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Abstract: We examine the volatility spillovers among major Eurozone countries employing the Diebold and 

Yilmaz (2012) model with time-varying conditional ranges generated from conditional autoregressive range 

(CARR) model of Chou (2005). The empirical findings, based on a data set covering a fifteen year period (1998-

2013), suggest a total volatility spillover index in a very high degree. 74.9% of total volatility in the Eurozone 

markets is attributed to spillover effects from other markets. Moreover, rolling window analysis shows that 

volatility spillover index is relatively higher during the turmoil periods.  
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1. Introduction 

The world has experienced numerous financial crises in the last two decades, namely the 

Mexican crisis (1994), the Asian crisis (1998), the Russian crisis (1998), the Brazilian crisis 

(1999), the Argentine crisis (2002), the US subprime crisis (2008) and the European sovereign 

debt crisis (ongoing). These crises have induced excessive volatility and turmoil in global 

financial markets. Rising volatility spills over across the markets as the interdependence of 

financial markets increases. In this regard, investors seek to know how volatility is transmitted 

across markets through time.  

In measuring volatility spillovers, researchers predominantly use generalized autoregressive 

conditional heteroscedastic (GARCH) as an underlying model which is based on closing 
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prices. In other words, it ignores intraday information of price fluctuations and leads to loss of 

efficiency (Alizadeh, Brandt and Diebold, 2002; Brandt and Diebold, 2006). The price range 

is defined as the difference between the highest and lowest log prices over a fixed sampling 

interval and an alternative tool for measuring volatility since the pioneering work of 

Mandelbrot (1963). Range based models which were firstly introduced by Garman and Klass 

(1980) and Parkinson (1980) are widely used methods in the literature of financial volatility 

modeling. They are superior to GARCH models in the sense that, they incorporate extreme 

price fluctuations. Indeed, the information included in the opening, highest, lowest and 

closing prices of an asset is largely used in Japanese candlestick plots (Chou, 2010). Li and 

Hong (2011) assert that range based volatility estimators (Garman and Klass, 1980; 

Parkinson, 1980; Rogers and Satchell, 1991; Yang and Zhang, 2000) are claimed to be 5-14 

times more efficient than the historical volatility. 

Although historical volatility models are popular, they do not handle the time-varying 

evolution of the volatility process. In order to address this issue, Chou (2005) proposed the 

conditional autoregressive range (CARR) model which is a dynamic process for the high/low 

range of logarithmic asset prices over a fixed time interval. The model is very similar to the 

autoregressive conditional duration (ACD) model of Engle and Russel (1998). Analyzing out 

of sample volatility forecast of the S&P 500 index, the study of Chou documents that CARR 

model procures sharper volatility estimates as compared with standard GARCH model. 

Furthermore, Chou and Wang (2007) conduct volatility forecasting on the U.K. stock market 

(FTSE100) with CARR model and ascertain that the model provides a simple, yet efficient 

volatility forecasts. 

Addition to univariate volatility models, it is also important to analyze the interactions of 

financial markets within the multivariate framework. Diebold and Yilmaz (2009) proposed a 

quantitative measure of volatility spillover by centering upon forecast error variance 

decompositions which permit to compute total spillover effects across markets. Based on the 

aggregate volatility spillovers they also provide a single spillover measure. They employed 

Garman-Klass (1980) as the range based volatility estimator and assume that volatility is fixed 

within periods but variable across periods. Analyzing four major indices and twelve emerging 

stock markets, they found that unconditional return and volatility spillovers are 29% and 31%, 

respectively. They also examine time-varying rolling sample analysis since dynamics of 

conditional return and volatility spillovers may be different. The spillover plots of rolling 

sample analysis suggest considerably different results from static full sample analysis. The 

volatility spillover plots provide evidence of wide fluctuations and give reactions to economic 

and financial events. Applying the same methodology, Diebold and Yilmaz (2011) studied 

equity markets spillovers in the Americas: Argentina, Brazil, Chile, Mexico and the U.S. and 

draw a conclusion that return spillovers show gradually evolving cycles but no bursts, while 

volatility spillovers indicate clear bursts associated with economic and financial events. 

