
S&P GSCI Nickel Spot 19.05 24.50
S&P GSCI Silver Spot 14.91 13.72

Major stock market indexes
S&P 500 INDEX 10.10 14.70
MSCI WORLD INDEX 0.76 0.00
FTSE 100 INDEX 24.63 53.92
MSCI EUROPE INDEX 1.05 0.00
TOPIX INDEX 2.79 7.84
HANG SENG INDEX 11.06 0.98
MSCI CHINA INDEX 47.06 93.13
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Table 11: Factor risk premiums for the set of r̂ = 2 common pervasive factors, r̂1 = 1
group-specific pervasive factors with respect to A-shares, r̂2 = 3 group-specific perva-
sive factors with respect to B-shares, and risk premiums for the Fama and French three
factors, all constructed from the Chinese stock markets. For each group, we run the
following cross-sectional regression: r̂g = ν0,g1 + Λ̂cνc,g + Λ̂gνg + Λ̂FF3,gνFF3,g + ξg,
(g = 1, 2). Details on this model are described in Section 7.4. The first line associated
with each row presents the factor risk price estimates, and the second line reports the
p-value (in parenthesis). The R2

OLS denotes the OLS cross-sectional R2. Note that the
A-share group has one group-specific pervasive factor only.

A-shares B-shares
Constant ν0,g 0.0032 0.0081

(0.0000) (0.0082)
Common factor First (νc,g1) 0.1156 0.1983

(0.0000) (0.0057)
Second (νc,g2) 0.0889 0.1624

(0.0000) (0.0004)
Group-specific factor First (νg1) 0.0029 0.1402

(0.7162) (0.0728)
Second (νg2) ——– 0.1188

(0.0039)
Third (νg2) ——– 0.0600

(0.1147)
ER-A (νFF3,11) 0.0079 ——–

(0.0006)
ER-B (νFF3,21) ——– 0.0299

(0.0566)
HML (νFF3,g2) -0.0033 -0.0103

(0.0000) (0.0037)
SMB (νFF3,g3) 0.0018 0.0075

(0.1171) (0.2038)

R2
OLS 0.2282 0.4565
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Table 12: Risk premiums for the set of observable risk factors. For each group, we
run the following cross-sectional regression: r̂g = ν0,g1 + Λ̂β,gνβ,g + Λ̂FF3,gνFF3,g + ξg,
(g = 1, 2). Details on this model are described in Section 7.4. The first/third columns
associated with each row present the factor risk price estimates, and the second/fourth
columns report the p-value (in parenthesis). The R2

OLS denotes the OLS cross-sectional
R2.

A-shares B-shares
Constant 0.0024 (0.0001) -0.0012 (0.6638)
China macroeconomic variables

MACROECONOMIC CLIMATE 0.0000 (0.5911) 0.0000 (0.8308)
INDEX (LEADING)

MONEY SUPPLY - M2 0.0000 (0.9778) -0.0006 (0.3343)
MACROECONOMIC CLIMATE -0.0003 (0.0140) -0.0014 (0.0169)

INDEX (COINCIDENT)
MACROECONOMIC CLIMATE -0.0004 (0.0020) -0.0010 (0.0937)

INDEX (LAGGING)
CONSUMER PRICE INDEX 0.0004 (0.0012) 0.0000 (0.9977)

Exchange rates
CHINESE YUAN to US DOLLAR -0.0001 (0.0079) 0.0000 (0.7837)
CHINESE YUAN to YEN -0.0011 (0.0065) -0.0039 (0.0389)
CHINESE YUAN to EURO -0.0004 (0.3994) -0.0014 (0.6107)
CHINESE YUAN to UK POUND -0.0001 (0.7636) -0.0014 (0.5310)
CHINESE YUAN to HK DOLLAR -0.0003 (0.0000) 0.0000 (0.8974)

Commodity price index
S&P GSCI Industrial Metals Spot -0.0007 (0.6018) -0.0070 (0.2837)
S&P GSCI Aluminum Spot -0.0012 (0.2669) -0.0078 (0.1439)
S&P GSCI Copper Spot 0.0002 (0.8681) -0.0046 (0.5211)
S&P GSCI Crude Oil Spot 0.0012 (0.5040) 0.0036 (0.7235)
S&P GSCI Gold Spot 0.0003 (0.6289) 0.0023 (0.5299)
S&P GSCI Natural Gas Spot -0.0057 (0.0287) -0.0331 (0.0047)
S&P GSCI Nickel Spot -0.0039 (0.0540) -0.0184 (0.0600)
S&P GSCI Silver Spot 0.0041 (0.0061) 0.0058 (0.4283)

Major stock market indexes
S&P 500 INDEX -0.0034 (0.0006) -0.0051 (0.3041)
MSCI WORLD INDEX -0.0030 (0.0037) -0.0022 (0.6540)
FTSE 100 INDEX -0.0037 (0.0000) 0.0016 (0.7128)
MSCI EUROPE INDEX -0.0034 (0.0064) 0.0000 (0.9908)
TOPIX INDEX 0.0006 (0.5056) 0.0086 (0.0677)
HANG SENG INDEX -0.0016 (0.1777) 0.0064 (0.2372)
MSCI CHINA INDEX -0.0003 (0.8229) 0.0087 (0.2669)

R2
OLS 0.2576 0.7647
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Figure 1: Correlation matrix. The ordering of the variables in the correlation matrix
is identical to the ordering of those in Table 8. MCI: macroeconomic climate index,
M2: money supply, and CPI: consumer price index.
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Supplementary document, for online posting only

Appendix

A1. Assumptions

We first state the assumptions needed for the asymptotic analysis. Following each

assumption, its meaning is briefly explained.

Assumption A: Common/group-specific pervasive factors

The common and group-specific pervasive factors satisfy E‖f c,t‖4 < ∞ and E‖f g,t‖4 <

∞ (g = 1, ..., G), respectively. Also

T−1
T∑

t=1

f c,tf c,t
′ → ΣFc and T−1

T∑

t=1

f g,tf g,t
′ → ΣFg

as T →∞, where ΣFc is an r×r positive definite matrix, and ΣFg is an rg×rg positive

definite matrix. The vector of common/group-specific factor f = (f ′c,t, f
′
1,t, ..., f

′
G,t)

′

has a positive definite covariance matrix. Also, we assume orthogonality between the

common and group-specific factors 1
T

∑T
t=1 f c,tf g,t

′ = 0.

The full rank assumption of ΣFc and ΣFg is necessary for the number of common

factors to be r and the number of group-specific factors to be rg (g = 1, 2, ..., G). The

Assumption B below is for the same reason. The last part of the assumption A assumes

that the common factors f c,t and the group-specific factors f g,t are orthogonal. Wang

(2010) demonstrates that this assumption is needed to separately identify the common

(global) and the group-specific factors. However, it can be shown that the estimated

slope coefficients βi does not depend on this assumption.

Assumption B: Factor loadings

The factor-loading matrix for the common pervasive factors Λc = [λc,1, . . . , λc,N ]′ sat-

isfies E‖λ4
c,i‖ < ∞ and:

‖N−1Λ′cΛc − ΣΛc‖ → 0 as N →∞,

where ΣΛc is an r× r positive definite matrix. Let Λg denote the Ng × r factor loading

matrix for the group factor f g,t (for assets belong to group g). For example, if the first

N1 assets belong to group 1, then Λ1 = [λ1,1, λ1,2, . . . , λ1,N1 ]
′. We assume E‖λ4

g,i‖ < ∞
and

‖N−1
g Λ′gΛg − ΣΛg‖ → 0 as Ng →∞,

1



where ΣΛg is an rg × rg positive definite matrix, g = 1, ..., G. In addition, [Λcg, Λg] is

of full column rank, where Λcg consists of rows of Λc corresponding to group g.

Assumption C: Security-specific returns

There exists a positive constant C < ∞ such that for all N and T ,

(C1): E[εit] = 0, E[|εit|8] < C for all i and t;

(C2): E[εitεjs] = τij,ts with |τij,ts| ≤ |τij| for some τij for all (t, s), and N−1 ∑N
i,j=1 |τij| <

C; and |τij,ts| ≤ |ηts| for some ηts for all (i, j), and T−1 ∑N
t,s=1 |ηts| < C. In addition,

(TN)−1 ∑
i,j,t,s=1 |τij,ts| < C.

(C3): For every (s, t), E[|N−1/2 ∑N
i=1(εisεit − E[εisεit])|4] < C.

(C4): T−2N−1 ∑
t,s,u,v

∑
i,j |cov(εisεit, εjuεjv)| < C and T−1N−2 ∑

t,s

∑
i,j,k,l |cov(εitεjt, εksεls)| <

C.

(C5): εit is independent of xjs, λc,i, λg,i, f c,s and f g,s for all i, j, t, s, g.

Assumption C is used in Bai (2003, 2009) and others. These assumptions permit

cross-sectional and serial correlations and heteroskedasticities in the idiosyncratic er-

rors. It can shown that if the εit are independent and have bounded eighth moment,

then this assumption holds.

Assumption D: Observable risk factors

We assume E‖xit‖4 < C. Let the i-th unit belong to the g-th group (i.e., gi = g),

let βi,βi 6=0 be nonzero elements of the parameter vector of βi, and let Xi,βi 6=0 be the

submatrix of Xi, corresponding to the columns of nonzero elements of the parameter

vector βi. We use qi to denote the number of nonzero elements of βi. We assume the

qi × qi matrix

1

T

[
X ′

i,βi 6=0MF 0
c ,F 0

g
Xi,βi 6=0

]
(9)

is positive definite, where MFc,Fg = MFc−MFcFg(Fg
′MFcFg)

−1Fg
′MFc = MFc−MFcPFgMFc ,

MFc = I − Fc(F
′
cFc)

−1F ′
c, PFg = Fg(F

′
gFg)

−1F ′
g, and MF 0

c ,F 0
g

is equal to MFc,Fg when

evaluated at the true common and group-specific factors (F 0
c , F 0

g ).

Also, we define

Ci = (Cci, Cgi), Bi =

(
Bci Bcgi

B′
cgi Bgi

)
,

with Ai = 1
T
X ′

iMFc,FgXi, Bci = (λc,iλ
′
c,i)⊗IT , Bgi = (λgi,iλ

′
gi,i

)⊗IT , Bcgi = (λc,iλ
′
gi,i

)⊗
IT , Cci = 1√

T
λ′c,i ⊗ (X ′

iMFc,Fg), Cgi = 1√
T
λ′gi,i

⊗ (X ′
iMFc,Fg). Let A be the collection of

(Fc, Fg) such that A = {(Fc, Fg) : F ′
cFc/T = I, F ′

gFg/T = I}. We assume

infFc,Fg∈A
[ 1

N

∑

i;gi=g

Ei(Fc, Fg)
]

is positive definite, (10)
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where Ei(Fc, Fg) = Bi − C ′
iA

−
i Ci and A−

i is the generalized inverse of Ai.

A few comments are in order for this assumption. First, we assume the matrix in

(9) is positive definite. This is a necessary assumption for consistent estimation of the

regression coefficients βi even if the factors (F 0
c , F 0

g ) are observable. This is the usual

rank condition for identification. We do not require the said matrix to be positive

definite for all (Fc, Fg) ∈ A (it would not be satisfied). Second, in (10) we require the

matrix to be positive definite over A. This is used to prove the consistency for the

estimates of (F 0
c , F 0

g ), which is unknown; A is the parameter space of the factors. We

do not require Ai to be positive definite over A, thus a generalized inverse is used.

Note that if Ai = 0, it implies that Ci = 0, thus CiA
−
i Ci is well defined, and in this

case, Ei = Bi. For each i, the matrix Ei is semipositive definite. The summation of Ei

over a large number of observations (Assumption E below) should be positive definite.

Song (2013) assumes that the matrix in (9) is positive definite for all (Fc, Fg) in our

notation (not just for (F 0
c , F 0

g )), which is more difficult to satisfy. Also, he does not

consider the regularization problem, nor the co-existence of common and group factors.

Our assumption requires a new proof of consistency.