The aforementioned methodology proposed by Diebold and Yilmaz suffers from the variant 

ordering of vector autoregressive (VAR) system. The authors developed the method to 

overcome this problem and present measures of both total and directional volatility spillovers 

in their recent paper in 2012. Measuring the spillovers across US stock, bond, foreign 



exchange and commodities markets, they indicate quite limited spillovers until the global 

financial crisis. However, after the collapse of Lehman Brothers in September 2008, they 

pointed out important spillovers from the stock market to the other markets. Louzis (2013) 

employed the same methodology to probe price and volatility spillovers among the money, 

stock, foreign exchange and bond markets of the Euro area. The findings of the study suggest 

that stock market is the main transmitter of return and volatility spillovers during the 

sovereign debt crisis. Additionally, it is reported that bonds of periphery countries transmit 

volatility to other markets diachronically with the exception of the period 2011-2012. 

Inspired by aforementioned studies, we analyze volatility spillovers across major Eurozone 

countries based on the conditional autogressive range (CARR) model. Sovereign debt crisis in 

the Eurozone since late 2009 has emphasized the importance of evaluating and monitoring the 

spillover effects among major Eurozone countries. The weekly data from January 1, 1998 to 

September 30, 2013 is employed and this sample witnesses a highly volatile period in the 

world economy and extant financial crises. This study contributes to the literature of volatility 

spillover effects in several ways. Particularly, this is the first paper studying volatility 

spillover effects among stock markets of Eurozone countries with Diebold and Yilmaz (2012) 

methodology. Additionally, to the best of our knowledge, none of the studies in the previous 

literature consider CARR model to compute volatility spillover index. 

The remainder of this paper is organized as follows: Part II describes the related 

methodology; Part III examines the data employed, Part IV represents empirical results and 

discusses the findings; Part V concludes. 

2. Methodology 

2.1. Conditional Autoregressive Range (CARR) Model 

Let Pt be the logarithm of a speculative asset price at time t, where t=1,2,...,T. The observed 

range Rt at time t is defined by Chou (2005) as follows; 

   max mint t tR P P           (1) 

,where  max tP and  min tP are the highest and lowest prices of the asset at time t, 

respectively.  

Chou (2005) proposed the Conditional Autoregressive Range (CARR) model for the range as 

follows; 
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,where λt is the conditional mean of the range based on all available information up to time t. 

The distribution of the error term εt or the normalized range is assumed to have a density 

function f(.) with a unit mean. 

Exponential distribution may be used as a choice of distribution, since εt is positively valued 

given that the range Rt and its expected value λt are positively valued. However, Chou (2005) 

asserts that even if the exponential density specification may provide consistent estimation, it 

is not efficient. The efficiency result can only be achieved if the conditional density is 

correctly specified. Thus, we estimate the CARR model with the Weibull distribution which 

has a more general density function. The log likelihood function of the CARR model with 

Weibull distributed innovations is given by; 
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2.2. Volatility Spillover Effects 

In this section, we briefly discuss the methodology proposed by Diebold and Yilmaz (2012) 

for calculating the volatility spillover index. In their pioneering work in 2009, they measure 

total spillover index based on the Cholesky decomposition which is variant to the ordering in 

a simple VAR system. In 2012, they developed the methodology to evaluate directional 

spillovers in a generalized VAR framework. In this way, they eliminate the dependence of the 

results on ordering of variables. Next, we summarize the methodology implemented for this 

study. 

Assume a covariance stationary N-variable Vector Autoregressive (VAR) model at order of p; 

1
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t i t i t
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   , with εt ~ i.i.d. (0,∑ )       (4) 

where 
i are N x N matrices of coefficients, εt is the vector of independently and identically 

distributed innovations and ∑ is the variance-covariance matrix.  

 

Moving average representation of the VAR(p) model is given as; 
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where Ai are the NxN moving average coefficient matrices. The Ai coefficient matrices obey 

the following recursion; 

1 1 2 2 ...i i i p i pA A A A                 

where A0 represents NxN identity matrix and A0=0 for i<0.  



Given the VAR framework, H-step ahead forecast error variance decompositions can be 

written as follows; 
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where σjj represents the standard deviation of the error term  for the jth equation, ∑ is the 

variance-covariance matrix and ei is the selection vector which its ith element is one and the 

other elements are zeros.  