Assumption E: Number of securities

This economy is divided into a finite number G of groups, with gth group containing

Ng securities such that 0 < a < Ng/N < ā < 1, which implies that the number of

securities in g-th groups will increase as the entire number of securities N grows.

Assumption F: Central limit theory

Let Xi,βi 6=0 be the submatrix of Xi corresponding to columns of nonzero elements of

the true parameter vector β0
i . We assume the central limit theory

1√
T

X ′
i,βi 6=0MF 0

c ,F 0
g
εi →d N(0, Ji(F

0
c , F 0

g )),

where Ji(F
0
c , F 0

g ) is the probability limit of (as T going to infinity)

1

T
X ′

i,βi 6=0MF 0
c ,F 0

g
E[εiε

′
i]MF 0

c ,F 0
g
Xi,βi 6=0.

This assumption is required for the asymptotic normality of the estimated βi.

Assumption G: Let Ωk` = E[εkε
′
`]. Then, we assume that

BNT =
1

N2T

N∑

k 6=i

N∑

` 6=i

X ′
kMF 0

c ,F 0
g
Ωk`MF 0

c ,F 0
g
X` = op(1).

3



This assumption holds trivially if εit are i.i.d over i and t because Ωkk = σ2
kI and

Ωk` = 0 (k 6= `) and BNT reduces to BNT = 1
N2T

∑N
k 6=i σ

2
kX

′
kMF 0

c ,F 0
g
Xk = Op(1/N) =

op(1). Cross-sectional independence (without i.i.d) leads to Ωk` = 0 (k 6= `), and BNT =
1

N2T

∑N
k 6=i X

′
kMF 0

c ,F 0
g
ΩkkMF 0

c ,F 0
g
Xk, which can also be shown to be Op(1/N), thus op(1).

Assumption G still allows weak cross-sectional dependence and serial correlations.

A2. Proof of Theorem 1

We first consider an alternative expression for the objective function in (3). Concen-

trating out Λc, and substituting yi −Xiβi − Fgi
λi for wc,i, (3) is equal to (ignore the

penalty term)

G∑

g=1

∑

i;gi=g

(yi −Xiβi − Fgi
λgi,i)

′MFc(yi −Xiβi − Fgi
λgi,i)

=
G∑

g=1

tr
{
(Wβg − FgΛ

′
g)
′MFc(Wβg − FgΛ

′
g)

}
,

where MFc = I − Fc(F
′
cFc)

−1F ′
c = I − FcF

′
c/T . Here, we denote Wβg as the T × Ng

matrix such that each column consists of wi = yi − Xiβi for all i in group g. By

further concentrating out Λg with Λg = WβgMFcFg(F
′
gMFcFg)

−1, the above objective

function becomes:

G∑

g=1

tr
{
W ′

βg(I −MFcFg(F
′
gMFcFg)

−1F ′
g)
′MFc(I − Fg(F

′
gMFcFg)

−1F ′
gMFc)Wβg

}
,

=
G∑

g=1

tr
{
W ′

βgMFcWβg

}
− tr

{
W ′

βgMFcFg(F
′
gMFcFg)

−1F ′
gMFcWβg

}
,

=
G∑

g=1

tr
{
W ′

βgMFc,FgWβg

}
,

where MFc,Fg = MFc −MFcFg(F
′
gMFcFg)

−1F ′
g.

In summary, the true parameters {β0
1, ..., β

0
N}, F 0

c , and {F 0
1 , ..., F 0

G} are obtained

by minimizing the following concentrated (and also centered objective function):

SNT (β1, ..., βN , Fc, F1, ..., FG)

=
G∑

g=1

tr
{
W ′

βgMFc,FgWβg

}
+ T

N∑

i=1

pκ,γ (|βi|)−
G∑

g=1

∑

i;gi=g

ε′iMF 0
c ,F 0

g
εi (11)

The last term is for the purpose of centering, it does not involve unknown parame-

ters. This alternative expression of the objective function is useful for proofing the

consistency of the estimated parameters.

The proof extends the that of Bai (2009) to heterogeneous regression coefficients

(βi is not restricted to be common) and to be the presence of group-specific factors).
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Without loss of generality, we assume that β0
i = 0, i = 1, ..., N (for notational sim-

plicity). Noting that the true data generating process is yi = F 0
c λc,i + F 0

gi
λgi,i + εi

(Xiβ
0
i = 0), we have

1

NT
SNT (β1, ..., βN , Fc, F1, ..., FG)

=
1

NT

G∑

g=1

∑

i;gi=g

β′iX
′
iMFc,FgXiβi +

2

NT

G∑

g=1

∑

i;gi=g

β′iX
′
iMFc,FgF

0
c λc,i

+
2

NT

G∑

g=1

∑

i;gi=g

β′iX
′
iMFc,FgF

0
g λg,i +

1

NT

G∑

g=1

∑

i;gi=g

λ′c,iF
0
c
′
MFc,FgF

0
c λc,i

+
2

NT

G∑

g=1

∑

i;gi=g

λ′c,iF
0
c
′
MFc,FgF

0
gi
λg,i +

1

NT

G∑

g=1

∑

i;gi=g

λ′gi,i
F 0

gi

′
MFc,FgF

0
gi
λg,i

+
2

NT

G∑

g=1

∑

i;gi=g

β′iX
′
iMFc,Fgεi +

2

NT

G∑

g=1

∑

i;gi=g

(F 0
c λc,i)

′MFc,Fgεi

+
1

NT

G∑

g=1

∑

i;gi=g

ε′i(MFc,Fg −MF 0
c ,F 0

g
)εi +

2

NT

G∑

g=1

∑

i;gi=g

(F 0
g λg,i)

′MFc,Fgεi

+
1

N

N∑

i=1

pκ,γ (|βi|) ,

where Λcg (Ng × r) consists of the factor loadings associated with the common factor

(fc) with respect to the g-th group. We can show that terms involving εi are op(1),

that is

1

NT

G∑

g=1

∑

i;gi=g

β′iX
′
iMFc,Fgεi = op(1),

1

NT

G∑

g=1

∑

i;gi=g

(F 0
c λc,i)

′MFc,Fgεi = op(1),

1

NT

G∑

g=1

∑

i;gi=g

ε′i(MFc,Fg −MF 0
c ,F 0

g
)εi = op(1),

1

NT

G∑

g=1

∑

i;gi=g

(F 0
g λg,i)

′MFc,Fgεi = op(1),

where op(1) holds uniformly over ‖βi‖ ≤ C, and uniformly over Fc and Fg such that

F ′
cFc/T = Ir and F ′

gFg/T = Irg . This follows from Lemma A1 of Bai (2009). Thus the

first six terms in the SNT dominates the next four terms. Let

1

NT
S̃NT (β1, ..., βN , Fc, F1, ..., FG)

denote the first six terms in 1
NT

SNT . Note that the term 1
N

∑N
i=1 pκ,γ (|βi|) is op(1) from

the assumption on the regularization parameter. We can rewrite

1

NT
SNT (β1, ..., βN , Fc, F1, ..., FG) =

1

NT
S̃NT (β1, ..., βN , Fc, F1, ..., FG) + op(1) (12)
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From

F 0
g
′
MF 0

c ,F 0
g

= 0

F 0
c
′
MF 0

c ,F 0
g

= 0,

we have S̃NT (β0
1, ..., β

0
N , F 0

c Hc, F
0
1 H1, ..., F

0
GHG) = 0 for any r× r invertible matrix Hc

and the rg × rg invertible matrices Hg, g = 1, , , ., G.

Introduce

Ai =
1

T
X ′

iMFc,FgXi, Bci = (λc,iλ
′
c,i)⊗ IT , Bgi = (λgi,iλ

′
gi,i

)⊗ IT ,

Bcgi = (λc,iλ
′
gi,i

)⊗ IT , C ′
ci =

1√
T

λ′c,i ⊗ (X ′
iMFc,Fg), C ′

gi =
1√
T

λ′gi,i
⊗ (X ′

iMFc,Fg),

ηc =
1√
T

vec(MFc,FgF
0
c ), ηg =

1√
T

vec(MFc,FgF
0
g ).

Then

1

NT
S̃NT (β1, ..., βN , Fc, F1, ..., FG)

=
1

N

G∑

g=1

∑

i;gi=g

β′iAiβi +
2

N

G∑

g=1

∑

i;gi=g

β′iCciηc +
2

N

G∑

g=1

∑

i;gi=g

β′iCgiηg

+
1

N

G∑

g=1

∑

i;gi=g

η′cBciηc +
2

N

G∑

g=1

∑

i;gi=g

η′cBcgiηg +
1

N

G∑

g=1

∑

i;gi=g

η′gBgiηg

Completing the square,

1

NT
S̃NT (β1, ..., βN , Fc, F1, ..., FG)

=
1

N

G∑

g=1

∑

i;gi=g

β′iAiβi +
2

N

G∑

g=1

∑

i;gi=g

β′iCiηc,g +
1

N

G∑

g=1

∑

i;gi=g

η′c,gBiηc,g

=
G∑

g=1

η′c,g


 1

N

∑

i;gi=g

Ei


 ηc,g +

1

N

G∑

g=1

∑

i;gi=g

(
βi + A−

i Ciηc,g

)′
Ai

(
βi + A−

i Ciηc,g

)
,

where

Ci = (Cci, Cgi), Bi =

(
Bci Bcgi

B′
cgi Bgi

)
, ηc,g = (η′c,η

′
g)
′,

and Ei = Bi − C ′
iA

−
i Ci with A−

i being a generalized inverse of Ai. Note that even if

Ai = 0, Ci must be zero because X ′
iMFc,Fg = 0. As a result, the term C ′

iA
−
i Ci becomes

C ′
iA

−
i Ci = 0. Thus, C ′

iA
−
i Ci is well defined even if Ai = 0.

Notice that S̃NT is quadratic in ηc,g and in βi + A−
i Ciηc,g. By Assumption D,

1
N

∑
i;gi=g Ei is positive definite and Ai is semipositive definite, it follows that

S̃NT (β1, ..., βN , Fc, F1, ..., FG) ≥ 0

6



for all (β1, ..., βN , Fc, F1, ..., FG).

Note that the centered objective function satisfies

1

NT
SNT (β0

1, ..., β
0
N , F 0

c , F 0
1 , ..., F 0

G) =
1

N

N∑

i=1

pκ,γ

(
|β0

i |
)

= op(1)

here we have used 1
NT

S̃NT (β0
1, ..., β

0
N , F 0

c , F 0
1 , ..., F 0

G) = 0, as noted earlier. Note that

SNT (β̂1, ..., β̂N , F̂c, F̂1, ..., F̂G) ≤ 1

NT
SNT (β0

1, ..., β
0
N , F 0

c , F 0
1 , ..., F 0

G) = op(1)

by definition of {β̂1, ..., β̂N , F̂c, F̂1, ..., F̂G}. Therefore, we have

op(1) ≥ 1

NT
SNT (β̂1, ..., β̂N , F̂c, F̂1, ..., F̂G)

=
1

NT
S̃NT (β̂1, ..., β̂N , F̂c, F̂1, ..., F̂G) + op(1).

where the equality follows from (12). Combined with S̃NT (β̂1, ..., β̂N , F̂c, F̂1, ..., F̂G) ≥
0, it must be true that

1

NT
S̃NT (β̂1, ..., β̂N , F̂c, F̂1, ..., F̂G) = op(1).

This implies that

G∑

g=1

η̂c,g


 1

N

∑

i;gi=g

Êi


 η̂c,g = op(1), (13)

1

N

G∑

g=1

∑

i;gi=g

(
β̂i + Â−

i Ĉiη̂c,g

)′
Âi

(
β̂i + Â−

i Ĉiη̂c,g

)
= op(1). (14)

where η̂c,g, Âi, B̂i, Ĉi, and Ei correspond to ηc,g, Ai, Bi, Ci and Ei, all evaluated at

the estimates {β̂1, ..., β̂N , F̂c, F̂1, ..., F̂G}.
From Assumption D, the matrix N−1 ∑

i;gi=g Êi [note that Êi = Ei(F̂c, F̂g)] is posi-

tive definite, and thus the first claim (13) implies that ‖η̂c,g‖2 = op(1) for g = 1, ..., G.

That is, we have proved that

1

T
‖MF̂c,F̂g

(F 0
c , F 0

g )‖2 = op(1)

This result implies that

‖MF̂c,F̂g
−MF 0

c ,F 0
g
‖ = ‖PF̂c,F̂g

− PF 0
c ,F 0

g
‖ = op(1) (15)

See Bai (2009, page 1265). That is, the space spanned by (F 0
c , F 0

g ) and the space

spanned by the estimated factors (F̂c, F̂g) are asymptotically the same. Because the

7



common factors Fc and the group specific factors are orthogonal (Assumption A), the

preceding result implies that

‖MF 0
c
−MF̂c

‖ = op(1), ‖MF 0
g
−MF̂g

‖ = op(1) (16)

We next prove the consistency of β̂i. From ‖η̂c,g‖2 = op(1) for g = 1, ..., G, equation

(14) implies that

1

N

G∑

g=1

∑

i;gi=g

β̂
′
iÂiβ̂i = op(1).

This implies an average consistency of β̂i, but it does not imply individual consistency

for each i. We shall use (15) to prove individual consistency. First, note that β̂i satisfies

β̂i = argminβi

[ 1

T
(yi −Xiβi)

′MF̂c,F̂gi
(yi −Xiβi) + pκ,γ(|βi|)

]
(17)

we have used MF̂c,F̂g
F̂c = 0 and MF̂c,F̂g

F̂gi
= 0. Using (15), we can easily show that

∣∣∣ 1

T
(yi −Xiβi)

′MF 0
c ,F 0

gi
(yi −Xiβi)−

1

T
(yi −Xiβi)

′MF̂c,F̂gi
(yi −Xiβi)

∣∣∣ = op(1). (18)

Let β̃i be the infeasible estimator defined as

β̃i = argminβi

[ 1

T
(yi −Xiβi)

′MF 0
c ,F 0

gi
(yi −Xiβi) + pκ,γ(|βi|)

]

= argminβi

[ 1

T
(y∗i −Xiβi)

′MF 0
c ,F 0

gi
(y∗i −Xiβi) + pκ,γ(|βi|)

]
,

where y∗i = Xiβ
0
i + εi. In view of (18), β̃i and β̂i are asymptotically equivalent,

‖β̃i − β̂i‖ = op(1)

It remains to show that β̃i is consistent. Let

Ri(βi) =
1

T
(y∗i −Xiβi)

′MF 0
c ,F 0

g
(y∗i −Xiβi) + pκ,γ(|βi|)

and let αiT = T−1/2+diT with diT = max{p′κT ,γ(|β0
ik|); β0

ik 6= 0}. Under max{p′′κT ,γ(|β0
ik|); β0

ik 6=
0} → 0 (which holds for the SCAD considered in this paper), we now show that there

exists a local minimizer β̃i of Ri(βi) such that ‖β̃i − β0
i ‖ = Op(T

−1/2 + diT ).

As in Fan and Li (2001), it is enough to show that for any given e > 0, there exists

a large constant C such that

P

[
min
‖u‖=C

Ri(β
0
i + αiT u) > Ri(β

0
i )

]
≥ 1− e, (19)
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because with probability at least 1 − e that there exists a local minimum in the ball

{β0
i + αiT u; ‖u‖ ≤ C}, which implies that there exists a local minimizer such that

‖β̃i − β0
i ‖ = Op(αiT ). From pκT ,γ(0) = 0, we have

Ri(β
0
i + αiT u)−Ri(β

0
i )

≥ 1

T
(y∗i −Xi(β

0
i + αiT u))′MF 0

c ,F 0
g
(y∗i −Xi(β

0
i + αiT u)) +

qi∑

k=1

pκ,γ(|β0
ik + αiT uk|)

− 1

T
(y∗i −Xiβ

0
i )
′MF 0

c ,F 0
g
(y∗i −Xiβ

0
i )−

qi∑

k=1

pκ,γ(|β0
ik|)

where qi is the number of components of β0
i . By using the Taylor expansion, we have

Ri(β
0
i + αiT u)−Ri(β

0
i )

≥ −2αiT
1

T
(y∗i −Xiβ

0
i )
′MF 0

c ,F 0
g
Xiu + u′

1

T
X̃ ′

iMF 0
c ,F 0

g
X̃iuα2

iT{1 + op(1)}

+
qi∑

k=1

[
αiT p′κ,γ(|β0

ik|)sgn(β0
ik)uk + α2

iT p′′κ,γ(|β0
ik|)u2

k{1 + op(1)}
]
,

where X̃i is T × qi matrix that consist of true regressors (with non-zero coefficients),

and X̃ ′
iMF 0

c ,F 0
g
X̃i/T is a positive definite matrix from Assumption D. From 1

T
(y∗i −

Xiβ
0
i )
′MF 0

c ,F 0
g
Xi = 1

T
ε′MF 0

c ,F 0
g
Xi = Op(T

−1/2), the first term is on the order Op(αT T−1/2)‖u‖;
the second term is on the order Op(α

2
T )‖u‖2. By choosing a sufficiently large con-

stant C, the second term dominates the first term uniformly in ‖u‖ = C. The third

term is bounded by
√

q
i
αiT diT‖u‖ + α2

iT max{p′′κT ,γ(|β0
ik|); β0

ik 6= 0}‖u‖2, which is also

dominated by the second term. In summary, by choosing a sufficiently large con-

stant C, (19) holds. Thus, there exists a local minimizer β̃i of Ri(βi) such that

‖β̃i − β0
i ‖ = Op(T

−1/2 + αiT ) = op(1). It is clear that with a proper κT , the asymp-

totical equivalence between β̂i and β̃i implies the consistency of β̂i, i.e., for any δ > 0,

we have

P
(
‖β̂i − β0

i ‖ > δ
)
→ 0, T →∞. (20)

Using the consistency of β̂i (β̂i = β0
i + op(1)), together with (16), we can further

show that

1√
T
‖F 0

c Hc − F̂c‖ = op(1), and
1√
T
‖F 0

g Hg − F̂g‖ = op(1), g = 1, ..., G,

for some rotation matrices Hc and Hg. The above is slightly stronger than (16). The

details are omitted. In fact, later we shall prove an even stronger result, which will

include the above as a special case.
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A3. Lemma A1

Under assumptions in Theorem 1, we have

1√
N

∥∥∥Λ̂′c −H−1
c Λc

′
∥∥∥ = op(1),

1√
Ng

∥∥∥Λ̂′g −H−1
g Λg

′
∥∥∥ = op(1), g = 1, ..., G.

For notational simplicity, in the following proof, we shall use Ir in place of Hc and

Hg to avoid carrying these cumbersome notations in many places, especially note that

Λ̂′cF̂c and Λ̂′gF̂g do not depend on these matrices. Thus we shall write the above in

simplified notation:

1√
N

∥∥∥Λ̂′c − Λc
′
∥∥∥ = op(1),

1√
Ng

∥∥∥Λ̂′g − Λg
′
∥∥∥ = op(1), g = 1, ..., G.

Proof of Lemma A1 We use the following facts. T−1‖Xi‖2 = T−1 ∑T
t=1 ‖xit‖2 =

Op(1), or T−1/2‖Xi‖ = Op(1). Averaging over i, (TN)−1 ∑N
i=1 ‖Xi‖2 = Op(1). Simi-

larly, T−1/2‖Fc‖ = Op(1), T−1‖X ′
iFc‖ = Op(1), and so forth.

Using the similar argument of Lemma A.10 of Bai (2009), we can express the factor

loading estimate for the common factor as Λ̂c = T−1F̂ ′
cŴc where Ŵc is T ×N matrix

so that i-th column consists of ŵc,i = yi − Xiβ̂i − F̂gi
λ̂gi,i. With respect to the

security returns that belong to g-th group, the corresponding factor loading matrix on

the common factor, denoted as Λ̂g
c , can be expressed as Λ̂g

c = T−1F̂ ′
cŴ

g
c where Ŵ g

c is

T ×Ng matrix so that i-th column consists of ŵc,i with each i belong to the g-th group.

Thus, we have

Ŵ g
c = Y g −XgB̂g − F̂gΛ̂

′
g = F 0

c Λg
c
′ + Eg + Xg(Bg − B̂g) + (F 0

g Λ′g − F̂gΛ̂
′
g),

where Y g is T ×Ng matrix so that each column consists of the security return vector

yi that belong to the g-th group, and Xg is T ×Nj × pi (three-dimensional matrix), so

that XgBg and XgB̂g are T × Nj matrices so that each column consists of Xiβ
0
i and

Xiβ̂i, respectively.

From F 0
c = (F 0

c − F̂c) + F̂c and F̂ ′
cF̂c/T = I, we have

Λ̂g′
c − Λg

c
′ = T−1F̂ ′

cŴ
g
c − Λg

c
′

= T−1F̂ ′
c(Y

g −XgB̂g − F̂gΛ̂
′
g)− Λg

c
′

= T−1F̂ ′
c{F 0

c Λg
c
′ + Eg + Xg(Bg − B̂g) + (F 0

g Λ′g − F̂gΛ̂
′
g)} − Λg

c
′

= T−1F̂ ′
c(F

0
c − F̂c)Λ

g
c
′ + T−1F̂ ′

cEg + T−1F̂ ′
cX

g(Bg − B̂g)

+T−1F̂ ′
c[(F

0
g − F̂g)Λ

′
g + F̂g(Λ

′
g − Λ̂′g)].

10



Using the same argument, we also have

Λ̂′g − Λg
′ = T−1F̂ ′

g(F
0
g − F̂g)Λg

′ + T−1F̂ ′
gEg + T−1F̂ ′

gX
g(Bg − B̂g)

+T−1F̂ ′
g[(F

0
c − F̂c)Λ

g
c
′ + F̂c(Λ

g
c
′ − Λ̂g′

c )].

Putting the expression of Λ̂g′
c − Λg

c
′ into Λ̂′g − Λ′g, we have

Λ̂′g − Λg
′ = T−1F̂ ′

g(F
0
g − F̂g)Λg

′ + T−1F̂ ′
gEg + T−1F̂ ′

gX
g(Bg − B̂g) + T−1F̂ ′

g(Fc − F̂c)Λ
g
c
′

+T−2F̂ ′
gF̂cF̂

′
g(F

0
g − F̂g)Λg

′ + T−2F̂ ′
gF̂cF̂

′
cEg + T−2F̂ ′

gF̂cF̂
′
cX

g(Bg − B̂g)

+T−2F̂ ′
gF̂cF̂

′
c(F

0
g − F̂g)Λ

′
g + T−2F̂ ′

gF̂cF̂
′
cF̂g(Λ

′
g − Λ̂′g),

which leads to

Λ̂′g − Λg
′ = (I + T−1F̂ ′

g(F̂cF̂
′
c/T )F̂g)

−1

[
T−1F̂ ′

g(F
0
g − F̂g)Λg

′ + T−1F̂ ′
gEg + T−1F̂ ′

gX
g(Bg − B̂g)

+T−1F̂ ′
g(F

0
c − F̂c)Λ

g
c
′ + T−2F̂ ′

gF̂cF̂
′
g(F

0
g − F̂g)Λg

′ + T−2F̂ ′
gF̂cF̂

′
cEg

+T−2F̂ ′
gF̂cF̂

′
cX

g(Bg − B̂g) + T−2F̂ ′
gF̂cF̂

′
c(F

0
g − F̂g)Λ

′
g

]
.

Because T−1‖F ′
gEg‖2 = op(1), N−1‖Bg − B̂g‖2 = op(1), T−1‖F 0

c − F̂c‖2 = op(1),

T−1‖F 0
g−F̂g‖2 = op(1), N−1

g ‖Λg
c‖2 = Op(1), N−1

g ‖Λg‖2 = Op(1), and ‖I+T−1F̂ ′
g(F̂cF̂

′
c/T )F̂g‖ =

Op(1), we obtain

1√
Ng

∥∥∥Λ̂′g − Λg
′
∥∥∥ = op(1), g = 1, ..., G.