In the generalized VAR model, the shocks to each variable are not orthogonalized as in the 

Cholesky factorization. Thus, the sum of the elements in each row of the variance 

decomposition matrix does not add to unity. We divide each elements of the decomposition 

matrix by the row sum hence we use the available information in the decomposition matrix to 

compute the spillover index as follows; 
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Total spillover index is constructed via normalized entries of the variance decomposition 

matrix given in equation X. We calculate total spillover index based on H-step ahead forecasts 

with the following equation; 

, 1, , 1,

, 1

( ) ( )

( )

( ) 100 100

g gN N

ij ij

i j i j i j i j

gN

ij

i j

H H

g

N
H

TS H x x
 



   



 
 


       (7) 

The equation Y is based on Cholesky factorization which is used by Diebold and Yilmaz 

(2009). The total spillover index computes contribution of volatility spillovers across the 

markets to the total forecast error variance.  

Even though it is important to analyze total spillovers it is also essential to investigate the 

directions of spillover effects from and to a particular market. For this purpose, generalized 

VAR method enables us to compute directional volatility spillovers. Volatility spillovers 

directional from all other markets j to market i is given by; 
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The following index evaluating the spillover effects transmitted by market i to all other 

markets j is as follows; 
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Using equations A and B, we are able to compute net directional spillover index for market i 

as; 

( ) ( ) ( )g g g

i j i i jNDS H DS H DS H           (10) 

The net directional spillover index is the difference between the total volatility shocks 

transmitted to and received from all other markets. Positive values of the index indicate that 

there exist spillover effects from market i to all other markets meanwhile the negative values 

imply that market i is a volatility spillover receiver. 

3. Data Analysis 

For this study, we use weekly ranges of major Eurozone countries: Italy, Germany, Greece, 

Netherlands, Spain, Austria and Belgium. We obtain the conditional ranges as volatility proxy 

for the spillover index computation. The data employed consists of 822 observations from 

January 1, 1998 to September 30, 2013. Table 1 presents the descriptive statistics of the range 

series under investigation. It is evident from the table that the series show leptokurtic 

behaviour as kurtosis coefficients for all the series are greater than 3. Q-statistics indicate 

serial correlation in the range series in a very high persistence degree. 

Table 1: Descriptive Statistics for the Range Series 

 
Mean Min Max St.Dev Skewness Kurtosis Q(12) 

Italy 2.979 0.104 15.761 2.139 1.986 5.904 1210*** 

Germany 4.743 0.865 26.337 3.023 2.276 7.844 2095*** 

Greece 3.751 0.227 21.306 2.683 2.020 6.404 555*** 

France 4.475 0.971 24.948 2.690 2.098 7.359 2001*** 

Netherlands 3.106 0.143 19.164 2.252 2.201 7.487 1469*** 

Spain 4.707 0.870 23.848 2.850 2.124 7.716 1597*** 

Austria 4.194 0.886 39.124 3.120 3.905 26.884 1891*** 

Belgium 3.811 0.621 24.877 2.594 2.835 13.432 1475*** 

 

4. Empirical Results 

This section of the paper discusses the empirical findings of our study. For this purpose, we 

firstly fit a CARR(1, 1) model driven by Weibull distributed innovations (WCARR 

henceforth) to weekly ranges of the stock markets. Table 2 presents the results of WCARR(1, 

1) model. All of the model coefficients are statistically significant at the 1% level, indicating 

that the WCARR(1, 1) is an appropriate model for analyzing the range series. Also, sum of 

the coeffients α+β are less than one, indicating that conditional range processes are covariance 

stationary. The Ljung-Box Q-statistics imply no remaining serial correlation in the residuals 

up to 12 lags.  The parameters θ are significantly different than 1, suggesting that the data 

support Weibull distribution.  