Also, putting the expression of Λ̂′g−Λ′g into Λ̂g′
c −Λg

c
′, we obtain the similar expression

of Λ̂g′
c − Λg

c
′. We then obtain 1√

N

∥∥∥Λ̂′c − Λc
′
∥∥∥ = op(1). This completes the proof of

Lemma A1.

A3. Lemma A2

Under the assumptions of Theorem 1, we have

T−1/2‖F̂c − F 0
c Hc‖ =

1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{N1/2, T 1/2}

)
,

and

T−1/2‖F̂g − F 0
g Hg‖ =

1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op


 1

min{N1/2
j , T 1/2}


 ,

for g = 1, ..., G, Here Hc and Hg are defined as H−1
c = Vc,NT (F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1,

and H−1
g = Vg,NgT (F 0

g
′
F̂g/T )−1(Λ′gΛg/Ng)

−1.

Proof of Lemma A2 We first obtained the convergence rate of F̂c. We recall

 1

NT

G∑

g=1

∑

i;gi=g

(yi −Xiβ̂i − F̂gi,iλ̂gi,i)(yi −Xiβ̂i − F̂gi,iλ̂gi,i)
′

 F̂c = F̂cVc,NT

11



From λ̂gi,i = λ̂gi,i−H−1
gi

λgi,i+H−1
gi

λgi,i, we can show that terms involving λ̂gi,i−H−1
gi

λgi,i

are negligible, thus we consider the equation, up to an negligible term,

[
1

NT

G∑

g=1

∑

i;gi=g

{
yi −Xiβ̂i − F̂gi,i(H

−1
gi

λgi,i)− F̂gi,i(λ̂gi,i −H−1
gi

λgi,i)
}

×
{
yi −Xiβ̂i − F̂gi,i(H

−1
gi

λgi,i)− F̂gi,i(λ̂gi,i −H−1
gi

λgi,i)
}′

]
F̂c = F̂cVc,NT .

Hereafter, we consider

 1

NT

G∑

g=1

∑

i;gi=g

(yi −Xiβ̂i − F̂gi,iH
−1
gi

λgi,i)(yi −Xiβ̂i − F̂gi,iH
−1
gi

λgi,i)
′

 F̂c = F̂cVc,NT .

Using yi = Xiβ
0
i + F 0

c λc,i + F 0
gi,i

λgi,i + εi, we have

F̂cVc,NT

=
1

NT

N∑

i=1

Xi(βi − β̂i)(βi − β̂i)
′X ′

iF̂c +
1

NT

N∑

i=1

Xi(βi − β̂i)λc,iF
0
c
′
F̂c

+
1

NT

N∑

i=1

Xi(βi − β̂i)ε
′
iF̂c +

1

NT

N∑

i=1

F 0
c λc,i(βi − β̂i)

′X ′
iF̂c

+
1

NT

N∑

i=1

εi(βi − β̂i)
′X ′

iF̂c +
1

NT

N∑

i=1

F 0
c λc,iε

′
iF̂c +

1

NT

N∑

i=1

εiλ
′
c,iF

0
c
′
F̂c

+
1

NT

N∑

i=1

εiε
′
iF̂c +

1

NT

N∑

i=1

F 0
c λc,iλ

′
c,iF

0
c
′
F̂c

+
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(F 0
gi
− F̂gi

H−1
gi

)′F̂c

+
1

NT

G∑

g=1

∑

i;gi=g

(F 0
gi
− F̂gi

H−1
gi

)λgi,i(βi − β̂i)
′X ′

iF̂c

+
1

NT

G∑

g=1

∑

i;gi=g

(F 0
gi
− F̂gi

H−1
gi

)λgi,iε
′
iF̂c +

1

NT

G∑

g=1

∑

i;gi=g

εiλ
′
gi,i

(F 0
gi
− F̂gi

H−1
gi

)′F̂c

+
1

NT

G∑

g=1

∑

i;gi=g

(F 0
gi
− F̂gi

H−1
gi

)λgi,iλ
′
gi,i

(F 0
gi
− F̂gi

H−1
gi

)′F̂c

+
1

NT

G∑

g=1

∑

i;gi=g

(F 0
gi
− F̂gi

H−1
gi

)λgi,iλ
′
c,iF

0
c
′
F̂c

+
1

NT

G∑

g=1

∑

i;gi=g

F 0
c λc,iλ

′
gi,i

(F 0
gi
− F̂gi

H−1
gi

)′F̂c

= I1 + · · ·+ I16.

Multiplying (F 0
c
′
F̂c/T )−1(Λ′cΛc/N)−1 on each side of the prior formula, we have

‖F̂cVc,NT (F 0
c
′
F̂c/T )−1(Λ′cΛc/N)−1 − F 0

c ‖
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=
16∑

k=1,k 6=9

Ik(F
0
c
′
F̂c/T )−1(Λ′cΛc/N)−1

≤
16∑

k=1,k 6=9

‖Ik‖ × ‖(F 0
c
′
F̂c/T )−1(Λ′cΛc/N)−1‖.

We now consider each term on the right.

‖I1‖ ≤
√

T

N

N∑

i=1

(‖Xi‖2

T

)
‖βi − β̂i‖2

(‖F̂c‖√
T

)
=

√
T

N

N∑

i=1

op

(
‖βi − β̂i‖

)
.

Using the same argument, the next four terms satisfy

‖Ik‖ ≤
√

T

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
,

k = 2, 3, 4, 5. The next three terms have the same expressions as those in Bai (2009)

and thus T−1/2‖Ik‖ ≤ Op(1/ min{√N,
√

T}), k = 6, 7, 8.

Next, we need to evaluate the terms that contain (F 0
g −F̂gH

−1
g ). From the definition

of F̂g, we have

F̂gVg,NgT =


 1

NgT

∑

i;gi=g

(yi −Xiβ̂i − F̂cλ̂c,i)(yi −Xiβ̂i − F̂cλ̂c,i)
′

 F̂g

where Ng is the number of assets in the g-th group. Because of the result of Lemma

A1, we can show that terms involving F̂c(λ̂c,i − H−1
c λc,i) are negligible. We consider

the following equation, up to an negligible term,

F̂gVg,NgT =


 1

NgT

∑

i;gi=g

(yi −Xiβ̂i − F̂cH
−1
c λc,i)(yi −Xiβ̂i − F̂cH

−1
c λc,i)

′

 F̂g.

From yi = Xiβ
0
i + F 0

c λc,i + F 0
gi,i

λgi,i + εi, we have

F̂gVg,NgT

=
1

NgT

∑

i;gi=g

Xi(βi − β̂i)(βi − β̂i)
′X ′

iF̂g +
1

NgT

∑

i;gi=g

Xi(βi − β̂i)λgi,iF
0
g
′
F̂g

+
1

NgT

∑

i;gi=g

Xi(βi − β̂i)ε
′
iF̂g +

1

NgT

∑

i;gi=g

F 0
g λgi,i(βi − β̂i)

′X ′
iF̂g

+
1

NgT

∑

i;gi=g

εi(βi − β̂i)
′X ′

iF̂g +
1

NgT

∑

i;gi=g

F 0
g λgi,iε

′
iF̂g +

1

NgT

∑

i;gi=g

εiλ
′
gi,i

F 0
g
′
F̂g

+
1

NgT

∑

i;gi=g

εiε
′
iF̂g +

1

NgT

∑

i;gi=g

F 0
g λgi,iλ

′
gi,i

F 0
g
′
F̂g

+
1

NgT

∑

i;gi=g

Xi(βi − β̂i)λ
′
c,i(F

0
c − F̂cH

−1
c )′F̂g
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+
1

NgT

∑

i;gi=g

(F 0
c − F̂cH

−1
c )λc,i(βi − β̂i)

′X ′
iF̂g

+
1

NgT

∑

i;gi=g

(F 0
c − F̂cH

−1
c )λc,iε

′
iF̂g +

1

NgT

∑

i;gi=g

εiλ
′
c,i(F

0
c − F̂cH

−1
c )′F̂g

+
1

NgT

∑

i;gi=g

(F 0
c − F̂cH

−1
c )λc,iλ

′
c,i(F

0
c − F̂cH

−1
c )′F̂g

+
1

NgT

∑

i;gi=g

(F 0
c − F̂cH

−1
c )λc,iλ

′
gi,i

F 0
g
′
F̂g

+
1

NgT

∑

i;gi=g

F 0
g λgi,iλ

′
c,i(F

0
c − F̂cH

−1
c )′F̂g

= Ig
1 + · · ·+ Ig

16.

Multiplying (F 0
g
′
F̂g/T )−1(Λ′gΛg/Ng)

−1 on each side of the prior formula, we have

F̂gH
−1
g − F 0

g =
16∑

k=1,k 6=9

Ig
k(F 0

g
′
F̂g/T )−1(Λ′gΛg/Ng)

−1,

where H−1
g = Vg,NgT (F 0

g
′
F̂g/T )−1(Λ′gΛg/Ng)

−1.

Putting this expression into I10, we have

I10 =
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i




16∑

k=1,k 6=9

Ig
k(F 0

g
′
F̂g/T )−1(Λ′gΛg/Ng)

−1



′

F̂c

=
1

NT

G∑

g=1

∑

i;gi=g

16∑

k=1,k 6=9

Xi(βi − β̂i)λ
′
gi,i

(Ig
kGg)

′F̂c,

where we denote (F 0
g
′
F̂g/T )−1(Λ′gΛg/Ng)

−1 as Gg. We then evaluate each of the terms

in I10.

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
1Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

X`(β` − β̂`)(β` − β̂`)
′X ′

`F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤
G∑

g=1

∑

i;gi=g

1

Ng

× op(‖βi − β̂i‖).

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
2Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

X`(β` − β̂`)λg,`F
0
g
′
F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤
G∑

g=1

∑

i;gi=g

1

Ng

× op(‖βi − β̂i‖).
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T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
3Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

X`(β` − β̂`)ε
′
`F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤
G∑

g=1

∑

i;gi=g

1

Ng

× op(‖βi − β̂i‖).

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
4Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

F 0
g λg,`(β` − β̂`)

′X ′
`F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤
G∑

g=1

∑

i;gi=g

1

Ng

× op(‖βi − β̂i‖).

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
5Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

ε`(β` − β̂`)
′X ′

`F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤
G∑

g=1

∑

i;gi=g

1

Ng

× op(‖βi − β̂i‖).

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
6Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

F 0
g λg,`ε

′
`F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤
G∑

g=1

∑

i;gi=g

1

Ng

×Op(‖βi − β̂i‖).

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
7Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

ε`λ
′
g,`F

0
g
′
F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤
G∑

g=1

∑

i;gi=g

1

Ng

×Op(‖βi − β̂i‖).
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T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
8Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

ε`ε
′
`F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤
G∑

g=1

∑

i;gi=g

1

Ng

×Op(‖βi − β̂i‖).

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
10Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

X`(β` − β̂`)λ
′
c,`(F

0
c − F̂cH

−1
c )′F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤ op(1)× ‖F 0
c − F̂cH

−1
c ‖√

T

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
11Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

(F 0
c − F̂cH

−1
c )λc,`(β` − β̂`)

′X ′
`F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤ op(1)× ‖F 0
c − F̂cH

−1
c ‖√

T
.

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
12Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

(F 0
c − F̂cH

−1
c )λc,`ε

′
`F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤ op(1)× ‖F 0
c − F̂cH

−1
c ‖√

T
.

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
13Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`∈Sj

ε`λ
′
G,`(F

0
c − F̂cH

−1
c )′F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤ op(1)× ‖F 0
c − F̂cH

−1
c ‖√

T
.

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
14Gg)

′F̂c

∣∣∣
∣∣∣
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= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

[
1

NgT

∑

`;g`=g

(F 0
c − F̂cH

−1
c )λc,`λ

′
c,`(F

0
c − F̂cH

−1
c )′F̂gGg

]′
F̂c

∣∣∣∣∣

∣∣∣∣∣

≤ op(1)× ‖F 0
c − F̂cH

−1
c ‖2

T
.