Table 2: WCARR(1, 1) Model estimation 

 
ω α β θ Q(12) 

Italy 0.141*** 0.255*** 0.698*** 1.938*** 15.38 

 

(0.046) (0.030) (0.040) (0.048) [0.221] 

Germany 0.406*** 0.418*** 0.492*** 2.411*** 6.63 

 

(0.092) (0.038) (0.047) (0.055) [0.881] 

Greece 0.182*** 0.241*** 0.714*** 1.805*** 2.71 

 

(0.069) (0.035) (0.046) (0.045) [0.997] 

France 0.369*** 0.380*** 0.533*** 2.480*** 13.94 

 

(0.083) (0.036) (0.046) (0.058) [0.304] 

Netherlands 0.295*** 0.293*** 0.608*** 1.973*** 8.71 

 

(0.065) (0.032) (0.047) (0.048) [0.727] 

Spain 0.419*** 0.421*** 0.489*** 2.447*** 4.49 

 

(0.101) (0.042) (0.055) (0.058) [0.973] 

Austria 0.441*** 0.395*** 0.497*** 2230*** 5.12 

 

(0.103) (0.040) (0.054) (0.052) [0.954] 

Belgium 0.508*** 0.460*** 0.403*** 2298*** 9.15 

 
(0.100) (0.041) (0.055) (0.054) [0.690] 

Note: Standard errors are in parenthesis and p-values are in brackets. (***). (**) and (*) denotes 1%. 5% and 

10% statistical significance levels. respectively. 

After estimating the conditional ranges from WCARR(1, 1) model, we move on to next step 

in our analysis. We use estimated conditional ranges from WCARR(1, 1) model (see Figure 

1) as input variables in volatility spillover index analysis.  

Figure 1: WCARR(1, 1) Estimated Volatilities

 

Looking at the Figure 1, we observe that all stock markets show more or less similar volatility 

clustering behaviour. During stable periods between circa 2002 and 2007, all stock markets 

exhibit lesser volatility compared to turmoil periods. The effects of subprime mortgage crisis 

which escalated with the collapse of Lehman Brothers in 2008 are evident in all stock 
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markets. Also, Eurozone crisis cause upward jumps in volatility processes of the European 

markets.  

In order to examine volatility transmissions among stock markets, we employ volatility 

spillover index methodology proposed by Diebold and Yilmaz (2012).  In this context, the 

results of the total spillovers for eight Eurozone stock markets are presented in Table 3. Its ijth 

elements of the spillover table indicate the forecast error variance of market i coming from 

shocks to market j.  Forecast error variance analysis displays the contribution of each source 

of shock to the variance of the future forecast error for each endogenous variable. Hence, it 

splits the forecast error variance of a variable to its own shock and other variables’ shocks in 

the system.  

The own variance shares which represent the forecast error variance of market i resulting 

from its own shock are given in the diagonal elements of Table 3.  Off-diagonal column 

elements of the table display the contribution of market i to the other market j. Whereas, the 

spillover effects received by market i from other market j are give in off-diagonal row 

elements of the table. Moreover, off-diagonal row and column sums show “directional 

spillovers from others”, and “directional spillovers to others” respectively. In addition, net 

volatility spillovers are calculated by substracting “directional from others” from “directional 

to others”.  

The findings suggest that 74.9% of the forecast error variance in the markets originates from 

other markets, indicating that the Eurozone countries are highly interconnected. Inspecting net 

volatility spillovers, we can notice that France is the main transmitter of volatility and Greece 

is the main receiver.  

Table 3: Volatility Spillover Table for Major Eurozone Countries 

 

It Ger Gr Fr Nd Sp At Bel 

Directional 

FROM Others 

It 19.9 10.7 4.1 14.3 13.3 15.5 8.9 13.3 80 

Ger 9 19.5 2.1 18.4 14.8 12.5 8 15.6 80 

Gr 7.9 4.6 42.6 7.5 6.9 8.9 10.8 10.8 57 

Fr 10.3 14.5 2.5 19.3 15.4 13 8.9 16 81 

Nd 11.3 12.4 2.3 16.5 21.7 12.2 7.9 15.6 78 

Sp 11.9 11.6 4.2 15.7 12 22.4 9.2 12.9 78 

At 9.5 7.7 3.3 12.5 11.7 9.8 30.5 15 70 

Bel 10 11.2 2.5 15.9 15.7 9.9 10.2 24.7 75 

Directional TO Others 70 73 21 101 90 82 64 99 599 

Net Volatility Spillovers -10 -7 -36 20 12 4 -6 14 

Total Spillover 

Index: 74.9% 

 