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
15Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

(F 0
c − F̂cH

−1
c )λc,`λ

′
g,`F

0
g
′
F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤ op(1)× ‖F 0
c − F̂cH

−1
c ‖√

T
.

The final term is

T−1/2
∣∣∣
∣∣∣ 1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(Ig
16Gg)

′F̂c

∣∣∣
∣∣∣

= T−1/2

∣∣∣∣∣

∣∣∣∣∣
1

NT

G∑

g=1

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i


 1

NgT

∑

`;g`=g

F 0
g λj,`λ

′
c,`(F

0
c − F̂cH

−1
c )′F̂gGg



′

F̂c

∣∣∣∣∣

∣∣∣∣∣

≤ op(1)× ‖F 0
c − F̂cH

−1
c ‖√

T
.

Summarizing these evaluations, we finally have

T−1/2‖I10‖ ≤
G∑

g=1

∑

i;gi=g

1

Ng

×Op(‖βi − β̂i‖) + op(1)× ‖F 0
c − F̂cH

−1
c ‖√

T
.

The terms I11 ∼ I16 can be evaluated in a similar manner and

T−1/2‖Ik‖ ≤
G∑

g=1

∑

i;gi=g

1

Ng

×Op(‖βi − β̂i‖) + op(1)× ‖F 0
c − F̂cH

−1
c ‖√

T
,

for k = 11, ..., 16. Finally, we have

T−1/2‖F̂cVc,NT (F 0
c
′
F̂c/T )−1(Λ′cΛc/N)−1 − F 0

c ‖

=
1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{N1/2, T 1/2}

)
+ op(1)×Op

(∣∣∣∣∣

∣∣∣∣∣
F 0

c − F̂cH
−1
c√

T

∣∣∣∣∣

∣∣∣∣∣

)

This implies the claim

T−1/2‖F̂c − F 0
c Hc‖ =

1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{N1/2, T 1/2}

)
,

The proof for the second part of the lemma concerning F̂g is similar. This completes

the proof.
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A4. Lemma A3

Define E[εkε
′
k] = Ωk. Under assumptions in Theorem 1, we have

1

NT 2

N∑

k=1

X ′
iMF̂c,F̂g

(εkε
′
k − Ωk)F̂c(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

= Op

(
1

T
√

N

)
+

1√
NT

[
1

N

N∑

k=1

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N1/2, T 1/2}

)]

+
1√
N
×

[
1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{N, T}

)]
.

Proof: Using MFc,Fg = MFc −MFcFg(F
′
gMFcFg)

−1F ′
gMFc , we rewrite the term as

1

NT 2

N∑

k=1

X ′
iMF̂c,F̂g

(εkε
′
k − Ωk)F̂c(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

NT 2

N∑

k=1

X ′
iMF̂c

(εkε
′
k − Ωk)F̂c(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

− 1

NT 2

N∑

k=1

X ′
iKF̂c,F̂g

(εkε
′
k − Ωk)F̂c(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

= I + II,

where KFc,Fg = MFcFg(F
′
gMFcFg)

−1F ′
gMFc . The first term is written as

I =
1

NT 2

N∑

k=1

X ′
i(εkε

′
k − Ωk)F̂c(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

− 1

NT 2

N∑

k=1

X ′
i(F̂cF̂

′
c/T )(εkε

′
k − Ωk)F̂c(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

= I ′ + I ′′.

Adding and subtracting terms yields

I ′ =
1

NT 2

N∑

k=1

X ′
i(εkε

′
k − Ωk)F

0
c Hc(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

+
1

NT 2

N∑

k=1

X ′
i(εkε

′
k − Ωk)(F̂c − F 0

c Hc)(F
0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

The first term on the right is equal to

1

NT 2

N∑

k=1

{
T∑

t=1

T∑

s=1

xit(εktεks − E[εktεks])f
0
c,s

′
}

Hc(F
0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1√
NT

× 1√
N

N∑

k=1

{
1

T

T∑

t=1

T∑

s=1

xit(εktεks − E[εktεks])f
0
c,s

′
}

Hc(F
0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

= Op

(
1√
NT

)
,
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which follows by Lemma A.2(ii) in Bai (2009). Denote

as =
1√
NT

N∑

k=1

T∑

t=1

xit(εktεks − E[εktεks]) = Op (1) ,

the second term of I ′ is

1√
NT

{
1

T

T∑

s=1

as(f̂ c,s − f 0
c,sHc)

′
}

(F 0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1√
NT

×
[

1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{N1/2, T 1/2}

)]
.

We next consider I ′′.

I ′′ ≤ ‖X ′
iF̂c‖
T

‖(F 0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i‖

∣∣∣∣∣

∣∣∣∣∣
1

NT 2

N∑

k=1

F̂ ′
c(εkε

′
k − Ωk)F̂c

∣∣∣∣∣

∣∣∣∣∣

= Op(1)×
∣∣∣∣∣

∣∣∣∣∣
1

NT 2

N∑

k=1

F̂ ′
c(εkε

′
k − Ωk)F̂c

∣∣∣∣∣

∣∣∣∣∣.

Using the result of Lemma A.5 in Bai (2009), this term becomes

I ′′ ≤ Op

(
1

T
√

N

)
+

1√
NT

[
1

N

N∑

k=1

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N1/2, T 1/2}

)]

+
1√
N
×

[
1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{N, T}

)]
.

In a similar manner, the term II is written as

II ≤ ‖X ′
iKFc,Fg‖

T
‖(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i‖

∣∣∣∣∣

∣∣∣∣∣
1

NT 2

N∑

k=1

F̂ ′
c(εkε

′
k − Ωk)F̂c

∣∣∣∣∣

∣∣∣∣∣

= Op(1)×
∣∣∣∣∣

∣∣∣∣∣
1

NT 2

N∑

k=1

F̂ ′
c(εkε

′
k − Ωk)F̂c

∣∣∣∣∣

∣∣∣∣∣

≤ Op

(
1

T
√

N

)
+

1√
NT

[
1

N

N∑

k=1

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N1/2, T 1/2}

)]

+
1√
N
×

[
1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{N, T}

)]
.

Combining these results, we obtain the result.

A4. Lemma A4

Under the assumptions of Theorem 1, we have

1

NT

G∑

g=1

∑

k;gk=g

λg,kε
′
kF̂c

=
1

N3/2

N∑

k=1

Op

(
‖βk − β̂k‖

)
+

1

N1/2
Op

(
1

min{N1/2, T 1/2}

)
.

19



Proof: Because F̂c = F 0
c Hc + (F̂c − F 0

c Hc), we have

1

NT

G∑

g=1

∑

k;gk=g

λg,kε
′
kF̂c

=
1

NT

N∑

k=1

λc,kε
′
kF

0
c Hc +

1

NT

N∑

k=1

λc,kε
′
k(F̂c − F 0

c Hc).

The first term is 1
NT

∑N
k=1 λc,kε

′
kF

0
c Hc = Op(1/

√
NT ). The second term can be evalu-

ated using the result of Lemma A2. Thus, we obtain the claim.

A5. Proof of Theorem 2

First, for notational simplicity, we denote the non-zero element of the true parameter

βi10 as βi, and the corresponding sub-matrix Xi,βi 6=0 of Xi as Xi. Suppose that i

belong to the gth group. An alternative expression for the solution of the regression

coefficients of βi is

β̂i(MF̂c,F̂g
) =

(
X ′

iMF̂c,F̂g
Xi + Σi(κ)

)−1
X ′

iMF̂c,F̂g
yi,

where MF̂c,F̂g
is defined in Section 3, Σ(κ) = diag{p′κ,γ(|β̂i1|)/|β̂i1|, ..., p′κ,γ(|β̂iqi

|)/|β̂iqi
|}

is defined in Theorem 2.

Noting that yi = Xiβi + F 0
c λc,i + F 0

gi
λgi,i + εi, we have

1

T

(
X ′

iMF̂c,F̂g
Xi + Σi(κ)

)
(β̂i − βi) +

1

T
Σi(κ)βi

=
1

T
X ′

iMF̂c,F̂g
F 0

c λc,i +
1

T
X ′

iMF̂c,F̂g
F 0

g λgi,i +
1

T
X ′

iMF̂c,F̂g
εi

Using the result in the proof of Theorem 1,

F 0
c = F̂cH

−1
c −




16∑

k=1,k 6=9

Ik


 (F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1

we have

1

T
X ′

iMF̂c,F̂g
F 0

c λc,i = − 1

T
X ′

iMF̂c,F̂g




16∑

k=1,k 6=9

Ik


 (F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i,

where we used MF̂c,F̂g
F̂cH

−1
c = 0. We next examine each of the components in the

right hand side of the equation.

1

T
X ′

iMF̂c,F̂g
I1(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

T
X ′

iMF̂c,F̂g

[
1

NT

N∑

k=1

Xk(βk − β̂k)(βk − β̂k)
′X ′

kF̂

]
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

= op(1)× (β̂i − βi) +
1

N

N∑

k 6=i

op(β̂k − βk)
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where we used ‖XiMF̂c,F̂g
‖/T 1/2 = Op(1), ‖β̂k − βk‖ = op(1), ‖(F 0

c
′
F̂c/T )−1‖ = Op(1),

‖(Λ′cΛc/N)−1‖ = Op(1), Note that the second term is 1
N

∑N
k 6=i op(β̂k −βk) = op(T

−1/2),

which will be shown later. Next, we have

1

T
X ′

iMF̂c,F̂g
I2(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

NT
X ′

iMF̂c,F̂g

[
N∑

k=1

Xk(βk − β̂k)λ
′
c,k(Λ

′
cΛc/N)−1

]
λc,i

=
1

NT

N∑

k=1

X ′
iMF̂c,F̂g

Xkλ
′
c,k(Λ

′
cΛc/N)−1λc,i(βk − β̂k)

=
1

NT
X ′

iMF̂c,F̂g
Xiλ

′
c,i(Λ

′
cΛc/N)−1λc,i(βi − β̂i)

+
1

NT

N∑

k 6=i

X ′
iMF̂c,F̂g

Xkλ
′
c,k(Λ

′
cΛc/N)−1λc,i(βk − β̂k).

The second term in the last line is 1
NT

∑N
k 6=i X

′
iMF̂c,F̂g

Xkλ
′
c,k(Λ

′
cΛc/N)−1λc,i(βk− β̂k) =

op(T
−1/2), which will be shown later. The third term can be evaluated as

1

T
X ′

iMF̂c,F̂g
I3(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

T
X ′

iMF̂c,F̂g

[
1

NT

N∑

k=1

Xk(βk − β̂k)ε
′
kF̂c

]
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

N

N∑

k=1

(
X ′

iMF̂c,F̂g
Xk

T

)
(βk − β̂k)

(
ε′kF̂c

T

)
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=


 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N1/2
1 , T 1/2}

)


×

 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)

 + op(1)×Op(β̂i − βi),

where we used the following relation ε′kF̂c/T = ε′kF
0
c Hc/T + ε′k(F̂c − F 0

c Hc)/T =

Op(1/
√

T ) + N−1 ∑N
i=1 Op

(
‖βi − β̂i‖

)
+ Op(1/ min{N1/2, T 1/2}). Using MF̂c,F̂g

F 0
c =

MF̂c,F̂g
(F 0

c − F̂cH
−1
c ), the next term is

1

T
X ′

iMF̂c,F̂g
I4(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

T
X ′

iMF̂c,F̂g

[
1

NT

N∑

i=1

F 0
c λc,i(βi − β̂i)

′X ′
iF̂c

]
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1√
T

(
X ′

iMF̂c,F̂g√
T

) (
F 0

c − F̂cH
−1
c√

T

) [
1

N

N∑

i=1

λc,i(βi − β̂i)
′
(

X ′
iF̂c√
T

)]

× (F 0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

= op(1)×Op(β̂i − βi) + op(1)× 1

N

N∑

k 6=i

Op(β̂k − βk) + op(T
−1/2),
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where T−1/2‖F 0
c − F̂cH

−1
c ‖ = op(1) was used. Also

1

T
X ′

iMF̂c,F̂g
I5(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

T
X ′

iMF̂c,F̂g

[
1

NT

N∑

k=1

εk(βk − β̂k)
′X ′

kF̂c

]
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1√
T

(
X ′

iMF̂c,F̂g√
T

) [
1

N

N∑

k=1

(
εk√
T

)
(βk − β̂k)

′
(

X ′
iF̂c√
T

)]
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

= op(1)×Op(β̂i − βi) + op(1)×
N∑

k 6=i

Op(β̂k − βk) + op(T
−1/2).