The sample we use witnesses a highly volatile period in the world economy, including 

Dot.com bubble, 9/11 terrorist attacks, Afghan and Iraq Wars, FED intervention, US subprime 

mortgage crisis and European sovereign debt crisis. As mentioned by Diebold and Yilmaz 

(2012), we are unable to evaluate the impacts of aforementioned political, economic and 



financial crisis by unconditional volatility spillover index given in Table 3. To investigate 

time-varying spillover indices, we provide a visual presentation of rolling window framework 

in Figure 2. In this regard, we used 104 week rolling window with 10 step ahead forecasts. 

The plot reveals that volatility spillover effect among countries tend to increase during periods 

of political tensions and/or economic turmoils.  

At a first glance, we notice that first sharp increase in volatility spillover index happened in 

mid 2000 resulting from Dot.com bubble. The next sudden rise in the index came right after 

the 9/11 terrorist attacks. After a tranquil period, between end-2001 and mid-2003, 

multinational invasion of Iraq caused a turmoil affecting global economic environment. 

Following a relatively calm era, FED decided to increase federal funds rate to tighten 

monitory policy in mid-2006. This action of FED led to capital outflow from world markets to 

the US. The worst financial crisis since the Great Depression hit the world economy as a 

whole and the collapse of Lehman Brothers induced a big chaos in the global markets. As a 

result volatility spillover index reached its peak around 85% at the end of 2008. Afterwards, 

ongoing European sovereign debt crisis has been impacting Eurozone countries. Therefore, 

for the period between late 2009 and late 2011 volatility spillover index remained relatively 

high.  

Overall, our empirical findings have some surprising pinpoints. The European sovereign debt 

crisis has lesser influence on Eurozone volatility spillover index than the US subprime 

mortgage crisis. Additionally, unsystematic events  e.g. 9/11 terrorist attacks and FED 

intervention, triggered a sharp upward movements in volatility spillover index.  Our results 

are indicative for policy makers and regulators to monitor the financial and economic climate 

in the Eurozone, and to keep a close eye on sudden changes in the world political and 

economic environment.  

Figure 2: Total Volatility Spillover Plot 

 

As pointed out by Louzis (2013), it is also beneficial to identify the directional spillover 

effects across markets for policy implications. In order to spot possible sources of volatility 



among Eurozone countries, net volatility spillovers are presented in Figure 3.  The figure 

affirms the results of Table 3, implying that France, the Netherlands, Spain and Belgium are 

net transmitters and Italia, Germany, Greece and Austria are net receivers of volatility 

spillovers. When we look at the Figure 3, we can locate some indicative points. Firstly, for 

most of the sample period Greece is mainly volatility receiver but a transmitter after receiving 

financial support from IMF and ECB. Another interesting point is revealed by inspecting the 

net volatility spillovers of two biggest economies in the Eurozone. Until 2006 Germany is 

generally volatility transmitter, after that period it is subject to volatility contagion from other 

Eurozone countries. Whereas, France is the main volatility transmitter during whole period.  

Figure 3: Net Directional Volatility Spillover Plots 

 

5. Concluding Remarks 

For this study, we construct a WCARR(1, 1) based volatility spillover index to investigate the 

directional dynamics of volatility among the European markets. We have implemented a 

modified version of the forecast-error variance decomposition model of Diebold and Yilmaz 

(2012) by incorporating conditional ranges  generated from WCARR(1, 1) model as input 

variables for the spillover index calculation. Our empirical findings suggest a high level of 

total volatility spillovers for our whole sample period with sudden but temporary jumps being 

spotted during exogenous (9/11 terrorist attacks, FED intervention, US subprime crisis) and 

unsystematic (European sovereign debt crisis) shocks to the European markets. We can 

empirically say that during the periods of economic turmoil and political stress volatility 

spillover tends to be higher compared to stable periods.  

A possible future development for this study can be the investigation of cross-country 

spillover effects in order to see the pairwise relationships between the markets. Also, 

examining volatility transmission between European markets and other economies (US, 

Russia, China etc.) would be beneficial in terms of understanding the volatility dynamics in 

the Eurozone.  
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