Next,

1

T
X ′

iMF̂c,F̂g
I6(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

T
X ′

iMF̂c,F̂g

[
1

NT

N∑

k=1

F 0
c λc,kε

′
kF̂c

]
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

T
X ′

iMF̂c,F̂g

[
1

NT

N∑

k=1

(F 0
c − F̂cH

−1
c )λc,kε

′
kF̂c

]
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=

(
X ′

iMF̂c,F̂g√
T

) [
1

NT

N∑

k=1

(F 0
c − F̂cH

−1
c )√

T
λc,kε

′
kF̂c

]
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i.

Using

1

NT

N∑

k=1

λc,kε
′
kF̂c

=
1

NT

N∑

k=1

λc,kε
′
kF

0
c Hc +

1

NT

N∑

k=1

λc,kε
′
k(F̂c − F 0

c Hc)

= Op

(
1√
NT

)
+

1

N3/2

N∑

k=1

Op

(
‖βk − β̂k‖

)
+

1

N1/2
Op

(
1

min{N1/2, T 1/2}

)

=
1

N3/2

N∑

k=1

Op

(
‖βk − β̂k‖

)
+

1

N1/2
Op

(
1

min{N1/2, T 1/2}

)

and
(

X ′
iMF̂c,F̂g√

T

) (
F 0

c − F̂cH
−1
c√

T

)
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

N

N∑

k=1

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N1/2, T 1/2}

)
,

we have

1

T
X ′

iMF̂c
I6(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

= op(1)×Op(β̂i − βi) + op(1)× 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N, N1/2T 1/2}

)
.

22



Next, we have

1

T
X ′

iMF̂c,F̂g
I7(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

T
X ′

iMF̂c,F̂g

[
1

NT

N∑

k=1

εkλ
′
c,kF

0
c
′
F̂c

]
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

NT

N∑

k=1

λ′c,k(Λ
′Λ/N)−1λc,iX

′
iMF̂ ,F̂g

εk

= Op

(
1√
NT

)
.

Defining E[εkε
′
k] = Ωk, we have

1

T
X ′

iMF̂c,F̂g
I8(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

T
X ′

iMF̂c,F̂g

[
1

NT

N∑

k=1

εkε
′
kF̂

]
(F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

NT 2

N∑

k=1

X ′
iMF̂c,F̂g

ΩkF̂c(F
0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

+
1

NT 2

N∑

k=1

X ′
iMF̂c,F̂g

(εkε
′
k − Ωk)F̂c(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

NT 2

N∑

k=1

X ′
iMF̂c,F̂g

ΩkF̂c(F
0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

+Op

(
1

T
√

N

)
+

1√
N

[
1

N

N∑

k=1

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N, T}

)]

+
1√
NT

×
[

1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{N1/2, T 1/2}

)]
,

which follows from Lemma A3. Next,

1

T
X ′

iMF̂c,F̂g
I10(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

T
X ′

iMF̂c,F̂g


 1

NT

G∑

g=1

∑

k;gk=g

Xk(βk − β̂k)λ
′
j,k(F

0
g − F̂gH

−1
g )′F̂c


 (F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=

(
X ′

iMF̂c,F̂g√
T

) 
 1

NT

G∑

g=1

∑

k;gk=g

Xk(βk − β̂k)λ
′
j,k

(F 0
g − F̂gH

−1
g )√

T
F̂c


 (F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i.

Using the result of Lemma A2, we have

1

T
X ′

iMF̂c,F̂g
I10(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=

[
1

N

N∑

k=1

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N1/2, T 1/2}

)]
×

[
1

N

N∑

k=1

Op

(
‖βk − β̂k‖

)]

= op(1)×Op(β̂i − βi) + op(1)× 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)
,
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where we used ‖βi − β̂i‖ = op(1). In a similar manner, we have

1

T
X ′

iMF̂c,F̂g
I11(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

= op(1)×Op(β̂i − βi) + op(1)× 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)
.

The next term is

1

T
X ′

iMF̂c,F̂g
I12(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=
1

T
X ′

iMF̂c,F̂g


 1

NT

G∑

g=1

∑

k;gk=g

(F 0
g − F̂gH

−1
g )λg,kε

′
kF̂c


 (F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=

(
X ′

iMF̂c,F̂g√
T

) 
 1

NT

G∑

g=1

∑

k;gk=g


F 0

g − F̂gH
−1
g√

T


 λg,kε

′
kF̂c


 (F 0

c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i.

From Lemma A2 and A4, this implies

G∑

g=1

1

T 1/2
‖F̂gH

−1
g − F 0

g ‖

=
1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{√N1, ...,
√

NG,
√

T}

)

=
1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{√N,
√

T}

)
,

where we used Assumption E. Thus, we have

1

T
X ′

iMF̂c,F̂g
I12(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

=

[
1

N3/2

N∑

k=1

Op

(
‖βk − β̂k‖

)
+

1

N1/2
Op

(
1

min{N1/2, T 1/2}

)]

×
[

1

N

N∑

i=1

Op

(
‖βi − β̂i‖

)
+ Op

(
1

min{N1/2, T 1/2}

)]

= op(1)×Op(β̂i − βi) + op(1)× 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)

+op(1)×Op

(
1

min{N, N1/2T 1/2}

)
.

In a similar manner, we also obtain

1

T
X ′

iMF̂c,F̂g
I13(F

0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

= op(1)×Op(β̂i − βi) + op(1)× 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)

+op(1)×Op

(
1

min{N, N1/2T 1/2}

)
.
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The next term is

1

T

∥∥∥X ′
iMF̂c,F̂g

I14(F
0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

∥∥∥

=

∥∥∥∥∥
1

T
X ′

iMF̂c,F̂g


 1

NT

G∑

g=1

∑

i;gi=g

(F 0
g − F̂gH

−1
g )λgi,iλ

′
gi,i

(F 0
g − F̂gH

−1
g )′F̂c




×
(

F 0
c
′
F̂c

T

)−1 (
Λ′cΛc

N

)−1

λc,i

∥∥∥∥∥

≤
G∑

g=1

Ng

N

∥∥∥∥∥
X ′

iMF̂c,F̂g√
T

∥∥∥∥∥

∥∥∥∥∥∥
(F 0

g − F̂gH
−1
g )√

T

∥∥∥∥∥∥

2 ∥∥∥∥∥
Λ′gΛg

Ng

∥∥∥∥∥
2 ∥∥∥∥∥

F̂c√
T

∥∥∥∥∥

∥∥∥∥∥∥

(
F 0

c
′
F̂c

T

)−1
∥∥∥∥∥∥

∥∥∥∥∥∥

(
Λ′cΛc

N

)−1
∥∥∥∥∥∥
‖λc,i‖

=
G∑

g=1

Ng

N


 ∑

k;gk=g

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N1/2, T 1/2}

)


2

= op(1)×Op(β̂i − βi) + op(1)× 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N, T}

)
,

where we used Lemma A2. The next term is

1

T

∥∥∥X ′
iMF̂c,F̂g

I15(F
0
c
′
F̂c/T )−1(Λ′cΛc/N)−1λc,i

∥∥∥

=
1

T

∥∥∥∥∥∥
X ′

iMF̂c,F̂g


 1

TN

G∑

g=1

∑

k;gk=g

(F 0
g − F̂gH

−1
g )′λ′g,kλ

′
c,kF̂c




(
F 0

c
′
F̂c

T

)−1 (
Λ′cΛc

N

)−1

λc,i

∥∥∥∥∥∥

≤ 1√
T

G∑

g=1

Ng

N

∥∥∥∥∥
X ′

iMF̂c,F̂g√
T

∥∥∥∥∥

∥∥∥∥∥∥
(F 0

g − F̂gH
−1
g )√

T

∥∥∥∥∥∥

∥∥∥∥∥
Λ′gΛg

Ng

∥∥∥∥∥
2 ∥∥∥∥∥

F̂c√
T

∥∥∥∥∥

∥∥∥∥∥∥

(
F 0

c
′
F̂c

T

)−1
∥∥∥∥∥∥

∥∥∥∥∥∥

(
Λ′cΛc

N

)−1
∥∥∥∥∥∥
‖λc,i‖

≤
G∑

g=1

Ng√
TN


 1

Ng

∑

k;gk=g

Op

(
‖βk − β̂k‖2

)
+ Op

(
1

min{N1/2, T 1/2}

)


= op(1)× op

(
βi − β̂i

)
+ op(1)× 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)
+ Op

(
1

min{N1/2T 1/2, T}

)
.

The final term also has the same expression. Summarizing these evaluations, we have

1

T
X ′

iMF̂c,F̂g
F 0

c λc,i

=
1

NT
X ′

iMF̂c,F̂g
Xiλ

′
c,i(Λ

′
cΛc/N)−1λc,i(βi − β̂i)

+
1

NT

N∑

k 6=i

X ′
iMF̂c,F̂g

Xkλ
′
c,k(Λ

′
cΛc/N)−1λc,i(βk − β̂k)

+op(1)× (βi − β̂i) + op(1)× 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)

+Op

(
1

min{N, N1/2T 1/2}

)
+ Op

(
1

min{N1/2T 1/2, T}

)
.
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Next we evaluate the term

1

T
X ′

iMF̂c,F̂g
F 0

g λg,i,

where we assumed that i-th security yi belong to the g-th group. Again, using the

result of in the proof of Theorem 1,

Fg = F̂gH
−1
g −




16∑

k=1,k 6=9

Ik


 (F 0

g
′
F̂g/T )−1(Λ′gΛg/Ng)

−1

we have

1

T
X ′

iMF̂c,F̂g
F 0

g λgi,i = − 1

T
X ′

iMF̂c,F̂g




16∑

k=1,k 6=9

Jk


 (F 0

g
′
F̂g/T )−1(Λ′gΛg/Ng)

−1λgi,i,

where we used MF̂c,F̂g
F̂gH

−1
g = 0 and Jk (k = 1, ..., 16) are defined as

F̂gVg,NT

=
1

NgT

∑

i;gi=g

Xi(βi − β̂i)(βi − β̂i)
′X ′

iF̂g +
1

NgT

∑

i;gi=g

Xi(βi − β̂i)λgi,iF
0
g
′
F̂g

+
1

NgT

∑

i;gi=g

Xi(βi − β̂i)ε
′
iF̂g +

1

NgT

∑

i;gi=g

F 0
c λc,i(βi − β̂i)

′X ′
iF̂c

+
1

NgT

∑

i;gi=g

εi(βi − β̂i)
′X ′

iF̂c +
1

NgT

∑

i;gi=g

F 0
c λc,iε

′
iF̂c +

1

NgT

∑

i;gi=g

εG,iλ
′
c,iF

0
c
′
F̂c

+
1

NgT

∑

i;gi=g

εiε
′
iF̂c +

1

NgT

∑

i;gi=g

F 0
c λc,iλ

′
c,iF

0
c
′
F̂c

+
1

NgT

∑

i;gi=g

Xi(βi − β̂i)λ
′
gi,i

(F 0
g − F̂gH

−1
g )′F̂c

+
1

NgT

∑

i;gi=g

(F 0
g − F̂gH

−1
g )λgi,i(βi − β̂i)

′X ′
iF̂c

+
1

NgT

∑

i;gi=g

(F 0
g − F̂gH

−1
g )λgi,iε

′
iF̂c +

1

NgT

∑

i;gi=g

εiλ
′
gi,i

(F 0
g − F̂gH

−1
g )′F̂c

+
1

NgT

∑

i;gi=g

(F 0
g − F̂gH

−1
g )λgi,iλ

′
gi,i

(F 0
g − F̂gH

−1
g )′F̂c

+
1

NgT

∑

i;gi=g

(F 0
g − F̂gH

−1
g )λgi,iλ

′
c,iF

0
c
′
F̂c +

1

NgT

∑

i;gi=g

F 0
c λc,iλ

′
gi,i

(F 0
g − F̂gH

−1
g )′F̂c

= J1 + · · ·+ J16.

In the same way of evaluating X ′
iMF̂c,F̂g

F 0
c λc,i/T , we have

1

T
X ′

iMF̂c,F̂g
F 0

g λg,i

=
1

NgT
X ′

iMF̂c,F̂g
Xiλ

′
g,i(Λ

′
gΛg/Ng)

−1λg,i(βi − β̂i)
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+
1

NgT

Ng∑

k;gk=g,k 6=i

X ′
iMF̂c,F̂g

Xkλ
′
g,k(Λ

′
gΛg/Ng)

−1λg,i(βk − β̂k)

+op(1)× (βi − β̂i) + op(1)× 1

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)

+Op

(
1

min{N, N1/2T 1/2}

)
+ Op

(
1

min{N1/2T 1/2, T}

)
.

Then, for i that belongs to the g-th group, we have

[
1

T

(
X ′

iMF̂c,F̂g
Xi + Σi(κ)

)
+ op(1)

]√
T (β̂i − βi)

=
1

NT

N∑

k 6=i

X ′
iMF̂c,F̂g

Xkλ
′
c,k(Λ

′
cΛc/N)−1λc,i

√
T (βk − β̂k)

+
1

NgT

Ng∑

k;gk=g,k 6=i

X ′
iMF̂c,F̂g

Xkλ
′
g,k(Λ

′
gΛg/Ng)

−1λg,i

√
T (βk − β̂k) +

1√
T

X ′
iMF̂c,F̂g

εi

+op(1)× (βi − β̂i) + op(1)×
√

T

N

N∑

k 6=i

Op

(
‖βk − β̂k‖

)
+ op (1) .

Next we study the effect of replacing MF̂c,F̂g
= MF̂c

−MF̂c
F̂g(F̂

′
gMF̂c

F̂g)
−1F̂ ′

gMF̂c
in the

above equation by MF 0
c ,F 0

g
. We first focus on the first term MF̂c

= I − F̂c(F̂
′
cF̂c)

−1F̂ ′
c

in MF̂c,F̂g
. Using the Lemma A.8 of Bai (2009), we can express the difference between

T−1/2X ′
iMF̂c

εi and T−1/2X ′
iMF 0

c
εi as

1

T 1/2
X ′

iMF 0
c
εi − 1

T 1/2
X ′

iMF̂c
εi

=
1

T 3/2
X ′

iF
0
c

(
F 0′

c F 0
c

T

)−1

F 0′
c εi − 1

T 3/2
X ′

i

(
F̂c − F 0

c Hc + F 0
c Hc

) (
F̂c − F 0

c Hc + F 0
c Hc

)′
εi

=
1

T 3/2
X ′

iF
0
c




(
F 0′

c F 0
c

T

)−1

−HcH
′
c


 F 0′

c εi − 1

T 3/2
X ′

i

(
F̂c − F 0

c Hc

) (
F̂c − F 0

c Hc

)′
εi

− 1

T 3/2
X ′

i

(
F̂c − F 0

c Hc

)
H ′

cF
0′
c εi − 1

T 3/2
X ′

iF
0
c Hc

(
F̂c − F 0

c Hc

)′
εi

=
1

N

N∑

k=1

Op

(
‖βk − β̂k‖

)
+ Op

(
T 1/2

min{N, T}

)
.

where we used X ′
i(F̂c − F 0

c Hc)/T = 1
N

∑N
k=1 Op

(
‖βk − β̂k‖

)
+ Op(1/ min{N1/2, T 1/2})

and (F 0′
c F 0

c /T )−1−HcH
′
c = 1

N

∑N
k=1 Op

(
‖βk − β̂k‖

)
+Op (1/ min{N, T}), which follows

from Lemma A7 in Bai (2009). Thus, we have X ′
iMF 0

c
εi/T −X ′

iMF̂c
εi/T = op(T

−1/2).

Next, we evaluate the following quantity

1

T 1/2
X ′

iMF̂c
F̂g(F̂

′
gMF̂c

F̂g)
−1F̂ ′

gMF̂c
εi − 1

T 1/2
X ′

iMF 0
c
Fg(F

0′
g MF 0

c
F 0

g )−1F ′
gMF 0

c
εi.
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Adding and subtracting terms, we have

MF̂c
F̂g(F̂

′
gMF̂c

F̂g)
−1F̂ ′

gMF̂c
−MF 0

c
F 0

g (F 0′
g MF 0

c
F 0

g )−1F 0′
g MF 0

c

= (MF̂c
−MF 0

c
)F̂g(F̂

′
gMF̂c

F̂g)
−1F̂ ′

gMF̂c
+ MF 0

c
(F̂g − F 0

g Hg)(F̂
′
gMF̂c

F̂g)
−1F̂ ′

gMF̂c

+MF 0
c
F 0

g Hg

[
(F̂ ′

gMF̂c
F̂g)

−1 − ((F 0
g Hg)

′MF 0
c
F 0

g Hg)
−1

]
F̂ ′

gMF̂c

+MF 0
c
F 0

g Hg((F
0
g Hg)

′MF 0
c
F 0

g Hg)
−1(F̂g − F 0

g Hg)
′MF̂c

+MF 0
c
F 0

g Hg((F
0
g Hg)

′MF 0
c
F 0

g Hg)
−1(F 0

g Hg)
′(MF̂c

−MF 0
c
).

Thus, together with Lemma A2, we have

1

T 1/2
X ′

iMF̂c
F̂g(F̂

′
gMF̂c

F̂g)
−1F̂ ′

gMF̂c
εi − 1

T 1/2
X ′

iMF 0
c
F 0

g Hg((F
0
g Hg)

′MF 0
c
F 0

g Hg)
−1(F 0

g Hg)
′MF 0

c
εi

=
1

N

N∑

k=1

Op

(
‖βk − β̂k‖

)
+ Op

( √
T

min{N, T}

)
.

These investigations provides

1√
T

X ′
iMF̂c,F̂g

εi − 1√
T

X ′
iMF 0

c ,F 0
g
εi =

1

N

N∑

k=1

Op

(
‖βk − β̂k‖

)
+ Op

( √
T

min{N, T}

)
.

Using X ′
iMF̂c,F̂g

Xi −X ′
iMF 0

c ,F 0
g
Xi = op(1), we finally have

[
1

T

(
X ′

iMF 0
c ,F 0

g
Xi + Σi(κ)

)]√
T (β̂i − βi)

=
1

NT

N∑

k 6=i

X ′
iMF 0

c ,F 0
g
Xkλ

′
c,k(Λ

′
cΛc/N)−1λc,i

√
T (βk − β̂k)

+
1

NgT

Ng∑

k;gk=g,k 6=i

X ′
iMF 0

c ,F 0
g
Xkλ

′
g,k(Λ

′
gΛg/Ng)

−1λg,i

√
T (βk − β̂k)

+
1√
T

X ′
iMF 0

c ,F 0
g
εi + op (1) . (21)

For notational simplicity, we define

ηi = D−1
i

1√
T

X ′
iMF 0

c ,F 0
g
εi,

Γc,ik = D−1
i

(
1

T
X ′

iMF 0
c ,F 0

g
Xk

)
λ′c,k(Λ

′
cΛc/N)−1λc,i,

Γg,ik = D−1
i

(
1

T
X ′

iMF 0
c ,F 0

g
Xk

)
λ′g,k(Λ

′
gΛg/Ng)

−1λg,i,

where Di ≡ Di(F
0
c , F 0

g , κ) = T−1
(
X ′

iMF 0
c ,F 0

g
Xi + Σi(κ)

)
. Then the expression (21)

becomes

√
T (β̂i − βi) =

1

N

N∑

k 6=i

Γc,ik

√
T (βk − β̂k) +

1

Ng

Ng∑

k;gk=g,k 6=i

Γg,ik

√
T (βk − β̂k) + ηi + op (1) ,
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which is equivalent to

√
T (β̂ − β) =

1

N
Γ
√

T (β − β̂) + η + op (1) ,

where β̂ = (β̂1, ..., β̂
′
N)′, β = (β1, ..., β

′
N)′, η = (η′1, ..., η

′
N)′,

Γ =




0 Γc,12 + δ(g1, g2)
N

Ng2
Γg1,12 · · · Γc,1N + δ(g1, gN) N

Ng1
Γg1,1N

Γc,21 + δ(g2, g1)
N

Ng2
Γg2,21 0 · · · Γc,2N + δ(g2, gN) N

Ng2
Γg2,2N

...
...

. . .
...

Γc,N1 + δ(gN , g1)
N

NgN
ΓgN ,N1 Γc,N2 + δ(gN , g2)

N
NgN

ΓgN ,N2 · · · 0




,

where δ(gi, gj) = 1 if gi = gj and δ(gi, gj) = 0 otherwise. This part of analysis is

similar to Song (2013). In summary,
√

T (β̂− β) = (I + 1
N

Γ)η + op (1), where we used

(I− 1
N

Γ)−1 = I+ 1
N

Γ+op(1), it can be shown that the higher order terms are negligible.

This implies that for each i, we have

√
T (β̂i − βi) = D−1

i

1√
T

X ′
iMF 0

c ,F 0
g
εi +


 1

N

N∑

k 6=i

Γc,ikD
−1
k

1√
T

X ′
kMF 0

c ,F 0
g
εk




+


 1

Ng

Ng∑

k;gk=g,k 6=i

Γg,ikD
−1
k

1√
T

X ′
kMF 0

c ,F 0
g
εk


 + op (1)

≡ D−1
i

1√
T

X ′
iMF 0

c ,F 0
g
εi +

1

N

N∑

k 6=i

1√
T

Ac,ikεk +
1

Ng

Ng∑

k;gk=g,k 6=i

1√
T

Ag,ikεk + op (1) .

where Ac,ik denotes Γc,ikD
−1
k X ′

kMF 0
c ,F 0

g
, and Ag,ik is similarly defined. Under cross-

sectional independence, i.e., E[εitεjt] = 0 (i 6= j), the averages of independent terms

Ac,ikεk and Ag,ikεk converge to zero. Thus, the first term D−1
i

1√
T
X ′

iMF 0
c ,F 0

g
εi becomes

the only leading term.

Even under cross-sectional dependence and serial correlation, we can show that the

averages of Ac,ikεk and Ag,ikεk still converge to zero. In fact, from ‖Γc,ikD
−1
k ‖ ≤ C and

‖Γg,ikD
−1
k ‖ ≤ C, for some C < ∞, it is enough to show that

1

N
√

T

N∑

k 6=i

X ′
kMF 0

c ,F 0
g
εk = op(1), and

1

Ng

√
T

Ng∑

k;gk=g,k 6=i

X ′
kMF 0

c ,F 0
g
εk = op(1).

Consider the first term. The expected value of its second moment is

E


 1

N2T

N∑

k 6=i

N∑

` 6=i

X ′
kMF 0

c ,F 0
g
εkε

′
`MF 0

c ,F 0
g
X`


 =

1

N2T

N∑

k 6=i

N∑

` 6=i

X ′
kMF 0

c ,F 0
g
Ωk`MF 0

c ,F 0
g
X`

which converges to zero from Assumption G. Thus the first term is op(1). Similarly,

the second term is also op(1). Summarizing these results, we finally have

√
T (β̂i − βi) = Di(F

0
c , F 0

g , κ)−1 1√
T

X ′
iMF 0

c ,F 0
g
εi + op (1) ,
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The right hand side does not depend on estimated quantities. By Assumption F,

√
T (β̂i − βi) → N(0, Di(F

0
c , F 0

g )−1Ji(F
0
c , F 0

g )Di(F
0
c , F 0

g )−1).

where Di(F
0
c , F 0

g ) and Ji(F
0
c , F 0

g ) are defined in Theorem 2. Practical estimation pro-

cedure for Di(F
0
c , F 0

g ) and Ji(F
0
c , F 0

g ) is discussed in Section 5.

Next, we prove the variable selection consistency P (β̂i20 = 0) → 1 as N, T → ∞.

This part is almost identical to the proof of Fan and Li (2001). It is sufficient to show

that with probability tending to 1 as N, T →∞, for some small δN,T = C/
√

T with a

constant C, and for each element of βi2 = (βi21, ..., βi2,pi−qi
), we have

∂SNT (β1, ..., βN , Fc, F1, ..., FS)

∂βi2k

> 0 (0 < βi2k < δN,T ),

∂SNT (β1, ..., βN , Fc, F1, ..., FS)

∂βi2k

< 0 (−δN,T < βi2k < 0),

for k = 1, ..., pi − qi. Let Xi,2 be the set of pi − qi columns of Xi, corresponding to

βi2. So, Xi,2 is a T × (pi − qi) dimensional matrix. Consider the first derivative of

SNT (β1, ..., βN , Fc, F1, ..., FS)/(NT ) with respect to βi2 = (βi21, ..., βi2,pi−qi
),

1

NT
· ∂SNT (β̂1, ..., β̂N , F̂c, F̂1, ..., F̂S)

∂βi2

= − 2

NT
·

S∑

j=1

∑

i;gi=j

X ′
i,2(yi −Xiβ̂i − F̂cλ̂c,i − F̂gi

λ̂gi,i) +
∂pκ,γ

(
|β̂i2|

)

∂βi2

= − 2

NT

S∑

j=1

∑

i;gi=j

X ′
i,2Xi(β

0
i − β̂i)−

2

NT

S∑

j=1

∑

i;gi=j

X ′
i,2(F

0
c λ0

c,i − F̂cλ̂c,i)

+
2

NT

S∑

j=1

∑

i;gi=j

X ′
i,2(F

0
gi
λ0

gi,i
− F̂gi

λ̂gi,i) +
2

NT

S∑

j=1

∑

i;gi=j

X ′
i,2εi +

∂pκ,γ

(
|β̂i2|

)

∂βi2

= I1 + I2 + I3 + I4 +
∂pκ,γ

(
|β̂i2|

)

∂βi2

,

where ∂pκ,γ

(
|β̂i2|

)
/∂βi2 is a (pi−qi)×1 vector containing elements p′κ,γ

(
|β̂i2k|

)
sign(β̂i2k)

for k = 1, ..., pi − qi.

Term I4 is Op(1/
√

NT ). Together with the result of Theorem 1, we know that

β̂i − β0
i = Op(1/

√
T ). Thus, the first term I1 is Op(1/

√
T ). The third term, I3 is

1

NT

S∑

j=1

∑

i;gi=j

X ′
i,2(F

0
gi
λ0

gi,i
− F̂gi

λ̂gi,i)

=
1

NT

S∑

j=1

∑

i;gi=j

X ′
i,2(F

0
gi
− F̂gi

)λ0
gi,i

+
1

NT

S∑

j=1

∑

i;gi=j

X ′
i,2F̂gi

(λ0
gi,i
− λ̂gi,i),
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which is Op(1/ min{N, T}). The second term I2 is also Op(1/ min{N, T}). Thus

∂SNT (β̂1, ..., β̂N , F̂c, F̂1, ..., F̂S)

∂βi2k

= T · κ
[
1

κ
p′κ,γ

(
|β̂i2k|

)
sign(β̂i2k) + Op

(
1/(
√

T · κ)
)]

.

Because 1
κ
p′κ,γ

(
|β̂i2k|

)
> 0 and 1/(

√
Tκ) → 0, the sign of β̂i2k determines the sign of

∂SNT (β̂1, ..., β̂N , F̂c, F̂1, ..., F̂S)/∂βi2k. Hence, this result implies the sign claim. This

completes the proof.

A6. Proof of Theorem 3

We divide the proof of Theorem 3 into two steps. In Step 1, we develop an estimator of

the expected mean squared error, which can be used to select the number of predictors

x under no factor structure. However, we still need an additional penalty term that

penalizes the model complexity caused by the factor structures. Thus, Step 2 modifies

the model selection criterion to select the number of factors.

Step 1: We decompose the bias b as

b = B1 + B2 + B3,

where

B1 = Ey

[
1

NT

G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ̂i − F̂cλ̂c,i − F̂gi
λ̂gi,i

∥∥∥
2

− 1

NT

G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ
0
i − F̂cλ̂c,i − F̂gi

λ̂gi,i

∥∥∥
2

]
,

B2 = Ey

[
1

NT

G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ
0
i − F̂cλ̂c,i − F̂gi

λ̂gi,i

∥∥∥
2

−Ez

[
1

NT

G∑

g=1

∑

i;gi=g

∥∥∥zi −Xiβ
0
i − F̂cλ̂c,i − F̂gi

λ̂gi,i

∥∥∥
2

]]
,

B3 = Ey

[
Ez

[
1

NT

G∑

g=1

∑

i;gi=g

∥∥∥zi −Xiβ
0
i − F̂cλ̂c,i − F̂gi

λ̂gi,i

∥∥∥
2

]

−Ez

[
1

NT

G∑

g=1

∑

i;gi=g

∥∥∥zi −Xiβ̂i − F̂cλ̂c,i − F̂gi
λ̂gi,i

∥∥∥
2

]]
.

Expectations Ey[·] and Ez[·] are taken with respect to the joint distribution of {y1, ..., yN}
and {z1, ..., zN} given the predictors and factor structures.

We denote β = (β′1, ..., β
′
N)′ and

`y(β, Fc, F1, ..., FG, Λ1, ..., ΛG) =
1

NT

G∑

g=1

∑

i;gi=g

‖yi −Xiβi − Fcλc,i − Fgλgi,i‖2 ,
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`z(β, Fc, F1, ..., FG, Λ1, ..., ΛG) = Ez


 1

NT

G∑

g=1

∑

i;gi=g

‖zi −Xiβi − Fcλc,i − Fgλgi,i‖2


 .

Now, we first evaluate B1. Noting that

∂

∂β

{
`y(β, F̂c, F̂1, ..., F̂G, Λ̂1, ..., Λ̂G) + N−1

N∑

i=1

pκ,γ(|βi|)
} ∣∣∣∣∣

β=
ˆβ

= 0,

the Taylor expansion of `y(β
0, F̂c, F̂1, ..., F̂G, Λ̂1, ..., Λ̂G) around β̂ = (β̂

′
1, ..., β̂

′
N)′ gives

`y(β
0, F̂c, F̂1, ..., F̂G, Λ̂1, ..., Λ̂G)

= `y(β̂, F̂c, F̂1, ..., F̂G, Λ̂1, ..., Λ̂G)−N−1
N∑

i=1

∂pκ,γ(|β̂i|)/∂β′i(β̂i − β0
i )

+
1

2
× 1

NT
×

N∑

i=1

√
T (β̂i − β0

i )
′Ki

√
T (β̂i − β0

i ) + op

(
T−1

)
,

where Ki = 2X ′
iXi/T . Thus

B1 = −N−1
N∑

i=1

∂pκ,γ(|β̂i|)
∂β′i

(β̂i−β0
i )+

1

2

1

NT

N∑

i=1

√
T (β̂i−β0

i )
′Ki

√
T (β̂i−β0

i )+op(T
−1),

For small κ, the expected value of N−1 ∑N
i=1 ∂pκ,γ(|β̂i|)/∂β′i(β̂i−β0

i ) is of order o(1/T ).

This follows from the following expansion

∂pκ,γ(|β̂i|)
∂β′i

(β̂i − β0
i ) =

∂pκ,γ(|β0
i |)

∂β′i
(β̂i − β0

i ) + (β̂i − β0
i )
′∂

2pκ,γ(|β0
i |)

∂βi∂β′i
(β̂i − β0

i )

where we ignore the higher order terms. The expected value of the first term on the

right is approximately zero, and the expected value of the second term is O(1/T ) times

the second derivative. But the second derivative, under small κ, is o(1). This gives the

desirable result.

The covariance matrix of
√

T (β̂i − β0
i ) is given by

R(F 0
c , F 0

g ) = Di(F
0
c , F 0

g )−1Ji(F
0
c , F 0

g )Di(F
0
c , F 0

g )−1.

Thus, by replacing the expectation Ey[·] with the empirical distribution, we have an

estimator of B1 as

B1 =
1

2NT

N∑

i=1

tr
[
KiR(F 0

c , F 0
g )

]
+ o(T−1).

It can be shown that B2 is dominated by B1 and B3. Using the same augment for the

evaluation of B1, we have B3 = 1
2NT

∑N
i=1 tr

[
KiR(F 0

c , F 0
g )

]
+ o(T−1). Finally, summing

up all terms, the bias, contributed by the observable structure Xiβ̂i, becomes

1

NT

N∑

i=1

tr
[
KiR(F 0

c , F 0
g )

]
+ o(T−1).
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Therefore, the expected mean squared error can be approximated by

1

NT

G∑

g=1

Ng∑

i;gi=g

∥∥∥yi −Xiβ̂i − F̂cλ̂c,i − F̂gi
λ̂gi,i

∥∥∥
2
+

1

NT

N∑

i=1

tr
[
KiR(F 0

c , F 0
g )

]
,

where 1
NT

∑N
i=1 tr{KiR(F 0

c , F 0
g )} is the bias term, contributed by the estimated observ-

able structure Xiβ̂. The penalty on the estimated factor structures will be investigated

in Step 2.

Step 2: Under no factor structure, the approximated model evaluation criterion, de-

veloped in Step 1, can be used for selecting the regularization parameter κ. However,

we still need an additional penalty term that penalizes the model complexity caused

by the factor structures. Thus, the final model evaluation criterion for evaluating k

global factor model with kj local factors (j = 1, ..., S) has the form

1

NT

G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ̂i − F̂cλ̂c,i − F̂gi
λ̂gi,i

∥∥∥
2
+

1

NT

N∑

i=1

tr
[
KiR(F 0

c , F 0
g )

]

+k × h(T,N, N1, ..., NG) +
G∑

g=1

kg × hg(T, N,N1, ..., NG)

our goal is to find a penalty function to consistently estimate the true number of factors.

This step for consistently selecting the number of factors uses a similar augment as

in Bai (2009). First, we focus on the selection of the number of global factors k given the

true number of local factors r1, ..., rG. We assume that r ≤ k, where k is given number

of factors in the estimation process. Under r ≤ k, we have β̂i(k) − βi = Op(1/
√

T ),

where the script k indicates k factor models are estimated. Then it is shown that

yi −Xiβ̂i(k)− F̂c(k)′λ̂c,i − F̂gi
(rgi

)λ̂j,i = εi + Op

(
T−1/2

)
+ Op

(
N−1/2

)
,

which implies that

1

NT

G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ̂i(k)− F̂c(k)λ̂c,i − F̂gi
(rgi

)λ̂j,i

∥∥∥
2

− 1

NT

G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ̂i(r)− F̂c(r)λ̂c,i − F̂gi
(rgi

)λ̂gi,i

∥∥∥
2

= Op

(
1

T

)
+ Op

(
1

N

)
.

If k < r, it can be shown that for some c > 0, not depending on N and T ,

1

NT

G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ̂i(k)− F̂c(k)λ̂c,i − F̂gi
(rgi

)λ̂gi,i

∥∥∥
2

− 1

NT

G∑

g=1

∑

i;gi=g

∥∥∥yi −Xiβ̂i(r)− F̂c(r)λ̂c,i − F̂gi
(rgi

)λ̂gi,i

∥∥∥
2

> c.

These results imply that a penalty function that converges to zero but is of greater

magnitude than Op(1/T )+Op(1/N) will lead to consistent estimation of the number of
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factors. The function h(T, N, N1, ..., NG) = (T+N
TN

) log(TN) satisfies these conditions.

The penalty term for selecting the number of group-specific factors is similarly derived.

This completes the proof of Theorem 3.
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